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We present an algebraic Bethe ansatz for the supersymmetricU model for correlated electrons on the
unrestricted 4L-dimensional electronic Hilbert spacêL

n51C4 ~whereL is the lattice length!. The supersym-
metry algebra of the model is the Lie superalgebragl~2u1! and contains one symmetry-preserving free real
parameter which is the Hubbard interaction parameterU. The parameterU arises from the one-parameter
family of inequivalent typical four-dimensional irreps ofgl~2u1!. Eigenstates of the model are determined by
the algebraic Bethe ansatz on a one-dimensional periodic lattice.@S0163-1829~96!03232-8#

I. INTRODUCTION

Solutions to the Yang-Baxter equation provide a well-
known method for the construction of integrable models
through thequantum inverse scattering method~QISM!.1,2

Supersymmetric generalizations have attracted considerable
interest recently for their possible application to correlated
electron systems. The supersymmetric Yang-Baxter equation
was first studied in the work of Kulish and Sklyanin.3 Using
this approach Essler and Korepin4 studied thenested alge-
braic Bethe ansatz~NABA ! for the solution of the supersym-
metric t-J model in one-dimension, using agl~2u1! invariant
R matrix ~see, also, Ref. 5!. By adopting the QISM, models
describing systems of correlated electrons have since been
proposed. Aq deformation of the supersymmetrict-J model
has been studied in Refs. 6 and 7 using aUq[gl(2u1)] in-
variantR matrix. TheBethe ansatz equations~BAE! for the
model on an open chain were obtained using the NABA. For
the gl~2u2! invariant case, Essler, Korepin, and Schoutens8

derived a supersymmetric extended Hubbard model which
was later shown to possess superconductive properties.9–11

The q deformation of this model has recently been
obtained.12 Supersymmetric models based on theosp(mu2n)
algebras, which give rise to representations of the Birman-
Wenzl-Murakami algebra, have been treated in Ref. 13. The
BAE for theosp~1u2! andosp~2u2! cases have been obtained
in Refs. 14 and 15, respectively.

The supersymmetricU model18 is also an example of a
correlated electron model which is integrable in one-
dimension obtained through the QISM. It is a supersymmet-
ric generalization of the Hubbard model with additional cor-
related hopping interaction terms. The supersymmetry
algebra of the model is the Lie superalgebragl~2u1!, which is
also the supersymmetry algebra of the integrablet-J model.
The solution of this model has been studied in Ref. 19
through the use of the coordinate Bethe ansatz. Here, we will
derive the results of Ref. 19 by using the algebraic Bethe
ansatz. This approach has been considered in Ref. 20 in
terms of an abstractgl(2u1)>osp(2u2) dynamical system.
However, several technical aspects of the derivation of the
results of Ref. 20 were not given. We will show that by
employing the Yangian description ofgl~2u1! developed in
Ref. 4 for the solution of the supersymmetrict-J model, we
can obtain the Bethe ansatz equations for the supersymmetric

U model. A q deformation for this model has also been
studied in Refs. 16 and 17.

We now introduce some notation as in Ref. 18. Electrons
on a lattice are described by canonical Fermi operatorsci ,s
and ci ,s

† satisfying the anticommutation relations given by
$ci ,s

† ,cj ,t%5d i jdst , wherei , j ,51,2,..,L ands,t5↑,↓. The
operatorci ,s annihilates an electron of spins at sitei , which
implies that the Fock vacuumu0& satisfiesci ,su0&50. At a
given lattice sitei , there are four possible electronic states:

u0&, u↑& i5ci ,↑
† u0&, u↓& i5ci ,↓

† u0&, u↑↓& i5ci ,↓
† ci ,↑

† u0&.

By ni ,s5ci ,s
† ci ,s , we denote the number operator for elec-

trons with spins on sitei , and we writeni5ni ,↑1ni ,↓ . The
Hamiltonian for this model on a generald-dimensional lat-
tice is given by

H52(
^ i , j &

(
s5↑,↓

~ci ,s
† cj ,s1cj ,s

† ci ,s!

1U(
^ i , j &

@~ni ,↑2
1
2 !~ni ,↓2

1
2 !1~nj ,↑2

1
2 !~nj ,↓2

1
2 !#

1
U

2 (
^ i , j &

(
s5↑,↓

~ci ,s
† ci ,2s

† cj ,2scj ,s1H.c.!

