
Investigation of density functionals to predict both ground-state properties and band structures

G. E. Engel
George Mason University, Computational Science Institute, Fairfax, Virginia 22030

and Naval Research Laboratory, Washington, D.C. 20375

Warren E. Pickett
Naval Research Laboratory, Washington, D.C. 20375

~Received 6 February 1996!

By incorporating part of the correlation energy into a modified kinetic energy functional within a Kohn-
Sham-like theory, it is possible to obtain significantly altered band structures, while preserving good agreement
with experiment for ground state properties well described by the usual local density approximation~LDA !. A
particular such functional obtained by introducing a local density-dependent mass is investigated. By construc-
tion, it reproduces the valence-band narrowing of free-electron-like metals. Applied to semiconductors, a
significant gap increase with respect to the LDA gap is observed in silicon and germanium; for diamond
carbon, the correction is negligible. The proposed strategy is quite general and could facilitate the construction
of density functionals which simultaneously predict ground state properties and band structures for a given
class of materials.@S0163-1829~96!00236-6#

I. INTRODUCTION

Since its introduction, the Kohn-Sham version1 of density
functional theory~DFT! has been applied with enormous
success to a vast variety of systems in condensed matter
physics. For many materials, the theory predicts ground state
properties such as lattice constants, bulk moduli, and phonon
frequencies to within a few percent of their experimental
values.2

The applications of DFT have long since moved beyond
its original conception as a tool for the investigation of elec-
tronic ground states. In particular, DFT type calculations
now routinely serve as the basis for theoretical investigations
of excited states in solids, not only because it is relatively
straightforward to calculate band structures using this for-
malism, but also because the DFT eigenvalues and orbital
wave functions turn out to be surprisingly accurate,3 al-
though DFT is not designed to describe these excited states.

There are, however, a number of discrepancies between
DFT band structures and experiment. Perhaps best known is
the fact that in most semiconductors and insulators, DFT
calculations employing the local density approximation
~LDA !,4 and probably even the exact exchange-correlation
functional,5–7 systematically underestimate the band gap.
Another more subtle effect is related to the valence-band
narrowing observed for free-electron-like metals,8 which
none of the standard density functional theories can even
hope to reproduce~see Sec. III!.

These and related phenomena can be described within
more refined many-body theories. For example, the so-called
GW approximation9 has been shown over the past decade to
resolve many of the discrepancies between the LDA band
structures and experiment, in many cases predicting excita-
tion energies to within 0.1 eV of their experimental
value.10–12Similarly, quantum Monte Carlo calculations can
be used to obtain reliable estimates of band gaps in
insulators.13–15 Nonetheless, both of these techniques are

rather demanding on computational resources, and for many
purposes, a simpler strategy would be desirable. Moreover, it
would be of great interest to be able to monitor electronic
excitation energies as a function of fully relaxed structural
parameters, for example, during the course of a molecular
dynamics simulation based on total energies. This requires a
cheap and reasonably accurate simultaneous evaluation of
excitation energies and total energies. Although it is pos-
sible, in principle, to calculate total energies within the
GW scheme,16 it is by no means clear that the resulting en-
ergies would be accurate. Previous approximations to the
GW self-energy operator, such as the quasiparticle local den-
sity approximation~QPLDA!,17–20therefore sacrifice the cal-
culation of reliable energy estimates for an improvement in
the description of excited states.

In the present work, as a step towards a theory forsimul-
taneousband structure and total energy calculations, we
point out an inherent freedom in the choice of density func-
tionals: the freedom of assigning part of the exchange-
correlation energy to a modified kinetic energy or similar
nonlocal functional. This freedom can be employed to devise
theories whose accuracy for the prediction of ground state
properties rivals that of the LDA, while at the same time they
yield improved eigenvalue spectra. As an example, we pro-
pose a theory which, for the homogeneous electron gas,
quantitatively reproduces the valence-band narrowing8 pre-
dicted by GW calculations, without affecting the long-
wavelength density response~which is accurately described
within the usual LDA!. This is achieved by introducing a
density-dependent effective mass into the kinetic energy
functional. As an aside, we mention that in a different con-
text, the introduction of a coordinate-dependent effective
mass was recently also explored by Bulgac, Lewenkopf, and
Mickrjukov21 as an approximation to the exchange energy
within Hartree-Fock theories~see also Sec. V!. Their work
was motivated by similar approximations in nuclear
physics.22
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The application of this density functional to the alkali
metals Li and Na shows the expected narrowing of the
valence-band width, without negatively affecting the calcu-
lated bulk moduli and lattice parameters. For semiconductors
and insulators, the new functional also yields significantly
increased band gaps compared to the LDA~see Sec. VI!,
although there remains discrepancy with experiment. It is
hoped that the general strategy outlined here may in the fu-
ture lead to other density functionals which simultaneously
allow quantitative predictions of ground state properties and
excitation spectra, at least for a given class of materials.

The paper is organized as follows. In Sec. II, after a brief
outline of the standard Kohn-Sham partitioning of the den-
sity functional, a more general partitioning scheme is pro-
posed. In Secs. III, IV, and V, we discuss as a specific ex-
ample the implications of introducing a density-dependent
mass into the kinetic energy functional, with particular em-
phasis on the valence-band narrowing and the density re-
sponse in the homogeneous electron gas. In Sec. VI, we
present results of plane-wave pseudopotential calculations
for structural properties and band structures of silicon, ger-
manium, and carbon in the diamond structure, as well as for
metallic bcc lithium and sodium, using this density func-
tional. We end with a summary and conclusions.

