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We calculate the electric conductance of a normal-metal/charge-density-wave/normal-metal heterostructure
in the sliding regime. The collective transport is understood in analogy with Andreev scattering at normal-
metal/superconductor interfaces, and is expressed in terms of the local density of states and the quasiparticle
transmission probability. At low temperatures the resistance due to disorder originates from the immediate
vicinity of the contacts.@S0163-1829~96!02532-5#

The conductance mechanism of quasi-one-dimensional
conductors exhibiting charge-density-wave~CDW! transi-
tions has been the subject of many theoretical and experi-
mental studies.1 In particular, the discovery of narrow-band
noise2,3 and nonlinear current-voltage characteristics in these
systems has attracted much attention. In order to explain
these phenomena, a number of theories were proposed which
can be roughly categorized as phenomenological models,4

semimicroscopic treatments based on the phase
Hamiltonian,5–7 and microscopic calculations.8,9 From a for-
mal point of view there are many similarities between these
theories and the theory of superconductivity. However, de-
spite the extensive literature on mesoscopic superconducting
heterostructures, almost no similar studies exist for CDW
systems. Recently, the group Mooij at Delft started a project
of film growth and structuring for the fabrication of thin,
mesoscopic CDW films. Motivated by these advances, Viss-
cher and Bauer10 developed a mean-field theory for the
ground state of CDW heterostructures and Tanakaet al.11

studied the quasiparticle transport in normal-metal/insulator/
CDW junctions.

In this paper we investigate the conductance properties of
a normal-metal/CDW/normal-metal (N/C/N) heterostruc-
ture with emphasis on the collective motion of the CDW
condensate. Our model consists of parallel one-dimensional
CDW chains of lengthL perpendicular to the interfaces with
two normal, low impedance leads~cf. Fig. 1!, which are
connected to two large reservoirs at the chemical potentials
mL andmR . We restrict ourselves to CDW compounds with
a semiconducting spectrum below the transition temperature
TP ~examples are TaS3 and K0.3MoO3), and assume the cou-
pling between the chains to be small.12 The CDW then con-
sists of a lattice distortion coupled to an electron density
modulationnCDW}uD(x,t)ucos@2kFx2x(x,t)# wherekF is the
Fermi wave number anduDu andx are the time- and space-
dependent modulus and phase of the CDW order parameter,
respectively.uDu is one-half of the Peierls energy gap at the
Fermi energy.

We shall restrict ourselves to the incommensurate case
where the free motion of the condensate is only prohibited
by impurities.13 When the potential difference
dm5mL2mR is below the threshold voltagedmT , the CDW
is pinned and the current is carried by the quasiparticles
above the energy gap~comparable to the normal current in

superconductors!. Above the threshold voltage the CDW
slides along the sample with velocityvCDW5ẋ/2kF
(ẋ[] tx). The sliding motion of the CDW, whether local or
global, is seen as the main source of the narrow-band noise.1

Using the method of kinetic equations14 based on the
Keldysh formalism,15 we derive expressions for the conduc-
tance of theN/C/N junction in the so-called sliding regime9

wheredm@dmT . It is shown that at zero temperature the
sliding CDW does not experience any friction from the bulk
density of impurities, i.e., resistance is only caused by the
disorder near the contacts. This result is then interpreted by
using the analogy with Andreev reflection in superconductiv-
ity. We also consider the CDW slightly belowTP and calcu-
late the correction to the conductance of the normal metal as
a result of CDW formation in the dirty and clean limits.

We first present a brief discussion of the method of ki-
netic equations9,14 which provides a consistent theoretical
framework for the semiclassical dynamics of the system. The
motion of the quasiparticles and the condensate in a CDW
system can be described by the Green functions
gab
i (x;t,t8) where i5$R,A,K% and a,b5$1,2%. The re-
tardedgR and advancedgA functions determine the excita-
tion spectrum, and the Keldysh functiongK describes the

FIG. 1. TheN/C/N heterostructure. A thin CDW film of length
L is connected to two perfectly conducting normal leads. The leads
are connected to two reservoirs at chemical potentialsmL and
mR .
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kinetics of the system. The subscripts 1 and 2 refer to the
right-, respectively, left-moving electrons at the two
branches of the linearized kinetic-energy spectrum. The
Green functions satisfy the equation of motion

i\vF]xg1Hsg2gsH50, ~1!

and the normalization condition

gsg51d~ t2t8!, ~2!

where

H5~ i\] t2F!s31D2S,

g5S gR gK

0 gAD , S5S SR SK

0 SAD ,
D5S D̂ 0

0 D̂
D , sk5S sk 0

0 sk
D . ~3!

