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Collective transport through charge-density-wave heterostructures
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We calculate the electric conductance of a normal-metal/charge-density-wave/normal-metal heterostructure
in the sliding regime. The collective transport is understood in analogy with Andreev scattering at normal-
metal/superconductor interfaces, and is expressed in terms of the local density of states and the quasiparticle
transmission probability. At low temperatures the resistance due to disorder originates from the immediate
vicinity of the contacts[S0163-182¢06)02532-5

The conductance mechanism of quasi-one-dimensionauperconductojs Above the threshold voltage the CDW
conductors exhibiting charge-density-wa¢@DW) transi- slides along the sample with velocity cpw=x/2Kg
tions has been the subject of many theoretical and experiy=4d,x). The sliding motion of the CDW, whether local or
mental studied.In particular, the discovery of narrow-band global, is seen as the main source of the narrow-band hoise.
noisé® and nonlinear current-voltage characteristics in these Using the method of kinetic equatiofisbased on the
systems has attracted much attention. In order to explaiKeldysh formalism.> we derive expressions for the conduc-
these phenomena, a number of theories were proposed whitince of theN/C/N junction in the so-called sliding regime
can be roughly categorized as phenomenological mddelsyhere su>dur. It is shown that at zero temperature the
semimicroscopic  treatments based on the phaseliding CDW does not experience any friction from the bulk
Hamiltonian>~’ and microscopic calculatioffs. From a for-  density of impurities, i.e., resistance is only caused by the
mal point of view there are many similarities between theselisorder near the contacts. This result is then interpreted by
theories and the theory of superconductivity. However, deusing the analogy with Andreev reflection in superconductiv-
spite the extensive literature on mesoscopic superconductirity. We also consider the CDW slightly belo# and calcu-
heterostructures, almost no similar studies exist for CDWate the correction to the conductance of the normal metal as
systems. Recently, the group Mooij at Delft started a project result of CDW formation in the dirty and clean limits.
of film growth and structuring for the fabrication of thin, We first present a brief discussion of the method of ki-
mesoscopic CDW films. Motivated by these advances, Vissnetic equatiors'* which provides a consistent theoretical
cher and Bauéf developed a mean-field theory for the framework for the semiclassical dynamics of the system. The
ground state of CDW heterostructures and Tanekal!!  motion of the quasiparticles and the condensate in a CDW
studied the quasiparticle transport in normal-metal/insulatorsystem can be described by the Green functions
CDW junctions. Oap(x;t,t") where i={R,AK} and «,8={1,2. The re-

In this paper we investigate the conductance properties ahrdedgR and advanceg” functions determine the excita-

a normal-metal/CDW/normal-metalN(C/N) heterostruc- tion spectrum, and the Keldysh functigi® describes the
ture with emphasis on the collective motion of the CDW
condensate. Our model consists of parallel one-dimensional
CDW chains of length. perpendicular to the interfaces with
two normal, low impedance leadsf. Fig. 1), which are
connected to two large reservoirs at the chemical potentials
um andug. We restrict ourselves to CDW compounds with
a semiconducting spectrum below the transition temperature
7T (examples are Ta3and K, ;M003), and assume the cou-
pling between the chains to be smdllThe CDW then con-
sists of a lattice distortion coupled to an electron density
modulationngpy | A(X,t) |cog 2kex— x(x,t)] wherek is the
Fermi wave number anf\| and y are the time- and space-
dependent modulus and phase of the CDW order parameter,
respectively|A| is one-half of the Peierls energy gap at the
Fermi energy.