II. A MODIFIED KOHN-SHAM THEORY

DFT is based on a theorem by Hohenberg and Kohn23

which states that the ground state energyE@r# of an assem-
bly of electrons with densityr can be written as the sum of
a universal functionalF@r# of the density of the system and
the electrostatic energy of the electrons in the external po-
tentialVext:

E@r#5F@r#1E dr r~r !Vext~r !. ~1!

In the usual Kohn-Sham version1 of DFT, the densityr is
expressed in terms of a fictitious set of occupied one-particle
orbitalsc i as

r~r !5(
i

occ

uc i~r !u2. ~2!

The unknown functionalF@r# is then partitioned as

F@r#[Ts@r#1EH@r#1Exc@r#, ~3!

where the kinetic energy in atomic units24 is expressed in
terms of the one-particle wave functions,

Ts@r#[
1

2(i
occ E u“c i~r !u2, ~4!

and the Hartree energy is given as

EH@r#[
1

2E E dr dr 8
r~r !r~r 8!

ur2r 8u
. ~5!

Within the LDA, the unknown exchange-correlation func-
tional Exc@r# is approximated in terms of the exchange-
correlation energy per particleexc(r) of a homogeneous
electron gas of densityr,

Exc@r#'E dr r~r !exc„r~r !…. ~6!

Other, more sophisticated approximations toExc have been
proposed,2 such as generalized gradient approximations,25

but they usually retain an explicit density dependence and
leave the basic partitioning in Eq.~3! unchanged.

Approximations toExc@r# with such an explicit density
dependence are unable to reproduce the nonanalyticities
which this functional is known to have. For example,Exc
contains nonanalytic contributions due to the difference
T@r#2Ts@r# between the kinetic energy of the interacting
and noninteracting systems, and the exchange-correlation po-
tential Vxc[dExc /dr in semiconductors can exhibit a dis-
continuity upon addition of a single electron.5–7

To remedy this situation, it seems natural and perfectly
legitimate to express some part of the exchange-correlation
energy in the form of a nonlocal functional, whose density
dependence is not explicit, but implicit through its depen-
dence on the wave functionsc i , in the hope that this will
incorporate some of the nonanalyticities. In fact, the usual
kinetic energy functionalTs@r# in Eq. ~4! has just this form,
and its nonanalytic dependence on the density is the reason
why within the LDA, there can be a band gap at all. Hence,
we write more generally

F@r#[Ts@r#1EH@r#1Exc@r#1Enl@r#1El@r#, ~7!

where

Enl@r#[(
i

occ E E dr dr 8c i* ~r ! S~r ,r 8;@r#!c i~r 8!. ~8!

S is some symmetric nonlocal operator which may depend
upon the density, to be discussed in more detail later.

If Exc@r# were the exact exchange-correlation potential,
Eqs. ~3! and ~7! would obviously implyEnl@r#1El@r#[0.
However, ifExc is approximated, for example by the LDA,
Eq. ~3! yields the correct energy only for homogeneous den-
sities rh, and we, therefore, choose the local functional
El@r# such as to ensure thatEnl@rh#1El@rh#[0 for such
densities. In the spirit of the LDA, a natural choice is to write

El@r#[2E dr r~r !e l„r~r !…, ~9!

wheree l(r) is just the energy per particle associated with the
operatorS in the homogeneous electron gas:

e l@rh#5
2

rh
1

8p3E
uku,kF

dk S~k;@rh# !. ~10!

The factor 2 accounts for spin degeneracy, and the integral is
over all wave vectorsk smaller than the Fermi wave vector
kF5(3p2rh)1/3.

In principle, the density dependence ofS can itself be
implicit through a dependence on the orbitalsc i . For ex-
ample, if S is chosen as the Fock exchange operator, we
obtain a hybrid Hartree-Fock energy functional in which the
exchange is described by the nonlocal Fock operator and the
correlation energy is added in a local density fashion. An
example of an operatorS with explicit density dependence
will be given in the next section. In general, the density
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dependence of the operatorS renders the variation of the
energy functional in Eq.~7! with respect to the orbitalsc i
somewhat more complicated than in the usual Kohn-Sham
scheme. This is certainly the case for the Hartree-Fock for-
malism. In many cases, though, especially when the density
dependence ofS is explicit, the additional computational
demand will not be significant. Finally, we remark that the
strategy outlined above is easily generalized to spin-density-
dependent functionals replacing the usual local spin density
approximation~LSDA!.

III. A LOCAL MASS APPROXIMATION

As a specific application of the scheme proposed in Sec.
II, we now consider a density functional which reproduces
the valence-band narrowing in simple metals. We introduce
this functional in a rather empirical,ad hocmanner, although
its general form can be justified in a more rigorous way~see
Sec. V!.

It has been suggested fromGW calculations on the ho-
mogeneous electron gas8 that the experimentally observed26

reduction in the width of the valence band in some free-
electron-like metals with respect to its free-electron value is
at least partly caused by many-body correlation effects. Of
course, the presence of the lattice must also be taken into
account to obtain quantitative agreement with experiments.

In the standard Kohn-Sham partitioning of the density
functional, whatever the precise form of the exchange-
correlation functionalExc@r#, its variation with respect to the
density always results in a constant exchange-correlation po-
tentialVxc for a homogeneous density. As a consequence, the
spectrum is always that of a free-electron gas, and the va-
lence band width is given by the Fermi-energyeF5 1

2kF
2. The

change in the valence-band width cannot be reproduced
within such a scheme. Hartree-Fock theory, on the other
hand, predicts a widening of the valence band by a factor of
1.522 for typical metallic densities, contrary to experiment.