1~11AU11!(
^ i , j &

(
s5↑,↓

~ci ,s
† cj ,s1cj ,s

† ci ,s!

3~ni ,2s1nj ,2s!2~U1212AU11!

3(
^ i , j &

(
s5↑,↓

~ci ,s
† cj ,s1cj ,s

† ci ,s!ni ,2snj ,2s

1
21U

2 (
^ i , j &

~ni1nj !, ~1!

where^ i , j & denotes nearest-neighbor links on the lattice. The
Hamiltonian contains the hopping term for electrons and an
on-site interaction term for electron pairs~couplingU!. The
supersymmetry algebra underlying this model isgl~2u1! and
U, contained as a free parameter, does not affect the super-
symmetry. Here, we restrictU to the rangeU.21. The
Hamiltonian is invariant under spin reflection.
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The Hamiltonian may be obtained from theR matrix for
the one-parameter family of the inequivalent typical four-
dimensional irreps, which is afforded by thegl~2u1! module
W with the highest weight~0,0ua!. For a.0 or a,21, the
moduleW is unitary and thus the tensor productW^W is
completely reducible and a5U21. We write
W^W5W1%W2%W3 , where W1, W2, and W3 are
Uq[gl(2u1)] modules with the highest weights~0,0u2a!,
~0,21u2a11! and ~21,21u2a12!, respectively. LetPk ,
k51,2,3 be the projection operator fromW^W ontoWk .
The rationalR matrix, which satisfies the quantum Yang-
Baxter equation, was given in Ref. 18 in the form

R̆~u!5
u22a

u12a
P11P21

2~u12a12!

u22a22
P3 .

Then the local Hamiltonian is given by21

Hi ,i11~a!5
d

du
R̆i ,i11~u!U

u50

,

and the global HamiltonianH is solvable by means of the
QISM. The nature ofgl~2u1! allows us to replace the auxil-
liary spaceW with the vector representation spaceV, which
is only three-dimensional and thus simplifies the calculation
of the NABA.

The paper is set out as follows. The graded quantum in-
verse scattering method will be discussed in Sec. II. The use
of the QISM enables us to obtain expressions for an infinite
number of higher conservation laws at the quantum level.
These conserved charges are of interest because physical in-
teractions are not generally well approximated by interac-
tions involving only nearest neighbors.4 Section IV will be
the construction of the algebraic Bethe ansatz for the model.
We formulate a set of simultaneous eigenstates of the trans-
fer matrix using a NABA.~See in Ref. 4 that due to the
grading there are three choices ofR matrix describing the
same system, but these all lead to equivalent forms of the
NABA.! The expression obtained for the BAE will be com-
pared with those given in Ref. 19.

II. GRADED QUANTUM INVERSE SCATTERING
METHOD

We will construct the eigenstates of the Hamiltonian of
the one-dimensional supersymmetric model above, using the
QISM. The supersymmetry of the model requires a modifi-
cation of the QISM. We use theR matrix satisfying the
graded Yang-Baxter equation and introduce anL operator
constructed directly from theR matrix of the twisted repre-
sentation.

The graded Yang-Baxter equation can be written as the
operator equation:3

Ra1b1 ,a2b2
~u2u8!L~u!b1g1ab

L~u8!b2g2bc
~21!b2~b11g1!

5L~u8!a2b2ab
L~u!a1b1bc

~21!b2~a11b1!

3Rb1g1 ,b2g2
~u2u8!, ~2!

acting on the spacesV^V^W, whereV is the vector module
andW is a four-dimensional module of inequivalent irreps.
Greek indices are used to label the matrix spaces, that is the

first two spaces and the Roman indices label the quantum
space, which is the third space. The quantum space repre-
sents the Hilbert space over a site on the one-dimensional
lattice. TheR matrix acts in the matrix spaces and it is be-
tween the two matrix spaces that the graded tensor product
acts.

TheR matrix acts onV^V and is easily obtained follow-
ing Refs. 4 and 22,

R~u!5b~u!P1a~u!I ,

wherea~u!52@u/~u22!# andb~u!52@2/~u22!#, which can
be seen to satisfy the Yang-Baxter equation. TheL operator
is constructed in the next section.

