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Investigation of density functionals to predict both ground-state properties and band structures
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By incorporating part of the correlation energy into a modified kinetic energy functional within a Kohn-
Sham-like theory, it is possible to obtain significantly altered band structures, while preserving good agreement
with experiment for ground state properties well described by the usual local density approxithBt#on A
particular such functional obtained by introducing a local density-dependent mass is investigated. By construc-
tion, it reproduces the valence-band narrowing of free-electron-like metals. Applied to semiconductors, a
significant gap increase with respect to the LDA gap is observed in silicon and germanium; for diamond
carbon, the correction is negligible. The proposed strategy is quite general and could facilitate the construction
of density functionals which simultaneously predict ground state properties and band structures for a given
class of materiald.S0163-182896)00236-9

[. INTRODUCTION rather demanding on computational resources, and for many
purposes, a simpler strategy would be desirable. Moreover, it
Since its introduction, the Kohn-Sham versiai density ~ would be of great interest to be able to monitor electronic
functional theory(DFT) has been applied with enormous excitation energies as a function of fully relaxed structural
success to a vast variety of systems in condensed mattparameters, for example, during the course of a molecular
physics. For many materials, the theory predicts ground statédynamics simulation based on total energies. This requires a
properties such as lattice constants, bulk moduli, and phonotheap and reasonably accurate simultaneous evaluation of
frequencies to within a few percent of their experimentalexcitation energies and total energies. Although it is pos-
values® sible, in principle, to calculate total energies within the
The applications of DFT have long since moved beyondGW schemé? it is by no means clear that the resulting en-
its original conception as a tool for the investigation of elec-ergies would be accurate. Previous approximations to the
tronic ground states. In particular, DFT type calculationsGW self-energy operator, such as the quasiparticle local den-
now routinely serve as the basis for theoretical investigationsity approximatiofQPLDA),'’~?°therefore sacrifice the cal-
of excited states in solids, not only because it is relativelyculation of reliable energy estimates for an improvement in
straightforward to calculate band structures using this forthe description of excited states.
malism, but also because the DFT eigenvalues and orbital In the present work, as a step towards a theorysfoml-
wave functions turn out to be surprisingly accuratel- taneousband structure and total energy calculations, we
though DFT is not designed to describe these excited stategoint out an inherent freedom in the choice of density func-
There are, however, a number of discrepancies betweetipnals: the freedom of assigning part of the exchange-
DFT band structures and experiment. Perhaps best known correlation energy to a modified kinetic energy or similar
the fact that in most semiconductors and insulators, DFThonlocal functional. This freedom can be employed to devise
calculations employing the local density approximationtheories whose accuracy for the prediction of ground state
(LDA),* and probably even the exact exchange-correlatiomproperties rivals that of the LDA, while at the same time they
functional®™’ systematically underestimate the band gapyield improved eigenvalue spectra. As an example, we pro-
Another more subtle effect is related to the valence-banghose a theory which, for the homogeneous electron gas,
narrowing observed for free-electron-like metilsyhich  quantitatively reproduces the valence-band narrofvirg-
none of the standard density functional theories can evedicted by GW calculations, without affecting the long-
hope to reproducésee Sec. Il wavelength density respon$ehich is accurately described
These and related phenomena can be described withimithin the usual LDA. This is achieved by introducing a
more refined many-body theories. For example, the so-calledensity-dependent effective mass into the kinetic energy
GW approximatiod has been shown over the past decade tdunctional. As an aside, we mention that in a different con-
resolve many of the discrepancies between the LDA bandext, the introduction of a coordinate-dependent effective
structures and experiment, in many cases predicting excitanass was recently also explored by Bulgac, Lewenkopf, and
tion energies to within 0.1 eV of their experimental Mickrjukov®* as an approximation to the exchange energy
value!®~*2Similarly, quantum Monte Carlo calculations can within Hartree-Fock theorietsee also Sec. V Their work
be used to obtain reliable estimates of band gaps imas motivated by similar approximations in nuclear
insulators'>~*> Nonetheless, both of these techniques arehysics??
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The application of this density functional to the alkali
metals Li and Na shows the expected narrowing of the Exc[p]QJ dr p(r)exc(p(r)). (6)
valence-band width, without negatively affecting the calcu-
lated bulk moduli and lattice parameters. For semiconductorther, more sophisticated approximationsig have been
and insulators, the new functional also yields significantlyProposed, such as generalized gradient approximatfons,
increased band gaps compared to the L[3&e Sec. V) but they usually retain an explicit density dependence and
although there remains discrepancy with experiment. It idéave the basic partitioning in E¢3) unchanged.
hoped that the general strategy outlined here may in the fu- Approximations toE,{p] with such an explicit density
ture lead to other density functionals which simultaneouslydependence are unable to reproduce the nonanalyticities
allow quantitative predictions of ground state properties andvhich this functional is known to have. For exampkg,
excitation spectra, at least for a given class of materials. ~contains nonanalytic contributions due to the difference

