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We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated
electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of
large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and
the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model,
we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated
metallic state which is in qualitative agreement with optical measurements in V2O3. We argue that anomalies
observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase
diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and
present a detailed discussion on the role of magnetic frustration by studying thek-resolved single-particle
spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of
the Kondo insulators Ce3Bi 4Pt3 and FeSi. The model can successfully explain the thermal filling of the optical
gap and the corresponding changes in the photoemission density of states. The temperature dependence of the
optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally,
we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic
Anderson model.@S0163-1829~96!05536-1#

I. INTRODUCTION

Interest in the distribution of spectral weight in the optical
conductivity of correlated electron systems has been revived
by the improvement of the quality of the experimental data
in various systems.1–3 The traditional methods used in the
strong correlation problem—exact diagonalization of small
clusters,4 slave boson approaches,5 and perturbative
calculations—have not been very successful in describing
the interesting transfer of optical weight which takes place as
a function of temperature in the strong correlation regime.

Recently, much progress has been achieved by mapping
lattice models into impurity models embedded in an effective
medium. This technique, the local impurity self-consistent
approximation~LISA!,6 is a dynamical mean-field theory
that becomes exact in the limit of a large number of spatial
dimensions.7 For instance, the Hubbard and Anderson lattice
models can both both mapped onto the Anderson impurity
model subject to different self-consistency conditions for the
conduction-electron bath.8,9 These resulting self-consistent
impurity problems can be analyzed by a variety of numerical
techniques.10–19

In this paper we apply this approach to a study of the
optical conductivity in regard to recent experiments in
V2O3, Ce3Bi4Pt3, and FeSi. We assume that thelow-energy
optical properties of V2O3 can be modeled by a one-band
Hubbard model, while Ce3Bi4Pt3 and FeSi are described by a
periodic Anderson model.20 Due to the localized character of
the orbitals that are expected to play relevant roles in the
low-frequency response, the modeling of the experimental
systems requires a large value of the Coulomb repulsionU.

Our main goal in this work is to demonstrate that simpli-

fied models of strongly interacting systems treated with the
LISA may account for some of the main qualitative features
that are observed experimentally in the aforementioned
strongly correlated electron compounds. We have intention-
ally chosen to consider both the Hubbard and periodic
Anderson models within the same work in order to empha-
size the interesting connections in the behavior of these
seemingly very different models. In this regard, one of the
most insightful results is the notable temperature dependence
that affects the optical response of the models. The reason
for this important effect~which is experimentally observed!
is in the competition between the temperature and adynami-
cally generated low-energy scale, namely, the ‘‘Kondo’’
temperature of the associated single-impurity model, which
is obtained upon the mapping ofeithermodel Hamiltonian.

The paper is organized as follows: in Sec. II we summa-
rize the mean-field equations for the model Hamiltonians and
the expressions for the calculation of the optical conductivity
and the optical sum rule. In Sec. III we present an intuitive
pedagogical discussion of the physical content of the solu-
tion of the model Hamiltonians in the large dimensional
limit. Section IV is dedicated to a thorough discussion of the
optical conductivity results. We discuss the effects on the
spectral functions of the introduction of magnetic frustration
in the Hubbard model which appears as an important ingre-
dient in the physics of the V2O3 compound. Also, we con-
sider the effects of temperature and disorder on the optical
response of the model Hamiltonians. The calculations are
carried out using exact diagonalization~ED! and iterated per-
turbation theory~IPT! techniques, and the theoretical results
are discussed in regard of the experimental ones obtained on
various systems. Part of the theoretical results in Sec. IV
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were announced in a recent letter.21

The optical conductivity of the Anderson and Hubbard
models were considered previously by Jarrell and co-workers
using the quantum Monte Carlo~QMC! and maximum en-
tropy methods.14,22–25However, such techniques cannot be
applied to the rather high values of the interaction and low
temperatures which are relevant for the experimental regime.
For this reason we extensively use the IPT method, that al-
lows us to access physically interesting regimes which are
outside the applicability of the QMC method. We also use
the ED technique which, like the QMC, is an exact method,
to confirm that the results presented are genuine features of
the model solutions in the limit of infinite dimensions, and
not artifacts of the IPT.

The conclusions are presented in Sec. V, and we finally
note that our ED approach to the solution of correlated mod-
els in large dimensions is based on the use of continuous
fractions. The Appendix describes an algorithm to convert
the sum of two given continued fractions into a continued
fraction which we use to extend the ED method to the mod-
els we treat in this paper.

II. METHODOLOGY

A. Mean-field equations

As model Hamiltonians we consider the Hubbard model
and the periodic Anderson model~PAM!:
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where summation over repeated spin indices is assumed.m is
the chemical potential, andt i j is the hopping amplitude be-
tween the conduction-electron sites, which in the PAM re-
sults in the bandek . The d

† and d operators create and
destroy electrons on localized orbital with energyed

o . V is
the hybridization amplitude betweenc and d sites, which
also appear in the literature asd and f sites, respectively.

The derivation has been given in detail elsewhere,8,9 and
in particular in Ref. 6. So we choose to present only the final
expressions here. The resulting local effective action reads
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wherecs
† andcs correspond to a particular site, and denote

cs
† and cs in the Hubbard model, and$cs

† ,ds
†% and

$cs ,ds% in the PAM case.ns corresponds toncs andnds,
respectively. Also note that Eq.~3! defines the associated
impurity problem, withcs

† andcs being the operators at the

impurity site while the information on the hybridization with
the environment is implicitly contained inG021. Requiring
that

Glocal~v!5SkG~k,v!, ~4!

we obtain, as a self-consistency condition,

G021~v!5v1m2t2G̃~v!, ~5!

for the Hubbard model, and
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with G0 explicitly given by
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for the PAM. In both cases,G̃ is the ‘‘cavity’’ Green func-
tion which has the information of the response of the lattice.

We consider a symmetric case withm50 and ed
o50.

Moreover, we assume a semicircular bare density of states
for the conduction electrons, ro(e)5(kd(e2ek)/
Nsites5(2/pD)A12(e/D)2, with the half-bandwidth
D52t. This density of states can be realized in a Bethe
lattice and also on a fully connected fully frustrated version
of the model.13,15 In this case the ‘‘cavity’’ Green function
simply becomesG̃5G. In the following we set the half-
bandwidthD51. We use an exact diagonalization algorithm
~ED! ~Refs. 17 and 18! and an extension of the second-order
iterative perturbation theory~IPT! to solve the associated im-
purity problem.13 We have checked that IPT and ED meth-
ods are in good agreement for all values of the model param-
eters. This results from the property of IPT to capture the
atomic limit exactly in the symmetric case.13 We extensively
use IPT on the real axis to scan through parameter space. A
detailed comparison will be presented elsewhere.

B. Optical conductivity

The optical conductivity of a given system is defined by

s~v!5
1

Vv
ImE

0

`

^@J~ t !,J~0!#&eivtdt ~8!

whereV is the volume,J is the current operator, and̂&
indicates an average over a finite-temperature ensemble or
over the ground state at zero temperature. In general,s(v)
obeys a version of thef -sum rule,26,27

E
0

`

s~v!dv5
p

VIm^@P,J#& ~9!

whereP is a polarization operator obeying]P/]t5J.
In a model which includesall electrons and all bands, the

current operatorJ is given by

J5
e

m(
i
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where pi is the momentum andr i the position of the ith
electron, ande andm denote its charge and bare mass.P is
given by
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Thus 1/V^@P,J#&5 ine2/m, wheren is the density of elec-
trons, and the sum rule becomes
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This result is clearly temperature independent, and does not
depend on the strength of the interactions.

