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Algebraic Bethe ansatz for the supersymmetridJ model
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We present an algebraic Bethe ansatz for the supersymmétritodel for correlated electrons on the
unrestricted 4dimensional electronic Hilbert spaee]~1C* (whereL is the lattice length The supersym-
metry algebra of the model is the Lie superalgebté|1) and contains one symmetry-preserving free real
parameter which is the Hubbard interaction paraméteThe parametet) arises from the one-parameter
family of inequivalent typical four-dimensional irreps gf(2|1). Eigenstates of the model are determined by
the algebraic Bethe ansatz on a one-dimensional periodic |g4t864.63-182¢06)03232-9

[. INTRODUCTION U model. A q deformation for this model has also been
studied in Refs. 16 and 17.

Solutions to the Yang-Baxter equation provide a well- We now introduce some notation as in Ref. 18. Electrons
known method for the construction of integrable modelson a Iattlce are described by canonical Fermi operatps
through thequantum inverse scattering meth¢@ISM).1?  and ¢/, satisfying the anticommutation relations given by
Supersymmetric generalizations have attracted considerable; ,,,C, T} 6ij0,-, Wherei,j,=1,2,..1 ando,7=T1,]. The
interest recently for their possible application to correlatedoperatorc; , annihilates an electron of spinat sitei, which
electron systems. The supersymmetric Yang-Baxter equat|0|mplles that the Fock vacuur®) satisfiesc; ,|0)=0. At a
was first studied in the work of Kulish and Sklyarfising  given lattice site, there are four possible electronic states:
this approach Essler and Korepistudied thenested alge-
braic Bethe ansat?tNABA) for the solution of the supersym- [0), [1);=c[,[0), [[)i=c] |0), |1])i=c cl|0).
metrict-J model in one-dimension, usinggd(2|1) invariant
R matrix (see, also, Ref.)5By adopting the QISM, models By ni]U=c§’Uci,U, we denote the number operator for elec-
describing systems of correlated electrons have since beerons with spino on sitei, and we writen;=n; ;+n; | . The
proposed. Aq deformation of the supersymmettie] model  Hamiltonian for this model on a generatdimensional lat-
has been studied in Refs. 6 and 7 usingJ(;{gI(2|1)] in-  tice is given by
variantR matrix. TheBethe ansatz equatiofBAE) for the
model on an open chain were obtained using the NABA. For
the gl(2]2) invariant case, Essler, Korepin, and Schoutens H=—Z > (CiT,u—Cj,(r—'—CjT,aCi,a)
derived a supersymmetric extended Hubbard model which (L) o=T.4
was later shown to possess superconductive propérties.

The q deformation of this model has recently been +UZ [(nit=32) (N —3)+ (N —3)(nj, —3)]
obtained? Supersymmetric models based on trsp(m|2n) ()

algebras, which give rise to representations of the Birman- U

Wenzl-Murakami algebra, have been treated in Ref. 13. The + > 2 _2 (C Ci *UCJ,*UCJ',G'—’_ H.c)

BAE for theosp(1/2) andosp(2/2) cases have been obtained @0 =Tl

in Refs. 14 and 15, respectively.

The supersymmetrit) model® is also an example of a +H(1+U+1) 2 T oCiotCl ,Ci)
correlated electron model which is integrable in one- e
dimension obtained through the QISM. It is a supersymmet- X (N — g+ N ) (U+2+2\/UT)
ric generalization of the Hubbard model with additional cor-
related hopping interaction terms. The supersymmetry t t
algebra of the model is the Lie superalgebté2|1), which is X(% (,:Em (C6Cj.0 CjoCio) M oM~
also the supersymmetry algebra of the integrablemodel.
The solution of this model has been studied in Ref. 19 2+U 2 L
through the use of the coordinate Bethe ansatz. Here, we will ) (ni+n;) (1)

derive the results of Ref. 19 by using the algebraic Bethe

ansatz. This approach has been considered in Ref. 20 iwhere(i,j) denotes nearest-neighbor links on the lattice. The
terms of an abstraag!(2|1)=o0sp(2|2) dynamical system. Hamiltonian contains the hopping term for electrons and an
However, several technical aspects of the derivation of th@n-site interaction term for electron paisouplingU). The
results of Ref. 20 were not given. We will show that by supersymmetry algebra underlying this modegi§2|1) and
employing the Yangian description ofl(2|1) developed in U, contained as a free parameter, does not affect the super-
Ref. 4 for the solution of the supersymmettid model, we  symmetry. Here, we restridt to the rangeU>—1. The

can obtain the Bethe ansatz equations for the supersymmetiitamiltonian is invariant under spin reflection.
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The Hamiltonian may be obtained from tRematrix for