III. THE L OPERATOR

TheL operator will be constructed fromV^W represen-
tation where as beforeV denotes the vector module andW
corresponds to the one-parameter family of the inequivalent
typical four-dimensional irreps. The weights for moduleV
are ~1,0u0!, ~0,1u0!, ~0,0u1!, with corresponding weight basis
u1&, u2&, and u3&, respectively. On this module, thegl~2u1!
generators act asE j

i5e j
i . We choose the grading for module

V to be

@1#5@2#50, @3#51.

The weights for moduleW are~0,0ua!, ~0,21ua11!, ~21,0ua
11!, and~21,21ua12!, respectively, with basis vectorsua&,
ub&, uc&, ud&. Thegl~2u1! generators act as

E1
152ecc2edd ,

E2
252ebb2edd ,

E3
35aeaa1~a11!~ebb1ecc!1~a12!edd ,

E2
15ebc ,

E1
25ecb ,

E3
152Aaeac1Aa11ebd ,

E1
352Aaeca1Aa11edb ,

E3
25Aaeab1Aa11ecd ,

E2
35Aaeba1Aa11edc . ~3!

We choose the grading for moduleW to be

@a#5@d#50, @b#5@c#51.

The tensor product decomposition isV^W5V1%V2 ,
where V1 has highest weight~1,0ua! and V2 has highest
weight ~0,0ua11!. Applying the Baxterization procedure23

gives theR̆ matrix for thisV^W representation as

R̆~u!5 P̆1

22u1a

21u1a
1 P̆2 .

In the above the P̆i are gl~2u1!-invariant operators
P̆i :V^W→W^V. We defineL operator as
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L~u!5PR̆~u!5
22u1a

21u1a
P12P2 ,

whereP1 ,P2 are projectors andP15PP̆1 andP252PP̆2 .
We construct these projectors in the following way.

The coproduct is defined by

D~x!5x^111^x, ;xPgl~2u1!.

Symmetry adapted orthonormal bases may be expressed in
terms of ufa

1& and ufb
1& for P1 and P2, respectively, with

a51,..8,b51,..4. The basis forV2 is given by

uF4
2&5u3& ^ ud&,

uF3
2&5u2& ^ ud&2Aa11u3& ^ uc&,

uF2
2&5u1& ^ ud&2Aa11u3& ^ ub&,

uF1
2&5u1& ^ uc&2u2& ^ ub&1Aau3& ^ ua&. ~4!

So we may express

P25( uFb
2&^Fb

2 u,

whereb51, . . . ,4. We findP2 to be given by

~a12!P25e11^ ~edd1ecc!1e22^ ~ebb1edd!

1e33^ @~a11!~ebb1ecc!1aeaa1~a12!edd#

2e12^ecb2e21^ebc

1e13^ ~Aa11edb2Aaeca!

1e31^ ~Aaeac2Aa11ebd!

1e23^ ~Aa11edc1Aaeba!

2e32^ ~Aaeab1Aa11ecd!. ~5!

This can be more easily read when expressed as

~a12!P25S 2E1
1

2E2
1

2E3
1

2E1
2

2E2
2

2E3
2

2E1
3

2E2
3

E3
3
D , ~6!

where to accommodate the grading, we make the transforma-
tion

ej
i→~21!@ j #~@ i #1@ j # !ej

i ,

and hereE j
i is understood to denote the matrix representative

acting onW. It can be easily seen thatP11P25I . Then with
l5~i /2!~u222a!, we have

L~l!5
1

k S l2 iE1
1

2E2
1

2 iE3
1

2 iE1
2

l2 iE2
2

2 iE3
2

2 iE1
3

2 iE2
3

l1 iE3
3
D

up to a normalization constantk. Settingk5l1 i , we have
an L operator of a similar form~up to a change in grading
convention! as in Ref. 4 for the integrablet-J model:

L~l!

5S A~l!2B~l!E1
1

2B~l!E2
1

2B~l!E3
1

2B~l!E1
2

A~l!2B~l!E2
2

2B~l!E3
2

2B~l!E1
3

2B~l!E2
3

A~l!1B~l!E3
3
D ,

where

A~l!5
l

l1 i
,

B~l!5
i

l1 i
.

