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Transfer of spectral weight in spectroscopies of correlated electron systems
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We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated
electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of
large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and
the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model,
we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated
metallic state which is in qualitative agreement with optical measurementsOp. We argue that anomalies
observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase
diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and
present a detailed discussion on the role of magnetic frustration by studyirigrésolved single-particle
spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of
the Kondo insulators G#i ,Pt; and FeSi. The model can successfully explain the thermal filling of the optical
gap and the corresponding changes in the photoemission density of states. The temperature dependence of the
optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally,
we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic
Anderson model[S0163-182606)05536-1

[. INTRODUCTION fied models of strongly interacting systems treated with the
LISA may account for some of the main qualitative features
Interest in the distribution of spectral weight in the opticalthat are observed experimentally in the aforementioned
conductivity of correlated electron systems has been revivedtrongly correlated electron compounds. We have intention-
by the improvement of the quality of the experimental dataally chosen to consider both the Hubbard and periodic
in various system&: The traditional methods used in the Anderson models within the same work in order to empha-
strong correlation problem—exact diagonalization of smallsize the interesting connections in the behavior of these
clusters’ slave boson approaches,and perturbative seemingly very different models. In this regard, one of the
calculations—have not been very successful in describingnost insightful results is the notable temperature dependence
the interesting transfer of optical weight which takes place ashat affects the optical response of the models. The reason
a function of temperature in the strong correlation regime. for this important effec{which is experimentally observid
Recently, much progress has been achieved by mapping in the competition between the temperature anlgrsami-
lattice models into impurity models embedded in an effectivecally generated low-energy scal@amely, the “Kondo”
medium. This technique, the local impurity self-consistenttemperature of the associated single-impurity model, which
approximation(LISA),® is a dynamical mean-field theory is obtained upon the mapping efther model Hamiltonian.
that becomes exact in the limit of a large number of spatial The paper is organized as follows: in Sec. Il we summa-
dimensions. For instance, the Hubbard and Anderson latticerize the mean-field equations for the model Hamiltonians and
models can both both mapped onto the Anderson impurityhe expressions for the calculation of the optical conductivity
model subject to different self-consistency conditions for theand the optical sum rule. In Sec. lll we present an intuitive
conduction-electron bafh’ These resulting self-consistent pedagogical discussion of the physical content of the solu-
impurity problems can be analyzed by a variety of numerication of the model Hamiltonians in the large dimensional
techniques®1° limit. Section IV is dedicated to a thorough discussion of the
In this paper we apply this approach to a study of theoptical conductivity results. We discuss the effects on the
optical conductivity in regard to recent experiments inspectral functions of the introduction of magnetic frustration
V,03, CgBi,Pt;, and FeSi. We assume that tlsv-energy  in the Hubbard model which appears as an important ingre-
optical properties of YO5; can be modeled by a one-band dient in the physics of the Y0; compound. Also, we con-
Hubbard model, while G8i,Pt; and FeSi are described by a sider the effects of temperature and disorder on the optical
periodic Anderson modéP Due to the localized character of response of the model Hamiltonians. The calculations are
the orbitals that are expected to play relevant roles in thearried out using exact diagonalizati(ED) and iterated per-
low-frequency response, the modeling of the experimentaturbation theory(IPT) techniques, and the theoretical results
systems requires a large value of the Coulomb repulsion are discussed in regard of the experimental ones obtained on
Our main goal in this work is to demonstrate that simpli- various systems. Part of the theoretical results in Sec. IV
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were announced in a recent letfér. impurity site while the information on the hybridization with
The optical conductivity of the Anderson and Hubbardthe environment is implicitly contained i, *. Requiring
models were considered previously by Jarrell and co-workerghat
using the quantum Monte Cari@MC) and maximum en-
tropy methods*??~2>However, such techniques cannot be Giocal @) =2 G (K, w), (4)
applied to the rather high values of the interaction and low,o obtain, as a self-consistency condition,
temperatures which are relevant for the experimental regime.
For this reason we extensively use the IPT method, that al- ggl(w)=w+,u—t2€(w), (5)
lows us to access physically interesting regimes which are
outside the applicability of the QMC method. We also usefor the Hubbard model, and
the ED technique which, like the QMC, is an exact method, 1 _ 22
to confirm that the results presented are genuine features of [Go “Jec(@) =0+ pu—t[Cle(w) (6)
the model solutions in the limit of infinite dimensions, and wjth G, explicitly given by
not artifacts of the IPT. _
The conclusions are presented in Sec. V, and we finally 1 i0—t[Gle(iw) V
note that our ED approach to the solution of correlated mod- Go (iw)= v i (7
els in large dimensions is based on the use of continuous @

fractions. The Appendix describes an algorithm to converfor the PAM. In both casesf; is the “cavity” Green func-

the sum of two given continued fractions into a continuedtion which has the information of the response of the lattice.
fraction which we use to extend the ED method to the mod- We consider a Symmetric case Wlﬁhzo and 68:0_

els we treat in this paper. Moreover, we assume a semicircular bare density of states
for the conduction electrons, p°(e)==,6(e—€,)/
Il. METHODOLOGY Ngee=(2/7D)VI—(e/D)%, with the half-bandwidth

D=2t. This density of states can be realized in a Bethe
lattice and also on a fully connected fully frustrated version
As model Hamiltonians we consider the Hubbard modelf the modeft®*° In this case the “cavity” Green function

and the periodic Anderson mod@tAM): simply becomesG=G. In the following we set the half-
bandwidthD=1. We use an exact diagonalization algorithm
Hy=-— 2 (t; +,u,)ciTch,,+Z Unij;—3)(ny—3), (ED) (Refs. 17 and 1Band an extension of the second-order
<hl= ! iterative perturbation theoryPT) to solve the associated im-
oy purity problem'® We have checked that IPT and ED meth-
ods are in good agreement for all values of the model param-
Hpa= > (fk—M)CIUCka+E (e3—w)d! di, eters. This results from the property of IPT to capture the
K i atomic limit exactly in the symmetric cad&We extensively
use IPT on the real axis to scan through parameter space. A

A. Mean-field equations

+> V(d i, +H.c)+ > U(ngi;— 3 (Ngi, — %), detailed comparison will be presented elsewhere.
i i
2) B. Optical conductivity
where summation over repeated spin indices is assumé. The optical conductivity of a given system is defined by
the chemical potential, ang is the hopping amplitude be- 1 .
tween the conduction-electgon sites, which in the PAM re- o(w)=— |mf (L), J0)])e“!dt (8)
sults in the bande,. The d' and d operators create and Vo 0

destroy electrons on localized orbital with enerefy. V is

the hybridization amplitude between and d sites, which

also appear in the literature dsandf sites, respectively.
The derivation has been given in detail elsewierand

in particular in Ref. 6. So we choose to present only the fina

expressions here. The resulting local effective action reads

whereV is the volume,J is the current operator, and)
indicates an average over a finite-temperature ensemble or
over the ground state at zero temperature. In gene(ab)
Pbeys a version of thé-sum rule?®?’

f o(@)dw= —Im([P,J]) ©)

Joae i’ o open

- _ d d+' — o ’
Stocal o Jo Vo(m)Go (7= 7)o(7) whereP is a polarization operator obeyintP/dt= 7.

In a model which includeall electrons and all bandghe

B S
+U fo dT[nT(T) _ %][nl( ) — %] (3) current operator7 is given by

e

wherey! andy, correspond to a particular site, and denote J= EZ pio(r—ri), (10

¢/ and c, in the Hubbard model, andc!,d!} and '

{c,.,d,} in the PAM casen, corresponds tm., andng,, Wherep; is the momentum and; the position of the ith
respectively. Also note that Eq3) defines the associated electron, ande andm denote its charge and bare maBsis

impurity problem, withwz and ¢, being the operators at the given by
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An important result, which will be demonstrated later on,
PZGZ rio(r—r;). (1) s the notable dependence of the plasma frequengyon

temperature. This feature will be seen to emerge because
Thus 1M<[P,ﬂ)=ine2/m, wheren is the density of elec- correlation effects generate small energy scdtes., the

trons, and the sum rule becomes “Kondo temperature” of the associated impujityit is the
competition between the small scales and the temperature
o ne? that gives rise to an unusual temperature dependence to the
fo o(w)do=m-. (12 integrated optical spectral weight.