8431

first two spaces and the Roman indices label the quantum

the one-parameter family of the inequivalent typical four-space, which is the third space. The quantum space repre-

dimensional irreps, which is afforded by tgé(2|1) module
W with the highest weight0,0«). For >0 or a<—1, the
module W is unitary and thus the tensor proddtt® W is
completely reducible and a=U"1 We write
WeoW=W,oW,®W,;, where W;, W,, and W; are
Uq[gl(2|1)] modules with the highest weight,02c),

sents the Hilbert space over a site on the one-dimensional
lattice. TheR matrix acts in the matrix spaces and it is be-
tween the two matrix spaces that the graded tensor product
acts.

The R matrix acts or'V®V and is easily obtained follow-
ing Refs. 4 and 22,

(0,—1]2a+1) and (—1,—1]2a+2), respectively. LetP,,

k=1,2,3 be the projection operator frod/®@W onto W, . R(6)=b(o)P+a(o)l,

The rationalR matrix, which satisfies the quantum Yang- wherea(g)=—[6/(6—2)] and b(6)=—[2/(6—2)], which can
Baxter equation, was given in Ref. 18 in the form be seen to satisfy the Yang-Baxter equation. Theperator

is constructed in the next section.
0—2«a

T 9+ 2a

—(60+2a+2) b
—2a—2 %

Then the local Hamiltonian is given BY

puks

(6) Pi+Py+

Ill. THE L OPERATOR

The L operator will be constructed fro® W represen-
tation where as beforg denotes the vector module akd
corresponds to the one-parameter family of the inequivalent
typical four-dimensional irreps. The weights for modiWe
are(1,00), (0,2/0), (0,01), with corresponding weight basis

d .
Rii+1(6) ,

Hi,i+1(6¥)=a9
=0

and the global Hamiltoniai is solvable by means of the i :
QISM. The nature of(2]1) allows us to replace the auxil- 1. [2), and|3), respectively. On this module, thgl (212)
liary spaceW with the vector representation spa¢ewhich ~ generators act ds;=e;. We choose the grading for module
is only three-dimensional and thus simplifies the calculation” © be
of the NABA.

The paper is set out as follows. The graded quantum in- [11=[2]=0, [3]=1.
verse scattering method will be discussed in Sec. Il. The us&he weights for modul®V are(0,0a), (0,—1|a+1), (—1,0«
of the QISM enables us to obtain expressions for an infinitet-1), and(—1,—1|a+2), respectively, with basis vectofa),
number of higher conservation laws at the quantum levellb), |c), |d). Thegl(2|1) generators act as
These conserved charges are of interest because physical in- 1
teractions are not generally well approximated by interac- E1=
tions involving only nearest neighbatsSection IV will be
the construction of the algebraic Bethe ansatz for the model.
We formulate a set of simultaneous eigenstates of the trans-
fer matrix using a NABA.(See in Ref. 4 that due to the
grading there are three choices Rfmatrix describing the

—€cc— €44,
2_
E>= —€ppb—€4q,

E3=aesat (a+1)(epptec)+(at+2)eqyq,

same system, but these all lead to equivalent forms of the E%=ebc,
NABA.) The expression obtained for the BAE will be com-
pared with those given in Ref. 19. E2=e.,

Il. GRADED QUANTUM INVERSE SCATTERING El=— Jae, o+ Ja+ley,
METHOD

Eiz - \/;eca'i' a+ 1edb,

Egz \/Eeab'f' Va+ 1ecd,

We will construct the eigenstates of the Hamiltonian of
the one-dimensional supersymmetric model above, using the
QISM. The supersymmetry of the model requires a modifi-
cation of the QISM. We use th® matrix satisfying the

3_ /
graded Yang-Baxter equation and introduce Lamperator E2= \/Eeba+ atlegc. 3
constructed directly from th& matrix of the twisted repre- e choose the grading for modu to be
sentation.
The graded Yang-Baxter equation can be written as the [a]=[d]=0, [b]=[c]=1.

operator equation: -
The tensor product decomposition WoW=V,®&V,,

where V; has highest weight1,0«) and V, has highest
weight (0,0a+1). Applying the Baxterization procedure
gives theR matrix for thisV®W representation as