The similar form of theL operator for this model and the
integrablet-J model stems from the fact that they share the
same supersymmetry algebragl~2u1!. We write

TL~u!5LL~u!LL21~u!•••L1~u!,

@TL~u!ab#a1 ,b1 ,...,aL ,bL
5LL~u!aLbL

acL •••L1~u!a1b1

c2b

3~21!( j52
L

~ea j
1eb j

!( i51
j21ea i.

We call T~u! the monodromy matrix and by construction it
fulfills the same intertwining relation as theL operators.

The transfer matrix of the integrable model is given as the
supertrace of the monodromy matrix. This operator is given
by

t~u!5str@T~u!#5(
i

~21!@ i #T~u! i i .

The t~u! form a one-parameter family of commuting opera-
tors. The transfer matrix may be taken as integrals of the
motion and we can obtain an infinite number of higher con-
servation laws of the model. It can be employed to construct
exactly solvable models in the usual way.

IV. ALGEBRAIC BETHE ANSATZ WITH BBF GRADING

We use the matrix from the vector representation as ourR
matrix and theL operator given above for obtaining the de-
fining equations for the algebra constructed from~2!. We
represent the monodromy matrix in the following way:

TL~u!5LL~u!LL21~u!•••L1~u!

5FT11~u!

T21~u!

T31~u!

T12~u!

T22~u!

T32~u!

T13~u!

T23~u!

T33~u!
G . ~7!

The transfer matrix is given by

t~u8!5str@TL~u8!#5T11~u8!1T22~u8!2T33~u8!.

We take the lowest weight state as the reference state inW
and for convenience take out a factor of [l1 i (a12)]/
(l1 i ) from theL matrix. Then the action ofLk~u! on the
reference state on thekth site is
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L~l!u0&k5S l1 i

l1 i ~a12!

0

*

0
l1 i

l1 i ~a12!

**

0
0
1
D u0&k .

* and** represent complicated values that are not necessary
to evaluate. Substitutingl5~i /2!~u2a22!, we find that the
action of the monodromy matrix on the reference state is
given by

TL~u!u0&5S F u2a

u121a GL
0

T31~u!

0

F u2a

u121a GL
T32~u!

0
0
1
D u0&. ~8!

We construct a set of eigenstates of the transfer matrix
using the technique of the NABA. The creation operators are
T31~u!, T32~u! due to the choice of reference state. Thus, we
use the following for the ansatz for the eigenstates oft~u8!:

uu1 ,...,unuF&5T3a1~u1!T3a2~u2!...T3an~un!u0&Fan ...a1,
~9!

where indicesai have values 1 or 2 andF
an ...a1 is a function

of the spectral parametersuj . The action of these states is
determined by the monodromy matrix and the relations~2!,
which in essence determine the YangianY[gl(2u1)]. The
relations necessary for the construction of the NABA are

T33~u8!T3a~u!52
1

a~u2u8!
T3a~u!T33~u8!

1
b~u2u8!

a~u2u8!
T3a~u8!T33~u!, ~10!

Tab~u8!T3c~u!5
r pc,db~u82u!

a~u82u!
T3p~u!Tad~u8!

1
b~u82u!

a~u82u!
T3b~u8!Tac~u!, ~11!

T3a1~u1!T3a2~u2!5r b2a2 ,b1a1~u12u2!T3b2~u2!T3b1~u1!,
~12!

where

r ~u8!5b~u8!P1a~u8!I .

Since@1#5@2#50, thisR matrix is essentially not graded and
it can be seen thatr ~u8! fulfills a Yang-Baxter equation and
can be identified with theR matrix of the spin12 Heisenberg
(XXX) model. The diagonal elements of the monodromy
matrix act on the states in the following way:

T33~u8!uu1 ...unuF&5~21!n)
i51

n
1

a~u i2u8!
uu1 ...unuF&

1 (
k51

n

~L̆k!a1 ...an
b1 ...bnT3bk~u8!

3 )
j51,jÞk

n

T3bj~u j !u0&Fan ...a1, ~13!