The paper is organized as follows. In Sec. Il, after a briefT[[p]— T4 p] between the kinetic energy of the interacting
outline of the standard Kohn-Sham partitioning of the den-and noninteracting systems, and the exchange-correlation po-
sity functional, a more general partitioning scheme is proiential V,.=5E,./dp in semiconductors can exhibit a dis-
posed. In Secs. lIl, IV, and V, we discuss as a specific excontinuity upon addition of a single electror.
ample the implications of introducing a density-dependent To remedy this situation, it seems natural and perfectly
mass into the kinetic energy functional, with particular em-legitimate to express some part of the exchange-correlation
phasis on the valence-band narrowing and the density reénergy in the form of a nonlocal functional, whose density
sponse in the homogeneous electron gas. In Sec. VI, wdependence is not explicit, but implicit through its depen-
present results of plane-wave pseudopotential calculatiordence on the wave functiong, in the hope that this will
for structural properties and band structures of silicon, gerincorporate some of the nonanalyticities. In fact, the usual
manium, and carbon in the diamond structure, as well as fokinetic energy functional { p] in Eq. (4) has just this form,
metallic bee lithium and sodium, using this density func-and its nonanalytic dependence on the density is the reason
tional. We end with a summary and conclusions. why within the LDA, there can be a band gap at all. Hence,

we write more generally

Flpl=Tpl+Eulpl+Edpl+Enlpl+Elpl, (7)
where

II. A MODIFIED KOHN-SHAM THEORY

DFT is based on a theorem by Hohenberg and Kdhn
which states that the ground state eneffjy| of an assem-
bly of electrons with density can be written as the sum of occ
a universal functionaF[ p] of the density of the system and Em[p]EE f f dr dr’ ¢ (r) S(r,r";[p])ei(r"). (8)
the electrostatic energy of the electrons in the external po- !
tential Vey: 3, is some symmetric nonlocal operator which may depend

upon the density, to be discussed in more detail later.
E[P]ZF[PHJ dr p(r)Ve(r). (1) If E,fp] were the exa(_:t exchange—correlation potential,
Egs. (3) and (7) would obviously implyE,[p]+E|[p]=0.
In the usual Kohn-Sham versibiof DFT, the densityp is ~ HOWeVer, ifE,c is approximated, for example by the LDA,
expressed in terms of a fictitious set of occupied one—particlg_q- (3) yields the correct energy only for homogeneous den-

orbitals ; as sities p", and we, therefore, choose the local functional
' E\[p] such as to ensure th&,[p"]+E[p"]=0 for such
oce densities. In the spirit of the LDA, a natural choice is to write
p(r)=2 (| 2)
El ]E—Jdr (Nep(r)), 9
The unknown functional[ p] is then partitioned as P P e

wheree (p) is just the energy per particle associated with the

Flp1=Tdpl+Enlp]+Exdp], ) operator>, in the homogeneous electron gas:
where the kinetic energy in atomic urfitss expressed in 5 1
terms of the one-particle wave functions, e[ = = dk 3 (k:[p"). (10)
occ p 8 Ikl<ke
1
Tdpl= 52 j [V yi(r)]?, (4)  The factor 2 accounts for spin degeneracy, and the integral is
i

over all wave vector& smaller than the Fermi wave vector
k,::(3772ph)1/3-
In principle, the density dependence bf can itself be
1 p(r)p(r") implicit through a dependence on the orbitals. For ex-
EH[P]EEJ fdf dr'w (5 ample, ifS is chosen as the Fock exchange operator, we
obtain a hybrid Hartree-Fock energy functional in which the
Within the LDA, the unknown exchange-correlation func- exchange is described by the nonlocal Fock operator and the
tional E,J p] is approximated in terms of the exchange-correlation energy is added in a local density fashion. An
correlation energy per particle,((p) of a homogeneous example of an operatd@ with explicit density dependence
electron gas of density, will be given in the next section. In general, the density

and the Hartree energy is given as
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dependence of the operat®r renders the variation of the
energy functional in Eq(7) with respect to the orbitalg;; 10 T GW .
somewhat more complicated than in the usual Kohn-Sham LMA
scheme. This is certainly the case for the Hartree-Fock for- \\ e LDA
malism. In many cases, though, especially when the density

dependence of is explicit, the additional computational

demand will not be significant. Finally, we remark that the
strategy outlined above is easily generalized to spin-density-

dependent functionals replacing the usual local spin density
approximation(LSDA).

Ill. A LOCAL MASS APPROXIMATION

Valence band narrowing (%)
3

As a specific application of the scheme proposed in Sec.
II, we now consider a density functional which reproduces
the valence-band narrowing in simple metals. We introduce
this functional in a rather empiricadd hocmanner, although 0 1 2 3 4 5 6 7
its general form can be justified in a more rigorous wWsge T
Sec. V.

It has been suggested fro@W calculations on the ho-

mogeneous electron d%mm the experimentally obsenféd FIG. 1. Relative valence-band narrowidg/er using theGW

reduction in the width of the valence band in some free_results without vertex corrections by Mahan and SernéResf. 8