We shall restrict ourselves to the incommensurate case Mo He
where the free motion of the condensate is only prohibited
by impurities”® When the potential difference  FIG. 1. TheN/C/N heterostructure. A thin CDW film of length
op=uL— ur is below the threshold voltag@ur, the CDW L is connected to two perfectly conducting normal leads. The leads
is pinned and the current is carried by the quasiparticleare connected to two reservoirs at chemical potentiglsand
above the energy gafgzomparable to the normal current in ug.
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kinetics of the system. The subscripts 1 and 2 refer to thevhere ®=® + Yivgd,y. Furthermore, the normalization
right-, respectively, left-moving electrons at the two condition(2) is now reduced to the ordinary matrix equation
branches of the linearized kinetic-energy spectrum. Th¢g(x,e)]?=1. So far the treatment parallels that for the bulk

Green functions satisfy the equation of motion cbw?®
Equation (8) has to be supplemented by boundary condi-

ihvpdyg+HOg—gOH=0, (D tions atx=0 andx=L describing the normal-metal/CDW
and the normalization condition interface. In this paper we restrict ourselves to the ideal case
where no defects or potential barriers are present at the con-
gOg=1a(t—t"), (2)  tacts. The boundary conditions for the retar@dg® and ad-
where vancedg * components are then given by
H=(ifi—®) o+ A-3, G Tlx-00=—T Zlx=01=1, (93
R K R K —~ ~
9= 9 9 o 2T X g ?1|x=0,L=_9 §2|x=o,L=_1: (9b)
0 g’ 0o IA)
R 9 x=0=0 5= =0 Sx=0=0 8x=1=0. (99
A O Ok O
A= o A" %o o) (3)  Equations(9a) and (9b) follow from the continuity of the
k Green functions at the normal-metal/CDW interfaces and the

Herevr is the Fermi velocity® is the quasiparticle poten- result® for a normal metal. Equatioii9c) is a consequence
tial including the self-consistent Hartree terBY, is the im-  of the absence of backscattering in the leads for electrons
purity part of the self-energyy, (k={1,2,3) are the Pauli moving away from the CDW. The corresponding nondiago-
matrices, and the operat@ implies internal time integra- nhal elements of R andg* (describing backscatteripgyill
tion as well as matrix multiplication. The matrix is given ~ then vanish, leading to E¢9c). _ .
by A;;=A,=0, A,=A, Ay=—A*, where the order pa- The boundary conditions fog K are determined as fol-
rameter A=|Alexp(y) is determined from the self- lows. The right-(left-) moving electrons in the leftright)
consistency relation lead are injected by the reservoir at the potential (urg).
The local distribution of right- and left-moving electrons

(1— wg 20D A(x,1) =Ag¥\(x;t,1). (4)  among single-particle states is determined by the diagonal

eIementsgfl respectively,gg2 After taking account of the

Here\ = 7N(0)gg/4wg whereN(0) is the density of states gauge transforn) and the Fourier transforit¥) we end up
at the Fermi energyw, is the phonon frequency ak2, and it the boundary conditions
0o is the electron-phonon coupling constant.

The impurity scattering is treated within the self- T K(0e)=2—4f(e— i — L5 10
consistent Born approximation where 9 110) (&= p=2hx), (103

3= 3i(1103003— 31,0100, — 31,0,00,), (5 G 5oL.e)=2—4f(s — purt 3 X), (100

with v; and v, the forward and backward scattering rates,where f(s) is the Fermi-Dirac distribution function. Equa-
respectively. This choice & is inevitable within the frame- tion (]_O) S|mp|y states that for an observer moving with the
work of kinetic equations, but implies the neglect of pinningvelocity v pyy the kinetic energy of right- and left-moving
of the condensatéHence the calculation presented below is glectrons is modified by- %y and 3%y, respectively.

only valid in the sliding regime where the applied bias is  |n principle Egs.(8)-(10) and the self-consistency rela-
sufficiently larger than the threshold value. tion (4) can be used to compute the conductance

It is convenient to gauge away the phasén Eq. (1) by  G=—el/su where—e is the electron charge and
applying the unitary transformation

{9.3}-{8.5}=UT(x,0{g, TU(x 1), (6) |=%evFN(0)f detrg (11)

whereU=exp(i o3)). This is equivalent to a transformation ) )

from the reference frame of the laboratory to that of an obiS the electric current. In practice, however, the system of
server moving with the velocity cpw= x/2ke . Below we  Eds. (8)—(10) cannot be solved gnalyucall_y. Therefore we
disregard the local variations gf and look for a stationary- @Pply perturbation theory by takingu and x to be small,
state solution of the forfg(x;t—t’) which can be treated by and linearize Eq.(8) around the equilibrium solution in

the Fourier transformation which u=xy=0." The details of the calculation are given
elsewheré® Here we present the final result for thimean
~ . - conductance:
g(x,s):f dtexpliet/f)g(x;t). (7)
G=GcpwtGn; (1239