When dealing with strongly correlated electron systems,
in a frequency range where few of the bands are believed to
be important, it is customary to work with an effective model
with one or two bands, such as the Hubbard or periodic
Anderson model. The current operator is thus projected onto
the low-energy sector, and is expressed in terms of creation
and destruction operators of the relevant bands„i.e.,
J5 i @eat/\n)( i(ci1d

† ci2ci
†ci1d)] for the Hubbard and

Anderson models with nearest-neighbor hopping…. In this
case the expectation value^@P,J#& is no longer;ne2/m,
but becomes

i ~e2/\n!(
k

^ck
1ck&

]2ek
Kx
2 ,

which is proportional to the expectation value of the kinetic
energy^K& of the conduction electrons in the case of NN
hopping.26,28In general,̂ K& depends on the temperature and
strength of interactions; therefore, for these few-band mod-
els, the optical weight sum rule will depend on them as well.
If the projection onto a few-band model is valid, this result
also implicitly indicates that a portion of the optical spectral
weight ~the weight not exhausted bŷK&) is transferred to
much higher energies; that is, to bands that were excluded by
the projection to low energies.

In this paper we do not address the question of the valid-
ity of the low-energy projection onto a few-band model. In-
stead we focus on the consequences of this assumption on
the redistribution of the optical weight within a mean-field
theory that is exact in the limit of large dimensions. Our
main conclusion is that there is a considerable temperature
dependence of the integrated spectral weight appearing in the
sum rule.

In infinite dimensions, s(v) can be expressed in
terms of the one-particle spectrum of the current-carrying
electrons:29,23
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with Ae(v)522 Im@Gk(v)# being the spectral representa-
tion of the Green function of the lattice conduction electrons,
a the lattice constant, andn the volume of the unit cell.

As we anticipated, the kinetic energy is related to the
conductivity by the sum rule
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An important result, which will be demonstrated later on,
is the notable dependence of the plasma frequencyvP on
temperature. This feature will be seen to emerge because
correlation effects generate small energy scales~e.g., the
‘‘Kondo temperature’’ of the associated impurity!. It is the
competition between the small scales and the temperature
that gives rise to an unusual temperature dependence to the
integrated optical spectral weight.

At T50, the optical conductivity of a metallic correlated
electron system can be parametrized by27

s~v!5
vP*

2

4p
d~v!1s reg~v!, ~15!

where the coefficient in front of thed function is the Drude
weight, andvP* is the renormalized plasma frequency. In the
presence of disorder,d(v) is replaced by a lorentzian of
width G.

Evaluating Eq.~13! at T50, one finds in mean-field
theory that
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whereZ is the quasiparticle weight. For the Hubbard model
in infinite dimensions the expression above further simpli-
fies, and it depends only on the density of states

vP*
2
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III. PHYSICAL CONTENT
OF THE MEAN-FIELD THEORY

In the next two subsections we shall discuss in a peda-
gogical and intuitive manner the physical content of the Hub-
bard and periodic Anderson models within the dynamical
mean-field theory. The discussion is based and resumes re-
cent results,14–16,21–25and also serves as on introduction for
the results that will be presented in detail in Sec. IV.

A. Hubbard model

The solution of the mean-field equations shows that at
low temperatures the model has a metal-insulator transition
~Mott-Hubbard transition! at an intermediate value of the
interactionUc'3D.14–16 The metallic side is characterized
by a density of states~DOS! with a three-peak structure: a
central feature at the Fermi energy that narrows as one
moves towardUc from below, and two broader incoherent
features that develop at6U/2, namely, the lower and upper
Hubbard bands. They have a width'2D, and their spectral
weight increases as the transition is approached. The insula-
tor side, for U.Uc , presents only these last two high-
frequency features, which are separated by an excitation gap
of sizeD'U22D. The different structures of the DOS~Fig.
1! give rise to very different optical responses.

Let us first consider the insulator, which is simpler. In this
case, optical transitions are possible from the lower to the
upper Hubbard bands. We therefore expect the optical spec-
trum that results from the convolution~13! to display a
single broad feature that extends approximately from
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U22D to U12D ~Fig. 1!. A negligible temperature depen-
dence of the spectra is expected, as long asT!D. On the
other hand, in the metallic case, the low-temperature optical
spectrum displays various contributions:~i! A narrow low-
frequency peak that is due to transitions within the quasipar-
ticle resonance; at theT50 limit this peak becomes ad
function, and is the Drude part of the optical response.~ii ! At
frequencies of orderU/2 an incoherent feature of width
;2D emerges due to transitions between the Hubbard bands
and the central resonance.~iii ! A last contribution at fre-
quency;U appears due to transitions between the Hubbard
bands. This is a broad feature of width;4D. Therefore, we
expect an optical spectrum which is schematically drawn in
Fig. 1. It is important to realize that, unlike the insulator, a
notable temperature dependence of the spectra is to be ex-
pected. There is a low-energy scaleTcoh that corresponds to
the temperature below which coherent quasiparticle excita-
tions are sustained. It roughly corresponds to the width of the
resonance at the Fermi energyeF*[ZD. As T is then in-
creased and becomes comparable toTcoh, the quasiparticles
are destroyed, and as a consequence, the contributions to the
optical spectra associated with them,~i! and ~ii ! rapidly de-
crease.

It should be clear that in our previous discussion we as-
sumed that the system does not order magnetically, as para-
magnetic solutions were considered. This situation can in
fact be realized by the introduction of disorder~e.g., a ran-
dom distribution of t i j ) or next-nearest-neighbor hopping,
and avoids the artificial nesting property of the bipartite
lattice.15,16

B. Periodic Anderson model

We now present a schematic discussion of the periodic
Anderson model solution. In this case there are two different
types of electrons;c electrons, which form a band, andd
electrons with localized orbitals. In the noninteracting
particle-hole symmetric case, the hybridization amplitudeV
opens a gap in thec-electron density of statesD ind;V2/D.
On the other hand, the originald-function peak of the local-
izedd electrons broadens by hybridizing with the conduction
electrons and also opens a gapD ind .

When the effect of the interaction term is considered, as
the local repulsiveU is increased, one finds that for low

frequencies the noninteracting picture which was just de-
scribed still holds; though with the bare hybridizationV be-
ing renormalized to a smaller valueV* . Thus we say we
have a hybridization band insulator with the hybridization
amplitude renormalized by interactions. This can also be in-
terpreted by considering that the interactingd electrons form
a band of ‘‘Kondo-like’’ quasiparticles, that allows us to
define a coherence temperatureT* similar to theTcoh intro-
duced above. This coherent band further opens a gap due to
the periodicity of the lattice. This is the well-known scenario
that is borne out from slave-boson mean-field theory and
variational calculations.30 On the other hand, the present dy-
namical mean-field theory also captures the high-energy part
of the d-electron density of states that develops incoherent
satellite peaks at frequencies6U/2 with a spectral weight
that is transferred from low frequencies. Consequently, the
c-electron density of states is mainly made of a central
broadband of half-widthD52t and a gap at the center that
narrows asV→V* . Also, it develops some small high-
frequency structures, that result from the hybridization with
the d electrons. In Fig. 2 we schematically present the den-
sity of states for thec andd electrons. As in the Hubbard
model, we assume the absence of magnetic long-range order
~MLRO!. For a study of the magnetic phase of the Anderson
model see Ref. 31.

Since thed sites are localized orbitals, only thec elec-
trons contribute to the optical response of this system. At
T50, following the previous interpretation in terms of a
renormalized noninteracting hybridization band insulator and
Eq. ~13!, we expect to find an optical conductivity spectra
with a gapDdir , which decreases as the interaction is in-
creased. We also expect thatD ind!Ddir , as the first corre-
sponds to theindirect gap from the density of states
D ind;V* 2/D, while the second is thedirect gapDdir;V*
that is defined as the minimum energy for interband transi-
tions at a givenk ~see Fig. 2!. We do not expect any other
important contributions to the optical response since, as we
argued above, the incoherent high-frequency structures of
the c-electron density of states do not carry much spectral
weight. In Fig. 2 we schematically present the optical re-
sponse atT50.