However, it is possible to introduce a nonlocal operator
S as in Eq.~8! which does reproduce the correct valence-
band narrowing. Mahan and Sernelius8 have determined the
change in the width of the valence band in the homogeneous
electron gas for a range of electron densities. Using their data
calculated within aGW approximation neglecting vertex
corrections in the calculation of the dielectric function and
self-energy operator~labeled RPA in their paper!, we find
~Fig. 1! an almost perfect linear dependence27 of the relative
change in the width of the valence bandDe/eF on the den-
sity parameterr s[(4pr/3)21/3:

De

eF
5a1br s[ f ~r!, ~11!

where a50.079 431 andb520.047 964. Of course, this
expression cannot be valid for very low densities~large
r s), where it becomes less than21, and to avoid divergen-
cies in atoms and on surfaces,f may need to be modified at
such low densities.

Using this information, we construct the desired density
functional with the nonlocal operator

Ŝ@r#[2
1

2
¹ f „r~r !…¹. ~12!

The new density functional, which we call local mass ap-
proximation~LMA !, is then given by

FLMA @r#5
1

2(i
occ E @11 f „r~r !…#u¹c i~r !u2dr1EH@r#

1Exc@r#2E dr f „r~r !…r~r !ts„r~r !…, ~13!

where the last term corresponds toEl@r# in Eqs.~7! and~9!
and involves, for our particular choice ofŜ, the average ki-
netic energy per electron of a homogeneous gas of density
r, ts53kF

2/10.
The variation of this energy functional with respect to the

wave functionsc i yields a modified Schro¨dinger equation

Ĥeff@r#c i~r !5e ic i~r !, ~14!

with

Ĥeff@r#[2
1

2
¹@11 f „r~r !…#¹1Vext~r !1VH~r !1Vxc~r !

1 f 8„r~r !…Vlma~r !1Vl~r !, ~15!

where f 8[d f /dr, VH and Vxc are the usual Hartree and
exchange-correlation potentials,Vl[dEl /dr, and

Vlma~r ![
1

2(i
occ

u¹c i~r !u2. ~16!

Like in the usual Kohn-Sham scheme, Eqs.~14!–~16! to-
gether with Eq.~2! have to be solved self-consistently.

For a homogeneous gas, the potentialsV in Eq. ~15! are
all constant, and therefore the eigenvalue spectrum is given
by

FIG. 1. Relative valence-band narrowingDe/eF using theGW
results without vertex corrections by Mahan and Sernelius~Ref. 8!
and the fit according to Eq.~11! ~solid line!.
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ek
h5

k2

2
@11 f #1Vxc1 f 8Vlma1Vl , ~17!

thereby resulting in the desired density-dependent change of
the bandwidth.m* /m[1/@11 f # can obviously be inter-
preted as a density-dependent effective mass, hence the term
local mass approximation. Moreover, it is easy to verify that
the highest occupied eigenvalue, as in the LDA, agrees with
the exact valueekF

h 5eF1Vxc .

IV. LINEAR RESPONSE WITHIN THE LMA

The question now is whether this LMA functional still
accurately describes the total energy in the presence of an
external potential. For near-homogeneous systems, the an-
swer can be found analytically, by calculating the density
response functionx(ur2r 8u)[dr(r )/dVext(r 8) and compar-
ing it to the corresponding quantity within the LDA and to a
quasiexact quantum Monte Carlo calculation.

The Fourier transform ofx is often written in the form

x~q;r s!5
x0~q;r s!

12v~q!@12G~q;r s!#x0~q;r s!
, ~18!

wherev(q)[4p/q2 is the Fourier transform of the Coulomb
interactionv(r )51/r andx0 is the Lindhard response func-
tion of a noninteracting electron gas,

x0~q;r s!52
kF
p2 F121

12x2

4x
lnU 11x

12x UG , ~19!

where x5q/(2kF). The local field factorG(q;r s) screens
the bare Coulomb interaction and accounts, crudely speak-
ing, for the effect of vertex corrections in the perturbation
expansion ofx in terms of the Coulomb interactionv.

It is well established that forq&2kF , theq dependence
of the exactG(q;r s) is reproduced extremely well by the
LDA, which predicts

GLDA~q;r s!5g~r s!~q/kF!2, ~20!

with

4p

kF
2 g~r s!52

dVxc
dr U

r53/~4pr
s
3!

. ~21!

In fact, it turns out that Eq.~20! also holds for the exact
G(q;r s) in the limit q→0. G andGLDA differ significantly
only for q*2kF .

It is straightforward to see that the local field correction
GLMA resulting from the new density functional in Eq.~13!
also satisfies Eq.~20! in the limit q→0. In fact, the only
requirement for a density functional to satisfy this equation is
that it must give the correct energy of the homogeneous gas
at all densities, and hence the general functionals considered
in Sec. II will always satisfy this equation in the limit
q→0 by construction.

The calculation ofGLMA(q;r s) for arbitrary q is more
involved and has been included in the Appendix. As it turns
out @see Fig. 2~a!#, GLMA(q;r s) is almost identical to
GLDA(q;r s) for q&kF . For q.kF , G

LMA(q;r s) contains
terms which grow asq4 and which are absent in the

‘‘exact’’ 28 G(q;r s). Overall, we find thatGLMA(q;r s) is
somewhat too large forq.kF , and we therefore expect the
LMA to slightly overestimate the strength of density varia-
tions with large wave vectors@see, also, Fig. 2~b!#.