At T=0, the optical conductivity of a metallic correlated
This result is clearly temperature independent, and does néfectron system can be parametrized’by
depend on the strength of the interactions. w2
When dealing with strongly correlated electron systems, _“p Slw)+ 15
in a frequency range where few of the bands are believed to () (0)F Tred @ (15)

be important, itis customary to work with an effective mOdeIwhere the coefficient in front of thé function is the Drude

with one or two bands, such as the Hubbard or periodic ht andw? is th lized ol ¢ n th
Anderson model. The current operator is thus projected ont eight, andwyp .'S € renormalized plasma frequency. in the
presence of disorder§(w) is replaced by a lorentzian of

the low-energy sector, and is expressed in terms of creatio

and destruction operators of the relevant bars., W'dEhII 0 Eq.(13) at T=0 finds i field
J=i[eatlhv)=Z(c], ci—clci,5)] for the Hubbard and " va':Jhathg 9.(13) at T=0, one finds in mean-fie
Anderson models with nearest-neighbor hoppinig this eory tha
Ei\febézgme;(sectation valyéP, 1) is no longer~ne?/m, w;z_zﬂezzz ey 25 L6
PR R B 19
2 whereZ is the quasiparticle weight. For the Hubbard model
e/ ceC , LTS . ; ) A
V)Z (e k> K2 in infinite dimensions the expression above further simpli-

o ] ] . fies, and it depends only on the density of states
which is proportional to the expectation value of the kinetic

energy(K) of the conduction electrons in the case of NN wh?  4mt?e?

hopping?®28In general{K) depends on the temperature and yp —ﬁ—ZPO(O) 17
strength of interactions; therefore, for these few-band mod-
els, the optical weight sum rule will depend on them as well.
If the projection onto a few-band model is valid, this result

also implicitly indicates that a portion of the optical spectral

weight (the weight not exhausted bK¥K)) is transferred to

IIl. PHYSICAL CONTENT
OF THE MEAN-FIELD THEORY

much higher energies; that is, to bands that were excluded b In the next wo subsections we shall discuss in a peda-
the projection to low energies. ogical and intuitive manner the physical content of the Hub-
igbard and periodic Anderson models within the dynamical

In this paper we do not address the question of the vali field th he di A i
ity of the low-energy projection onto a few-band model, In- Mean-fie d theory. The discussion is based and resumes re-

stead we focus on the consequences of this assumption GFM results;!—***'"**and also serves as on introduction for
the redistribution of the optical weight within a mean-field e results that will be presented in detail in Sec. IV.
theory that is exact in the limit of large dimensions. Our
main conclusion is that there is a considerable temperature A. Hubbard model
dependence of the integrated spectral weight appearing in the The solution of the mean-field equations shows that at
sum rule. low temperatures the model has a metal-insulator transition
In infinite dimensions, o(w) can be expressed in (Mott-Hubbard transition at an intermediate value of the
terms of the one-particle spectrum of the current-carryingnteractionU.~3D.}#71® The metallic side is characterized
electrons®®?3 by a density of state€DOS) with a three-peak structure: a
central feature at the Fermi energy that narrows as one
1 2e’t*a’ o w , , moves towardJ. from below, and two broader incoherent
olw)=o— | deple) J_OOZAE(“’ JAdw' T o) faatures that develop at U/2, namely, the lower and upper
Hubbard bands. They have a width2D, and their spectral
X[ng(w’)—ni(o'+ )], (13 weight increases as the transition is approached. The insula-
tor side, forU>U_, presents only these last two high-
frequency features, which are separated by an excitation gap
'of sizeA~U—2D. The different structures of the DASig.
1) give rise to very different optical responses.
Let us first consider the insulator, which is simpler. In this
case, optical transitions are possible from the lower to the

with A (w)=—-2Im[G,(w)] being the spectral representa-
tion of the Green function of the lattice conduction electrons,
a the lattice constant, and the volume of the unit cell.

As we anticipated, the kinetic energy is related to the
conductivity by the sum rule

. 2 upper Hubbard bands. We therefore expect the optical spec-
do= me’a’ 14)  trum that results from the convolutiofil3) to display a
0'(")) w dﬁ2 < > ( ) . .
0 2 single broad feature that extends approximately from
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FIG. 1. Schematic DOS for the Hubbard modlf-filling) and ) . )
their corresponding optical spectra for the metallic and insulator FIG. 2. Schematic DOSﬁng-ﬁIhng) for C a”df’ electrons in the
solutions. The width of the incoherent peaks in the DOS-2D, ~ PAM (top). The corresponding schematic optical spectrd at0
and the one of central peak in the metaNZD= e’ (bottom lefy and the schematic band structure with the direct and

indirect gapsbottom righ}.
U—-2D to U+2D (Fig. 1). A negligible temperature depen-

dence of the spectra is expected, as longrasA. On the  geqyencies the noninteracting picture which was just de-

other hand, in the metallic case, the low-temperature optical.iheq stjll holds: though with the bare hybridizatigrbe-
spectrum displays various contributior(éf A narrow low- ing renormalized to a smaller valug*. Thus we say we

frequency peak that is due to transitions within the quasipar; T . . A
ticle resonance; at th&=0 limit this peak becomes @ have a hybridization band insulator with the hybridization

function, and is the Drude part of the optical resporipAt amplitude renorm.alizgd by interaF:tions. This can also be in-
frequencies of ordetJ/2 an incoherent feature of width terpreted b¥‘c0n3|de_r|n9 that the Int eractihglectrons form
~2D emerges due to transitions between the Hubbard bands 2and of “Kondo-like™ quasiparticles, that allows us to
and the central resonancéii) A last contribution at fre- define a coherence temperatdre similar to theT o, intro-
quency~U appears due to transitions between the Hubbar§uced above. This coherent band further opens a gap due to
bands. This is a broad feature of width4D. Therefore, we the periodicity of the lattice. This is the well-known scenario
expect an optical spectrum which is schematically drawn irfhat is borne out from slave-boson mean-field theory and
Fig. 1. It is important to realize that, unlike the insulator, aVvariational calculation$? On the other hand, the present dy-
notable temperature dependence of the spectra is to be examical mean-field theory also captures the high-energy part
pected. There is a low-energy scdlg,, that corresponds to of the d-electron density of states that develops incoherent
the temperature below which coherent quasiparticle excitasatellite peaks at frequenciesU/2 with a spectral weight
tions are sustained. It roughly corresponds to the width of théhat is transferred from low frequencies. Consequently, the
resonance at the Fermi energff=ZD. As T is then in- c-electron density of states is mainly made of a central
creased and becomes comparabld {g,, the quasiparticles broadband of half-widtld =2t and a gap at the center that
are destroyed, and as a consequence, the contributions to tharrows asV—V*. Also, it develops some small high-
optical spectra associated with then,and (i) rapidly de-  frequency structures, that result from the hybridization with
crease. thed electrons. In Fig. 2 we schematically present the den-
It should be clear that in our previous discussion we assity of states for thec andd electrons. As in the Hubbard
sumed that the system does not order magnetically, as pargiodel, we assume the absence of magnetic long-range order

magnetic solutions were considered. This situation can i’EMLRO). For a study of the magnetic phase of the Anderson
fact be realized by the introduction of disordexg., a ran-  ,0del see Ref. 31.

dom distribution oft;;) or next-nearest-neighbor hopping,  sjnce thed sites are localized orbitals, only theelec-
and aI/5ol|6ds the artificial nesting property of the bipartiteyons contribute to the optical response of this system. At
lattice™ T=0, following the previous interpretation in terms of a
renormalized noninteracting hybridization band insulator and

Eqg. (13), we expect to find an optical conductivity spectra

We now present a schematic discussion of the periodigvith a gapAg;,, which decreases as the interaction is in-
Anderson model solution. In this case there are two differentreased. We also expect thaf,y<Ay;,, as the first corre-
types of electronsg electrons, which form a band, ari  sponds to theindirect gap from the density of states
electrons with localized orbitals. In the noninteracting Aj,q~V*?/D, while the second is thdirect gap A 4~ V*
particle-hole symmetric case, the hybridization amplitde that is defined as the minimum energy for interband transi-
opens a gap in the-electron density of states;,;~V?/D. tions at a giverk (see Fig. 2 We do not expect any other
On the other hand, the origin@tfunction peak of the local- important contributions to the optical response since, as we
izedd electrons broadens by hybridizing with the conductionargued above, the incoherent high-frequency structures of
electrons and also opens a gap,. the c-electron density of states do not carry much spectral

When the effect of the interaction term is considered, asveight. In Fig. 2 we schematically present the optical re-
the local repulsiveU is increased, one finds that for low sponse af =0.