Substitution of Egs.(6) and (7) into Eq. (1) yields the

stationary-state equation of motion
onary quat ' Goow  [1+/der(e)T(s)d,f12

iivEd g+ [(e— D) oz—i|A|o—3,5]=0, (8) G, 1-Jde[D(g)—r%(e)T(e)]a,f’

(12b
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Gy As indicated by Eq(17), dissipation is restricted to narrow
G_o:_f deT(e)d,f, (120  regions(with lengths of the order of) near the contacts,
reducing the conductance of an otherwise ballistic system
whereG,= 2evN(0) is the conductance of a ballistic, nor- only weakly.
mal system,T(¢) is the probability for an electron at the  This result can be interpreted by using the analogy with
energye to tunnel through the CDW region, and Andreev reflection in superconductivity. The CDW at low
temperatures behaves as a rigid condensate of electron-hole
1 L pairs. Due to the energy gap, an electron near the Fermi
r(e)=1+ T(())f dxp(X,e), surface cannot propagate through the CDW region unless it
. 0 simultaneously drags a hole from the Fermi sea, forming a
new electron-hole pair. The latter then “freezes” into the
13) condensate as the CDW moves away from the interface,
whereas an extra electron is reflected back into the Fermi
sea. The momentum of the reflected electron is slightly less
where/=hvg /v, is the elastic mean free path ap@X,e)  than that of the original electron: the difference is transferred
is the local equilibrium density of states. In H42) Gcpw  to the moving condensate. Hence, although charge is con-
and Gy denote the contributions of the condensate and thgerved, momentum is nbt.At the other interface the oppo-
quasiparticles, respectively. Equatio(?) and (13) can be  sjte process takes place. As the CDW approaches the inter-
used to study the behavior of tie/C/N system in two im-  face, the condensate “melts” by the destruction of electron-
portant limiting cases: the zero temperature lif#0 where  hole pairs: holes recombine with the electrons in the Fermi
v1,<|A| and near the CDW transition temperatdfewhere  sea while electrons propagate freely in the normal region.
vy 2>A Because of the energy gap, the disorder can only generate
We first consider th&l/C/N system at=0, thus restrict-  friction near the contacts where solidification and melting
ing ourselves to quantities at the Fermi energy bytake place.
d, f=—05(e) in Eq. (12). At 7=0 the local density of states ~ We next consider the limi7,—7<7, where vy > |A|.
p(x,0) decays exponentially inside the CDW region, where aAlthough A is not zero in this case, the energy gap is de-
large energy gap~2|A|) opens. Consequently, the transmis- stroyed by the impurities, leading to finite bulk density of
sion probability T(0) becomes exponentially small and the states and transmission probability at the Fermi endiiyis
current is carried by the condensate only. Hence from Egsituation is analogous to that of gapless superconductivity,
(12) we have where magnetic impurities destroy the energy gap at suffi-
ciently high temperaturesDue to the absence of an energy
G Gepw 1 gap, the dissipation is now mainly a bulk phenomenon, in
(3_0~ Go T1¥ D(0)" (14) contrast to the low temperature case. Hence we may disre-
gard thex dependence g and use the results for a uniform
From the definition ofD [cf. Eq. (13)] and Eq.(14) we  system. To second order iV é=|A|/v, we haveé®
conclude that af=0 the conductance of tHg/C/N system