@T11~u8!1T22~u8!#uu1 ...unuF&

5I ~u8!L)
j51

n
1

a~u82u j !
)
l51

n

T3bl~u l !u0&

3t~1!~u8!a1 ...an
b1 ...bnFan ...a1

1 (
k51

n

~Lk!a1 ...an
b1 ...bnT3bk~u8! )

j51,jÞk

n

T3bj~u j !u0&Fan ...a1,

~14!

where

I L~u8!5
u82a

u81a12

and

t~1!~u8!a1 ...an
b1 ...bn5str@Tn

~1!~u8!#. ~15!

That is,

t~1!~u8!a1 ...an
b1 ...bn5str@Ln

~1!~u82un!Ln21
~1! ~u82un21!...

3L2
~1!~u82u2!L1

~1!~u82u1!#.

We have

@Lk
~1!~u!# i j5( r ik, j l ekl

5Fa~u!1b~u!ek
11

b~u!ek
12

b~u!ek
21

a~u!1b~u!ek
22G . ~16!

So the operatorsL ~1! and r ~u8! can be interpreted as theL
operator and theRmatrix of theXXXmodel. HenceT n

(1)~u8!
andt~1!~u8! are the monodromy and transfer matrices for the
corresponding model with inhomogeneitiesu i , i51,...,n.
The eigenvalue condition

t~u8!uu1 ...unuF&5m~u8,$u j%,F !uu1 ...unuF&

leads to the requirement thatF be an eigenvector of the
nested transfer matrixt~1!~u8!, and that the unwanted terms,
Lk , L̆k cancel. That is,

@~Lk!a1 ...an
b1 ...bn2~L̆k!a1 ...an

b1 ...bn#Fan ...a150.

These values are computed in Appendix A. This leads us to
the conditions on the spectral parametersuj and coefficients
F, necessary for the eigenvalue condition to hold. That is

@ I ~uk!#
2L~21!n )

i51,iÞk

n
a~uk2u i !

a~u i2uk!
Fbn ...b1

5t~1!~uk!a1 ...an
b1 ...bnFan ...a1, k51,...,n. ~17!

The next step in the NABA is to solve the nesting. The
condition thatF be an eigenvector oft~1!~u8! requires the
diagonalization oft~1!~u8!, which can be achieved by per-
forming a second, nested Bethe ansatz. We write the mono-
dromy and transfer matrices as follows:
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Tn
~1!~u8!5FT11~1!~u8!

T21
~1!~u8!

T12
~1!~u8!

T22
~1!~u8!G ,

t~1!~u8!5T11
~1!~u8!1T22

~1!~u8!. ~18!

Obtaining as before the equations from the relation~2! nec-
essary for the NABA, we have

T11
~1!~u8!T21

~1!~u!5
a~u82u!1b~u82u!

a~u82u!
T21

~1!~u!T11
~1!~u8!

2
b~u82u!

a~u82u!
T21

~1!~u8!T11
~1!~u!, ~19!

T22
~1!~u8!T21

~1!~u!5
a~u2u8!1b~u2u8!

a~u2u8!
T21

~1!~u!T22
~1!~u8!

2
b~u2u8!

a~u2u8!
T21

~1!~u8!T22
~1!~u!, ~20!

T21
~1!~u!T21

~1!~u8!5T21
~1!~u8!T21

~1!~u!.

For the reference states, we choose

u0&k
~1!5F01G , u0&~1!5 ^ k51

n u0&k
~1! .

The action of the nested monodromy matrixT~1!~u8! on
the reference state is

T11
~1!~u8!u0&~1!5)

j51

n

a~u82u j !u0&~1!,

T22
~1!~u8!u0&~1!5)

j51

n

@a~u82u j !1b~u82u j !#u0&~1!

52)
j51

n
a~u82u j !

a~u j2u8!
u0&~1!. ~21!

We choose the following ansatz for the eigenstates of
t~1!~u8!:

uu1
~1! ,...,un1

~1!&5T21
~1!~u1

~1!!,...,T21
~1!~un1

~1!!u0&~1!.

These states can be related to the coefficientsFan ...a1 by
noting that the stateuu1

(1) ...un1
(1)& exists on a lattice ofn sites

and is thus an element of a direct product overn two-
dimensional Hilbert spaces. The action oft~1!~u8! on the
states is computed as before from the relations~2!. We ob-
tain

T22
~1!~u8!uu1

~1! ...un1
~1!&5)

i51

n1 @a~u i
~1!2u8!1b~u i

~1!2u8!#

a~u i
~1!2u8!