electron-like metals with respect to its free-electron value isarlOI the fit according to Ed11) (solid line).
at least partly caused by many-body correlation effects. Of
course, the presence o_f th_e lattice must a!so be ta_ken into i[p]E— }Vf(p(r))V. (12)
account to obtain quantitative agreement with experiments. 2
In the standard Kohn-Sham partitioning of the density.
functional, whatever the precise form of the exchange
correlation functionak, p], its variation with respect to the
density always results in a constant exchange-correlation po- 1 oce
tential vV, for a homogeneous density. As a consequence, the FMA[p]= 52 f [1+f(p(r)]|Vei(r)|2dr+Eq[p]
spectrum is always that of a free-electron gas, and the va- :
lence band width is given by the Fermi-energy= %kﬁ. The
change in the valence-band width cannot be reproduced +Exc[p]_f dr f(p(r)p(Nts(p(r)), (13
within such a scheme. Hartree-Fock theory, on the other
hand, predicts a widening of the valence band by a factor otvhere the last term correspondsBg p] in Egs.(7) and(9)
1.5-2 for typical metallic densities, contrary to experiment. and involves, for our particular choice &f, the average ki-
However, it is possible to introduce a nonlocal operatometic energy per electron of a homogeneous gas of density
3 as in Eq.(8) which does reproduce the correct valence-p, ty=3k2/10.
band narrowing. Mahan and Sernefiimve determined the The variation of this energy functional with respect to the
change in the width of the valence band in the homogeneougave functionsy; yields a modified Schitinger equation
electron gas for a range of electron densities. Using their data .
calculated within aGW approximation neglecting vertex Herl plii(r) =€ (1), (14
corrections in the calculation of the dielectric function andWith
self-energy operatotlabeled RPA in their papgrwe find
(Fig. 1) an almost perfect linear dependefioef the relative . 1
change in the width of the valence baad/ e on the den- Hedl p]1=— EV[1+f(p(r))]V+Vext(r)+VH(r)+VXC(r)
sity parameter ;= (4mp/3)~ Y3

The new density functional, which we call local mass ap-
‘proximation(LMA), is then given by

+H (p(N))Vima(r) +Vi(r), (15
€ where f'=df/dp, Vy; and V,. are the usual Hartree and
€_F= a+prs=f(p), 11 exchange-correlation potentialg,= 6E, / 6p, and

occ

where «=0.079 431 and8=—0.047 964. Of course, this Vima(1) = 52 [V i(r)]2. (16)

expression cannot be valid for very low densitidarge '

rs), where it becomes less thanl, and to avoid divergen- Like in the usual Kohn-Sham scheme, Eq$4)—(16) to-

cies in atoms and on surfacdsmay need to be modified at gether with Eq(2) have to be solved self-consistently.

such low densities. For a homogeneous gas, the potentils Eq. (15) are
Using this information, we construct the desired densityall constant, and therefore the eigenvalue spectrum is given

functional with the nonlocal operator by
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k2 4 ' -
€E=E[1+f]+vxc+f'vlma+v|, 17 () -—-- Exact
thereby resulting in the desired density-dependent change of — tl\Dn:

the bandwidth.m*/m=1/[1+f] can obviously be inter- 3r
preted as a density-dependent effective mass, hence the term
local mass approximation. Moreover, it is easy to verify that
the highest occupied eigenvalue, as in the LDA, agrees with & o |
the exact valuesEF= €+ Vye. ©

IV. LINEAR RESPONSE WITHIN THE LMA

The question now is whether this LMA functional still
accurately describes the total energy in the presence of an
external potential. For near-homogeneous systems, the an-
swer can be found analytically, by calculating the density 0
response functio(|r—r’|)=6p(r)/ Ve, (r’) and compar- glk,
ing it to the corresponding guantity within the LDA and to a
quasiexact quantum Monte Carlo calculation. 0.10

The Fourier transform of is often written in the form (b) - EI)\(IIa:t

Xxo(Q;rs) 0.08 r S— Y.\

CHA T —., (9
1-v([1-G(g;rs)Ixo(a;rs)

wherev (q)=4/q? is the Fourier transform of the Coulomb 0.06

interactionv (r)=1/r and x, is the Lindhard response func-
tion of a noninteracting electron gas,

=
=

0.04
1 1-x2
_+ —_
2 4x

1+Xx
1-x

Ke

Xo(AiTs)=——3 In

: (19
0.02
where x=q/(2kg). The local field factorG(q;rs) screens
the bare Coulomb interaction and accounts, crudely speak-
ing, for the effect of vertex corrections in the perturbation 0.00 °
expansion ofy in terms of the Coulomb interactian
It is well established that foq=<2kg, theq dependence

of the exactG(q;r.) is reproduced extremely well by the
(@rs) P y y FIG. 2. (a) Comparison of local field correctior@-°A(q) and

LDA, which predicts G'™MA(q) to the parametrization of the exa8(q) given in Ref. 28

GLDA(q;rs)z Y(VS)(q/kF)Z, (20) for r¢=2. (b) Density response functiongq) following from Eq.
(18) for the local field corrections shown if@).

with

A o dVy
k_'%y(rs)_ dp

(2)  “exact’® G(q;ry). Overall, we find thatG™MA(q;ry) is
somewhat too large fog>kg, and we therefore expect the
In fact, it turns out that Eq(20) also holds for the exact LMA to slightly overestimate the strength of density varia-
G(q;rs) in the limit g—0. G and G- differ significantly  tions with large wave vectorisee, also, Fig. (®)].
only for q=2kg . Forg>2kg, G-PA andG"MA are both very different from
It is straightforward to see that the local field correctionthe exact form. For many materials, this does not matter: as
G"MA resulting from the new density functional in EG.3)  evidenced by the success of the LDA, thisregion of
also satisfies Eq(20) in the limit q—0. In fact, the only  G(q;r) is rarely explored by the relatively smooth density
requirement for a density functional to satisfy this equation isvariations of the valence electrons. We, therefore, expect that
that it must give the correct energy of the homogeneous ga@r systems within the linear response regime of the homo-
at all densities, and hence the general functionals consideragneous gas, total energy calculations with the new density
in Sec. Il will always satisfy this equation in the limit functional will give energies very close to the LDA energies.
g—0 by construction. In Sec. VI, we will confirm this expectation for real calcula-
The calculation ofGMA(q;r,) for arbitrary q is more  tions on alkali metals. We will also show that even for semi-
involved and has been included in the Appendix. As it turnsconductors, the new functional is at least as successful in
out [see Fig. 2a)], GMA(q;r) is almost identical to predicting lattice constants and bulk moduli as the LDA,
G'PA(q;re) for g<kg. For g>kg, GtMA(q;rs) contains while simultaneously changing the band structure signifi-
terms which grow asg* and which are absent in the cantly.