B. Periodic Anderson model
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As the temperature is increased, the gap in the optical
conductivity becomes gradually filled. At high temperatures 2000
a simple picture of electrons scattering off local moments
emerges. The crossover between these two regimes, would
naively be expected to occur at a temperature of the order of
Ajng- T

Thus we note that in the Hubbard and periodic Anderson g
models the destruction of a coherent quasiparticle state that S 1000
sets the low-energy scale of the system has rabpposite e
effects in the optical response. In the first case, the correlated
metallic state is destroyed dsbecomes of the order of the
renormalized Fermi energy, and the Drude part of the optical
response is transferred to higher energies as the insulating
state sets in. In the second case, however, the destruction of
the coherent excitations is accompanied by the thermal clos-
ing of the gap in the density of states that turns the system
metallic. As a consequence, the gap of the optical response is
filled with spectral weight from higher energies to become a FIG. 3. The experimentab-(w) of insulating \,_, 05 with
broad Drude-like feature. y=0.013 at 10 K(uppe) andy=0 at 70 K(lower. We indicate in

the spectra the position of the maxima and their width from which

the parametert) and D for the model calculations are extracted

o [eV]

A. Hubbard model S )
spectra, the low-frequency contribution is mainly due to a

In this section we discuss the theoretical results for thesingle peak In regard to our schematic discussion of the
model in regard of recent experimental data on th®Y  gec, |, the position of the maximum should approximately
system. To facilitate our subsequent theoretical discussionyrrespond to the parametdrthat corresponds to transitions
we shall first briefly present some of the optical conductivityfom the lower to the upper Hubbard band. Also, according
measurements recently reported for this compound. We shal} {he picture of Sec. IIl, the total width of the peak should
use the experimental results in order to extract the input pase — 4D which is twice the width of the Hubbard bands.
rameters for our model calculation. We shall not attempt torperefore. we can approximately estimate the parani@ter
give a formal justification for these parameters, as this lies,g the dis:tance from position of the peak maximum to the

beyond the scope of our present approach, but rather assUMBquency where the feature decreased to half its heigte
them as a phenomenological fit that allows our model calchig_ 3.

lations to reproduce the unusual features observed in the be-"1po parameters from the metallic optical conductivity

havior of the optical spectra qualitatively. spectra are not so easily extracted. However, we can still
_ obtain a rather precise determination by consideringdifie
1. Experimental spectra of O, ference spectréetween the data at 170 and 300($€e the

Vanadium oxide has threg, orbitals per V atom which NSet of Fig. 4.
are filled with two electrons. From the work of Castellani,
Natoli, and Ranninget two electrons(one per V are en-
gaged in a strong cation-cation bond, leaving the remaining
two in a twofold-degeneratey band. The single-band Hub-
bard model ignores the degeneracy of the band, which is
crucial for understanding the magnetic structtfréut cap- 30008
tures the important interplay of the electron-electron interac-
tions and the kinetic energy. This delicate interplay of itin-
erancy and localization is responsible for many of the
anomalous properties of this compound, which are correctly
predicted by this simplified modét. The localized character
of the orbitals that are relevant for the present low frequency 1000
discussion is also borne out of local-density-approximation u i
calculations that give a rather small bandwidth of
~05 ey_aa 00.0 05 10 15

Experimentally one can vary the parametdrandD, by
introducing O and V vacancies or by applying pressure or ©[eV]
chemical substitution of the cation. We can use experimental
data to extract approximate parameters to be used as input to F|G. 4. The experimentar(w) of metallic V,0; at T=170 K
our model. In particular, from the experimental optical COﬂ-(uppeD andT=300 K (lower). The inset contains the difference of
ductivity data in the insulating phase, a rather accurate dehe two spectra o(w)= 0170 k(@) — 0300 k(@) . Diamonds indicate
termination can be made because, as is apparent from thiee measured dc conductivity,. (from Ref. 21.

o [Qcm] -1
[l
=
*
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TABLE |. Experimental parameters for the model.

Phase Parameter

D (eV) U (eV) A (eV) w2/87 (eV/Q cm)
Ins. (y=0) 0.33+0.05 1.3-0.05 0.64-0.05 17G-20
Ins. (y=0.013 0.46+0.05 0.98-0.05 0.08-0.05 80G-50
Metal (170 K) 0.4+0.1 0.8£0.1 170G-300

As we shall discuss below in detail, the feature that aptween these two methods. The peak structure in the ED data
pears in the difference spectra at a frequendy/4 eV can be is due to the finite number of poles that result from the finite
associated with the parametel/2 (this statement will be size of the clusters that can be considered in practice.
justified a posterioriby the results of Sec. IVA)3 It is also In Fig. 6 we display the results for the size of gaps
intuitively suggested by the schematic discussion of Sec. llivhich are in excellent agreement with the experimental re-
that this feature corresponds to the enhancement of transsults indicated by black squar&slt is interesting to note
tions from the lower Hubbard band to the central resonancthat the results of Fig. 6, shown for various degrees of mag-
at the Fermi level, and from the resonance to the upper Hulaetic frustrationc.f. Sec. IV A4, indicate that in YO; frus-
bard band which are at a distanedJ/2. The value for the tration plays an important role. The experimental system
parameteD~0.4 eV in the metallic phase was determinedseems to be closer to the limit of strong frustration, which is
by noting that(i) a priori there is no reason to expect that it consistent with neutron-scattering results that indicate differ-
should be much different than in the insulating phasdike  ent signs for the magnetic interactions between different
the parametetd which could be modified by screenindii) neighboring sites®
it is consistent with the recent LDA calculation that gives a  Another interesting point is the fact that the gap obtained
half-width of ~0.5 eV for the narrow bands at the Fermi in the model optical spectra and the one obtained from the
level:>3 (iii ) despite the lack of very good experimental reso-position of the poles in the single-particle spectra coincide
lution, the value is consistent with both the optical data tha{Figs. 5 and & We therefore conclude that in this model the
we reproduce in Fig. 4 and photoemission experiméhts; direct and indirect gaps are very clogehich justifiesa pos-
and (iv) as will be shown later in the paper, this estimatedteriori that A is measured from the lowest pole of the local
value will allow us to gather in a single semiquantitative Green function This result, already predicted in Ref. 21,
consistent picture the optical conductivity results with thewas experimentally confirmed by accurate recent photoemis-
V,0; phase diagraft and experimental results for the slope sion study of \405.3" This follows from the fact that the
of the specific heat. The extracted parameters, along with thisnaginary part of the self-energy is very large wherever the
values for the size of the optical gdim the insulators and  electron density of states is non zero in the insulating solu-
the total optical spectral weight are summarized in Table I.tion (see Fig. 7. This is nothing but a direct consequence of

the complete incoherent character of the upper and lower
2. Insulating state Hubbard bands. They describe a completely incoherent

We now turn to optical conductivity results. The experi- Propagation, and one should not think of them as usual me-

mental optical spectrum of the insulator was reproduced iff@!lic bands “shifted” by the interactiot). This is an inter-
Fig. 3% It is characterized by an excitation gap at low ener-€sting result, as we note that from the discussion in Sec. IlI,
gies, followed by an incoherent feature that corresponds to
charge excitations of mainly vanadium charaétéfhese
data are to be compared with the model results of Fig. 5. The
overall shape of the spectrum is found to be in very good
agreement with the experimental results for the pus®y/
sample. We display the optical spectra results from both IPT
and ED methods. The data show very good agreement be-

3
7
= o
=
£l
=
3 FIG. 6. The gapA vs U for the antiferromagnetic, partially
© 0 ‘ frustrated, and paramagnetic insulat@stted, thin, and bold A is
0.0 0.5 Lo 15 twice the energy of the lowest pole from the ED Green function.
o [eV] The data are fong— o from clusters of three, five, and seven sites

assuming i scaling behavior. Black squares show the experimen-
tal gap for \,_, O3 with y=0.0 and 0.013. Inse{K) versusV for
FIG. 5. The modelr(w) for the insulating solution results at the AFI (bold-dotted, PI (thin) PM (bold), and partially frustrated
U=4D andT=0 from ED (thin) and IPT(bold). model (thin-dotted. Black squares show the experimental results.
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FIG. 8. The gapA vs the interactionUJ in the paramagnetic

FIG. 7. IN[G(w)] and InfS(w)] for U=4 from IPT. Note that  insulator. A is twice the energy of the lowest pole from the ED
IM[=(w)] is large when IfiG(w)] is nonzero, indicating the in- Green function. The data are from clusters of three, five, and seven

coherent character of the particle excitations. sites(top to botton).

in the unfrustrated case, one would have expected the diregpproach indicates a continuous closure of the gap at a criti-
gap to be larger that the indirect one. cal value of the interactiob) ;;=2.15.