3)
j51

n

@a~u82u j !1b~u82u j !#

3uu1
~1! ...un1

~1!&1 (
k51

n1

~L̆k!
~1!

3T21
~1!~u8! )

j51,jÞk

n1

T21
~1!~u j !u0&~1!,

~22!

T11
~1!~u8!uu1

~1! ...un1
~1!&5)

i51

n1 @a~u82u i
~1!!1b~u82u i

~1!!#

a~u82u i
~1!!

3)
j51

n

a~u82u j !uu1
~1! ...un1

~1!&

1 (
k51

n1

~Lk!
~1!T21

~1!~u8!

3 )
j51,jÞk

n1

T21
~1!~u j !u0&~1!. ~23!

The eigenvalues fort~1!~u8! are found to be

t~1!~u8!uu1
~1! ...un1

~1!&

5F)
i51

n1 @a~u82u i
~1!!1b~u82u i

~1!!#

a~u82u i
~1!! )

j51

n

a~u82u j !

1)
i51

n1 @a~u i
~1!2u8!1b~u i

~1!2u8!#

a~u i
~1!2u8! )

j51

n

@a~u82u j !

1b~u82u j !#G uu1
~1! ...un1

~1!&. ~24!

Inserting this into Eq.~17! for u85uk , we have the first of the
Bethe equations,

I ~uk!
L5)

i51

n1

2a~uk2u i
~1!!, k51,...,n.

To ensure that we have the eigenstates of the transfer
matrix for the nesting, we must have the unwanted terms
L̆ k

(1), L k
(1) cancelling and these values are computed in Ap-

pendix A. The resulting equation after some simplification is
the set of Bethe equations for the nesting as follows:

)
j51,jÞp

n1 a~up
~1!2u j

~1!!

a~u j
~1!2up

~1!!
5)

i51

n
21

a~u i2up
~1!!

, p51,...,n1 .

~25!

n andn1 can be identified as the total number of electrons
(Ne) and the number of spin-down electrons~N↓!, respec-
tively. After substitution and simplification, the Bethe equa-
tions are as follows:
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F 2a1uk
a121uk

GL5)
i51

N↓ 2uk1u i
~1!

22uk1u i
~1! , k51,...,Ne , ~26!

)
j51,jÞp

N↓ 2up
~1!1u j

~1!22

u j
~1!2up

~1!12
5)

k51

Ne up
~1!2uk12

up
~1!2uk

,

p51,...,N↓ . ~27!

The eigenvalues of the transfer matrix are given by

m~u8,u j ,F !5F 2a1u8

21a1u8G
L

)
j51

Ne 22u81u j

u82u j
m~1!~u8!

2)
i51

Ne 221u i2u8

u i2u8
, ~28!

m~1!~u8!5)
i51

N↓ u82u i
~1!12

u82u i
~1! )

j51

Ne u82u j

22u81u j

1)
i51

N↓ u i
~1!2u812

u i
~1!2u8

)
j51

Ne u82u j12

22u81u j
. ~29!

V. CONCLUSION

This model has been solved previously by Ref. 19 with
the use of the coordinate Bethe ansatz. The resulting BAE’s
in generic form were

F v j2 i

2

v j1
i

2

G L

5 )
a51

M v j2la1
ic

2

v j2la2
ic

2

, j51,...,Ne

)
j51

Ne la2v j1
ic

2

la2v j2
ic

2

52 )
b51

M
la2lb1 ic

la2lb2 ic
, a51,...,M .

This agrees with our solution above by noting the following
substitutions:

c5
21

a11
, v j5

2 ic

2
~uk11!, la52

ic

2
~up

~1!12!.