p=3/(477r§)
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V. RELATIONSHIP
TO SELF-ENERGY APPROXIMATIONS

We have introduced the LMA in a semiempirical fashion
as a means of reproducing the valence-band narrowing i
simple metals. Here, we would like to discuss possible gen
eralizations and justify the general form of the effective
HamiltonianHq¢ in Eqg. (15 as the sum of a kinetic term
with a coordinate-dependent mass and a local potential mo

rigorously.

We first show, by generalizing an argument in Ref. 21,
that a coordinate-dependent mass arises naturally as
second-order approximation to any short-ranged symmetriC,

nonlocal operato®, as in Eq.(8). Our derivation also cor-
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at present, it is not clear how to choose the density depen-
dence of the functiob. However, we note in passing that an
operator as in Eq(25) could also be useful in finding one-
electron Hamiltonians which minimize the exchange energy,

rg]eneralizing the one-electron Hamiltonians used in the opti-

mized effective potential methods30-3!
It is apparent that in the homogeneous electron gas, a

scalar effective mass can be used instead of a tensor mass. In

"Be homogeneous gas, the choice3bin Eqg. (12), which

leads to the quasiparticle dispersion in E@7), can be
viewed as a quadratic approximation to @&V self-energy
GW(k,Eh(k)). The latter results in the quasiparticle disper-

rects the neglect of off-diagonal elements of the mass tensor 2

in Eq. (16) of Ref. 21.
Introducing center-of-mass coordinates (r+r’)/2 and
s=r'—r, we can rewrite Eq(8) as

occ

Em:EI Jf dr ds ¢ (1S

where S(x,9=3(r,r";[p]). Expanding ¢(r+s) and
3(r+s/2,9) into a second-order Taylor series aroundr)

p(r+s), (22)

LS
r+=,s
2

h k h h
shown in, for example, Fig. 35 of Ref. 2. Such a quadratic
approximation is reasonably accurate fars2kg; for
k= 2kg, it breaks down, and therefore the LMA should not
be expected to be accurate for states with energies much
larger than the Fermi energy. The LMA also neglects a small
term linear ink at smallk present inE?BW(k,Eh(k)), and it
does not incorporate the change in the quasiparticle weight

and 3(r,s), respectively, we find that the first-order terms resulting from the energy dependence of the true self-energy

vanish becaus&(r,s)=2(r,—s), and we obtain

1 occ d (?';b* . 9
En= Ef dr 2| ij_la—rli#i,jl(f)?wjlﬂLf dr p(r)Vy(r).
| (23
Here
ﬁ[jl(r)z—f ds3(r,9ss;, (243
B ~ 18 23,9
Vn|(r)=j dS[E(I’,S)—F giJE—_:l ijsisj}, (24b

andd is the dimensionality of the system.

Although the expansion leading to E(3) is strictly
valid only if ;(r) andZ(r,s) vary slowly as a function of
r compared to the range of nonlocality Bf a suitably cho-

operator.

Even in an inhomogeneous system, a scalar effective
mass arises if we replac®(r,s) in Eq. (243 by the GW
self-energyEEW of a homogeneous electron gas:

S(r,9 =308, E)—u+up(H]p(n)},  (27)

where u and u" are chemical potentials of inhomogeneous
and homogeneous systems, respectively, and wibgdgare

the quasiparticle energies of the inhomogeneous system,
which themselves implicitly depend dx. This is precisely

the replacement made in the QPLBA? With this choice

of X, the off-diagonal elements of the effective mass tensor
ﬁfjl given by Eq.(249 vanish, and the diagonal elements
become identical. We have therefore demonstrated that the
kinetic term in the LMA can be viewed as a local second-
order expansion of the self-energy used in the QPLDA. We
note, however that the energy argumer(k)—u

sen effective mass operator can mimic the operation of the- #"[p(r)] in the QPLDA depends implicitly on the quasi-
true nonlocal operato¥, onto a given subset of wave func- particle energiesg(k) of the inhomogeneous system,
tions closely even when this condition is not fully satisfied.whereas the nonlocal operator in the LMA, as explained
For a collection of spherically symmetric atoms, we can al-2bove, approximates a self-energy similar to E2y) with
ternatively incorporate the off-diagonal elements of the ef-E(k) replaced by the quasiparticle energig¥k) of the ho-
fective mass tensor by treatii¥) as a superposition of non- mogeneous system. This seemingly innocuous replacement

local pseudopotentials centered on the atomic st{edf we

has unfortunate consequences for the accuracy of the de-

then replace the action of that pseudopotential on the wavecription of Fermi surfaces within the LMA, which will be

functions by that of a pseudo-Hamiltoni&hwe can write

d [2
I, 9 1 b([r=RiL;
E M| (r)a—rj——EVa(r)VnL EI' w,

iT=10r;
(25

discussed in Sec. VI.