A final and useful quantity that can be compared to the We also investigate the behavior of the inverse moments
experiment is the integrated spectral weigli/8= which is  of the spectral function defined as
related to(K) by the sum rulg14). Setting the lattice con- (e
stanta~3 A the average V-V distance, we find that our m_n:f p(fi € (18)
results underestimate the experiment by about a factor of 2, 0o €
which may possibly be due to the fact that our model does ) . ) _ _
not consider degeneradinset of Fig. 6 (Ref. 47). The behavior _o_f these quantltle_s give a more detailed pic-

Before leaving this subsection we shall address an imporure of the transition. The local picture of the paramagnetic
tant question, not yet fully settled, that is the mechanism bynsulator is that of a spin embedded in an insulator. Hybrid-
which the insulating solution is destroyed. The destruction ofzation with the bands of this insulator transfers spectral
the insulating state occurs at a polt; which may be dif- weight to hlg_h frequencies, bu_t the spin remains well defined
ferent from the critical point .~ 3D that is associated to the &t low energiegeven though with a reduced spectral wejght
breakdown of the metallic state as the interactidnis @S long as there is a finite gap in the insulator. Ug is
increased®*® This issue is physically relevant because one@PProached, and the gap decreases, we face the question
can envision a situation where the magnetic order stabilize¥hether the spin remains well defined even at the transition
the insulating solution over the metallic solution, but, due toP0iNt- This depends on the behavior of the density of states
a large degree of magnetic frustration, the insulating state is
very close to the fully frustrated paramagnetic insulator. The
destruction of the paramagnetic insulating state was dis-
cussed in Ref. 11 using IPT. Here we address this issue using
exact diagonalization.

We first study the behavior of the gap in the one-patrticle
excitation spectrum defined as the position of the lowest- 20 ¢
energy polgwith non-negligible weightin the Green func-
tion as a function of the number of sites included in the A 151
representation of the effective bath. Although the mean-field e
theory is strictly formulated in the thermodynamic limit, in
practice, the representation of the bath by a finite number of
orbitals introduces finite-size effects. The data shown in Fig.
6 were obtained from the extrapolation of results from finite-
size cluster Hamiltonian$i"s to the ng—c system. The ‘ ‘ . ‘ . ‘ ‘
value for A is defined as twice the energy of the lowest 0000 005 010 015 020 025 030 085 040
frequency pole appearing in the Green function. In Fig. 8 we 1ing
show the gap as a function of the interactldrin systems of
ns=3, 5, and 7 sites. Figure 9 contains similar results as a FIG. 9. The gap\ vs the inverse of the number of sites1in
function of 1hg which show the good scaling &, espe- the paramagnetic insulator for various valuedbofA is twice the
cially as the gap goes to zero bsis decreased. Thus this energy of the lowest pole from the ED Green function.
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020— o [ev]
0.0 2_‘00 FIG. 11. The modelo(w) for the metallic solution at
U=2.1D and T=0.0D (uppe) and 0.08® (lower). A small
U I'=0.30 and 0.B was included to mimic a finite amount of disor-
der.
FIG. 10. Inverse of the first three inverse momemts [) ~* of 3. Metallic state

the density of states as a functionldf The three curves correspond
from top to bottom to the inverse of the first, second, and third
inverse moments respectively. The results arenthe « extrapola-

We now discuss the data of Thometsal. in the metallic
phase. In Fig. 4 at the beginning of this section, we repro-
. ; ; ; duced experimental data for pure samples that become insu-
tion from clusters of three, five, and seven sites, assuming 1/ 21

lating belowT_ .~ 150 K" The spectra were obtained in the
scaling behavior. The dotted continuation of the last curve indicates

results where the scaling is not reliable due to the strong diverge eta(;llc é)hase' ar = 150 r?ndf?:OO K, gnd arg made u% of
behavior of that inverse moment. The vertical dotted line indicates”’ 02¢ & sorption at higher frequencies and some phonon

the value obtained fot; from the inverse moment analysis. ines in the far infrared. They appear to be rather featureless,
however, upon considering their differen¢@ which the
phonons are approximately eliminajedistinct features are
of the bathpya at low frequenciegwe recall thatpyan is  observed. AST is lowered, there is an enhancement of the
essentiallyp in a Bethe lattice; cf. Eq(5)]. Whittoff and  spectrum at intermediate frequencies of order 0.5 eV; and
Fradkir®® showed that if the density of states of the bathmore notably, a sharp low-frequency feature emerges that
vanishes as a power lap,*€?, the spin remains well extends from 0 to 0.15 eV. Moreover, these enhancements
defined if 3>1, while the spin is Kondo quenchedf<1  result in an anomaloushangeof the total spectral weight
and the spin degree of freedom is absorbed by the condues3/8m with T. We argue below, that these observations can
tion electrons. The case=1 is marginal. be accounted by the Hubbard model treated in mean-field
In a previous publicatioff we showed that within IPT the theory.
second inverse moment remains finite at the transition, while In Fig. 11 we show the calculated optical spectra obtained
it diverges in the Hubbard Il solution. Notice that_, can  from IPT for two different values of . The interaction is set
remain finite up to the transition even when the gap closeso U=2.1D that places the system in the correlated metallic
but a divergent second inverse momeanpliesthe continu-  state. It is clear that at least the qualitative aspect of the
ous closure of the gap. In Fig. 10 we plot tinverseof  physics is already captured, and settidg-0.4 eV we find
m_, together with that of the first and third inverse mo- these results consistent with the experimental data for
ments. The results correspond to the extrapolation to th¥,0; (Fig. 4). As the temperature is lowered, we observe the
infinite-size effective bath, performed similarly as was doneenhancement of the incoherent structures at intermediate fre-
previously for the gap. The inverse of the second inversgjuencies of the orddd/2 to U, and the rapid emergence of
moment shows good scaling behavior with the system sized feature at the lower end of the spectrum. These two emerg-
and is found to go to zero fdo~2.12. At this value of the ing features can be interpreted from the qualitative picture
interaction the moment diverges, which signals the breakthat was discussed in Sec. lll which is relevant for Idw
down of the insulating state, with the gap closing continu-From the model calculations with the parameters of Table |,
ously. As expected, the first inverse moment remains finite ae find the enhancement of the spectral weight taking place
the transition(it also shows good scaling behavioand, on  at a scaleT.,~0.09D~240 K which correlates well with
the other hand, the inverse of the third inverse moment bethe experimental datd..,, has the physical meaning of the
comes negative even before the transition. This is due to th@mperature below which the Fermi liquid description
fast divergence of the third moment, which renders theapplles as the quasipatrticle resonance emerged in the den-
finite-size scaling inaccurate. It is important to stress that thisity of states.
way of looking at the transition is very different from the  In Fig. 12 we present the results fgK) as a function of
previous one; nevertheless, the estimatesUgy that are the temperature. An interesting prediction of the model is the
obtained after the infinite-size bath extrapolation are consisanomalous increase of the integrated spectral we@ﬂsw
tently predicted to within less than 2%. The results are subasT is decreased. This feature is actually observed in experi-
stantially different from the ones obtained from IPT. mental data, that show a notable difference between the in-
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Although the qualitative aspect seems to be very accu-
rately described by the model, we findw3/8m

—_— U=0 | ~500 eVA) cm which is lower than the experimental result.
U=1 This could be due to the contribution from tails of bands at
0.15 |- \ . higher energies that are not included in our model, or it may

U=15 indicate that the bands near the Fermi level are degenerate.
L \ | We now finally want to consider an important prediction
TS U=2 of the model for the slope of the linear term in the specific

0.20 |-

—<K>

U=21 heaty in the metallic phase. Experiments show that the slope
0.05 - U=2.5 - v is in general unusually large. For 0.08, Ti substitution
y~40 mJ/mol K, while for a pressure of 25 Kbar in the
0.0 n | [ | | | pure compoundy~30 mJ/mol K and with aV deficiency
000 002 004 006 008 010 012 in a range ofy=0.013 to 0.033 the value ig~47 mJ/
T mol K2.3%In our model,y is simply related to the weight in

the Drude peak in the optical conductivity and to the quasi-

FIG. 12. Expectation value of minus the kinetic enetfy as a particle residuez, y=(1/ZD)3mJ eV/mol K. The yalues
function of the temperature for various (IPT). This quantity is ©f U=2.1D andD~0.4 eV extracted from the optical data
directly proportional to the optical conductivity sum rule. It predicts Correspond to a quasiparticle residde-0.3, and result in
a notableincreasein the optical spectral weight as the temperature ¥~25 mJ/mol K* which is close to the experimental find-
is decreasedn the correlated metallic regime_ ings. Thus it turns out that the mean-field theory of the Mott
transition explains, in a natural and qualitative manner, the
nqxperimentally observed optical conductivity spectrum, the
frequencies measuredv&6 eV). This effect is due to the anomalously large va!qes .Of the slope_ of the specific heat

v, and the dc conductivity in the metallic phase, as a conse-

rather strongT dependence of the Kinetic energi) uence of the appearance of a single small energy scale, the
« w3/87 in the region near the crossover associated with the! PP 9 9y '

first-order metal-insulator transition line that occurs in therenormallzed Fermi energs
phase diagram of the mod@IThis results from the compe-
tition between two small energy scales, namely, the tempera-
ture and the renormalized Fermi energly Before leaving the Hubbard model and thgO4 com-