HerevF is the Fermi velocity,F is the quasiparticle poten-
tial including the self-consistent Hartree term,S i is the im-
purity part of the self-energy,sk (k5$1,2,3%) are the Pauli
matrices, and the operators implies internal time integra-
tion as well as matrix multiplication. The matrixD̂ is given
by D̂115D̂2250, D̂125D, D̂2152D* , where the order pa-
rameter D5uDuexp(ix) is determined from the self-
consistency relation

~12v0
22] t

2!D~x,t !5lg12
K ~x;t,t !. ~4!

Herel5pN(0)g0
2/4v0

2 whereN(0) is the density of states
at the Fermi energy,v0 is the phonon frequency at 2kF , and
g0 is the electron-phonon coupling constant.

The impurity scattering is treated within the self-
consistent Born approximation where

S52 1
2 i ~n1s3gs32

1
2n2s1gs12

1
2n2s2gs2!, ~5!

with n1 and n2 the forward and backward scattering rates,
respectively. This choice ofS is inevitable within the frame-
work of kinetic equations, but implies the neglect of pinning
of the condensate.9 Hence the calculation presented below is
only valid in the sliding regime where the applied bias is
sufficiently larger than the threshold value.

It is convenient to gauge away the phasex in Eq. ~1! by
applying the unitary transformation

$g,S%→$g̃,S̃%5U†~x,t !$g,S%U~x,t8!, ~6!

whereU5exp(12is3x). This is equivalent to a transformation
from the reference frame of the laboratory to that of an ob-
server moving with the velocityvCDW5ẋ/2kF . Below we
disregard the local variations ofẋ and look for a stationary-
state solution of the formg̃(x;t2t8) which can be treated by
the Fourier transformation

g̃~x,«!5E dtexp~ i«t/\!g̃~x;t !. ~7!

Substitution of Eqs.~6! and ~7! into Eq. ~1! yields the
stationary-state equation of motion

i\vF]xg̃1@~«2F̃!s32 iuDus22S̃,g̃#50, ~8!

where F̃5F1 1
2\vF]xx. Furthermore, the normalization

condition~2! is now reduced to the ordinary matrix equation
@ g̃(x,«)#251. So far the treatment parallels that for the bulk
CDW.9

Equation ~8! has to be supplemented by boundary condi-
tions at x50 andx5L describing the normal-metal/CDW
interface. In this paper we restrict ourselves to the ideal case
where no defects or potential barriers are present at the con-
tacts. The boundary conditions for the retardedg̃ R and ad-
vancedg̃ A components are then given by

g̃ 11
R ux50,L52g̃ 22

R ux50,L51, ~9a!

g̃ 11
A ux50,L52g̃ 22

A ux50,L521, ~9b!

g̃ 12
R ux505g̃ 21

R ux5L5g̃ 21
A ux505g̃ 12

A ux5L50. ~9c!

Equations~9a! and ~9b! follow from the continuity of the
Green functions at the normal-metal/CDW interfaces and the
results16 for a normal metal. Equation~9c! is a consequence
of the absence of backscattering in the leads for electrons
moving away from the CDW. The corresponding nondiago-
nal elements ofg̃ R and g̃ A ~describing backscattering! will
then vanish, leading to Eq.~9c!.

The boundary conditions forg̃ K are determined as fol-
lows. The right-~left-! moving electrons in the left~right!
lead are injected by the reservoir at the potentialmL (mR).
The local distribution of right- and left-moving electrons
among single-particle states is determined by the diagonal
elementsg11

K respectively,g22
K After taking account of the

gauge transform~6! and the Fourier transform~7! we end up
with the boundary conditions

g̃ 11
K ~0,«!5224 f ~«2mL2 1

2\ẋ!, ~10a!

g̃ 22
K ~L,«!5224 f ~«2mR1 1

2\ẋ!, ~10b!

where f («) is the Fermi-Dirac distribution function. Equa-
tion ~10! simply states that for an observer moving with the
velocity vCDW the kinetic energy of right- and left-moving
electrons is modified by2 1

2\ẋ and 1
2\ẋ, respectively.