For strongly inhomogeneous systems, such as semicon-
ductors and insulators, Wang and Picket? have shown
that the dependence &ff,(|s|,E) on the energyE should
actually be modified to correspond to a homogeneous elec-
tron gas with an artificial gap. In this version of the QPLDA,

wherel, is the usual angular momentum operator with re-E[l,W(k,E(k)) can no longer be approximated by a quadratic
spect to atonl, anda andb are suitably chosen functions. function ink, and an energy-dependent effective mass seems
Possible generalizations of the LMA via such an angulatto be required. It is not clear how this could be incorporated
momentum dependent term are left for future investigationsinto a total energy functional. On the other hand, even for an
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energy-independent mass, the formulation of the LMA viaa TABLE I. Numerical parameters used in the plane-wave
total energy functional results in additional local potentialspseudopotential calculations. The first two columns describe the
Vima andV, [see Eq.(15)] which are absent in the QPLDA Valence configuration and cutoff radi} used in the Kerke(Ref.

and which have a significant effect on the band structure33 construction of the pseudopotentials. Also given are the plane-
Ultimately, the success and limitations of the LMA for Wave cutoffsEp, and numbeN, of irreduciblek points used for
strongly inhomogeneous systems must therefore be decig&illouin zone integrations in the calculations on the solids.
empirically.

Config. re Epw (RY) Ny
H 0. 0.140.1
VI. COMPARISON OF LDA AND LMA STRUCTURAL L 2%72p 3d0" 230 1.90 3.50 25 68
AND ELECTRONIC PROPERTIES Na  3s*%8p™3d’*  2.503.00 3.00 20 68
C 2s%2p%83d0-2 1.11 1.01 1.36 100 10
We have performed plane-wave pseudopotential calculaSi 3s23p®83d®2?  1.58 1.93 1.93 15 10
tions for the alkali metals Li and Na in the bcc structure andGe 4524008402 1.54 1.98 2.42 25 10

for the semiconductors Si, Ge, and C in the diamond struc=
ture in order to compare the LMA to the usual LDA. The
numerical techniques employed are standardxcept for —energy of the homogeneous electron gas can result in size-
obvious modifications necessary for the calculation of theable differences in the structural properties and even change
nonstandard kinetic energy operator and the poterviglg  the predicted ground state structuresc or fcg.**%"*?For
andV, in Eq. (15). all the calculations in the present study, we employed the
The pseudopotentials were generated using an algorithi@eperley-Alder form of the exchange-correlation enérgy.
due to Kerker® We remark that the atomic calculations used ~We have no reason to believe that the structural properties
for the generation of the pseudopotentials were performeghould be more accurately described by the LMA than by the
within the usual LDA and not within the LMA. We justify LDA; what we wish to demonstrate is that LMA and LDA
this inconsistency by noting that it is common to apply self-predictions for structural properties agree closely, while the
energy corrections only to the valence electrons within glescription of excitation energies is improved within the
pseudopotential Scheﬁfe(see, however, Ref. 34In fact, LMA. Table Il shows that this is indeed the case: for the
within the QPLDA, it has been suggestéelg., in Ref. 35 ~ metals and semiconductors considered, the LDA and LMA
that the core electrons should not be included in the electrolttice constants agree to within 1% and the bulk moduli to
density arguments entering EQ7). within 5%. For semiconductors, the LMA lattice constants
We also did not include nonlinear core exchange-are larger and closer to experiment than the LDA values; for
correlation correction® which were found to improvi8=3 ~ Li and Na, they are smaller.
the transferability of pseudopotentials in materials with ~The calculations of excitation energies were performed at
strong spatial core-valence overlap such as the alkali metalg1e experimental lattice constants shown in Table Il. Within
A consistent way of implementing these corrections withinthe LDA, the valence bandwidth for Na is virtually un-
the LMA would require them to also be applied to the den-changed by the presence of the lattice compared to its free-
sity argument off (p) in the LMA kinetic energy functional. €lectron value. We find a slight increase of 0.25% from
This would be sensible only if the pseudopotential were als®-235 €V to 3.243 eV, which compares well with all-electron
generated within the LMA. We did not want to cloud the results’** In lithium, the presence of the lattice reduces the
direct comparison of LMA and LDA with such numerical valence-band width by 27% compared to the free-electron
complexities, the effects of which are secondary for our disvalue (4.75 eV} (other authors find 25.6%Ref. 41 and
cussion. Instead, we chose to generate the pseudopotenti@.6% (Ref. 31).
for the alkali metals within a neutral valence configuration, The LMA then leads to a reduction of 12.82% for Li and
which we believe to be fairly close to the solid environment,11.05% for Na with respect to these LDA valugsg. 3),
since the structural properties calculated with these pseudo- ) )
potentials are in fairly good agreement with all-electron cal- _ TABLE Il Lattice constantsa and bulk moduliB calculated
culations. within the local mass approximation described in Sec. Il as com-