Figure 13 contains the comparison between the results fgpound, we shall consider the important question of model
the same quantityK) atU=2 as obtained from the IPT and solutions with magnetic long-range ord@MLRO). In infi-
finite-temperature ED methods. This demonstrates that theite dimensions the optical conductivity is a weighted con-
temperature dependence is indeed a true feature of the modedlution of two one-particle spectral functions. The one-
which is successfully captured by the approximate IPT soluparticle spectral function is, therefore, the basic building
tion. block which gives rise to the various features of the optical
conductivity. In this subsection we consider the nature of the
spectral functions with MLRO. The understanding of the
qualitative differences and similarities between solutions
0.00 - 7 with and without MLRO is relevant in regard to systems, like
V5,03, that present both antiferromagnetigFl) and para-
magnetic(Pl) insulating phases.

In Fig. 14 we show, respectively, the single-particle spec-
tra of the Pl and AFI insulating solutions for different values
of the interactionU. The results are obtained from the ED
method afl =0 for clusters of seven sites. The finite number
ED of poles in the spectra correspond to the finite size of the
clusters that can be practically considered. A finite broaden-
TPT ing of the poles was added for better visualization.

In the AFI case, we plot the averaged value of the sublat-

012 [ i tice Green functionss,, ,*°

tegrated spectral weight that persists up to the maximu

4. Magnetically ordered solutions

-0.04 |-

<K> |

-0.08

GO':%(GAU+GBU):%(GAU+GA—U)! (19)

0.00 0.05 0.10 0.15 0.20 which is the quantity to be compared to photoemission ex-
periments.
T It is interesting to realize from these results, which corre-
spond to rather large values of the interactidn that the
FIG. 13. Comparison of the expectation value of the kineticSpectra in both cases are roughly similar. They both present a
energy(K) as a function of the temperature for=2 as obtained lower and upper Hubbard band at energies U/2 with a
from IPT and ED methods. bandwidth~2D and a corresponding gap~U —2D.
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2~ - FIG. 15. e-resolved single-particle spectra of the antiferromag-
L | netic insulator solution obtained from exact diagonalization of 7
sites withU=7 with €=0.0, 0.25, 0.5, 0.75, and 1(fbp to bot-
U - tom). A small broadeningy=0.1 was added to the poles, and the
sl | figures were vertically shifted for better visualization.

weight within the Hubbard bands, corresponding to a case of
o - | ‘ ‘ ‘ = an intermediate degree of frustration.

A complementary perspective on the results that we just
discussed is obtained by looking at tkeresolved spectra
0) given by the imaginary part of the Green functiGtk, w),
which reads

&
L
o
<
[
£
N

FIG. 14. Above: DOS of the paramagnetic insulator solution
obtained from exact diagonalization of seven sites Wits 3, 5, G(k,w)=
and 7 (top to bottom. A small broadening has been added to the '
poles. Below: idem for the antiferromagnetic insulator solution.

1
—_—. 20
w—e—2(w) (20
In the larged limit the energye, that enters in the Green
functions loses its explick dependencéNevertheless, one
can still think of this quantity as analogous to the
k-resolved spectra if one notes that thgoes from—D to

In particular, the PI solution merely presents a rigid shift
of the incoherent Hubbard bands as the interadtiois var-
ied, V"lg'fflh is reminiscent of Hubbard's solution of the a4 jt traverses the barithe dispersion is linear in the non-
model:>** On the other hand, in the AFI case, the shape Oﬁnteracting case In Figs. 15 and 16 we show the
the density of states follows from the fact that the sublattice
magnetization is basically saturated at these large values of
the interaction. 40

At U=7, the largest value of the interactions considered,

we observe that the shape of the spectr&diecomes very

ey X . . . 0.0
similar to the corresponding one in the disordered case. This
can be understood from the fact that the magnetic exchange
scaleJ~D?/U vanishes ad) becomes large. As one de- -4.0 J}L

creases the strength of the interaction, we observe that the %

AFI spectra become increasingly different from the Pl ones. 8.0
In the former there is a transfer of spectral weight that occurs
within the bands, from higher to lower frequencies. This is a

consequence of the fact that, as the sddtecomes increas- 120

ingly relevant, the spectra acquire a more coherent character.

The “piling up” that occurs with the transfer of spectral -16.0 ‘ T
) . : ) 50 40 30 20 -1.0 00 10 20 30 40 50

weight asU is reduced is the precursor of the weak coupling

inverse square root singularity in the low frequency part of

the density of states. It is interesting to note that recent pho- FiG. 16. e-resolved single-particle spectra of the antiferromag-

toemission experiments in )05 report the presence of a netic insulator solution obtained from exact diagonalization of

small anomalous enhancement in the lower-frequency edgseven sites witt) =3 with e=0.0, 0.25, 0.5, 0.75, and 1(6op

of the spectrum in the AFI phase. This feature may be interto bottor). A small broadeningy=0.1 was added to the poles, and

preted from the previous results as evidence of the transfer affie figures were vertically shifted for better visualization.

=
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FIG. 17. e-resolved single-particle spectra of the antiferromag-
netic insulator solution obtained from exact diagonalization of
seven sites withU=1.5 with e=0.0, 0.25, 0.5, 0.75, and 1.0 FIG. 18. DOS obtained from exact diagonalization of seven
(top to botton). A small broadening;=0.2 was added to the poles, sites withU = 1.5 for (t,/t;)=0 (top) and {,/t;) = y1/3 (bottom.
and the figures were vertically shifted for better visualization. A small broadeningy=0.1 was added to the poles.

e-resolved spectra for the different values of the interaction 5 Hamiltonian and,/t;=1 gives the paramagnetic solu-
considered before. From the inspection of the spectra Wgy, The extra hopping provides a magnetically frustrating

observe that in the low case forU=7 the single-particle  interaction by lifting the rather artificial nesting property of
spectra remain basically unmodified as we scareth@ave  the original model.

vectors,” which indicates the very incoherent character of |, 5 recent lette?! we showed that the inclusion of finite

the single-particle excitations. On the other hand, as Wgstration in the original model Hamiltonian is essential in
lower U and the scald becomes larger, we note the emer- orger to reproduce the main qualitative features and the pre-
gence of a peak in the =3 case for small values af, that  ¢jse topology of the phase diagram of®%. In particular we
indicates its coherent character. _ ~ found a small region in the phase diagram which corresponds
Upon further reduction of the strength of the interaction;q g antiferromagnetic metallic stataFM). In Fig. 18 we
U, as we show in Fig. 17 foU=1.5,. we find tr_)at thg CO- show the density of states fot,/t;=0 (AFI), and
herent features of the spectra begin to acquiigpersion ¢ . — /173 (AFM) with the interactionlU =1.5. The results
This is observed, not only in the "particle”<0) butalso  gptained from seven sites show exact diagonalization. It is
in the emerging “hole” part of the spectra, as the size of theyqry interesting to note that the peak structure of the density
staggered magnetization decreases. These results display,@siates seems to be divided into low-frequency features
sj[nklng_s!mllarlt_y to t_he physics found_ln recent finite dimen- nearo=0, and higher-frequency structures at energies of the
sional finite lattice size QMC calculations by Preuss, Hankeg qer of the bandwidtiwhich is also comparable to for
and van der Lindeff _ _ the chosen parameterg his is even more clear in the anti-
We can summarize the previous results by saying that thg,romagnetic metallic state with partial frustration. We note
ED solutions indicate that, as the lattice becomes unfrusgat our results are qualitatively similar to the recent results
trated(nestedl and adJ/t is reduced, the spectral function of by Moreo et al* obtained in exact diagonalization of the
the insulating state develops more dispersion, and the excf:j model and also quantum Monte Carlo results for the
tations at low energy become more coherest, the imagi-  ,phard model on two-dimensional finite-size lattices with a
nary part of the self-energy is smalleAs we argued above, cpice of parameters comparable to the one used“fere.
many experiments place )@, in the opposite regime of v conclude this subsection with an important technical
strong frustration; however, the observation of dispersiveemark: in order to apply the exact diagonalization method of
features in the insulating phase of NS s (Ref. 43 may  Ref 18 to the problem with intermediate frustration
be explained by a lower degree of magnetic frustration iy, /¢, <1, it is necessary to be able to average the contin-

this compound. ued fractions for the spin-up and spin-down Green functions

It should now be clear that an important parameter of then, 5 single continued fraction. To perform this task we use
theory is the degree of magnetic frustration. Thus a final,q algorithm detailed in the Appendix.