FIG. 1. Schematic DOS for the Hubbard model~half-filling! and
their corresponding optical spectra for the metallic and insulator
solutions. The width of the incoherent peaks in the DOS is'2D,
and the one of central peak in the metal is'ZD[eF*

FIG. 2. Schematic DOS~half-filling! for c andd electrons in the
PAM ~top!. The corresponding schematic optical spectra atT50
~bottom left! and the schematic band structure with the direct and
indirect gaps~bottom right!.
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As the temperature is increased, the gap in the optical
conductivity becomes gradually filled. At high temperatures
a simple picture of electrons scattering off local moments
emerges. The crossover between these two regimes, would
naively be expected to occur at a temperature of the order of
D ind .

Thus we note that in the Hubbard and periodic Anderson
models the destruction of a coherent quasiparticle state that
sets the low-energy scale of the system has ratheropposite
effects in the optical response. In the first case, the correlated
metallic state is destroyed asT becomes of the order of the
renormalized Fermi energy, and the Drude part of the optical
response is transferred to higher energies as the insulating
state sets in. In the second case, however, the destruction of
the coherent excitations is accompanied by the thermal clos-
ing of the gap in the density of states that turns the system
metallic. As a consequence, the gap of the optical response is
filled with spectral weight from higher energies to become a
broad Drude-like feature.

IV. RESULTS

A. Hubbard model

In this section we discuss the theoretical results for the
model in regard of recent experimental data on the V2O3
system. To facilitate our subsequent theoretical discussion,
we shall first briefly present some of the optical conductivity
measurements recently reported for this compound. We shall
use the experimental results in order to extract the input pa-
rameters for our model calculation. We shall not attempt to
give a formal justification for these parameters, as this lies
beyond the scope of our present approach, but rather assume
them as a phenomenological fit that allows our model calcu-
lations to reproduce the unusual features observed in the be-
havior of the optical spectra qualitatively.

1. Experimental spectra of V2O3

Vanadium oxide has threet2g orbitals per V atom which
are filled with two electrons. From the work of Castellani,
Natoli, and Ranninger,32 two electrons~one per V! are en-
gaged in a strong cation-cation bond, leaving the remaining
two in a twofold-degenerateeg band. The single-band Hub-
bard model ignores the degeneracy of the band, which is
crucial for understanding the magnetic structure,32 but cap-
tures the important interplay of the electron-electron interac-
tions and the kinetic energy. This delicate interplay of itin-
erancy and localization is responsible for many of the
anomalous properties of this compound, which are correctly
predicted by this simplified model.21 The localized character
of the orbitals that are relevant for the present low frequency
discussion is also borne out of local-density-approximation
calculations that give a rather small bandwidth of
;0.5 eV.33

Experimentally one can vary the parametersU andD, by
introducing O and V vacancies or by applying pressure or
chemical substitution of the cation. We can use experimental
data to extract approximate parameters to be used as input to
our model. In particular, from the experimental optical con-
ductivity data in the insulating phase, a rather accurate de-
termination can be made because, as is apparent from the

spectra, the low-frequency contribution is mainly due to a
single peak.1 In regard to our schematic discussion of the
Sec. III, the position of the maximum should approximately
correspond to the parameterU that corresponds to transitions
from the lower to the upper Hubbard band. Also, according
to the picture of Sec. III, the total width of the peak should
be ;4D, which is twice the width of the Hubbard bands.
Therefore, we can approximately estimate the parameterD
as the distance from position of the peak maximum to the
frequency where the feature decreased to half its height~see
Fig. 3!.

The parameters from the metallic optical conductivity
spectra are not so easily extracted. However, we can still
obtain a rather precise determination by considering thedif-
ference spectrabetween the data at 170 and 300 K~see the
inset of Fig. 4!.

FIG. 3. The experimentals(v) of insulating V22yO3 with
y50.013 at 10 K~upper! andy50 at 70 K~lower!. We indicate in
the spectra the position of the maxima and their width from which
the parametersU andD for the model calculations are extracted
~from Ref. 35!.

FIG. 4. The experimentals(v) of metallic V2O3 at T5170 K
~upper! andT5300 K ~lower!. The inset contains the difference of
the two spectraDs(v)5s170 K(v)2s300 K(v). Diamonds indicate
the measured dc conductivitysdc ~from Ref. 21!.
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As we shall discuss below in detail, the feature that ap-
pears in the difference spectra at a frequency'0.4 eV can be
associated with the parameterU/2 ~this statement will be
justifieda posterioriby the results of Sec. IVA3!. It is also
intuitively suggested by the schematic discussion of Sec. III
that this feature corresponds to the enhancement of transi-
tions from the lower Hubbard band to the central resonance
at the Fermi level, and from the resonance to the upper Hub-
bard band which are at a distance;U/2. The value for the
parameterD'0.4 eV in the metallic phase was determined
by noting that~i! a priori there is no reason to expect that it
should be much different than in the insulating phase~unlike
the parameterU which could be modified by screening!; ~ii !
it is consistent with the recent LDA calculation that gives a
half-width of '0.5 eV for the narrow bands at the Fermi
level;33 ~iii ! despite the lack of very good experimental reso-
lution, the value is consistent with both the optical data that
we reproduce in Fig. 4 and photoemission experiments;34

and ~iv! as will be shown later in the paper, this estimated
value will allow us to gather in a single semiquantitative
consistent picture the optical conductivity results with the
V2O3 phase diagram

21 and experimental results for the slope
of the specific heat. The extracted parameters, along with the
values for the size of the optical gap~in the insulators!, and
the total optical spectral weight are summarized in Table I.

2. Insulating state

We now turn to optical conductivity results. The experi-
mental optical spectrum of the insulator was reproduced in
Fig. 3.35 It is characterized by an excitation gap at low ener-
gies, followed by an incoherent feature that corresponds to
charge excitations of mainly vanadium character.1 These
data are to be compared with the model results of Fig. 5. The
overall shape of the spectrum is found to be in very good
agreement with the experimental results for the pure V2O3
sample. We display the optical spectra results from both IPT
and ED methods. The data show very good agreement be-

tween these two methods. The peak structure in the ED data
is due to the finite number of poles that result from the finite
size of the clusters that can be considered in practice.

In Fig. 6 we display the results for the size of gapsD,
which are in excellent agreement with the experimental re-
sults indicated by black squares.35 It is interesting to note
that the results of Fig. 6, shown for various degrees of mag-
netic frustration~c.f. Sec. IVA4!, indicate that in V2O3 frus-
tration plays an important role. The experimental system
seems to be closer to the limit of strong frustration, which is
consistent with neutron-scattering results that indicate differ-
ent signs for the magnetic interactions between different
neighboring sites.36

Another interesting point is the fact that the gap obtained
in the model optical spectra and the one obtained from the
position of the poles in the single-particle spectra coincide
~Figs. 5 and 6!. We therefore conclude that in this model the
direct and indirect gaps are very close~which justifiesa pos-
teriori thatD is measured from the lowest pole of the local
Green function!. This result, already predicted in Ref. 21,
was experimentally confirmed by accurate recent photoemis-
sion study of V2O3.

37 This follows from the fact that the
imaginary part of the self-energy is very large wherever the
electron density of states is non zero in the insulating solu-
tion ~see Fig. 7!. This is nothing but a direct consequence of
the complete incoherent character of the upper and lower
Hubbard bands. They describe a completely incoherent
propagation, and one should not think of them as usual me-
tallic bands ‘‘shifted’’ by the interactionU. This is an inter-
esting result, as we note that from the discussion in Sec. III,

TABLE I. Experimental parameters for the model.

Phase Parameter
D ~eV! U ~eV! D ~eV! vP

2 /8p ~eV/V cm!

Ins. (y50! 0.3360.05 1.360.05 0.6460.05 170620
Ins. (y50.013! 0.4660.05 0.9860.05 0.0860.05 800650
Metal ~170 K! 0.460.1 0.860.1 17006300

FIG. 5. The models(v) for the insulating solution results at
U54D andT50 from ED ~thin! and IPT~bold!.