Forq.2kF , G
LDA andGLMA are both very different from

the exact form. For many materials, this does not matter: as
evidenced by the success of the LDA, thisq region of
G(q;r s) is rarely explored by the relatively smooth density
variations of the valence electrons. We, therefore, expect that
for systems within the linear response regime of the homo-
geneous gas, total energy calculations with the new density
functional will give energies very close to the LDA energies.
In Sec. VI, we will confirm this expectation for real calcula-
tions on alkali metals. We will also show that even for semi-
conductors, the new functional is at least as successful in
predicting lattice constants and bulk moduli as the LDA,
while simultaneously changing the band structure signifi-
cantly.

FIG. 2. ~a! Comparison of local field correctionsGLDA(q) and
GLMA(q) to the parametrization of the exactG(q) given in Ref. 28
for r s52. ~b! Density response functionsx(q) following from Eq.
~18! for the local field corrections shown in~a!.
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V. RELATIONSHIP
TO SELF-ENERGY APPROXIMATIONS

We have introduced the LMA in a semiempirical fashion
as a means of reproducing the valence-band narrowing in
simple metals. Here, we would like to discuss possible gen-
eralizations and justify the general form of the effective
Hamiltonian Ĥeff in Eq. ~15! as the sum of a kinetic term
with a coordinate-dependent mass and a local potential more
rigorously.

We first show, by generalizing an argument in Ref. 21,
that a coordinate-dependent mass arises naturally as a
second-order approximation to any short-ranged symmetric
nonlocal operatorS as in Eq.~8!. Our derivation also cor-
rects the neglect of off-diagonal elements of the mass tensor
in Eq. ~16! of Ref. 21.

Introducing center-of-mass coordinatesx[(r1r 8)/2 and
s[r 82r , we can rewrite Eq.~8! as

Enl5(
l

occ E E dr ds c l* ~r !S̃S r1 s

2
,sDc l~r1s!, ~22!

where S̃(x,s)[S(r ,r 8;@r#). Expanding c l(r1s) and
S̃(r1s/2,s) into a second-order Taylor series aroundc l(r )
and S̃(r ,s), respectively, we find that the first-order terms
vanish becauseS̃(r ,s)5S̃(r ,2s), and we obtain

Enl.
1

2E dr (
l

occ

(
i , j51

d ]c l*

]r i
m̃ i , j

21~r !
]c l

]r j
1E dr r~r !Vnl~r !.

~23!

Here

m̃ i , j
21~r ![2E ds S̃~r ,s!sisj , ~24a!

Vnl~r ![E dsH S̃~r ,s!1
1

8 (
i , j51

d
]2S̃~r ,s!

]r i]r j
sisj J , ~24b!

andd is the dimensionality of the system.
Although the expansion leading to Eq.~23! is strictly

valid only if c l(r ) and S̃(r ,s) vary slowly as a function of
r compared to the range of nonlocality ofS, a suitably cho-
sen effective mass operator can mimic the operation of the
true nonlocal operatorS onto a given subset of wave func-
tions closely even when this condition is not fully satisfied.
For a collection of spherically symmetric atoms, we can al-
ternatively incorporate the off-diagonal elements of the ef-
fective mass tensor by treatingS as a superposition of non-
local pseudopotentials centered on the atomic sitesRI . If we
then replace the action of that pseudopotential on the wave
functions by that of a pseudo-Hamiltonian,29 we can write

(
i , j51

d
]

]r i
m̃ i , j

21~r !
]

]r j
.2

1

2
¹a~r !¹1(

I

b~ ur2RI u!L̂ I
2

ur2RI u
,

~25!

where L̂ I is the usual angular momentum operator with re-
spect to atomI , anda andb are suitably chosen functions.
Possible generalizations of the LMA via such an angular
momentum dependent term are left for future investigations;

at present, it is not clear how to choose the density depen-
dence of the functionb. However, we note in passing that an
operator as in Eq.~25! could also be useful in finding one-
electron Hamiltonians which minimize the exchange energy,
generalizing the one-electron Hamiltonians used in the opti-
mized effective potential methods.21,30,31

It is apparent that in the homogeneous electron gas, a
scalar effective mass can be used instead of a tensor mass. In
the homogeneous gas, the choice ofŜ in Eq. ~12!, which
leads to the quasiparticle dispersion in Eq.~17!, can be
viewed as a quadratic approximation to theGW self-energy
SGW
h
„k,Eh(k)…. The latter results in the quasiparticle disper-

sion,

Eh~k!5
k2

2
1SGW

h
„k,Eh~k!…, ~26!

shown in, for example, Fig. 35 of Ref. 2. Such a quadratic
approximation is reasonably accurate fork&2kF ; for
k*2kF , it breaks down, and therefore the LMA should not
be expected to be accurate for states with energies much
larger than the Fermi energy. The LMA also neglects a small
term linear ink at smallk present inSGW

h
„k,Eh(k)…, and it

does not incorporate the change in the quasiparticle weight
resulting from the energy dependence of the true self-energy
operator.