The valence configurations and cutoff radii employed inP'€d o the LDA predictions and experiment for metallic bcc
the construction of the pseudopotentials are shown in Tallthlum and sodium and diamond carbon, silicon, and germanium.
ble |, together with the plane-wave cutoffs and the number
of Monkhorst-Pack special points employed in the calcula-

tions on the solids. We verified that all the calculations were

a(®) B (Mbar)
LDA LMA Expt. LDA LMA Expt.

well converged with respect to the size of the basis set ang; 3.308 3.275 3.48d 0.138 0.146 0.1%
the number ok points used for Brillouin zone integrations. Na 4.025 3989 4250 0.081 0.08 0.073

Although the valence electrons in the alkali metals feelc 3533 3565 3567 451 4.38 4.43
only a very weak pseudopotential and are very free-electrog; 5384 5.406 5479 0.96 0.92 0.99

like, the LDA generally yields surprisingly poor results for gq 5545 5579 5.682
their structural properties compared to experiment. For ex=
ample, the lattice constant of Na is underestimated by abodReference 49.
5% within pseudopotential LDA schem&sand the situation PReference 50.
is not much improved in all-electron calculaticl$! More-  ‘Cited in Ref. 51.
over, different parametrizations of the exchange-correlatiofiCited in Ref. 52.

0.80 0.71 0.7%
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metals. MacDonaf# has shown that this discrepancy with
de Haas—van Alphen measureméhis largely corrected for
by the QPLDA. Since the LMA can be viewed as an ap-
proximation to the QPLDAsee Sec. ¥, one might naively
expect a similar improvement. We, therefore, performed ac-
curate Fermi surface fits within LDA and LMA, using the
same cubic harmonic expansion and Gaussian integration
technique® as MacDonald. The resulting deviations of the
Fermi wave vectok: and Fermi surface extremal areAs
(defined as in Ref. 8n Li are shown in Fig. 4. While our
LDA pseudopotential results agree closely with Mac-
Donald’'s all-electron LDA results, it is apparent that the
LMA does not reduce the Fermi surface distortions; on the
contrary, it slightly increases them.

This deficiency can be traced back to the energy argument

FIG. 3. Comparison of LDA and LMA pseudopotential band €ntering the approximation t& in Eq. (27). As shown in
structures for bee Li and Na. Ref. 18, the change in the Fermi surface distortions resulting

from the use of a nonlocéNL) self-energy can be estimated

which should be compared to the prediction of Etfl) for  as
r«=3.25(7.63% andr¢=3.93(10.93%, respectively. Al-

Energy (eV)

though Li has a higher electron density than Na, the relative kE‘L(())—kO ~ 1 93N -1
bandwidth reduction is larger in Li than in Na, contrary to W“(l"' mb(Q)ﬁgw ) , (28
what might be expected from E¢l1). This is easily under- ke () —kg F KO

stood if we assume that the absolute distortion of the valence F

bandwidth due to the lattice is the same within the LDA andwhere mb(f)) is the band mass in the directidd. As dis-
LMA, i.e., the valence band in both cases is about 1.30 e\tussed in Sec. V¥, within the LMA is approximately
narrower than in a homogeneous gas of the same averaggven by the right hand sidéeRHS) of Eq. (27) if the quasi-
density. Since the LMA bandwidth of a homogeneous sysparticle energie€ (k) of the inhomogeneous system are re-
tem withr ;=3.25 is about 4.38 eV, we can then estimate theplaced by the energies"(k) of the homogeneous electron
LMA bandwidth in the presence of the lattice potential to begas. Then the derivative on the RHS of ER9) is slightly
about 3.08 eV, which is close to the value 3.02 eV of the fullnegative, resulting in a small increase of the Fermi surface
calculation. distortions instead of the desired decrease. On the other
While the LMA clearly improves some aspects of the hand, within the QPLDAY, on the Fermi surface is ob-
band structures in simple metals, disappointingly it does nofained from Eq.(27) if we replaceE(k) by the constant

improve the unsatisfactory description of the shape of th&hemical potentiajs; then the derivative on the RHS of Eq.
Fermi surface within the LDA. It is known that the LDA (28) is positive, resulting in a fairly large reduction of the

overestimates the amount by which the Fermi surface differgistortions as observed by MacDonald.

from a perfect sphere by about a factor of two in the alkali  Turning our attention to semiconductors, we find that in
Si and Ge, the LMA results in a substantial increase of the
indirect band gap, from 0.5 eV to 1.0 eV in Siable IlI)

and from 0 to 0.5 eV in Gé¢Table IV). In both cases, the
increase in the direct band gap is somewhat less dramatic.
Note that the effect of spin-orbit splitting was not included in
our germanium calculation. The valence-band width in Si
and Ge decreases slightly with respect to the LDA, but re-

9 ;i mains in reasonable agreement with experiment.