FIG. 6. The gapD vs U for the antiferromagnetic, partially
frustrated, and paramagnetic insulators~dotted, thin, and bold!. D is
twice the energy of the lowest pole from the ED Green function.
The data are forns→` from clusters of three, five, and seven sites
assuming 1/ns scaling behavior. Black squares show the experimen-
tal gap for V22yO3 with y50.0 and 0.013. Inset:̂K& versusV for
the AFI ~bold-dotted!, PI ~thin! PM ~bold!, and partially frustrated
model ~thin-dotted!. Black squares show the experimental results.
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in the unfrustrated case, one would have expected the direct
gap to be larger that the indirect one.

A final and useful quantity that can be compared to the
experiment is the integrated spectral weightvP

2 /8p which is
related to^K& by the sum rule~14!. Setting the lattice con-
stant a'3 Å the average V-V distance, we find that our
results underestimate the experiment by about a factor of 2,
which may possibly be due to the fact that our model does
not consider degeneracy~inset of Fig. 6! ~Ref. 47!.

Before leaving this subsection we shall address an impor-
tant question, not yet fully settled, that is the mechanism by
which the insulating solution is destroyed. The destruction of
the insulating state occurs at a pointUc1 which may be dif-
ferent from the critical pointUc'3D that is associated to the
breakdown of the metallic state as the interactionU is
increased.15,16 This issue is physically relevant because one
can envision a situation where the magnetic order stabilizes
the insulating solution over the metallic solution, but, due to
a large degree of magnetic frustration, the insulating state is
very close to the fully frustrated paramagnetic insulator. The
destruction of the paramagnetic insulating state was dis-
cussed in Ref. 11 using IPT. Here we address this issue using
exact diagonalization.

We first study the behavior of the gap in the one-particle
excitation spectrum defined as the position of the lowest-
energy pole~with non-negligible weight! in the Green func-
tion as a function of the number of sites included in the
representation of the effective bath. Although the mean-field
theory is strictly formulated in the thermodynamic limit, in
practice, the representation of the bath by a finite number of
orbitals introduces finite-size effects. The data shown in Fig.
6 were obtained from the extrapolation of results from finite-
size cluster HamiltoniansHns to the ns→` system. The
value for D is defined as twice the energy of the lowest
frequency pole appearing in the Green function. In Fig. 8 we
show the gap as a function of the interactionU in systems of
ns53, 5, and 7 sites. Figure 9 contains similar results as a
function of 1/ns which show the good scaling ofD, espe-
cially as the gap goes to zero asU is decreased. Thus this

approach indicates a continuous closure of the gap at a criti-
cal value of the interactionUc152.15.

We also investigate the behavior of the inverse moments
of the spectral function defined as

m2n5E
0

`r~e!de

en
. ~18!

The behavior of these quantities give a more detailed pic-
ture of the transition. The local picture of the paramagnetic
insulator is that of a spin embedded in an insulator. Hybrid-
ization with the bands of this insulator transfers spectral
weight to high frequencies, but the spin remains well defined
at low energies~even though with a reduced spectral weight!
as long as there is a finite gap in the insulator. AsUc1 is
approached, and the gap decreases, we face the question
whether the spin remains well defined even at the transition
point. This depends on the behavior of the density of states

FIG. 7. Im@G(v)# and Im@S(v)# for U54 from IPT. Note that
Im@S(v)# is large when Im@G(v)# is nonzero, indicating the in-
coherent character of the particle excitations.

FIG. 8. The gapD vs the interactionU in the paramagnetic
insulator.D is twice the energy of the lowest pole from the ED
Green function. The data are from clusters of three, five, and seven
sites~top to bottom!.

FIG. 9. The gapD vs the inverse of the number of sites 1/ns in
the paramagnetic insulator for various values ofU. D is twice the
energy of the lowest pole from the ED Green function.
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of the bathrbath at low frequencies@we recall thatrbath is
essentiallyr in a Bethe lattice; cf. Eq.~5!#. Whittoff and
Fradkin38 showed that if the density of states of the bath
vanishes as a power lawrbath}eb, the spin remains well
defined ifb.1, while the spin is Kondo quenched ifb,1
and the spin degree of freedom is absorbed by the conduc-
tion electrons. The caseb51 is marginal.

In a previous publication16 we showed that within IPT the
second inverse moment remains finite at the transition, while
it diverges in the Hubbard III solution. Notice thatm22 can
remain finite up to the transition even when the gap closes,
but a divergent second inverse momentimplies the continu-
ous closure of the gap. In Fig. 10 we plot theinverseof
m22 together with that of the first and third inverse mo-
ments. The results correspond to the extrapolation to the
infinite-size effective bath, performed similarly as was done
previously for the gap. The inverse of the second inverse
moment shows good scaling behavior with the system size,
and is found to go to zero forU'2.12. At this value of the
interaction the moment diverges, which signals the break-
down of the insulating state, with the gap closing continu-
ously. As expected, the first inverse moment remains finite at
the transition~it also shows good scaling behavior!, and, on
the other hand, the inverse of the third inverse moment be-
comes negative even before the transition. This is due to the
fast divergence of the third moment, which renders the
finite-size scaling inaccurate. It is important to stress that this
way of looking at the transition is very different from the
previous one; nevertheless, the estimates forUc1 that are
obtained after the infinite-size bath extrapolation are consis-
tently predicted to within less than 2%. The results are sub-
stantially different from the ones obtained from IPT.

3. Metallic state

We now discuss the data of Thomaset al. in the metallic
phase. In Fig. 4 at the beginning of this section, we repro-
duced experimental data for pure samples that become insu-
lating belowTc'150 K.21 The spectra were obtained in the
metallic phase atT5170 and 300 K, and are made up of
broad absorption at higher frequencies and some phonon
lines in the far infrared. They appear to be rather featureless,
however, upon considering their difference~in which the
phonons are approximately eliminated! distinct features are
observed. AsT is lowered, there is an enhancement of the
spectrum at intermediate frequencies of order 0.5 eV; and
more notably, a sharp low-frequency feature emerges that
extends from 0 to 0.15 eV. Moreover, these enhancements
result in an anomalouschangeof the total spectral weight
vP
2 /8p with T. We argue below, that these observations can

be accounted by the Hubbard model treated in mean-field
theory.

In Fig. 11 we show the calculated optical spectra obtained
from IPT for two different values ofT. The interaction is set
to U52.1D that places the system in the correlated metallic
state. It is clear that at least the qualitative aspect of the
physics is already captured, and settingD'0.4 eV we find
these results consistent with the experimental data for
V2O3 ~Fig. 4!. As the temperature is lowered, we observe the
enhancement of the incoherent structures at intermediate fre-
quencies of the orderU/2 to U, and the rapid emergence of
a feature at the lower end of the spectrum. These two emerg-
ing features can be interpreted from the qualitative picture
that was discussed in Sec. III which is relevant for lowT.
From the model calculations with the parameters of Table I,
we find the enhancement of the spectral weight taking place
at a scaleTcoh'0.05D'240 K which correlates well with
the experimental data.Tcoh has the physical meaning of the
temperature below which the Fermi liquid description
applies,16 as the quasiparticle resonance emerged in the den-
sity of states.

In Fig. 12 we present the results for^K& as a function of
the temperature. An interesting prediction of the model is the
anomalous increase of the integrated spectral weightvP

2 /8p
asT is decreased. This feature is actually observed in experi-
mental data, that show a notable difference between the in-

FIG. 10. Inverse of the first three inverse moments (m2n)
21 of

the density of states as a function ofU. The three curves correspond
from top to bottom to the inverse of the first, second, and third
inverse moments respectively. The results are thens→` extrapola-
tion from clusters of three, five, and seven sites, assuming 1/ns
scaling behavior. The dotted continuation of the last curve indicates
results where the scaling is not reliable due to the strong divergent
behavior of that inverse moment. The vertical dotted line indicates
the value obtained forUc1 from the inverse moment analysis.