Ruysy sy 0~ 0 IL(8) gy apl (8) 5, no( —1)P2P 70

=L( al)azﬁzabl‘( 6) alﬁlbc( - 1)B2(al+ﬁl)

XRg v, By, (0~ 0'), 2

acting on the spacds® VoW, whereV is the vector module .
andW is a four-dimensional module of inequivalent irreps. In the above the P; are gl(2|1)-invariant operators
Greek indices are used to label the matrix spaces, that is the, : Ve W—W®V. We defineL operator as

2—0+a -

R(H)IP]_ m+P2.
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(0)=PR(O)= 557 P P2,

_ . - AN -B(M\E;  —B(EF ~B(VES
whereP,,P, are projectors an®,=PP, andP,=—-PP,. _ —B(MEL A(\)—B())E2 —B(OV)ES
We construct these projectors in the following way. - 2 5 2 2 .

The coproduct is defined by —B(ME;j —B(ME; AN +B(ME;3
AX)=x®1+1®x, Vxegl(2|1). where
Symmetry adapted orthonormal bases may be expressed in N
terms of [¢%) and |¢p) for P; and P,, respectively, with AN =77
a=1,..8,8=1,..4. The basis fo¥, is given by
|[@3)=13)®|d), _
* BOV=55

[@%)=2)®ld)~ Va+1|3)8|c),

The similar form of theL operator for this model and the
integrablet-J model stems from the fact that they share the

|®5)=[1)®[d)— Ja+1[3)®|b), same supersymmetry algelgh(2|1). We write
[eh=1)@lc)-[2)elb)+Val3)ela). @ TL(O)=LL(O)LL-1(0) L (6),

So we may express b ac cob
[TL(O oy gy, b, =LL(O), g La(0) 5

PZZE |(I>§)(cb2| ><(—1)21L:2(fuj+fﬁ,v)2=;ifui_
where3=1, ... ,4. We findP, to be given by We call T(6) the monodromy matrix and by construction it
fulfills the same intertwining relation as theoperators.
(a+2)Pr=e11®(eqqt€cc) + €209 (€pp+ €4q) The transfer matrix of the integrable model is given as the
supertrace of the monodromy matrix. This operator is given
+e3®[(at1)(€pptecc) + a€aat (@ t2)€4a]  py

€120 €p €218 €
+e159 (Vat Legy— Vaeqs) (0)=stT(0)]=2 (~1)IIT(0);
+e53:%( \/ZEac_ Va+leyy)

The 7(6) form a one-parameter family of commuting opera-

+ 230 (Vart Leget Vaey,) tors. The transfer matrix may be taken as integrals of the
motion and we can obtain an infinite number of higher con-
—e5,® (Vaept+ Ja+ley). (5)  servation laws of the model. It can be employed to construct

) ) exactly solvable models in the usual way.
This can be more easily read when expressed as

gl g2 g3 IV. ALGEBRAIC BETHE ANSATZ WITH BBF GRADING
(a+2)P,=| —E; —E5 —-E3|, (6) We use the matrix from the vector representation asRour
-E: -2 E} matrix and thelL operator given above for obtaining the de-

fining equations for the algebra constructed fré2). We
where to accommodate the grading, we make the transformaepresent the monodromy matrix in the following way:
tion
T(O)=LL(OLL1(6)---L1(0)

. . . T1(0) Ti60) Ti(6)
and hereE | is understood to denote the matrix representative = To(6) Tol8) Tox(6)]. @)

;a\litl(?/gz)o(g\l_v.zliz?nv\?: ﬁ:jgy seen thBt + P,=1. Then with To(6) Taf6) Tax6)

el (— 1)l LD

The transfer matrix is given by

A—iE} -—iEF —iE}
Ly=7| —Ez A-iE3 —iE] 7(8')=St{TL(6")]=Tuu(6')+ Too ')~ Tai 6').
—iE3 —iE3Z A+iE3

We take the lowest weight state as the reference stat® in
up to a normalization constakt Settingk=\ +i, we have and for convenience take out a factor offi(a+2)]/
an L operator of a similar formup to a change in grading (A+i) from theL matrix. Then the action of,(6) on the
convention as in Ref. 4 for the integrableJ model: reference state on theh site is
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A+i 0 0 [Te(0')+Tox(60')]]6;...0,4|F)
Nti(a+2) A+i
L()\)|O>k: 0 )\+i(a+2) 0 |O>k n 1 n
_ L
: e 1 =10 S L Tan(a0l0)