The quantum version of this solution will be presented in
a future publication on the closed chain, and it will be shown
that the above solution can be obtained from the quantum
solution by taking the limitq→1. These models depending
upon two generic complex parameters are associated with
type-I quantum superalgebras, which admit nontrivial one-
parameter families of representations and provide solutions
to the Yang-Baxter equation with additional parameters.
These solutions give us integrable models depending on two
independent parameters.16 The quantum version on the open
chain will also be presented in a future publication.
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APPENDIX

Here, we calculate the unwanted terms following the
method set out in Ref. 4. The unwanted terms are identified
by containing a creation operator with spectral parameteru8.
The cancellation of the unwanted terms ensures that the
states~9! are eigenstates of the transfer matrixt~u8!. To de-
termine L̆k , it is convenient to commute the first creation
operator with spectral parameterlk to the first place in the
ansatz using the commutation rule extracted from the rela-
tions arising from~2!. That is, we write

)
i51

n

T3ai~u i !5T3bk~uk!)
i51

k21

T3bi~u i ! )
j5k11

n

T3aj~u j !

3S~uk!a1 ...ak
b1 ...bk,

S~uk!a1 ...ak
b1 ...bk5r ~uk212uk!bk21ak21

ck21ak

3r ~uk222uk!bk22ak22

ck22ck21 ...r ~u12uk!b1a1
bkc2.

~A1!

To obtain an unwanted term, we commuteT33~u! past
T3bk(uk), using the second term in~10! then we use the first
term to commuteT33(uk) with the other terms in the ansatz
until it acts on the vacuum according to~8!. The resulting
equation forL̆k is

L̆kF
b1 ...bn5S~uk!a1 ...ak

b1 ...bkFbn ...bk11ak ...a1Fb~uk2u8!

a~uk2u8!G
3~21!n21 )

j51,jÞk

n
1

a~u j2uk!
.

For Lk , we have two terms involved. So we write
Lk5Lk,11Lk,2, these terms arise fromT11~u8! andT22~u8!,
respectively. With a similar working to that forL̆k , we find
the contribution from theT11~u8! terms to be

Lk,1F
b1 ...bn5S~uk!a1 ...ak

c1 ...ckFan ...a1Fb~u82uk!

a~u82uk!
Gdbk,1ddn21,1

3I ~uk!
L )
j51,jÞk

n
1

a~uk2u j !

3r ~uk2u1!d1ck
b1c1r ~uk2u2!d2d1

b2c2

3...r ~uk2uk21!dk21dk22

bk21ck21

3r ~uk2uk11!dkdk21

bk11ak11

3r ~uk2uk12!dk11dk

bk12ak ...r ~uk2un!dn21dn22

bnan .

~A2!

54 8435ALGEBRAIC BETHE ANSATZ FOR THE . . .



The d functions appearing in this equation arise in the
following way. CommutingT11(uk) past the terms of the
ansatz to the vacuum leads us to the termddn21,1

. dbk,1 being
necessary as in~13!, we need to identify theT3bk(u8) term
with the T11~u8! contributions. The contribution from the
T22~u8! are obtained similarly with the factorsdbk,2 ,ddn21,2

being the only difference betweenLk,1 andLk,2. Then, with
Lk5Lk,11Lk,2, we have

LkF
b1 ...bn5S~uk!a1 ...ak

c1 ...ckFan ...a1Fb~u82uk!

a~u82uk!
G

3I ~uk!
L )
j51,jÞk

n
1

a~uk2u j !
r ~uk2u1!d1ck

b1c1

3r ~uk2u2!d2d1
b2c2...r ~uk2uk21!dk21dk22

bk21ck21

3r ~uk2uk11!dkdk21

bk11ak11r ~uk2uk12!dk11dk

bk12ak2 ...

3r ~uk2un!bkdn22

bnan . ~A3!

We may simplify this equation by contracting thec1 ...cn
indices using the unitarity of ther matrix. That is,

r ~u12u2!r
T~u22u1!5I ,

or in component form

r ~u12u2!b2a2
b1a1r ~u22u1!c2b2

c1b15da1c1da2c2.

As a result, the following terms in~A3! may be simplified,

S~uk!a1 ...ak
c1 ...ckr ~uk2u1!d1ck

b1c1...r ~uk2uk21!dk21dk22

bk21ck21

5)
i51

k21

dai ,didbk21 ,ak
.

We convert the remainingr matrices intoL operators
according to

@L ~1!~u!# i j5( r ~u! ik, j l ekl ,

then the unwanted terms are written as

LkF
b1 ...bn5Fb~u82uk!

a~u82uk!
G I ~uk!