FIG. 11. The models(v) for the metallic solution at
U52.1D and T50.05D ~upper! and 0.083D ~lower!. A small
G50.30 and 0.5D was included to mimic a finite amount of disor-
der.
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tegrated spectral weight that persists up to the maximum
frequencies measured (v'6 eV!. This effect is due to the
rather strongT dependence of the kinetic energŷK&
}vP

2 /8p in the region near the crossover associated with the
first-order metal-insulator transition line that occurs in the
phase diagram of the model.21 This results from the compe-
tition between two small energy scales, namely, the tempera-
ture and the renormalized Fermi energyeF*

Figure 13 contains the comparison between the results for
the same quantitŷK& atU52 as obtained from the IPT and
finite-temperature ED methods. This demonstrates that the
temperature dependence is indeed a true feature of the model
which is successfully captured by the approximate IPT solu-
tion.

Although the qualitative aspect seems to be very accu-
rately described by the model, we findvP

2 /8p
'500 eV/V cm which is lower than the experimental result.
This could be due to the contribution from tails of bands at
higher energies that are not included in our model, or it may
indicate that the bands near the Fermi level are degenerate.

We now finally want to consider an important prediction
of the model for the slope of the linear term in the specific
heatg in the metallic phase. Experiments show that the slope
g is in general unusually large. For 0.08, Ti substitution
g'40 mJ/molK2, while for a pressure of 25 Kbar in the
pure compoundg'30 mJ/mol K2 and with aV deficiency
in a range ofy50.013 to 0.033 the value isg'47 mJ/
molK2.39 In our model,g is simply related to the weight in
the Drude peak in the optical conductivity and to the quasi-
particle residueZ, g5(1/ZD)3mJ eV/mol K2. The values
of U52.1D andD'0.4 eV extracted from the optical data
correspond to a quasiparticle residueZ'0.3, and result in
g'25 mJ/molK2 which is close to the experimental find-
ings. Thus it turns out that the mean-field theory of the Mott
transition explains, in a natural and qualitative manner, the
experimentally observed optical conductivity spectrum, the
anomalously large values of the slope of the specific heat
g, and the dc conductivity in the metallic phase, as a conse-
quence of the appearance of a single small energy scale, the
renormalized Fermi energyeF*

4. Magnetically ordered solutions

Before leaving the Hubbard model and the V2O3 com-
pound, we shall consider the important question of model
solutions with magnetic long-range order~MLRO!. In infi-
nite dimensions the optical conductivity is a weighted con-
volution of two one-particle spectral functions. The one-
particle spectral function is, therefore, the basic building
block which gives rise to the various features of the optical
conductivity. In this subsection we consider the nature of the
spectral functions with MLRO. The understanding of the
qualitative differences and similarities between solutions
with and without MLRO is relevant in regard to systems, like
V2O3, that present both antiferromagnetic~AFI! and para-
magnetic~PI! insulating phases.

In Fig. 14 we show, respectively, the single-particle spec-
tra of the PI and AFI insulating solutions for different values
of the interactionU. The results are obtained from the ED
method atT50 for clusters of seven sites. The finite number
of poles in the spectra correspond to the finite size of the
clusters that can be practically considered. A finite broaden-
ing of the poles was added for better visualization.

In the AFI case, we plot the averaged value of the sublat-
tice Green functionsḠs ,

40

Ḡs5 1
2 ~GAs1GBs!5 1

2 ~GAs1GA2s!, ~19!

which is the quantity to be compared to photoemission ex-
periments.

It is interesting to realize from these results, which corre-
spond to rather large values of the interactionU, that the
spectra in both cases are roughly similar. They both present a
lower and upper Hubbard band at energies'6U/2 with a
bandwidth'2D and a corresponding gapD'U22D.

FIG. 12. Expectation value of minus the kinetic energy^K& as a
function of the temperature for variousU ~IPT!. This quantity is
directly proportional to the optical conductivity sum rule. It predicts
a notableincreasein the optical spectral weight as the temperature
is decreasedin the correlated metallic regime.

FIG. 13. Comparison of the expectation value of the kinetic
energy^K& as a function of the temperature forU52 as obtained
from IPT and ED methods.
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In particular, the PI solution merely presents a rigid shift
of the incoherent Hubbard bands as the interactionU is var-
ied, which is reminiscent of Hubbard’s solution of the
model.13,41On the other hand, in the AFI case, the shape of
the density of states follows from the fact that the sublattice
magnetization is basically saturated at these large values of
the interaction.

At U57, the largest value of the interactions considered,
we observe that the shape of the spectra ofḠ becomes very
similar to the corresponding one in the disordered case. This
can be understood from the fact that the magnetic exchange
scaleJ;D2/U vanishes asU becomes large. As one de-
creases the strength of the interaction, we observe that the
AFI spectra become increasingly different from the PI ones.
In the former there is a transfer of spectral weight that occurs
within the bands, from higher to lower frequencies. This is a
consequence of the fact that, as the scaleJ becomes increas-
ingly relevant, the spectra acquire a more coherent character.
The ‘‘piling up’’ that occurs with the transfer of spectral
weight asU is reduced is the precursor of the weak coupling
inverse square root singularity in the low frequency part of
the density of states. It is interesting to note that recent pho-
toemission experiments in V2O3 report the presence of a
small anomalous enhancement in the lower-frequency edge
of the spectrum in the AFI phase. This feature may be inter-
preted from the previous results as evidence of the transfer of

weight within the Hubbard bands, corresponding to a case of
an intermediate degree of frustration.

A complementary perspective on the results that we just
discussed is obtained by looking at thek-resolved spectra
given by the imaginary part of the Green functionG(k,v),
which reads

G~k,v!5
1

v2ek2S~v!
. ~20!

In the large-d limit the energyek that enters in the Green
functions loses its explicitk dependence.7 Nevertheless, one
can still think of this quantity as analogous to the
k-resolved spectra if one notes that thee goes from2D to
D as it traverses the band~the dispersion is linear in the non-
interacting case!. In Figs. 15 and 16 we show the

FIG. 14. Above: DOS of the paramagnetic insulator solution
obtained from exact diagonalization of seven sites withU53, 5,
and 7 ~top to bottom!. A small broadening has been added to the
poles. Below: idem for the antiferromagnetic insulator solution.

FIG. 15. e-resolved single-particle spectra of the antiferromag-
netic insulator solution obtained from exact diagonalization of 7
sites withU57 with e50.0, 0.25, 0.5, 0.75, and 1.0~top to bot-
tom!. A small broadeningh50.1 was added to the poles, and the
figures were vertically shifted for better visualization.

FIG. 16. e-resolved single-particle spectra of the antiferromag-
netic insulator solution obtained from exact diagonalization of
seven sites withU53 with e50.0, 0.25, 0.5, 0.75, and 1.0~top
to bottom!. A small broadeningh50.1 was added to the poles, and
the figures were vertically shifted for better visualization.
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e-resolved spectra for the different values of the interaction
considered before. From the inspection of the spectra we
observe that in the lowJ case forU57 the single-particle
spectra remain basically unmodified as we scan thee ‘‘wave
vectors,’’ which indicates the very incoherent character of
the single-particle excitations. On the other hand, as we
lower U and the scaleJ becomes larger, we note the emer-
gence of a peak in theU53 case for small values ofe, that
indicates its coherent character.

Upon further reduction of the strength of the interaction
U, as we show in Fig. 17 forU51.5, we find that the co-
herent features of the spectra begin to acquiredispersion.
This is observed, not only in the ‘‘particle’’ (v,0) but also
in the emerging ‘‘hole’’ part of the spectra, as the size of the
staggered magnetization decreases. These results display a
striking similarity to the physics found in recent finite dimen-
sional finite lattice size QMC calculations by Preuss, Hanke,
and van der Linden.42

We can summarize the previous results by saying that the
ED solutions indicate that, as the lattice becomes unfrus-
trated~nested! and asU/t is reduced, the spectral function of
the insulating state develops more dispersion, and the exci-
tations at low energy become more coherent~i.e., the imagi-
nary part of the self-energy is smaller!. As we argued above,
many experiments place V2O3 in the opposite regime of
strong frustration; however, the observation of dispersive
features in the insulating phase of NiS1.5Se0.5 ~Ref. 43! may
be explained by a lower degree of magnetic frustration in
this compound.