_ 1 L 2
D(e)= Wfo dxp(x,)]%,

is not affected by the bulk concentration of impurities. The ple) [/ 2205(4e%—13)
condensate, driven b§u, experiences friction only near the N(0) € (4e2+ Vg)z ' (183
contacts where the density of states at the Fermi energy does
not vanish immediately. 1 (/\3(R-1\ 2wy,
In order to determin® (0), wehave to calculate the den- T(e)= R (E) (?) 482—+V0, (18b

sity of states at the Fermi energyx,0). This calculation is

complicated by the spatial variations Afnear the contacts where R=1+L//. Substituting Eq.18) in Egs.(12) and
(proximity effec). For simplicity we use here the step- (13) and considering the cleanv{,<kg7p) and dirty

function model (v12>kg7Tp) limits we obtainGy/G,= 1/R and
A = 15 CDWN .
(X) [ 0, X<O, x> ( ) GO 4\/5 Rz kB,z,P ’ Vl,2<kBTP (198)

which agrees quite well with self-consistent calculatiths. G vy| (R—11[|A]}2
To first order inv, /|A|= &/ (é=fve/|A| is the coherence CDW~2<1+ _2)(_2)<_) v keTo.
length of the CDW (Ref. 18 Go vo/\ R 2 '
(19
p(x,0) coshz)

_ 1_(5 Vo (16 Since in the gapless reginma|o«(7p— 7)? (see Gorkov in
N(0) cosh?) )\ 4vy '

Ref. 1), Gepw* (Zp—7) in both clean and dirty limits. Be-
wherez=(2x—L)/¢, {=L/¢, vo=2v,+ v,. After substitut- G __ = of the normal conductance should be attributed to the

[ztanh(z) - {]

cause of the absence of the energy gap, the enhancement

ing Eqg. (16) into Egs.(13) and(14) we find reduction of the bulk density of states near the Fermi energy,
) as seen from Eq18a.
E~1— }(é) _ EJF Yo (E) ... (17) In deriving the above results w@ disregarded the pin-
Gy 2\/ 4 8uv,|\/ ' ning effects,(ii) disregarded the local variations of the slid-
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ing velocity y, and (iii ) assumed perfectly conducting leads are not affected. The results presented above should then
and ideal contacts. As regards poiit it should be noted remain valid provided thaT(e) in Eq. (12) describes the
that CDW pinning requires a treatment beyond the selftransmission probability through the whole configuration.
consistent Born approximatiofd). An alternative approach, We conclude by summarizing the results. Using the
currently pursued by the authors, is to incorporate a fewmethod of kinetic equations we expressed the conductance of
dominating pinning sites by extra boundary conditions on thehe N/C/N system in the sliding regime in terms of the local
Green functions. density of statesp(x,e) and the transmission probability
The second simplificatiorineglect of the spatial varia- T(e). At low temperatures th&l/C/N junction almost be-
tions of y) is valid when the condensate is moving as ahaves like a normal, ballistic system: the resistance due to
whole, but fails to explain intricate phenomena such as thelisorder originates only from the immediate vicinity of the
motion of phase-slip centérsvhich involves a nonuniform  contacts(or the leads This result can be interpreted by us-
distribution of y. ing the analogy with Andreev reflection in superconductiv-
Finally, we assumed perfect leads and disregarded alty. We also considered tH¢/C/N system slightly below the
scattering sources at the interface. This is certainly not trugransition temperature and calculated the enhancement of the
in experiments where high-electron-density contacts areonductance due to the CDW formation in the dirty and
used. Differences in electron density between the CDW andlean limits.
the contacts correspond to large potential steps at the inter-
faces. This problem can be settled by considering a geometry
in which the CDW is separated from the contacts by two This work is part of the research program of the “Stich-
disordered normal regions with the same electron density ang voor Fundamentele Onderzoek der Mateffi€®©OM)”
that of the CDW/ (e.g., the CDW material in the normal which is financially supported by the “Nederlandse Organi-
statg. The coherent Friedel oscillations in these regions aresatie voor Wetenschappelijk Onderzo@dWO).” The au-
then destroyed by the disord®so that despite the potential thors wish to thank Yu. V. Nazarov, M. I. Visscher,
steps at the contacts, the conductance properties of the CDW. Dekker, and J. E. Mooij for many valuable discussions.
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