topic that we shall briefly consider is the case of solutions
with MLRO in a model with an intermediate degree of frus-
tration. The degree of frustration can be controlled in our
model by adding to the original Hamiltonian, with nearest- In this section we shall consider the predictions of the
neighbor hopping,, a next-nearest-neighbor hopping ampli- periodic Anderson model within the present dynamical
tude t,.1® In order to maintain the half-bandwidtb = 2t mean-field theory in the context of several questions which
fixed and the bare density of state$ invariant, one has to emerge from the experimental data on Kondo insulator sys-
keepts+t5=1t2. Note that fort,/t;=0 we recover the origi- tems CgBi,Pt (Ref. 2 and FeSP In particular we shall

B. Periodic Anderson model
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FIG. 20. The optical conductivity for the Anderson model at
T=0.001(bold), 0.005, 0.01, 0.0Zdotted, and 0.03(thin). The
FIG. 19. The optical conductivity spectra of the periodic Ander-interaction U=3 and V=0.25. Inset: The same quantity at
son model for values of the interactidh=0.5, 1, 2, and 3Jright T=0.001(bold), 0.005, 0.01, 0.0Zdotted, and 0.03(thin) with
to left), keeping the hybridizatioW=0.25 fixed. The inset shows Lorentzian random site disorder of widfh=0.05.
the gap from the optical spectrA.~Ay, and the indirect gap

Ajnq from the local density of states fof=0.6. The slopes of these g4 qtaq by the plot of the optical conductivity ) for dif-
curves indicate thatv**/DxAjpg and V*=Ag, in the Song-  forent values ol shown in Fig. 19. The optical gap. is
correlation region. given by thedirect gapA 4, of the renormalized band struc-
ture. These results were obtained by IPTTat0, and we
checked in various cases that the results are in excellent
h%greement with the ED method.

We now consider the behavior of(w) with temperature.
Figure 20 shows the optical conductivity for different tem-
peratures with the parametdgs=3 andV=0.25 fixed. The

) gap is essentially temperature independent. It begins to form
Kondo insulators are a second class of systems where thg T+ ~0.02~A./5, and is fully depleted only at tempera-
correlations induce an anomalous temperature dependenGgres of the order of* /5. We thus observe that the mean-
While the most qualitative physics of these systems is weltig|q theory is able to capture the qualitative aspect of the
understood, several features remain puz_z?fhijhe charge  experimental results that we summarized above. This basi-
gap A measured in optical conductivity is larger than thecajly consists in the individualization of three different en-

spin gapA ¢ measured in neutron scatterifg\so, the trans-  ergy scales: a large one which corresponds to the gap of the
port gapA, obtained from the activation energy in dc trans-

port measurements is smaller thAn. On the other hand,
from recent optical experiments on ¢Ri ,Pt; (Ref. 2 and 81— ]
FeSi2 we can distinguish some common features regarding _ -
the energy scales associated with the formation of the optical 5
gap. The gap\; begins to open at a characteristic tempera-

ture T*~A./5 and becomes fully developed at a much p)
smaller temperature of the order ®f /5. Also, the gap is
temperature independent beloW*. In Ce;Bi, Pts, it is

found thatA .~450 K, A;~250 K, andT* ~100 K, and the

optical gap is completely depleted only belew25 K.2 On

the other hand, qualitatively similar results were reported for

address the following issue§i) the energy scales that are
involved in the formation of the gapsii) the temperature
dependence of the integrated optical spectral weight as t
gap forms; andiii) the scattering rate.

1. Gap formation

=

FeSi, with A;=~1000 K, andT*~200 K, and the gap be- 2
comes depleted between 20 and 108 K. p@ V -
The mean-field theory accounts for all these observations. Dl oo 0[05 . ‘10
The low-energy behavior of the one-particle Green functions ) ) ) ’
of the model can be understood as that of a noninteracting )
system, where the interactidd reduces the hybridization
from its bare valueV to a renormalized valu&* which FIG. 21. Low-frequency part of the density of states for the

decreases ad increases. As a consequence, the gap in th@nd ¢ electrons (top and bottom obtained from IPT at
optical conductivity decreases by the effect of correlationsT=0.001, 0.005, 0.01, 0.02, and 0.03 for=3 and V=0.25
However, the line shape remains approximately invariant(top to bottom ford electrons and bottom to top far electrons.
and is merely changed by a rescaling factor with respect tinset: The density of states in the full frequency range at
the response of the noninteracting model. This is demon¥=0.001.
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FIG. 23. Comparison of the expectation value of the kinetic
FIG. 22. Expectation value minus the kinetic enefgg) as a  €Ne€rgy (K) in the PAM as a function of the temperature for
function of the temperature f&J =0, 2, 3, 4, and/=0.4 (bottom Y =2 andV=0.4 as obtained from IPT and ED metho@@shed
to top) as obtained from IPT. This quantity is directly related to the "€ and full line.

optical conductivity sum rule. It predicts a notaldlecreasen the . S
total optical spectral weight as the temperaturdésreasedn the behavior captured by the IPT calculation is indeed a true
range below the maxima. feature of the model.

As we previously discussed for the the Hubbard model
optical spectraA.~Ay,, an intermediate scal&* ~A5, case, the strong correlation effects that rendéis a func-
where this gap starts to form and quasiparticle features station of the temperature implies thiithe PAM is the relevant
to appear in the DOS; and a third and smaller scalanodel for the systems at low energittgen the results predict
Aiq~T*/5, which corresponds to the temperature where théhe behavior of the integrated optical weight within the low-
optical gap is completely depleted. As demonstrated in Figfrequency range. Actually, experimental data, which are in-
21, where we plot the results for the density of states, thderred from the Kramers-Kronig transformation of reflectiv-
small scaleA 4 also indicates the temperature below whichity measurements, can only be reliably obtained within a
the gap in the density of states opens, and, thus, can Himited low-frequency range of the order of a feaW. The
associated with the gap measured in dc-transport experbehavior of(K(T)) in Fig. 23 isnonmonotonicAs we in-
ments A;. This last feature, and the fact that crease the temperature from zero, we observe initially that
A~ A<Ag~A;, accounts for one of the experimental the kinetic energy decreases. This is a consequence of elec-
observations mentioned above. tron delocalization, since the system becomes a metal as the

In order to make a meaningful comparison with the ex-small gap in the density of states is filled. The kinetic energy
perimental data, we have added the effects of disorder bthen goes through a minimum and starts to increase as the
putting a Lorentzian distributed random site energy on théemperature is further increased. This is due simply to the
conduction-electron band with width=0.05. The results thermal excitation of electrons within the single conduction
are displayed in the inset of Fig. 20, and they show that théand. Correlations now play an irrelevant role, as the tem-
introduction of disorder places the overall shape of the spegperature is higher than the coherence temperafttitdVhen
tra in closer agreement with the experimental reéditeor a  we study the behavior for different values of the interaction
discussion of the scattering involved, see Sec. IV.B&so, U in Fig. 22, we observe that the position of the minima
we observe that increasing the disordeducesthe tempera- (maxima in this figure as-(K(T)) is plotted, becomes
ture T*. smaller adJ is increased. This can be understood simply as

In the following, we briefly address the question of thea consequence of the renormalization of the hybridization
integrated total spectral weight. It has been noted that experamplitudeV—V*.
mental results for both GBi,Pt; and FeSi, seem to violate In regard to the experimental situation in the Kondo insu-
the sum rule for the spectral weight.However, this point lators, which indicate the apparent violation of the optical
has been recently questioned, at least for the FeS$um rule, our results give a plausible qualitative explanation
compound® In order to contribute to the proper interpreta- for the observed behavior. In fact, for experimental data ob-
tion of the experimental data, it is important to compute thetained at temperatures smaller than the size of theA\gegnd
kinetic energy of our model at finite temperature, which isrestricted to a finite low-frequency randgehich indeed cor-
directly related to the sum rule of E¢L4). The results from responds to the actual situatjorthe model predicts the ap-
IPT are presented in Fig. 22, which shows the notable deparent “disappearance” of spectral weight as the tempera-
pendence of the kinetic energy with temperature and interadure is decreased.
tion strengtHwe plot the negative ofK) which is the quan- We should also point out that although this simple model
tity that enters Eq(14)]. In Fig. 23, we plot similar results accounts, rather successfully, for the various energy scales, it
obtained with the ED algorithm, which demonstrates that thdails to provide an accurate reproduction of the detailed ex-
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and is an indication of the limitations of the one-band peri-
odic Anderson model for modeling these systems.