It should now be clear that an important parameter of the
theory is the degree of magnetic frustration. Thus a final
topic that we shall briefly consider is the case of solutions
with MLRO in a model with an intermediate degree of frus-
tration. The degree of frustration can be controlled in our
model by adding to the original Hamiltonian, with nearest-
neighbor hoppingt1, a next-nearest-neighbor hopping ampli-
tude t2.

16 In order to maintain the half-bandwidthD52t
fixed and the bare density of statesr0 invariant, one has to
keept1

21t2
25t2. Note that fort2 /t150 we recover the origi-

nal Hamiltonian, andt2 /t151 gives the paramagnetic solu-
tion. The extra hopping provides a magnetically frustrating
interaction by lifting the rather artificial nesting property of
the original model.

In a recent letter,21 we showed that the inclusion of finite
frustration in the original model Hamiltonian is essential in
order to reproduce the main qualitative features and the pre-
cise topology of the phase diagram of V2O3. In particular we
found a small region in the phase diagram which corresponds
to an antiferromagnetic metallic state~AFM!. In Fig. 18 we
show the density of states fort2 /t150 ~AFI!, and
t2 /t15A1/3 ~AFM! with the interactionU51.5. The results
obtained from seven sites show exact diagonalization. It is
very interesting to note that the peak structure of the density
of states seems to be divided into low-frequency features
nearv50, and higher-frequency structures at energies of the
order of the bandwidth~which is also comparable toU for
the chosen parameters!. This is even more clear in the anti-
ferromagnetic metallic state with partial frustration. We note
that our results are qualitatively similar to the recent results
by Moreo et al.44 obtained in exact diagonalization of the
t-J model and also quantum Monte Carlo results for the
Hubbard model on two-dimensional finite-size lattices with a
choice of parameters comparable to the one used here.44

We conclude this subsection with an important technical
remark: in order to apply the exact diagonalization method of
Ref. 18 to the problem with intermediate frustration
0,t2 /t1,1, it is necessary to be able to average the contin-
ued fractions for the spin-up and spin-down Green functions
into a single continued fraction. To perform this task we use
the algorithm detailed in the Appendix.

B. Periodic Anderson model

In this section we shall consider the predictions of the
periodic Anderson model within the present dynamical
mean-field theory in the context of several questions which
emerge from the experimental data on Kondo insulator sys-
tems Ce3Bi4Pt3 ~Ref. 2! and FeSi.3 In particular we shall

FIG. 17. e-resolved single-particle spectra of the antiferromag-
netic insulator solution obtained from exact diagonalization of
seven sites withU51.5 with e50.0, 0.25, 0.5, 0.75, and 1.0
~top to bottom!. A small broadeningh50.2 was added to the poles,
and the figures were vertically shifted for better visualization.

FIG. 18. DOS obtained from exact diagonalization of seven
sites withU51.5 for (t2 /t1)50 ~top! and (t2 /t1)5A1/3 ~bottom!.
A small broadeningh50.1 was added to the poles.
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address the following issues:~i! the energy scales that are
involved in the formation of the gaps;~ii ! the temperature
dependence of the integrated optical spectral weight as the
gap forms; and~iii ! the scattering rate.

1. Gap formation

Kondo insulators are a second class of systems where the
correlations induce an anomalous temperature dependence.
While the most qualitative physics of these systems is well
understood, several features remain puzzling.20 The charge
gapDc measured in optical conductivity is larger than the
spin gapDs measured in neutron scattering.

2 Also, the trans-
port gapD t obtained from the activation energy in dc trans-
port measurements is smaller thanDc . On the other hand,
from recent optical experiments on Ce3Bi 4Pt3 ~Ref. 2! and
FeSi,3 we can distinguish some common features regarding
the energy scales associated with the formation of the optical
gap. The gapDc begins to open at a characteristic tempera-
ture T*;Dc/5 and becomes fully developed at a much
smaller temperature of the order ofT* /5. Also, the gap is
temperature independent belowT* . In Ce3Bi 4Pt3, it is
found thatDc'450 K,Ds'250 K, andT*'100 K, and the
optical gap is completely depleted only below'25 K.2 On
the other hand, qualitatively similar results were reported for
FeSi, withDc'1000 K, andT*'200 K, and the gap be-
comes depleted between 20 and 100 K.3

The mean-field theory accounts for all these observations.
The low-energy behavior of the one-particle Green functions
of the model can be understood as that of a noninteracting
system, where the interactionU reduces the hybridization
from its bare valueV to a renormalized valueV* which
decreases asU increases. As a consequence, the gap in the
optical conductivity decreases by the effect of correlations.
However, the line shape remains approximately invariant,
and is merely changed by a rescaling factor with respect to
the response of the noninteracting model. This is demon-

strated by the plot of the optical conductivitys(v) for dif-
ferent values ofU shown in Fig. 19. The optical gapDc is
given by thedirect gapDdir of the renormalized band struc-
ture. These results were obtained by IPT atT50, and we
checked in various cases that the results are in excellent
agreement with the ED method.

We now consider the behavior ofs(v) with temperature.
Figure 20 shows the optical conductivity for different tem-
peratures with the parametersU53 andV50.25 fixed. The
gap is essentially temperature independent. It begins to form
at T*'0.02;Dc/5, and is fully depleted only at tempera-
tures of the order ofT* /5. We thus observe that the mean-
field theory is able to capture the qualitative aspect of the
experimental results that we summarized above. This basi-
cally consists in the individualization of three different en-
ergy scales: a large one which corresponds to the gap of the

FIG. 19. The optical conductivity spectra of the periodic Ander-
son model for values of the interactionU50.5, 1, 2, and 3~right
to left!, keeping the hybridizationV50.25 fixed. The inset shows
the gap from the optical spectraDc'Ddir and the indirect gap
D ind from the local density of states forV50.6. The slopes of these
curves indicate thatV* 2/D}D ind and V*}Ddir in the strong-
correlation region.

FIG. 20. The optical conductivity for the Anderson model at
T50.001 ~bold!, 0.005, 0.01, 0.02~dotted!, and 0.03~thin!. The
interaction U53 and V50.25. Inset: The same quantity at
T50.001 ~bold!, 0.005, 0.01, 0.02~dotted!, and 0.03~thin! with
Lorentzian random site disorder of widthG50.05.

FIG. 21. Low-frequency part of the density of states for thed
and c electrons ~top and bottom! obtained from IPT at
T50.001, 0.005, 0.01, 0.02, and 0.03 forU53 and V50.25
~top to bottom ford electrons and bottom to top forc electrons!.
Inset: The density of states in the full frequency range at
T50.001.
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optical spectraDc;Ddir , an intermediate scaleT*;Dc/5,
where this gap starts to form and quasiparticle features start
to appear in the DOS; and a third and smaller scale
D ind;T* /5, which corresponds to the temperature where the
optical gap is completely depleted. As demonstrated in Fig.
21, where we plot the results for the density of states, the
small scaleD ind also indicates the temperature below which
the gap in the density of states opens, and, thus, can be
associated with the gap measured in dc-transport experi-
ments D t . This last feature, and the fact that
D ind;D t!Ddir;Dc , accounts for one of the experimental
observations mentioned above.

In order to make a meaningful comparison with the ex-
perimental data, we have added the effects of disorder by
putting a Lorentzian distributed random site energy on the
conduction-electron band with widthG50.05. The results
are displayed in the inset of Fig. 20, and they show that the
introduction of disorder places the overall shape of the spec-
tra in closer agreement with the experimental results2,3 ~for a
discussion of the scattering involved, see Sec. IVB2!. Also,
we observe that increasing the disorderreducesthe tempera-
tureT* .