Even in an inhomogeneous system, a scalar effective
mass arises if we replaceS̃(r ,s) in Eq. ~24a! by theGW
self-energySGW

h of a homogeneous electron gas:

S̃~r ,s!5SGW
h $usu,E~k!2m1mh@r~r !#;r~r !%, ~27!

wherem andmh are chemical potentials of inhomogeneous
and homogeneous systems, respectively, and whereE(k) are
the quasiparticle energies of the inhomogeneous system,
which themselves implicitly depend onS. This is precisely
the replacement made in the QPLDA.17–20With this choice
of S̃, the off-diagonal elements of the effective mass tensor
m̃ i , j

21 given by Eq.~24a! vanish, and the diagonal elements
become identical. We have therefore demonstrated that the
kinetic term in the LMA can be viewed as a local second-
order expansion of the self-energy used in the QPLDA. We
note, however that the energy argumentE(k)2m
1mh@r(r )# in the QPLDA depends implicitly on the quasi-
particle energiesE(k) of the inhomogeneous system,
whereas the nonlocal operator in the LMA, as explained
above, approximates a self-energy similar to Eq.~27! with
E(k) replaced by the quasiparticle energiesEh(k) of the ho-
mogeneous system. This seemingly innocuous replacement
has unfortunate consequences for the accuracy of the de-
scription of Fermi surfaces within the LMA, which will be
discussed in Sec. VI.

For strongly inhomogeneous systems, such as semicon-
ductors and insulators, Wang and Pickett19,20 have shown
that the dependence ofSGW

h (usu,E) on the energyE should
actually be modified to correspond to a homogeneous elec-
tron gas with an artificial gap. In this version of the QPLDA,
SGW
h
„k,E(k)… can no longer be approximated by a quadratic

function ink, and an energy-dependent effective mass seems
to be required. It is not clear how this could be incorporated
into a total energy functional. On the other hand, even for an
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energy-independent mass, the formulation of the LMA via a
total energy functional results in additional local potentials
Vlma andVl @see Eq.~15!# which are absent in the QPLDA
and which have a significant effect on the band structure.
Ultimately, the success and limitations of the LMA for
strongly inhomogeneous systems must therefore be decided
empirically.

VI. COMPARISON OF LDA AND LMA STRUCTURAL
AND ELECTRONIC PROPERTIES

We have performed plane-wave pseudopotential calcula-
tions for the alkali metals Li and Na in the bcc structure and
for the semiconductors Si, Ge, and C in the diamond struc-
ture in order to compare the LMA to the usual LDA. The
numerical techniques employed are standard,32 except for
obvious modifications necessary for the calculation of the
nonstandard kinetic energy operator and the potentialsVlma
andVl in Eq. ~15!.

The pseudopotentials were generated using an algorithm
due to Kerker.33We remark that the atomic calculations used
for the generation of the pseudopotentials were performed
within the usual LDA and not within the LMA. We justify
this inconsistency by noting that it is common to apply self-
energy corrections only to the valence electrons within a
pseudopotential scheme12 ~see, however, Ref. 34!. In fact,
within the QPLDA, it has been suggested~e.g., in Ref. 35!
that the core electrons should not be included in the electron
density arguments entering Eq.~27!.

We also did not include nonlinear core exchange-
correlation corrections,36 which were found to improve36–38

the transferability of pseudopotentials in materials with
strong spatial core-valence overlap such as the alkali metals.
A consistent way of implementing these corrections within
the LMA would require them to also be applied to the den-
sity argument off (r) in the LMA kinetic energy functional.
This would be sensible only if the pseudopotential were also
generated within the LMA. We did not want to cloud the
direct comparison of LMA and LDA with such numerical
complexities, the effects of which are secondary for our dis-
cussion. Instead, we chose to generate the pseudopotentials
for the alkali metals within a neutral valence configuration,
which we believe to be fairly close to the solid environment,
since the structural properties calculated with these pseudo-
potentials are in fairly good agreement with all-electron cal-
culations.

The valence configurations and cutoff radii employed in
the construction of the pseudopotentials are shown in Ta-
ble I, together with the plane-wave cutoffs and the number
of Monkhorst-Pack39 special points employed in the calcula-
tions on the solids. We verified that all the calculations were
well converged with respect to the size of the basis set and
the number ofk points used for Brillouin zone integrations.

Although the valence electrons in the alkali metals feel
only a very weak pseudopotential and are very free-electron
like, the LDA generally yields surprisingly poor results for
their structural properties compared to experiment. For ex-
ample, the lattice constant of Na is underestimated by about
5% within pseudopotential LDA schemes,36 and the situation
is not much improved in all-electron calculations.40,41More-
over, different parametrizations of the exchange-correlation

energy of the homogeneous electron gas can result in size-
able differences in the structural properties and even change
the predicted ground state structures~bcc or fcc!.36,37,42For
all the calculations in the present study, we employed the
Ceperley-Alder form of the exchange-correlation energy.43

We have no reason to believe that the structural properties
should be more accurately described by the LMA than by the
LDA; what we wish to demonstrate is that LMA and LDA
predictions for structural properties agree closely, while the
description of excitation energies is improved within the
LMA. Table II shows that this is indeed the case: for the
metals and semiconductors considered, the LDA and LMA
lattice constants agree to within 1% and the bulk moduli to
within 5%. For semiconductors, the LMA lattice constants
are larger and closer to experiment than the LDA values; for
Li and Na, they are smaller.

The calculations of excitation energies were performed at
the experimental lattice constants shown in Table II. Within
the LDA, the valence bandwidth for Na is virtually un-
changed by the presence of the lattice compared to its free-
electron value. We find a slight increase of 0.25% from
3.235 eV to 3.243 eV, which compares well with all-electron
results.31,41 In lithium, the presence of the lattice reduces the
valence-band width by 27% compared to the free-electron
value ~4.75 eV! ~other authors find 25.6%~Ref. 41! and
26.6%~Ref. 31!!.