* and** represent complicated values that are not necessary T(l)(e/)bl---bnl:an...al
to evaluate. Substituting=(i/2)(6—a—2), we find that the 18

action of the monodromy matrix on the reference state is n n
given by + 2 (MR 2 Tan (0') 1 Tap (6)]0)Fn-21,
k=1 1@ Tk i=1j+k i
6—a - 0
A L 0 (14
T.(0)0) = 0+2+« 00—« 0. (8
L(0)[0)= 0 9ot a |0). (®  where
T31(0) T3 0) ) 0 —
1-(0")= ——=
We construct a set of eigenstates of the transfer matrix (67 0'+a+2

using the technique of the NABA. The creation operators are, 4
T31(0), T5,(6) due to the choice of reference state. Thus, we

use the following for the ansatz for the eigenstates(éf): 7(1)(6’)21:::2:=str[T$11)(0’)]. (15)
60100 ) =Tan, ) Tag (02 T (BI04,
)
where indices; have values 1 or 2 arféi®™ 21 js a function 7(1)(0’)21:::2:=str[ LV —60,)L (0" —6,_1)...
of the spectral parametes. The action of these states is
determined by the monodromy matrix and the relatit®)s XLY(6' = 6,)L (6" - 6)].
which in essence determine the Yangigpgl(2|1)]. The
relations necessary for the construction of the NABA are e have
Tao ) Taal )= — =~ Toa()Tae( 0') [L(0))5= 2 ripew
a(6—=o6")
b(6—0") [a(6)+b(0)e’ b(o)e’ 16
+ a0-0) T3a(0)T33(0), (10) | b(h)e? a(6)+b(6)e??|

(' —8) So the operatort™ andr(#') can be interpreted ?ls) the

/ _ Tpcanl0 — , operator and th& matrix of theXXX model. Hencd };"' (')

Tan(6) Tsel(0) a(o’'—0) Tap(0)Tag(0") and 7Y(¢') are the monodromy and transfer matrices for the
b(6' — 6) corresponding model with inhomogeneitiés, i=1,...n.

n T Tan(0)Tad(0),  (11) The eigenvalue condition
7(0’)|01---‘9n|F>:M(0,,{‘9j}yF)|01---‘9n|F>

Tsa,(01)Tsa,(02) =T bza, 0,0, (017 02) Tav,(02) Tap, (61), leads to the requirement th& be an eigenvector of the
(12) nested transfer matri¥”(¢'), and that the unwanted terms,
where Ay, Ay cancel. That is,
A ’ ’ by...b, X \b1...by A
r(9')=b(¢")P+a(6')l. [(Ag, an ™ (Mg o ]Fon#1=0.

Since[1]=[2]=0, thisR matrix is essentially not graded and
it can be seen that(¢’) fulfills a Yang-Baxter equation and
can be identified with th&® matrix of the spini Heisenberg
(XXX) model. The diagonal elements of the monodromy
matrix act on the states in the following way: n

These values are computed in Appendix A. This leads us to
the conditions on the spectral parametérand coefficients
F, necessary for the eigenvalue condition to hold. That is

a(6— 6,
n (TR R EEIL | Ly S
) . 1 i=iizk a(6;—6)
Taa(0)]61...0,|F)=(—1) 111 m|91---0n|':> . b b
= ! =B I k=1, (17)
n
+> (]\k)gl:::gn-r%k(e,) The next step in the NABA is to sol\ll)e the nesting. The
k=1 1 condition thatF be an eigenvector of V(@) requires the
n diagonalization of7#¥(#'), which can be achieved by per-

% H Tgb_(aj)|0>Fan'“a1, (13) forming a second, neste_d Bethe ansatz. We write the mono-
i=1j#k ] dromy and transfer matrices as follows:
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TH(0) T [a(6;"—0")+ b6V~ 0')]
TW (g’ zhe o, Dy elh g
n(0")= T(211>(0 ) T(le)(g ) T35 (6 )|0 Oy > H a(ﬁi(l)—ﬁ )
D0 =T () +T5Z(6"). (18) xH [a(6"— 6;)+b(6'—6))]
Obtaining as before the equations from the relat@nnec- D A - L
essary for the NABA, we have x|657 .0, >+k21 (A
(0'—6)+b(8' — 6) -
alf' — _
T 1) gy — T T (' xTRo) T T (6)[0YD,
Do) T (0) 20 DoyTL(0") 200" 11 Tor(o, |0)
b(6'—0) (22
N7 @ gy T
a(ar_e) T21(0 )Tll(a)a (19)