The optical conductivity of Kondo insulators is — except
for the gap which forms at low temperatures — almost con-
stant over a large frequency range extending to several times
the width of the gap. The corresponding valueadfw) is
quite similar for all of the materialgtypically 3000—4000
ng cm)~1], and depends only weakly on temperature. The
related scattering rate can be estimad >T*) by simple

rude model arguments: at zero frequency, we have

To finish our discussion about gap formation in the peri-‘T:nezT/m' Heren=a % wherea denotes the lattice con-
odic Anderson model, we shall present the results for the siz&ant: M can be obtained from the km?ﬂ? energy
of the various gaps that are obtained from the correlatio® /2M~D, where pwzflh/a' Assur_nlmg a~10""m, the
functions. The first study of the periodic Anderson model in€auations  yield#/7~aq 10°(Q cm)"D. Thus the mea-
large dimensions was carried out by Jarrell, AkhlaghipourSured values fowry imply a scattering rate which is of the
and Pruschke using the quantum Monte Carlo mefAg@ur ~ order of the bandwidth (¥~D, assumingi=1). This
spectral functions and density of states are in general agre&hould be compared with the scattering rate found in normal
ment with the early work in the region where the QMC andmetals like copper, which is three orders of magnitude
exact diagonalization methods can be compared. A noticesmaller (1/~ 1073'.3)- _
able qualitative difference is that we find the spin gap to be Since all experiments on Kondo insulatdend also on

slightly but strictly smaller than the indirect gap when ~ Many Kondo metajsobserve(above the gapthe same order
£0. of magnitude foro(w), one should expect that there is a

In Fig. 24 we show the local spin- and charge-correlationc@mmon mechanism involved. It is reasonable to assume that

functions along with the optical conductivity, which shows the scattering of conduction electrons by the localized elec-
qualitative agreement with the experimental data of Ref. 2trons in the periodic Anderson model provides an explana-
We also compare in the inset the direct optical dap, the tion. TQ address thIS ques_t|o_n, we cal_culated the effect_|ve
indirect gapA;,q relevant for transport properties, and the scattering rate. This quantity is determined by the effective
spin gapA ; obtained from the spin-spin-correlation function. c-€lectron self-energy. (5"

We find thatA 4, is consistently larger thang, and that

Ag is somewhat smaller tham;,q. As expected when 56 )= V2

U=0, A;=A;4, but, asU increases,A /A,y becomes cc (@ Cotpu—Sg4o)’
smaller than unity and approaches the value 1/2a2.

FIG. 24. The local spin-spirtbold) and charge-chargéhin)
susceptibility from seven ED sites. The optical conductivity from
IPT (dotted. The parameters até=1 andV=0.2. They axis is in
arbitrary units. Inset: The direct gap from IRUipper dotted ling
the indirect gap(lower dotted ling, and the spin gagsolid line)
from eight ED sites. The hybridization =0.2.

perimental line shape. A complete explanation of the exper
mental results may need the consideration of addition
sources of scattering, as will be discussed in Sec. IV B2.

(21)

where 3,44 is the self-energy of the localized electrons,
2. Scattering rate which enters the formula for the optical conductivifyd) via

In the previous subsection we stressed the qualitative suée(®@) = ~2Imlw+u— &3 (0)]. The imaginary
cess of the mean-field theory of the periodic Anderson modepart ofESfD(w) measures the scattering involved. In Fig. 25
in connection with the gap formation in Kondo insulators we plotted this quantity for the particle-hole symmetric case,
like FeSi and CgBi,Pt. In this section, however, we will V=0.28D, U=3D, andT=0.1D. Since in this section we
show that this approaoctannotaccount for the large scatter- are not interested in the gap formation, the temperature was
ing rate measured in these materials, if one does not includehosen to be well above the point where the gap starts to
the effects of disorder in the model. This is very surprising,open (T*~0.023). For comparison, the calculation was
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done with both the ED and IPT. It is clear from the plot thatable to explain the high scattering rate measured in Kondo
the scattering rate is much smaller than the bandwiidtand  insulators.

gives rise to an optical conductivity which is smaller than the We also presented results for the temperature dependence
experimentally observed value by two orders of magnitudeof the optical sum rule in strongly correlated models. In the
This result remains valid away from particle-hole symmetry,Hubbard model case, the results capture the qualitative de-
and for different choices o¥/ and U. If one ignores the crease of the total spectral weight with increasing tempera-
self-consistency condition, one would expect, based on thgre that is experimentally observed in theQ4 system. On
theory of the Kondo impurity model, that, as the temperaturgne other hand, our results for the PAM may be relevant for
is lowered the scattering rate should grow toward the unitarye resolution of the “missing” spectral weight controversy
limit D. This growth, which is expected at low frequencies; optical experiments on the insulators 48&Pt and

and low temperatures, is preempted in the lattice by the forFeSiz,3,45 From a broader perspective it has turned out to be
mation of the hybridization gap. '

ForV/U<1 and half-filling, the periodic Anderson model }‘/ery |I|u”m|nat|ng o rea||z_e how the emergence of a _sm_all
. . Kondo” energy scale in both, Hubbard and periodic
can be transformed into a Kondo lattice model by a

; : Anderson models, results in the unusual temperature depen-
Schrieffer-Wolff transformation dence of the projected optical sum rdlef. Eq. 14]. The
appearance of a Kondo scale in these models is due to the
Z CiTnga+J 2 éiCiTg;o— SCips (22 fact that within the L.ISA, l_:)oth I{;\ttice problems.are mapped
P00’ ’ onto an Anderson single impurity. However, since they are
subject to different self-consistency conditions, the tempera-
whereJ= 8V2/U. HereS describes a spin at siie For a  ture behavior of the solutions is very different. We have
cross-check, we also examined this Hamiltonian using théhown that in the Hubbard model case the optical weight
exact diagonalization method. Far=3iD, which corre- increases when the temperature is reduced, and the system
sponds toV=0.29D and U=3D, we find atT=0.1D a becomes more metallic, while in the periodic Anderson
scattering rate i~ — Im3.(w=0)~7x103D. This is model it decreases, as a consequence of the system opening a
again much less than required to explain the experimentalap and becoming insulating.
data. We finally stress that our mean-field approach can be eas-
We believe that the failure observed here within theily adapted to incorporate more realistic band-structure den-
present approach is a general shortcoming of the periodisities of states and more complicated unit cells. These exten-
Anderson model. A more realistic description has to takesions would possibly allow for a more precise quantitative
several crystal-field-split bands and this could increase thgescription of these interesting systems.
finite frequency optical absorption.
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of spectral weight in the optical conductivity spectra. In the
case of MO,;, we found that the theory is able to account APPENDIX: ADDITION
semiquantitatively for the conductivity results in both the OF TWO CONTINUED FRACTIONS
metallic and insulating states. Also, in the metal, it explains
the unusually large values observed in the slope of the spe- In this appendix we present an algorithm that allows to
cific heaty. In the insulating phase, the theory seems tosum two continued fractions into a single one. This is nec-
provide further insight into the role of the magnetic frustra-essary for the implementation of the ED method in models
tion. In this regard, we studied in detail the predictions of thewith magnetic frustration or disorder, where various Green
model for the photoemission spectra when long-range ordgtinctions have to be averaged and the result has to be ex-
is present, and noted that the mean-field theory indeed capressed as a continued fraction. The details of the ED
tures many aspects of the behavior that was already encoumethod can be found in Ref. 18.
tered in numerical studies of the model in low dimensions.  In the ED method an effective cluster Hamiltonidfis of

For Kondo insulators, we have seen many of the qualitans sites is diagonalized. At=0 only the ground statgys)
tive features of the observed behavior of optical spectra, witland the ground-state enerfy need to be obtained, and this
the temperature captured by our model treated in mean-fieldan be efficiently done by the modified Lanczos metffod.
theory. In particular, we identified the different energy scalesThe local Green functios(w) is then obtained as a contin-
associated with the formation of the optical gap, and howued fraction. Actually one needs to compute two continued
they are related to changes in the single-particle spectrdractionsG=(w) and G~ (w), for ®<0 and for w>0, re-
However, we saw that the periodic Anderson model is nospectively.
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G(w)=G"(w)+G~(w) more general case of a weighted average can be trivially
generalized from the present case which we consider for sim-
=<gsc
the notation. The representation is basically a matrix that

+ plicity.

gs> We first note that, from the Lanczos procedur's has
+{gs

. contains parametera’s along the main diagonal an’s

with along the two subdiagonals.