In principle Eqs.~8!–~10! and the self-consistency rela-
tion ~4! can be used to compute the conductance
G52eI/dm where2e is the electron charge and

I5 1
8evFN~0!E d«trg̃ K ~11!

is the electric current. In practice, however, the system of
Eqs. ~8!–~10! cannot be solved analytically. Therefore we
apply perturbation theory by takingdm and ẋ to be small,
and linearize Eq.~8! around the equilibrium solution in
which dm5ẋ50.17 The details of the calculation are given
elsewhere.18 Here we present the final result for the~linear!
conductance:

G5GCDW1GN , ~12a!

GCDW

G0
5

@11*d«r ~«!T~«!]« f #
2

12*d«@D~«!2r 2~«!T~«!#]« f
, ~12b!
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GN

G0
52E d«T~«!]« f , ~12c!

whereG05
1
2e

2vFN(0) is the conductance of a ballistic, nor-
mal system,T(«) is the probability for an electron at the
energy« to tunnel through the CDW region, and

r ~«!511
1

l N~0!
E
0

L

dxr~x,«!,

D~«!5
1

l @N~0!#2
E
0

L

dx@r~x,«!#2, ~13!

wherel 5\vF /n2 is the elastic mean free path andr(x,«)
is the local equilibrium density of states. In Eq.~12! GCDW
andGN denote the contributions of the condensate and the
quasiparticles, respectively. Equations~12! and ~13! can be
used to study the behavior of theN/C/N system in two im-
portant limiting cases: the zero temperature limitT50 where
n1,2!uDu and near the CDW transition temperatureTP where
n1,2@uDu.

We first consider theN/C/N system atT50, thus restrict-
ing ourselves to quantities at the Fermi energy by
]« f52d(«) in Eq. ~12!. At T50 the local density of states
r(x,0) decays exponentially inside the CDW region, where a
large energy gap~;2uDu! opens. Consequently, the transmis-
sion probabilityT(0) becomes exponentially small and the
current is carried by the condensate only. Hence from Eq.
~12! we have

G

G0
;
GCDW

G0
;

1

11D~0!
. ~14!

From the definition ofD @cf. Eq. ~13!# and Eq. ~14! we
conclude that atT50 the conductance of theN/C/N system
is not affected by the bulk concentration of impurities. The
condensate, driven bydm, experiences friction only near the
contacts where the density of states at the Fermi energy does
not vanish immediately.

In order to determineD(0), wehave to calculate the den-
sity of states at the Fermi energyr(x,0). This calculation is
complicated by the spatial variations ofD near the contacts
~proximity effect!. For simplicity we use here the step-
function model

D~x!5H D, 0,x,L

0, x,0, x.L
~15!

which agrees quite well with self-consistent calculations.10

To first order inn2 /uDu5j/l (j5\vF /uDu is the coherence
length of the CDW! ~Ref. 18!

r~x,0!

N~0!
5
cosh~z!

cosh~z! F12S j

l
D S n0
4n2

D @ztanh~z!2z#G , ~16!

wherez5(2x2L)/j, z5L/j, n052n11n2. After substitut-
ing Eq. ~16! into Eqs.~13! and ~14! we find

G

G0
;12

1

2 S j

l
D2F141

n0
8n2

G S j

l
D 21•••. ~17!

As indicated by Eq.~17!, dissipation is restricted to narrow
regions~with lengths of the order ofj) near the contacts,
reducing the conductance of an otherwise ballistic system
only weakly.

This result can be interpreted by using the analogy with
Andreev reflection in superconductivity. The CDW at low
temperatures behaves as a rigid condensate of electron-hole
pairs. Due to the energy gap, an electron near the Fermi
surface cannot propagate through the CDW region unless it
simultaneously drags a hole from the Fermi sea, forming a
new electron-hole pair. The latter then ‘‘freezes’’ into the
condensate as the CDW moves away from the interface,
whereas an extra electron is reflected back into the Fermi
sea. The momentum of the reflected electron is slightly less
than that of the original electron: the difference is transferred
to the moving condensate. Hence, although charge is con-
served, momentum is not.19 At the other interface the oppo-
site process takes place. As the CDW approaches the inter-
face, the condensate ‘‘melts’’ by the destruction of electron-
hole pairs: holes recombine with the electrons in the Fermi
sea while electrons propagate freely in the normal region.
Because of the energy gap, the disorder can only generate
friction near the contacts where solidification and melting
take place.