[a(g'—6)+b(6'— 6M)]

TH )]0 = H

, , a6’ — 6"
T TR 0= " T n
a(6-0") <1 a(o'— 6,6 .60
1. n,
D670ty g7y J_l

+ 2 (A TE(0)

TE(OTR(0) =TS (0)TH(0). ny
x II 1Heploy®. (23
For the reference states, we choose I=1j#k

The eigenvalues for'(¢') are found to be

O !
|o>§(1>=m, |0y P=cp_,|0)". D(0)]6...61))
ny ’ (1) ! (l) n
a8’ —6:")+b(o' — 6
The action of the nested monodromy matfil’(¢') on =11 [ - ? ((1) el I1 ac6'-6)
the reference state is i=1 a(e’'—6") j=1

L [a(6M—-6")+b(6Y—6")]

n 0[
, , V=g H [a(
Ti(o)10) =TT ae'= i)™, = (67— 0")
+b(6 = 61|16 ...61)). (24)
n
T55(0")]10) V=] [a(¢'—6,)+b(6’' - 6;)]]0) Inserting this into Eq(17) for §' =6, we have the first of the
= Bethe equations,
1
n
1) =11 —a(6—6Y), k=1,...n.
(l) k 1. k i
jl:ll a(0 o' ) |O> (21) i=1

To ensure that we have the eigenstates of the transfer
We choose the following ansatz for the eigenstates ofﬁ?lt)”x f(?g the nesting, we must have the unwanted terms
AD(9): A, Ay cancelling and these values are computed in Ap-
pend|x A The resulting equation after some simplification is
the set of Bethe equations for the nesting as follows:
6, 60y =TS (61, TS (65| 0) ™.

ng a( 0( 6](1 n
These states can be related to the coefficiéifts 21 by i=1j=p a(6M—6y") =1 a(6,— oY) b))
noting that the statg{" ...05,?} exists on a lattice ofi sites (25)

and is thus an element of a direct product ovetwo- n andn, can be identified as the total number of electrons
dimensional Hilbert spaces. The action 8f(¢') on the (N.) and the number of spin-down electro(i$)), respec-
states is computed as before from the relati(@s We ob- tively. After substitution and simplification, the Bethe equa-
tain tions are as follows:
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APPENDIX

p=1...N;. (27) Here, we calculate the unwanted terms following the
method set out in Ref. 4. The unwanted terms are identified

The eigenvalues of the transfer matrix are given b o g .
9 g y by containing a creation operator with spectral parameter

, 1L Ne The cancellation of the unwanted terms ensures that the
(6,0, F)= —atd 2-6'+6 w0 states(9)_are eigenstates of the transfer matr{¥’). To de-
e 2+a+6 0'— 0, termine A, it is convenient to commute the first creation
N operator with spectral parametgy to the first place in the
—ﬁ —2+6,—0 28) ansatz using the commutation rule extracted from the rela-
=y 6,—0 tions arising from(2). That is, we write
n k-1 n
PR Bl v Sl I1 T2 (0= stk(eoﬂ Ton (6 LT Taa(0)
BT e —dm b 2-0' 1,
X S( 62t
N (1) _ pr N ' a
=1 670" j51 2-0'+ S(ak) _r(ak 17 0 ar .
Ck—2Ck-1_ bkCZ
V. CONCLUSION X1 (O-2= O, oy (017 04

(Al)
This model has been solved previously by Ref. 19 with .
the use of the coordinate Bethe ansatz. The resulting BAE’s TO obtain an unwanted term, we commulgs(6) past

in generic form were Tap, (k). using the second term i{10) then we use the first
term to commuteT 35( 6,) with the other terms in the ansatz
it ic until it acts gn the vacuum according ¢8). The resulting
Vit L ey equation forA is
~-| = —, j=1,..N
+I_ al;[l Y _c J ° A Ebp.bp— by..bkeby, .. by y 18y .8y b(6—6")
UJ 2 UJ [ 2 AkF n_S(ak)al___akF n a ek_ 0!)
ic X ( _ 1)n—l ﬁ ; )
ﬁ MU M\ e i=1j#k a6 6
—_— ~—F — a=1,...M. , ,
=1 e p=1 AT AgTic For A,, we have two terms involved. So we write
S A=A 1t Ay, these terms arise froi;4(6') and T,5(¢'),