(differend tridiagonal representations in the two sub-bases
The algorithm is as follows: one first diagonalizes the two

1
—(H™—Eq)+io"

1
o+ (HS—Eg)+io"

ct

gs> (A1) defined byif;,,) (we have dropped the ,< label to simplify

t
G ()= (gsjce |gs>>2 , (A2) tridiagonal repre;entations bf"s py _computing aI_I the ei-
i b1 genvalues and eigenvectors. This is not numerically costly
@™ % - b2>2 since the matrices are in tridiagonal form and it may be done
T4 T s by standard methods.
2 An important result that can be easily demonstrated is that
(gslc'clgs) the eigenvalueg,, of the tridiagonal matrices are the poles
G(w)= = , of their corresponding Green functios,(w). Furthermore,
< by one can also show that
©—ag <2
w—a; i M (vh)?
AT T < v
w—a,— GM((D):E %’ (A5)
v=1 W— EM

wherec andc' are the operators associated with the local
site of H"s. The parametera;’~ andb;”’= define the con- wherev}, are the first component of thé eigenvectors of
tinued fractions, and are obtained from the following itera-the tridiagonal matrices.
tive procedure: Thus, from the definition of the Green function one im-
mediately recognlzes that the vectfw} v? ...,vM} is

(P18 (az)  nothing butc!|gs) expressed in a basis Whes is dlago-
(Folfe ) nal (which is ‘a sub-basis of the given sector’s Hilbert space
_ " B The final step consists of writing the Hamiltonian in the
wherea=>,< and|fg)=c'lgs), |fg)=c|gs), and bases direct product of the two sub-bases, which, of course,

nolea alsa a2 will also be a diagonal representationtdfs; and then bring
[ ) =HMf5 —af[f7) = fy), (A4) it to its tridiagonal representation through ste@e3) and
and in the beginning we séf=0. (A4) starting from the vector defined byrestoring the
Thus we observe that the basis defined by the vectors,< labe)

|f7) gives atridiagonal representation dfi"s which contains +
the a;’s along the main diagonal and théb;’s along the [fo)=(c]+c]lgs)
diagonals next to the main one. In the following we drop the
index « to simplify the notation. We will explicitly restore it
in the final result. ={wi.of, . oV MR 0L (AB)

Let us now address the problem of our current interest.
We assume that we have computed two Green functions Thus the newly determined;”’s and b;’s that result
G, (), where the indexu may label, for instance, a spin. from this last step are the parameters of the continued frac-
Our task is to obtain a continued fraction representation ofion representation 06~ (w) (the parameters foG~ are

the averageGreen functiorG(w)=3[G;(»)+G (w)]. The  obtained in a completely analogous manner

af=(ffHMff),  bi?=

:JTGBUl

*Present address: ILL, Ave. des Martyrs, B.P. 156, 38042 Grenoble’ W. Metzner and D. Vollhardt, Phys. Rev. Le62, 324 (1989.
Cedex 9, France. 8A. Georges and G. Kotliar, Phys. Rev.45, 6479(1992.
1G. A. Thomaset al., Low Temp. Phys95, 33 (1994. 9A. Georges, G. Kotliar, and Q. Si, Int. J. Mod. Phys.6B705
2B. Bucher, Z. Schlesinger, P. C. Canfield, and Z. Fisk, Phys. Rev. (1992.
Lett. 72, 522(1994; B. Bucheret al, Physica B199% 200, 489  '°M. Jarrell, Phys. Rev. LetB9, 168 (1992.

(1994. 1IM. J. Rozenberg, X. Y. Zhang, and G. Kotliar, Phys. Rev. Lett.
3z Schlesinger, Z. Fisk, H. T. Zhang, M. B. Maple, J. F. DiTusa, 69, 1236(1992.
and G. Aeppli, Phys. Rev. Letf1, 1748(1993. 12A. Georges and W. Krauth, Phys. Rev. L&®, 1240(1992.
4M. A. van Veenendaal and G. A. Sawatzky, Phys. Rev. I#48t.  3X. Y. Zhang, M. J. Rozenberg, and G. Kotliar, Phys. Rev. Lett.
2459(1993; Phys. Rev. BA9, 3473(1994. 70, 1666(1993.
5A. J. Millis, in Physical Phenomena at High Magnetic Fields 14Th. Pruschke, D. L. Cox, and M. Jarrell, Phys. Rev4B 3553
edited by E. Manousakist al. (Addison-Wesley, Reading, MA, (1993.
1991, and references therein. 5a, Georges and W. Krauth, Phys. Rev4B, 7167 (1993.

SFor a recent review, see A. Georges, G. Kotliar, W. Krauth, and'®M. J. Rozenberg, G. Kotliar, and X. Y. Zhang, Phys. Revi®
M. J. Rozenberg, Rev. Mod. Phy&8, 13 (1996. 10 181(1994.



8468

1M, Caffarel and W. Krauth, Phys. Rev. Le®t2, 1545(1994.

M. J. ROZENBERG, G. KOTLIAR, AND H. KAJUETER

3IM. J. Rozenberg, Phys. Rev.®2, 7369 (1995.

18Q. Si, M. Rozenberg, G. Kotliar, and A. Ruckenstein, Phys. Rev32C. Castellani, C. R. Natoli, and J. Ranninger, Phys. Rel8B

Lett. 72, 2761 (1994; M. J. Rozenberg, G. Moeller, and G.
Kotliar, Mod. Phys. Lett. B8, 535 (1994).

19G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, and D. Fisher, Phys.

Rev. Lett.74, 2082(1995.

20G. Aeppli and Z. Fisk, Comments Condens. Matter. Phigs155
(1992.

2IM. J. Rozenberg, G. Kotliar, H. Kajueter, G. A. Thomas, D. H.
Rapkine, J. M. Honig, and P. Metcalf, Phys. Rev. L&, 105
(1995.

22M. Jarrell, H. Akhlaghpour, and Th. Pruschke, Phys. Rev. Lett.
70, 1670(1993; see also D. Hirashima and T. Mutou, Physica B

1998200, 206 (1994.

23Th. Pruschke, D. L. Cox, and M. Jarrell, Europhys. L&tt, 593
(1993.

24M. Jarrell, Phys. Rev. B51, 7429(1995.

25M. Jarrell, J. K. Freericks, and Th. Pruschke, Phys. Re%1B
11 704(1995.

26p_ F. Maldague, Phys. Rev. B, 2437(1977.

2w, Kohn, Phys. RevA 171, 133(1964).

28D, Baeriswyl, C. Gros, and T. M. Rice, Phys. Rev.3B, 8391
(1987.

22Anil Khurana, Phys. Rev. Let64, 1990(1990.

30p. Coleman, Phys. Rev. B9, 3035(1984; T. M. Rice and K.
Ueda,ibid. 34, 6420(1986.

4945(1978.

33, F. Mattheiss, J. Phys. Condens. Mate16477(1994.

343, H. Park, L. H. Tjeng, J. W Allen, P. Metcalf and C. T. Chen
(unpublisheg

35G. A. Thomaset al, Phys. Rev. Lett73, 1529 (1994).

36R. M. Moon, Phys. Rev. Let25, 527 (1970.

37s. Shinet al, J. Phys. Soc. Jpi&4, 1230(1995.

38D, Whittoff and E. Fradkin, Phys. Rev. Lei4, 1835(1990.

39D. Mc Whanet al, Phys. Rev. Lett27, 941(1971); Phys. Rev. B
7, 3079(1973; S. A. Carter, T. F. Rosenbaum, P. Metcalf, J. M.
Honig, and J. Spalekbid. 48, 16 841(1993.

4OFor details on the application the theory to models with long-
range order, see Refs. 9, 16, and 31.

413, Hubbard, Proc. R. Soc. London Ser281, 401 (1964).

42R. Preuss, W. Hanke, and W. von der Linden, Phys. Rev. Zit.
1344(1995.

43A. Matsuuraet al, Phys. Rev. B63, R7584(1996.

44p. Moreo, S. Haas, A. Sandvik, and E. Dagotto, Phys. Re§1B
12 095(1995.

“4SL. Degiorgi et al, Europhys. Lett28 341 (1994.

46E. Gaglianoet al, Phys. RevB 34, 1677(1986.

4TDue to a conversion factor error, it was stated in Refs. 35 and 21
that the integrated spectral weight 0§®; agreed well with the
one band Hubbard Model. the inset corrects that of Ref. 21.