L

3 )
i51,iÞk

n
1

a~uk2u i !
Fan ...akbk21 ...b1

3Ln
~1!~uk2un!bkdn22

bnan Ln21
~1!

3~uk2un21!dn22dn23

bn21an21...

3Lk11
~1! ~uk2uk11!dkak

bk11ak11. ~A4!

We now insert the equations forL̆k andLk into the equa-
tion for the cancellation of unwanted terms and multiply
throughout byS(21)(uk). We note once again using the uni-
tarity of r ~u8! that we have

S~21!~uk!b1 ...bk
p1 ...pkS~uk!a1 ...ak

b1 ...bk5)
i51

k

dai ,pi.

The result after some simplification is

I ~uk!
~2L !~21!n )

i51,iÞk

n
a~uk2u i !

a~u i2uk!
Fbn ...bk11pk ...p1

5@t~1!~uk!F#bn ...bk11pk ...p1.

Working in a similar manner to the above for the compu-
tation of the unwanted terms for the nested case leads to the
equations,

L̆k
~1!52

b~uk
~1!2u8!

a~uk
~1!2u8!

3 )
j51,jÞk

n1 @a~u j
~1!2uk

~1!!1b~u j
~1!2uk

~1!!#

a~u j
~1!2uk

~1!!

3)
i51

n

@a~uk
~1!2u i !1b~uk

~1!2u i !#, ~A5!

Lk
~1!52

b~u82uk
~1!!

a~u82uk
~1!!

3 )
j51,jÞk

n1 @a~uk
~1!2u j

~1!!1b~uk
~1!2u j

~1!!#

a~uk
~1!2u j

~1!!

3)
i51

n

a~uk
~1!2u i !. ~A6!

The cancellation ofL k
(1) and L̆ k

(1) leads to the equation

)
j51,jÞs

n1 @a~us
~1!2u j

~1!!1b~us
~1!2u j

~1!!#a~u j
~1!2us

~1!!

a~us
~1!2u j

~1!!@a~u j
~1!2us

~1!!1b~u j
~1!2us

~1!!#

5)
i51

n a~us
~1!2u i !1b~us

~1!2u i !

a~us
~1!2u i !

, s51...n1 . ~A7!

8436 54KATRINA E. HIBBERD, MARK D. GOULD, AND JON R. LINKS



*Electronic address: keh@maths.uq.oz.au
1R. J. Baxter,Exactly Solved Models in Statistical Mechanics

~Academic, London, 1982!,
2V. E. Korepin, G. Izergin, and W. M. Bogolivbov,Quantum In-
verse Scattering Method, Correlated Functions and Algebraic
Bethe Ansatz~Cambridge University Press, Cambridge, En-
gland, 1992!.

3P. P. Kulish and E. K. Sklyanin, J. Sov. Math.19, 1596~1982!.
4F. H. L. Essler and V. E. Korepin, Phys. Rev. B46, 9147~1992!.
5A. Foerster and M. Karowski, Nucl. Phys. B396, 611 ~1993!.
6A. Foerster and M. Karowski, Nucl. Phys. B408, 512 ~1993!.
7A. Gonzalez-Ruiz, Nucl. Phys. B424, 553 ~1994!.
8F. H. L. Essler, V. E. Korepin, and K. Schoutens, Phys. Rev. Lett.
68, 2960~1992!.

9F. H. L. Essler, V. E. Korepin, and K. Schoutens, Phys. Rev. Lett.
70, 73 ~1993!.

10F. H. L. Essler, V. E. Korepin, and K. Schoutens, Int. J. Mod.
Phys. B8, 3205~1994!.

11F. H. L. Essler and V. E. Korepin, Int. J. Mod. Phys. B8, 3243

~1994!.
12J. R. Links and M. D. Gould~unpublished!.
13M. J. Martins and P. B. Ramos, J. Phys. A27, L703 ~1994!.
14M. J. Martins, Phys. Rev. Lett.74, 3316~1995!.
15M. J. Martins and P. B. Ramos, J. Phys. A28, L525 ~1995!.
16M. D. Gould, K. E. Hibberd, J. R. Links, and Y.-Z. Zhang Phys.

Lett. A 212, 156 ~1996!.
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