respectively. With a similar working to that foy, , we find
This agrees with our solution above by noting the followingthe contribution from th& ;,(¢') terms to be
substitutions:

b(6'— 6y
-1 “ic ic ) Ak’lFbl... (0 )cl CkFa a(g' 5 ) bkylﬁdn,l,l
C a+11 U] 2 (0k 1)1 )\a 2 ( p 2) n 1
. . o . L |
The quantum version of this solution will be presented in j=1j#k a(6—0;)
a future publication on the closed chain, and it will be shown c boc
that the above solution can be obtained from the quantum Xr (60— 91)d1 T(0c— 62) ¢,
solution by taking the limitg—1. These models depending b e
upon two generic complex parameters are associated with X...r (60— akfl)dtiidi:z
type-lI quantum superalgebras, which admit nontrivial one-
parameter families of representations and provide solutions X (60— O 1)3k+1ak+1
to the Yang-Baxter equation with additional parameters. k1
These solutions give us integrable models depending on two X1 (O— 9k+2)bk+zak I (O— gn)znand i
independent parametefsThe quantum version on the open n-1"n-2

chain will also be presented in a future publication. (A2)



8436

The § functions appearing in this equation arise in the

KATRINA E. HIBBERD, MARK D. GOULD, AND JON R. LINKS 54

We now insert the equations fdrk andA, into the equa-

following way. CommutingT,,(6,) past the terms of the tion for the cancellation of unwanted terms and multiply

ansatz to the vacuum leads us to the tégm _ ;. Jy, 1 being
necessary as ifil3), we need to identify thé'3bk(6’) term

with the T,4(8") contributions. The contribution from the

T,4(¢') are obtained similarly with the factomd, 2.0q 2

being the only difference betwee¥, ; and A, ,. Then, with
Ak:Ak,l+ Ak,2’ we have

[ (8" =6,
by ... Cl Ck a,
AP Pn=8(6)) L F —a(ﬁ’—ﬂk)}
n 1
X1(6,)* — H(6—6 blcl
(6)) jzlljﬁk 2o gy (O Mg

c by qck—
><r((gk 02)d2 2 .I’(@k— ek’l)dt,idt,i

by, 12 by + 28
X1 (k= O+ 1) g Kt :Hr(ek_ 9k+2)dk T

XT (= ) . (A3)

kdn—2

We may simplify this equation by contracting tlg...c,
indices using the unitarity of the matrix. That is,

(01— 0)r7(0,— 61)=1,

or in component form

r(6,— Gz)blalr(

b
01)C1 1=, alclfsazcz-
As a result, the following terms i(A3) may be simplified,

c by 1Ck_
-0 )dl ! r(ak_ ek’l)dt,idt,;

(0ot T (6
k—1

- Il;ll Ba,.d,%,_y

We convert the remaining matrices intoL operators
according to

[LY(0)]; => r(0)ik,ji€ s

then the unwanted terms are written as

b(6’— 6,)
by...by— L
A Ll(e’—ak) (%
n
X ; Fan"'akbkfl"'bl
i=1izk a(6¢—6;)
X0 0 LY,
bn_qan_
><(‘9k_ 6nfl)d:7;d:7;---

b,
XL (0 O 1) g s (A4)

throughout byS{~1)(6,). We note once again using the uni-
tarity of r(#') that we have

k

— by...b
S 1)(ek)si---gts(0k)ai---at:i1;[1 Sa -

(|
The result after some simplification is

n

a(Gk 0)

1) B (=1)" kv Py 1Pk --PL
N - e
=[T(1)(0k)|:]b”"'bk+1pk"'p1.

Working in a similar manner to the above for the compu-
tation of the unwanted terms for the nested case leads to the
equations,

o [a(et -6 +b(oY
a(6;" = o)

— )]

x11 [a(6” = 0)+b(6 - 0], (A5)

—61) b6~ 6]
a(’— 6"

x[] a(o-a,). (A6)

The cancellation of\ () and A (! leads to the equation

o [ace - 6Y) +b(6 - o) Ja(et - 6L
j=1y#s a(o—gM)a(er - oY) +b(oV - 6]

A ebe-a)
5 a(ggl)_gl) 1 Ll

(A7)
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