We next consider the limitTP2T!TP wheren1,2@uDu.
Although D is not zero in this case, the energy gap is de-
stroyed by the impurities, leading to finite bulk density of
states and transmission probability at the Fermi energy.~This
situation is analogous to that of gapless superconductivity,
where magnetic impurities destroy the energy gap at suffi-
ciently high temperatures.! Due to the absence of an energy
gap, the dissipation is now mainly a bulk phenomenon, in
contrast to the low temperature case. Hence we may disre-
gard thex dependence ofr and use the results for a uniform
system. To second order inl /j5uDu/n2 we have18

r~«!

N~0!
511S lj D 2 2n2

2~4«22n0
2!

~4«21n0
2!2

, ~18a!

T~«!5
1

R
2S lj D 2SR21

R2 D 2n0n2
4«21n0

2 , ~18b!

whereR511L/l . Substituting Eq.~18! in Eqs. ~12! and
~13! and considering the clean (n1,2!kBTP) and dirty
(n1,2@kBTP) limits we obtainGN /G051/R and

GCDW

G0
;

p

4A2
SR21

R2 D S uDu
kBTPD

2

, n1,2!kBTP ~19a!

GCDW

G0
;2S 11

n2
n0

D SR21

R2 D S uDu
n0

D 2, n1,2@kBTP .
~19b!

Since in the gapless regimeuDu}(TP2T )1/2 ~see Gor’kov in
Ref. 1!, GCDW}(TP2T ) in both clean and dirty limits. Be-
cause of the absence of the energy gap, the enhancement
GCDW of the normal conductance should be attributed to the
reduction of the bulk density of states near the Fermi energy,
as seen from Eq.~18a!.

In deriving the above results we~i! disregarded the pin-
ning effects,~ii ! disregarded the local variations of the slid-
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ing velocity ẋ, and~iii ! assumed perfectly conducting leads
and ideal contacts. As regards point~i! it should be noted
that CDW pinning requires a treatment beyond the self-
consistent Born approximation~5!. An alternative approach,
currently pursued by the authors, is to incorporate a few
dominating pinning sites by extra boundary conditions on the
Green functions.

The second simplification~neglect of the spatial varia-
tions of ẋ) is valid when the condensate is moving as a
whole, but fails to explain intricate phenomena such as the
motion of phase-slip centers1 which involves a nonuniform
distribution of ẋ.

Finally, we assumed perfect leads and disregarded all
scattering sources at the interface. This is certainly not true
in experiments where high-electron-density contacts are
used. Differences in electron density between the CDW and
the contacts correspond to large potential steps at the inter-
faces. This problem can be settled by considering a geometry
in which the CDW is separated from the contacts by two
disordered normal regions with the same electron density as
that of the CDW ~e.g., the CDW material in the normal
state!. The coherent Friedel oscillations in these regions are
then destroyed by the disorder10 so that despite the potential
steps at the contacts, the conductance properties of the CDW

are not affected. The results presented above should then
remain valid provided thatT(«) in Eq. ~12! describes the
transmission probability through the whole configuration.

We conclude by summarizing the results. Using the
method of kinetic equations we expressed the conductance of
theN/C/N system in the sliding regime in terms of the local
density of statesr(x,«) and the transmission probability
T(«). At low temperatures theN/C/N junction almost be-
haves like a normal, ballistic system: the resistance due to
disorder originates only from the immediate vicinity of the
contacts~or the leads!. This result can be interpreted by us-
ing the analogy with Andreev reflection in superconductiv-
ity. We also considered theN/C/N system slightly below the
transition temperature and calculated the enhancement of the
conductance due to the CDW formation in the dirty and
clean limits.
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15L. V. Keldysh, Zh. Éksp. Teor. Fiz.47, 1515~1964! @Sov. Phys.
JETP20, 1018~1964!#.

16J. Rammer and H. Smith, Rev. Mod. Phys.58, 323 ~1986!.
17At low temperatures the characteristic energy scale of the system

is uDu. Hence perturbation theory holds only whendm!uDu. On
the other hand, in the sliding regimedmT!dm which can only
be satisfied ifdmT!uDu. Therefore at low temperatures where
dmT is not negligible, perturbation theory is only valid in the
limit of weak pinning, i.e.,dmT!uDu.

18B. Rejaei~unpublished!.
19Note that in Andreev reflection exactly the opposite happens:

charge is transferred from the normal metal to the superconduc-
tor while momentum is conserved.

8490 54B. REJAEI AND G. E. W. BAUER