The LMA then leads to a reduction of 12.82% for Li and
11.05% for Na with respect to these LDA values~Fig. 3!,

TABLE I. Numerical parameters used in the plane-wave
pseudopotential calculations. The first two columns describe the
valence configuration and cutoff radiir c used in the Kerker~Ref.
33! construction of the pseudopotentials. Also given are the plane-
wave cutoffsEPW and numberNk of irreduciblek points used for
Brillouin zone integrations in the calculations on the solids.

Config. r c EPW ~Ry! Nk

Li 2s0.82p0.13d0.1 2.30 1.90 3.50 25 68
Na 3s0.83p0.13d0.1 2.50 3.00 3.00 20 68
C 2s22p0.83d0.2 1.11 1.01 1.36 100 10
Si 3s23p0.83d0.2 1.58 1.93 1.93 15 10
Ge 4s24p0.84d0.2 1.54 1.98 2.42 25 10

TABLE II. Lattice constantsa and bulk moduliB calculated
within the local mass approximation described in Sec. III as com-
pared to the LDA predictions and experiment for metallic bcc
lithium and sodium and diamond carbon, silicon, and germanium.

a ~Å! B ~Mbar!
LDA LMA Expt. LDA LMA Expt.

Li 3.308 3.275 3.480a 0.138 0.146 0.127a

Na 4.025 3.989 4.220b 0.081 0.085 0.073b

C 3.533 3.565 3.567c 4.51 4.38 4.43c

Si 5.384 5.406 5.429c 0.96 0.92 0.99c

Ge 5.545 5.579 5.652d 0.80 0.71 0.77d

aReference 49.
bReference 50.
cCited in Ref. 51.
dCited in Ref. 52.
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which should be compared to the prediction of Eq.~11! for
r s53.25 ~7.63%! and r s53.93 ~10.93%!, respectively. Al-
though Li has a higher electron density than Na, the relative
bandwidth reduction is larger in Li than in Na, contrary to
what might be expected from Eq.~11!. This is easily under-
stood if we assume that the absolute distortion of the valence
bandwidth due to the lattice is the same within the LDA and
LMA, i.e., the valence band in both cases is about 1.30 eV
narrower than in a homogeneous gas of the same average
density. Since the LMA bandwidth of a homogeneous sys-
tem with r s53.25 is about 4.38 eV, we can then estimate the
LMA bandwidth in the presence of the lattice potential to be
about 3.08 eV, which is close to the value 3.02 eV of the full
calculation.

While the LMA clearly improves some aspects of the
band structures in simple metals, disappointingly it does not
improve the unsatisfactory description of the shape of the
Fermi surface within the LDA. It is known that the LDA
overestimates the amount by which the Fermi surface differs
from a perfect sphere by about a factor of two in the alkali

metals. MacDonald18 has shown that this discrepancy with
de Haas–van Alphen measurements44 is largely corrected for
by the QPLDA. Since the LMA can be viewed as an ap-
proximation to the QPLDA~see Sec. V!, one might naively
expect a similar improvement. We, therefore, performed ac-
curate Fermi surface fits within LDA and LMA, using the
same cubic harmonic expansion and Gaussian integration
techniques45 as MacDonald. The resulting deviations of the
Fermi wave vectorkF and Fermi surface extremal areasA
~defined as in Ref. 18! in Li are shown in Fig. 4. While our
LDA pseudopotential results agree closely with Mac-
Donald’s all-electron LDA results, it is apparent that the
LMA does not reduce the Fermi surface distortions; on the
contrary, it slightly increases them.

This deficiency can be traced back to the energy argument
entering the approximation toS in Eq. ~27!. As shown in
Ref. 18, the change in the Fermi surface distortions resulting
from the use of a nonlocal~NL! self-energy can be estimated
as

kF
NL~V̂!2kF

0

kF
LDA~V̂!2kF

0
'S 11mb~V̂!

1

2kF
0

]SNL

]k U
k
F
0
D 21

, ~28!

wheremb(V̂) is the band mass in the directionV̂. As dis-
cussed in Sec. V,SNL within the LMA is approximately
given by the right hand side~RHS! of Eq. ~27! if the quasi-
particle energiesE(k) of the inhomogeneous system are re-
placed by the energiesEh(k) of the homogeneous electron
gas. Then the derivative on the RHS of Eq.~28! is slightly
negative, resulting in a small increase of the Fermi surface
distortions instead of the desired decrease. On the other
hand, within the QPLDA,SNL on the Fermi surface is ob-
tained from Eq.~27! if we replaceE(k) by the constant
chemical potentialm; then the derivative on the RHS of Eq.
~28! is positive, resulting in a fairly large reduction of the
distortions as observed by MacDonald.

Turning our attention to semiconductors, we find that in
Si and Ge, the LMA results in a substantial increase of the
indirect band gap, from 0.5 eV to 1.0 eV in Si~Table III!
and from 0 to 0.5 eV in Ge~Table IV!. In both cases, the
increase in the direct band gap is somewhat less dramatic.
Note that the effect of spin-orbit splitting was not included in
our germanium calculation. The valence-band width in Si
and Ge decreases slightly with respect to the LDA, but re-
mains in reasonable agreement with experiment.

In diamond carbon~Table V!, the band structures pre-
dicted by the LDA and LMA are almost identical. Clearly,
this indicates that the LMA is not a sufficiently accurate
approximation for self-energy effects in strongly inhomoge-
neous insulators such as carbon. This is not surprising, since
the LMA was constructed with simple metals in mind. It is
nonetheless encouraging that the LMA accurately predicts
structural properties even for semiconductors and insulators
and moves the excitation spectra of Si and Ge in closer
agreement with experiments. It is likely that the implemen-
tation of the general scheme of Sec. II will have no drastic
effects on structural properties also for different choices of
the nonlocal operatorS.