In the following, we briefly address the question of the
integrated total spectral weight. It has been noted that experi-
mental results for both Ce3Bi4Pt3 and FeSi, seem to violate
the sum rule for the spectral weight.2,3 However, this point
has been recently questioned, at least for the FeSi
compound.45 In order to contribute to the proper interpreta-
tion of the experimental data, it is important to compute the
kinetic energy of our model at finite temperature, which is
directly related to the sum rule of Eq.~14!. The results from
IPT are presented in Fig. 22, which shows the notable de-
pendence of the kinetic energy with temperature and interac-
tion strength@we plot the negative of̂K& which is the quan-
tity that enters Eq.~14!#. In Fig. 23, we plot similar results
obtained with the ED algorithm, which demonstrates that the

behavior captured by the IPT calculation is indeed a true
feature of the model.

As we previously discussed for the the Hubbard model
case, the strong correlation effects that renders^K& a func-
tion of the temperature implies thatif the PAM is the relevant
model for the systems at low energies, then the results predict
the behavior of the integrated optical weight within the low-
frequency range. Actually, experimental data, which are in-
ferred from the Kramers-Kronig transformation of reflectiv-
ity measurements, can only be reliably obtained within a
limited low-frequency range of the order of a feweV. The
behavior of^K(T)& in Fig. 23 isnonmonotonic. As we in-
crease the temperature from zero, we observe initially that
the kinetic energy decreases. This is a consequence of elec-
tron delocalization, since the system becomes a metal as the
small gap in the density of states is filled. The kinetic energy
then goes through a minimum and starts to increase as the
temperature is further increased. This is due simply to the
thermal excitation of electrons within the single conduction
band. Correlations now play an irrelevant role, as the tem-
perature is higher than the coherence temperatureT* . When
we study the behavior for different values of the interaction
U in Fig. 22, we observe that the position of the minima
~maxima in this figure as2^K(T)& is plotted!, becomes
smaller asU is increased. This can be understood simply as
a consequence of the renormalization of the hybridization
amplitudeV→V* .

In regard to the experimental situation in the Kondo insu-
lators, which indicate the apparent violation of the optical
sum rule, our results give a plausible qualitative explanation
for the observed behavior. In fact, for experimental data ob-
tained at temperatures smaller than the size of the gapDc and
restricted to a finite low-frequency range~which indeed cor-
responds to the actual situation!, the model predicts the ap-
parent ‘‘disappearance’’ of spectral weight as the tempera-
ture is decreased.

We should also point out that although this simple model
accounts, rather successfully, for the various energy scales, it
fails to provide an accurate reproduction of the detailed ex-

FIG. 22. Expectation value minus the kinetic energy^K& as a
function of the temperature forU50, 2, 3, 4, andV50.4 ~bottom
to top! as obtained from IPT. This quantity is directly related to the
optical conductivity sum rule. It predicts a notabledecreasein the
total optical spectral weight as the temperature isdecreasedin the
range below the maxima.

FIG. 23. Comparison of the expectation value of the kinetic
energy ^K& in the PAM as a function of the temperature for
U52 andV50.4 as obtained from IPT and ED methods~dashed
line and full line!.
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perimental line shape. A complete explanation of the experi-
mental results may need the consideration of additional
sources of scattering, as will be discussed in Sec. IV B2.

To finish our discussion about gap formation in the peri-
odic Anderson model, we shall present the results for the size
of the various gaps that are obtained from the correlation
functions. The first study of the periodic Anderson model in
large dimensions was carried out by Jarrell, Akhlaghipour,
and Pruschke using the quantum Monte Carlo method.22 Our
spectral functions and density of states are in general agree-
ment with the early work in the region where the QMC and
exact diagonalization methods can be compared. A notice-
able qualitative difference is that we find the spin gap to be
slightly but strictly smaller than the indirect gap whenU
Þ0.

In Fig. 24 we show the local spin- and charge-correlation
functions along with the optical conductivity, which shows
qualitative agreement with the experimental data of Ref. 2.
We also compare in the inset the direct optical gapDdir , the
indirect gapD ind relevant for transport properties, and the
spin gapDs obtained from the spin-spin-correlation function.
We find thatDdir is consistently larger thanDs , and that
Ds is somewhat smaller thanD ind . As expected when
U50, Ds5D ind , but, asU increases,Ds /D ind becomes
smaller than unity and approaches the value 1/2 atU'2.

2. Scattering rate

In the previous subsection we stressed the qualitative suc-
cess of the mean-field theory of the periodic Anderson model
in connection with the gap formation in Kondo insulators
like FeSi and Ce3Bi4Pt3. In this section, however, we will
show that this approachcannotaccount for the large scatter-
ing rate measured in these materials, if one does not include
the effects of disorder in the model. This is very surprising,

and is an indication of the limitations of the one-band peri-
odic Anderson model for modeling these systems.

The optical conductivity of Kondo insulators is — except
for the gap which forms at low temperatures — almost con-
stant over a large frequency range extending to several times
the width of the gap. The corresponding value ofs(v) is
quite similar for all of the materials@typically 3000–4000
(V cm)21 #, and depends only weakly on temperature. The
related scattering rate can be estimated~atT.T* ) by simple
Drude model arguments: at zero frequency, we have
s5ne2t/m. Heren5a23, wherea denotes the lattice con-
stant. m can be obtained from the kinetic energy
p2/2m'D, where p'2p\/a. Assuming a'10210m, the
equations yield\/t;s0

21103(V cm)21D. Thus the mea-
sured values fors0 imply a scattering rate which is of the
order of the bandwidth (1/t;D, assuming\51). This
should be compared with the scattering rate found in normal
metals like copper, which is three orders of magnitude
smaller (1/t;1023D).

Since all experiments on Kondo insulators~and also on
many Kondo metals! observe~above the gap! the same order
of magnitude fors(v), one should expect that there is a
common mechanism involved. It is reasonable to assume that
the scattering of conduction electrons by the localized elec-
trons in the periodic Anderson model provides an explana-
tion. To address this question, we calculated the effective
scattering rate. This quantity is determined by the effective
c-electron self-energyScc

(eff)

Scc
~eff!~v!5

V2

v1m2Sdd~v!
, ~21!

whereSdd is the self-energy of the localizedd electrons,
which enters the formula for the optical conductivity~13! via
Aek

(v)522 Im1/@v1m2ek2Scc
(eff)(v)#. The imaginary

part ofScc
(eff)(v) measures the scattering involved. In Fig. 25

we plotted this quantity for the particle-hole symmetric case,
V50.25D, U53D, andT50.1D. Since in this section we
are not interested in the gap formation, the temperature was
chosen to be well above the point where the gap starts to
open (T*'0.025D). For comparison, the calculation was

FIG. 24. The local spin-spin~bold! and charge-charge~thin!
susceptibility from seven ED sites. The optical conductivity from
IPT ~dotted!. The parameters areU51 andV50.2. They axis is in
arbitrary units. Inset: The direct gap from IPT~upper dotted line!,
the indirect gap~lower dotted line!, and the spin gap~solid line!
from eight ED sites. The hybridization isV50.2.

FIG. 25. ImScc
(eff)(v) for U53, V50.25, andT50.1 (D51).

The results are from ED~dashed line! and IPT~full line! methods.
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done with both the ED and IPT. It is clear from the plot that
the scattering rate is much smaller than the bandwidthD, and
gives rise to an optical conductivity which is smaller than the
experimentally observed value by two orders of magnitude.
This result remains valid away from particle-hole symmetry,
and for different choices ofV and U. If one ignores the
self-consistency condition, one would expect, based on the
theory of the Kondo impurity model, that, as the temperature
is lowered the scattering rate should grow toward the unitary
limit D. This growth, which is expected at low frequencies
and low temperatures, is preempted in the lattice by the for-
mation of the hybridization gap.