< ‘i\g In diamond carbonTable V), the band structures pre-
<> 1\;’ dicted by the LDA and LMA are almost identical. Clearly,
< 0= this indicates that the LMA is not a sufficiently accurate

approximation for self-energy effects in strongly inhomoge-
neous insulators such as carbon. This is not surprising, since
the LMA was constructed with simple metals in mind. It is
nonetheless encouraging that the LMA accurately predicts
‘ . ‘ ‘ structural properties even for semiconductors and insulators
<10> <111>  <100>  <110> <111> <100  <110> and moves the excitation spectra of Si and Ge in closer
agreement with experiments. It is likely that the implemen-
FIG. 4. Relative distortions with respect to their free-electrontation of the general scheme of Sec. Il will have no drastic
values of(a) Fermi surface extremal are@¢(2) (for a definition,  effects on structural properties also for different choices of
see, e.g., Ref. 38and (b) Fermi wave vector&e({}), calculated  the nonlocal operatay,.
within LDA and LMA along different directions) on the unit A comparison of cohesive energies would be desirable in
sphere, for Li. order to further substantiate our claim that the LMA yields
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TABLE Ill. Comparison of selected LDA and LMA eigenvalue TABLE V. Comparison of selected LDA and LMA eigenvalue
differences(in eV) for silicon. Also shown are the results of the differences(in eV) for diamond carbon.
GW calculation in Ref. 12 and experimental results quoted therein

Diamond LDA LMA GWA ExptP?
Silicon LDA LMA Gw? Expt®?
By 4.1 4.1 5.6 5.48
= 0.5 1.0 1.29 1.17 ;
I'y,—Ts, 21.3 229 23.0 20-25
| P 11.9 11.6 12.0 1250.6 T} —T s 5.6 5.8 7.5 7.3
s —= T 2.6 2.7 3.4 3.4 T'5s,— T 13.6 13.1 14.8 15:80.5
T — T 3.2 35 4.1 4.2
(A 15.5 16.5 17.3 1520.3
Xap—T 35, 2.9 2.7 3.0 2.9-33 L1,—T s, 13.3 13.7 14.4 1280.3
I5—X1c 0.7 11 1.4 1.3 |- 15.4 16.3 17.9 20815
Loy—T2s 9.6 9.4 9.8 9.30.4 4Reference 12.
Li,— T 25, 7.0 6.7 7.2 6.20.2 bCited in Ref. 12.
Ly, —T5e, 1.2 1.2 1.3 1.2-1.5
T —Lic 15 18 23 21-25 VII. CONCLUSIONS
25— Lac 33 3.5 4.2 41501 The main purpose of the present work was to demonstrate
Ls —Lac 57 30 35 3.45 that thg search for density. functior)als beyqnd thg LDA
LrL 45 47 55 550 should include not only functionals with explicit densny.de—
Sv " T3c pendence, but should be extended to nonlocal functionals
aReference 12. whose dependence on the density is implicit through the
bCited in Ref. 12. Kohn-Sham orbitals. In contrast to other orbital-dependent

functionals in the literature, such as self-interaction corrected
total energies with a similar degree of accuracy as the LDA(SIC) density functional theorie®€“8the functionals consid-
To avoid ambiguities in the cohesive energies related to thered here lead to a single orbital-independent Stihger
use of LDA pseudopotentials and to the neglect of nonlineaequation for all orbitals.
core correctiongsee abovg we have recently implemented  We have conjectured that the additional freedom gained
the LMA within an all-electron Gaussian molecular orbital by the introduction of a nonlocal orbital-dependent term can
code. Preliminary resuftd for Siy, clusters indicate that for be used to absorb some of the nonanalyticities of the usual
geometries optimized within the LDA, the LMA cohesive E, [p] as a function ofp. In this manner, it should be pos-
energies in silicon are about 20% smaller in magnitude thasible to construct density functionals where ttumknown
the LDA cohesive energies, thereby correcting the well-discontinuity of the exchange-correlation potential upon ad-
known overbinding observed in LDA calculations. This may dition of a single electron in semiconductors and insulators is
be fortuitous, and further investigations are under way to semuch smaller than for the standard Kohn-Sham partitioning
if the improvement is systematic also for other materials. of the density functional.

As a specific example, we have proposed a density func-
tional with a modified, density-dependent effective mass.
This LMA functional, like the LDA, is exact in the homoge-
neous electron gas, and the long-wavelength density re-

TABLE IV. Comparison of selected LDA and LMA eigenvalue
differences(in eV) for germanium. Our LDA and LMA results for
Ge do not include relativistic effects, in contrast to B&V results.

Germanium LDA LMA GWA Expt? sponse is given accurately. However, in contrast to the LDA,
the LMA also reproduces the valence-band narrowing in
Igy—Lig 0 0.5 0.75 0.744 simple metals due to self-energy effects, because it is con-

structed in such a way that the resulting modified Sehro

Fev=Tle 12.7 12.7 12.9 12.6 -13.1 dinger equation contains terms approximating the self-
ey —T'7c 0.1 03 0.7 0.89 energy operator in near-homogeneous systems. The
Tg,—Tec 26 2.7 3.0 3.006 functional, moreover, yields improved eigenvalue spectra
XL T, 8.9 8.9 9.1 9302 even in semiconductors. Despite these successes, we have
X2, T, 3.0 3.2 3.2 3.0-3.7 also pointed out difficulties, such as the failure of the LMA
to improve the poor LDA predictions of Fermi surface
Ig,—Xse 0.7 12 1.2 1.30.2 shapes in the alkali metals and the remaining discrepancies
L1 Ty 10.7 10.4 10.9 10605 t;etw_een LMA_b_an(_d gaps and experiment in semiconductors.
S ossible modifications to remedy these problems are cur-
Le,—Ts, 76 73 /.8 1202 rently under investigation.
Los—Ts, 14 13 14 1£03 An obvious generalization of the approach described here
Tg—L2g 36 39 4.3 4201 would be to combine the LMA with improved density func-
Tg,— Lo 71 75 7.6 7601 tionals such as generalized gradient approximations. Further-
more, we have indicated that the introduction of a scalar
®Reference 12. density-dependent mass is only the crudest approximation