A comparison of cohesive energies would be desirable in
order to further substantiate our claim that the LMA yields

FIG. 4. Relative distortions with respect to their free-electron
values of~a! Fermi surface extremal areasA(V̂) ~for a definition,
see, e.g., Ref. 18!, and ~b! Fermi wave vectorskF(V̂), calculated
within LDA and LMA along different directionsV̂ on the unit
sphere, for Li.

FIG. 3. Comparison of LDA and LMA pseudopotential band
structures for bcc Li and Na.
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total energies with a similar degree of accuracy as the LDA.
To avoid ambiguities in the cohesive energies related to the
use of LDA pseudopotentials and to the neglect of nonlinear
core corrections~see above!, we have recently implemented
the LMA within an all-electron Gaussian molecular orbital
code. Preliminary results55 for Si20 clusters indicate that for
geometries optimized within the LDA, the LMA cohesive
energies in silicon are about 20% smaller in magnitude than
the LDA cohesive energies, thereby correcting the well-
known overbinding observed in LDA calculations. This may
be fortuitous, and further investigations are under way to see
if the improvement is systematic also for other materials.

VII. CONCLUSIONS

The main purpose of the present work was to demonstrate
that the search for density functionals beyond the LDA
should include not only functionals with explicit density de-
pendence, but should be extended to nonlocal functionals
whose dependence on the density is implicit through the
Kohn-Sham orbitals. In contrast to other orbital-dependent
functionals in the literature, such as self-interaction corrected
~SIC! density functional theories,46–48the functionals consid-
ered here lead to a single orbital-independent Schro¨dinger
equation for all orbitals.

We have conjectured that the additional freedom gained
by the introduction of a nonlocal orbital-dependent term can
be used to absorb some of the nonanalyticities of the usual
Exc@r# as a function ofr. In this manner, it should be pos-
sible to construct density functionals where the~unknown!
discontinuity of the exchange-correlation potential upon ad-
dition of a single electron in semiconductors and insulators is
much smaller than for the standard Kohn-Sham partitioning
of the density functional.

As a specific example, we have proposed a density func-
tional with a modified, density-dependent effective mass.
This LMA functional, like the LDA, is exact in the homoge-
neous electron gas, and the long-wavelength density re-
sponse is given accurately. However, in contrast to the LDA,
the LMA also reproduces the valence-band narrowing in
simple metals due to self-energy effects, because it is con-
structed in such a way that the resulting modified Schro¨-
dinger equation contains terms approximating the self-
energy operator in near-homogeneous systems. The
functional, moreover, yields improved eigenvalue spectra
even in semiconductors. Despite these successes, we have
also pointed out difficulties, such as the failure of the LMA
to improve the poor LDA predictions of Fermi surface
shapes in the alkali metals and the remaining discrepancies
between LMA band gaps and experiment in semiconductors.
Possible modifications to remedy these problems are cur-
rently under investigation.

An obvious generalization of the approach described here
would be to combine the LMA with improved density func-
tionals such as generalized gradient approximations. Further-
more, we have indicated that the introduction of a scalar
density-dependent mass is only the crudest approximation
for self-energy effects and that, in general, the nonlocal op-

TABLE III. Comparison of selected LDA and LMA eigenvalue
differences~in eV! for silicon. Also shown are the results of the
GW calculation in Ref. 12 and experimental results quoted therein.

Silicon LDA LMA GWa Expt.b

Eg 0.5 1.0 1.29 1.17

G1v→G25v8 11.9 11.6 12.0 12.560.6
G25v8 →G15c 2.6 2.7 3.4 3.4
G25v8 →G2c8 3.2 3.5 4.1 4.2

X4v→G25v8 2.9 2.7 3.0 2.9–3.3
G25v8 →X1c 0.7 1.1 1.4 1.3

L2v8 →G25v8 9.6 9.4 9.8 9.360.4
L1v→G25v8 7.0 6.7 7.2 6.760.2
L3v8 →G25v8 1.2 1.2 1.3 1.2–1.5

G25v8 →L1c 1.5 1.8 2.3 2.1–2.5
G25v8 →L3c 3.3 3.5 4.2 4.1560.1

L3v8 →L1c 2.7 3.0 3.5 3.45
L3v8 →L3c 4.5 4.7 5.5 5.50

aReference 12.
bCited in Ref. 12.

TABLE IV. Comparison of selected LDA and LMA eigenvalue
differences~in eV! for germanium. Our LDA and LMA results for
Ge do not include relativistic effects, in contrast to theGW results.

Germanium LDA LMA GWa Expt.b

G8v→L4,5c
1 0 0.5 0.75 0.744

G6v→G8v 12.7 12.7 12.9 12.6 –13.1
G8v→G7c 0.1 0.3 0.7 0.89
G8v→G6c 2.6 2.7 3.0 3.006

X5v
1 →G8v 8.9 8.9 9.1 9.360.2

X5v
2 →G8v 3.0 3.2 3.2 3.0–3.7

G8v→X5c 0.7 1.2 1.2 1.360.2

L6v
1 →G8v 10.7 10.4 10.9 10.660.5

L6v
2 →G8v 7.6 7.3 7.8 7.760.2

L4,5v→G8v 1.4 1.3 1.4 1.460.3

G8v→L4,5c
2 3.6 3.9 4.3 4.260.1

G8v→L6c 7.1 7.5 7.6 7.660.1

aReference 12.
bCited in Ref. 12.