ForV/U!1 and half-filling, the periodic Anderson model
can be transformed into a Kondo lattice model by a
Schrieffer-Wolff transformation

HKL5
D

2 (
, i j.,s

cis
† cjs1J (

i ,ss8
SW icis

† tWs,s8cis8, ~22!

whereJ5 8V2/U. HereSW i describes a spin at sitei . For a
cross-check, we also examined this Hamiltonian using the
exact diagonalization method. ForJ5 1

6D, which corre-
sponds toV50.25D and U53D, we find at T50.1D a
scattering rate 1/t;2 ImScc(v50)'731023D. This is
again much less than required to explain the experimental
data.

We believe that the failure observed here within the
present approach is a general shortcoming of the periodic
Anderson model. A more realistic description has to take
several crystal-field-split bands and this could increase the
finite frequency optical absorption.

V. CONCLUSIONS

In this paper we have illustrated how the LISA, that be-
comes exact in the limit of large dimensions, can be used to
study the physics of systems where the local interactions are
strong and play a major role. In particular we have demon-
strated that the Hubbard and periodic Anderson models,
treated within this dynamical mean-field theory, can account
for the main features of the temperature-dependent transfer
of spectral weight in the optical conductivity spectra. In the
case of V2O3, we found that the theory is able to account
semiquantitatively for the conductivity results in both the
metallic and insulating states. Also, in the metal, it explains
the unusually large values observed in the slope of the spe-
cific heat g. In the insulating phase, the theory seems to
provide further insight into the role of the magnetic frustra-
tion. In this regard, we studied in detail the predictions of the
model for the photoemission spectra when long-range order
is present, and noted that the mean-field theory indeed cap-
tures many aspects of the behavior that was already encoun-
tered in numerical studies of the model in low dimensions.

For Kondo insulators, we have seen many of the qualita-
tive features of the observed behavior of optical spectra, with
the temperature captured by our model treated in mean-field
theory. In particular, we identified the different energy scales
associated with the formation of the optical gap, and how
they are related to changes in the single-particle spectra.
However, we saw that the periodic Anderson model is not

able to explain the high scattering rate measured in Kondo
insulators.

We also presented results for the temperature dependence
of the optical sum rule in strongly correlated models. In the
Hubbard model case, the results capture the qualitative de-
crease of the total spectral weight with increasing tempera-
ture that is experimentally observed in the V2O3 system. On
the other hand, our results for the PAM may be relevant for
the resolution of the ‘‘missing’’ spectral weight controversy
in optical experiments on the insulators Ce3Bi4Pt3 and
FeSi.2,3,45From a broader perspective it has turned out to be
very illuminating to realize how the emergence of a small
‘‘Kondo’’ energy scale in both, Hubbard and periodic
Anderson models, results in the unusual temperature depen-
dence of the projected optical sum rule@cf. Eq. 14!#. The
appearance of a Kondo scale in these models is due to the
fact that within the LISA, both lattice problems are mapped
onto an Anderson single impurity. However, since they are
subject to different self-consistency conditions, the tempera-
ture behavior of the solutions is very different. We have
shown that in the Hubbard model case the optical weight
increases when the temperature is reduced, and the system
becomes more metallic, while in the periodic Anderson
model it decreases, as a consequence of the system opening a
gap and becoming insulating.

We finally stress that our mean-field approach can be eas-
ily adapted to incorporate more realistic band-structure den-
sities of states and more complicated unit cells. These exten-
sions would possibly allow for a more precise quantitative
description of these interesting systems.
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APPENDIX: ADDITION
OF TWO CONTINUED FRACTIONS

In this appendix we present an algorithm that allows to
sum two continued fractions into a single one. This is nec-
essary for the implementation of the ED method in models
with magnetic frustration or disorder, where various Green
functions have to be averaged and the result has to be ex-
pressed as a continued fraction. The details of the ED
method can be found in Ref. 18.

In the ED method an effective cluster HamiltonianHns of
ns sites is diagonalized. AtT50 only the ground stateugs&
and the ground-state energyE0 need to be obtained, and this
can be efficiently done by the modified Lanczos method.46

The local Green functionG(v) is then obtained as a contin-
ued fraction. Actually one needs to compute two continued
fractionsG,(v) andG.(v), for v,0 and forv.0, re-
spectively.

8466 54M. J. ROZENBERG, G. KOTLIAR, AND H. KAJUETER



G~v!5G.~v!1G,~v!

5 K gsUc 1

v2~Hns2E0!1 id
c†UgsL

1 K gsUc† 1

v1~Hns2E0!1 id
cUgsL , ~A1!

with

G.~v!5
^gsucc†ugs&

v2a0
.2

b1
.2

v2a1
.2

b2
.2

v2a2
.2 •••

, ~A2!

G,~v!5
^gsuc†cugs&

v2a0
,2

b1
,2

v2a1
,2

b2
,2

v2a2
,2 •••

,

wherec and c† are the operators associated with the local
site ofHns. The parametersai

./, andbi
./, define the con-

tinued fractions, and are obtained from the following itera-
tive procedure:

ai
a5^ f i

auHnsu f i
a&, bi

a25
^ f i

au f i
a&

^ f i21
a u f i21

a &
, ~A3!

wherea5.,, and u f 0
.&5c†ugs&, u f 0

,&5cugs&, and

u f i11
a &5Hnsu f i

a&2ai
au f i

a&2bi
a2u f i21

a &, ~A4!

and in the beginning we setb0
a50.

Thus we observe that the basis defined by the vectors
u f i

a& gives atridiagonal representation ofHns which contains
the ai ’s along the main diagonal and theAbi ’s along the
diagonals next to the main one. In the following we drop the
indexa to simplify the notation. We will explicitly restore it
in the final result.

Let us now address the problem of our current interest.
We assume that we have computed two Green functions
Gm(v), where the indexm may label, for instance, a spin.
Our task is to obtain a continued fraction representation of
theaverageGreen functionḠ(v)5 1

2@G↑(v)1G↓(v)#. The

more general case of a weighted average can be trivially
generalized from the present case which we consider for sim-
plicity.

We first note that, from the Lanczos procedure,Hns has
~different! tridiagonal representations in the two sub-bases
defined byu f im& ~we have dropped the.,, label to simplify
the notation!. The representation is basically a matrix that
contains parametersa8s along the main diagonal andb8s
along the two subdiagonals.

The algorithm is as follows: one first diagonalizes the two
tridiagonal representations ofHns by computing all the ei-
genvalues and eigenvectors. This is not numerically costly
since the matrices are in tridiagonal form and it may be done
by standard methods.

An important result that can be easily demonstrated is that
the eigenvaluesem

n of the tridiagonal matrices are the poles
of their corresponding Green functionsGm(v). Furthermore,
one can also show that

Gm~v!5 (
n51

M
~vm

n !2

v2em
n , ~A5!

wherevm
n are the first component of theM eigenvectors of

the tridiagonal matrices.
Thus, from the definition of the Green function, one im-

mediately recognizes that the vector$vm
1 ,vm

2 , . . . ,vm
M% is

nothing butcm
† ugs& expressed in a basis whereHns is diago-

nal ~which is a sub-basis of the given sector’s Hilbert space!.
The final step consists of writing the Hamiltonian in the

bases direct product of the two sub-bases, which, of course,
will also be a diagonal representation ofHns; and then bring
it to its tridiagonal representation through steps~A3! and
~A4! starting from the vector defined by~restoring the
.,, label!

u f 0
.&5~c↑

†1c↓
†!ugs&

5vW ↑%vW ↓

5$v↑
1 ,v↑

2 , . . . ,v↑
M ,v↓

M11 ,v↓
M12 , . . . ,v↓

2M%. ~A6!

Thus the newly determinedai
.’s and bi

.’s that result
from this last step are the parameters of the continued frac-
tion representation ofḠ.(v) ~the parameters forḠ, are
obtained in a completely analogous manner!.
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