®Cited in Ref. 12. for self-energy effects and that, in general, the nonlocal op-



8428 G. E. ENGEL AND WARREN E. PICKETT 54

erator2, should also contain angular momentum-dependent 4 cog(k—k’)-r] .
terms. This should also be kept in mind in constructing op- ~ dp(N=5 >  ———————(k/[8Hexlk),
timized effective potentials for Hartree-Fock-like theories. K <ke<lk’| €k €K

We have verified through calculations on several metallic (A4)

and semiconducting systems that structural properties are d@here() is a normalization volume. Similarly, the first-order

scribed equally well by the LMA as by the LDA, a property change in the LMA potentiaV,,, is given as

which should also hold for many other functionals con-

structed according to the general prescription given in Sec. Py _4 D k-k' cog(k—k')-r]

Il. On the other hand, the LMA eigenvalue spectrum differs ima(1) = Qi 2 €~ €

significantly from the LDA spectrum and generally agrees F

closer with experimental observations. ><<k'|5|:|eﬁ| k). (A5)
Recently, generalizations of the Kohn-Sham scheme simi-

lar to those proposed in Sec. Il were independently put for- Note that theey in Egs.(A4) and (A5) are given by Eq.

ward in a paper by Seidét al>® The screened exchange (17). Substituting Eq(A1) into Eq. (A4) and evaluating the

functionaP* investigated by these authors is very differentmatrix elements, we then find faip/ 6V (Suppressing the

and more costly than the LMA, since it requires the numeri-argumento):

cal effort of a self-consistent Hartree-Fock calculation.

X=Xo+ XoCx+ 1" (x2x+xXo)- (AB)
ACKNOWLEDGMENTS Similarly, 6V a2/ 6Vey IS given by
The plane-wave code used in this study was adapted from X= X1 T X:Cx 1 (X +xax)- (A7)

a program by R. J. Needs. The norm-conserving Kerkefn Eq. (A6),
pseudopotentials were generated using a code by E. Shirley.
Ne(€) —Ne(ekig)  xo(Q)
€k €k1q 1+f(p)’

(A8)
, . , where ng is the Fermi functionX,, is a mass-corrected
_ In this appendix, we present some %ﬁta'ls of the calculag jnghard function describing the response of the charge den-
tion of the density response functiogr*(g;rs) and the sity to a change in the total potential; it is obtained from Eq.
local field correctionG (a:rg) resultlng from the_ Ioga_l (Ad) for the matrix elementék’|cos@-r)|K). y1 in Eq. (A6)
mass approximation introduced in Sec. Ill. For simplicity, qegcripes the response of the charge density to a change in
we will suppress the superscript LMA and the arguntgiid e kinetic part of the Hamiltonian, which follows by evalu-
G andy in the derivation. - ating Eq. (A4) with the matrix elements (k’|— 3

Starting from the effective one-particle Hamiltonighy  vcosg-r)V|k):

in Eqg. (15), the change in this Hamiltonian due to an applied
external potentiabV,cos@-r) is given by

. 1
Xo(Q)= Ff dk
APPENDIX: LINEAR RESPONSE FOR THE LOCAL ™
MASS APPROXIMATION

Ne(€) —Ne( €t g)

€k~ €k+q

1
xa(a)= mf dk k-(k+0). (A9)
OHert y~ It is easy to see that the same expression results if we calcu-
5Vext_[1+f x(@+C(a)x(a)]eosq-r) late the change iV, With respect to changes in the total
potential, i.e., usingk’|cos(-r)|k) in Eq. (A5), which ex-
—f’X(q)EVcos(q-r)V, (A1) plains the occurrence of the samge in Eq. (A7). x5 in Eq.
2 (A7) describes the response \f,, to changes in the kinetic
part of the Hamiltonian:

where 1 (&) ( )
Ne(ex) —NE(€g
XZ(q)=4—3J dk = —_——" [k (k+a)".
~ ) OVima(T) m €k €k+a
x(Ir=r'h=<—7 (A2) (A10)
Nex(r') _ .
The integrals defininge; and y, can be evaluated and the
and result can be expressed in terms qf, as follows
[x=a/(2Kg)
dV dV| " k2 k
C(a)=v(q)+ d;°+$+f Vima (1+Hx=- W—Z+(3x2—1)xo}, (A11)
dV,. w2 5 and
=v(q)+———f——F'kg. (A3)
dp kF k5 k4
(14 ) xo= oo (TX2—6) + — (7x4—5X2+ 1) xo.
Using perturbation theory, it follows that the first-order 367 12 (A12)

change in the charge density resulting from this first-order
change in the effective Hamiltonian is given as Finally, Egs.(A6) and (A7) can be solved foy:
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X0 LMA [ ~- LDA [ ~- 3 4g
xX= , - — G airg) =G (airs) + 557" (p)
1+f=Cxo—2(1+H)f x1+1"9(1+F)(X1— x2x0)
(A13) 1 1 772)
|+ —
v(a) | xo(a;rs)  Ke

We find that the error introduced by disregarding the term of

orderf’? in the denominator of this expression is negligibly

small. ThenG"MA s given explicitly as

X (Al4)

3 !
f(p)+ §pf (p) |-
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