TABLE V. Comparison of selected LDA and LMA eigenvalue
differences~in eV! for diamond carbon.

Diamond LDA LMA GWa Expt.b

Eg 4.1 4.1 5.6 5.48

G1v→G25v8 21.3 22.9 23.0 20–25
G25v8 →G15c 5.6 5.8 7.5 7.3
G25v8 →G2c8 13.6 13.1 14.8 15.360.5

L2v8 →G25v8 15.5 16.5 17.3 15.260.3
L1v→G25v8 13.3 13.7 14.4 12.860.3
G25v8 →L2c8 15.4 16.3 17.9 20.061.5

aReference 12.
bCited in Ref. 12.
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eratorS should also contain angular momentum-dependent
terms. This should also be kept in mind in constructing op-
timized effective potentials for Hartree-Fock-like theories.

We have verified through calculations on several metallic
and semiconducting systems that structural properties are de-
scribed equally well by the LMA as by the LDA, a property
which should also hold for many other functionals con-
structed according to the general prescription given in Sec.
II. On the other hand, the LMA eigenvalue spectrum differs
significantly from the LDA spectrum and generally agrees
closer with experimental observations.

Recently, generalizations of the Kohn-Sham scheme simi-
lar to those proposed in Sec. II were independently put for-
ward in a paper by Seidlet al.53 The screened exchange
functional54 investigated by these authors is very different
and more costly than the LMA, since it requires the numeri-
cal effort of a self-consistent Hartree-Fock calculation.
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APPENDIX: LINEAR RESPONSE FOR THE LOCAL
MASS APPROXIMATION

In this appendix, we present some details of the calcula-
tion of the density response functionxLMA(q;r s) and the
local field correctionGLMA(q;r s) resulting from the local
mass approximation introduced in Sec. III. For simplicity,
we will suppress the superscript LMA and the argumentr s in
G andx in the derivation.

Starting from the effective one-particle HamiltonianĤeff
in Eq. ~15!, the change in this Hamiltonian due to an applied
external potentialdVextcos(q•r ) is given by

dĤeff

dVext
5@11 f 8x̃~q!1C~q!x~q!#cos~q•r !

2 f 8x~q!
1

2
¹cos~q•r !¹, ~A1!

where

x̃~ ur2r 8u![
dVlma~r !

dVext~r 8!
, ~A2!

and

C~q![v~q!1
dVxc
dr

1
dVl
dr

1 f 9Vlma

5v~q!1
dVxc
dr

2 f
p2

kF
2 f 8kF

2 . ~A3!

Using perturbation theory, it follows that the first-order
change in the charge density resulting from this first-order
change in the effective Hamiltonian is given as

dr~r !5
4

V (
uku,kF,uk8u

cos@~k2k8!•r #
ek2ek8

^k8udĤeffuk&,

~A4!

whereV is a normalization volume. Similarly, the first-order
change in the LMA potentialVlma is given as

dVlma~r !5
4

V (
uku,kF,uk8u

k•k8

2

cos@~k2k8!•r #
ek2ek8

3^k8udĤeffuk&. ~A5!

Note that theek in Eqs. ~A4! and ~A5! are given by Eq.
~17!. Substituting Eq.~A1! into Eq. ~A4! and evaluating the
matrix elements, we then find fordr/dVext ~suppressing the
argumentq):

x5x̃01x̃0Cx1 f 8~x1x1x̃x̃0!. ~A6!

Similarly, dVlma/dVext is given by

x̃5x11x1Cx1 f 8~x1x̃1x2x!. ~A7!

In Eq. ~A6!,

x̃0~q!5
1

4p3E dk
nF~ek!2nF~ek1q!

ek2ek1q
5

x0~q!

11 f ~r!
,

~A8!

where nF is the Fermi function.x̃0, is a mass-corrected
Lindhard function describing the response of the charge den-
sity to a change in the total potential; it is obtained from Eq.
~A4! for the matrix elementŝk8ucos(q•r )uk&. x1 in Eq. ~A6!
describes the response of the charge density to a change in
the kinetic part of the Hamiltonian, which follows by evalu-
ating Eq. ~A4! with the matrix elements ^k8u2 1

2

¹cos(q•r )¹uk&:

x1~q!5
1

8p3E dk
nF~ek!2nF~ek1q!

ek2ek1q
k•~k1q!. ~A9!

It is easy to see that the same expression results if we calcu-
late the change inVlma with respect to changes in the total
potential, i.e., usinĝk8ucos(q•r )uk& in Eq. ~A5!, which ex-
plains the occurrence of the samex1 in Eq. ~A7!. x2 in Eq.
~A7! describes the response ofVlma to changes in the kinetic
part of the Hamiltonian:

x2~q!5
1

4p3E dk
nF~ek!2nF~ek1q!

ek2ek1q
@k•~k1q!#2.

~A10!

The integrals definingx1 and x2 can be evaluated and the
result can be expressed in terms ofx0 as follows
@x5q/(2kF)#:

~11 f !x152
kF
2

4 F kFp2 1~3x221!x0G , ~A11!

and

~11 f !x25
kF
5

36p2 ~7x226!1
kF
4

12
~7x425x211!x0 .

~A12!

Finally, Eqs.~A6! and ~A7! can be solved forx:
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x5
x0

11 f2Cx022~11 f ! f 8x11 f 82~11 f !~x1
22x2x̃0!

.

~A13!

We find that the error introduced by disregarding the term of
order f 82 in the denominator of this expression is negligibly
small. ThenGLMA is given explicitly as

GLMA ~q;r s!5GLDA~q;r s!1
3

32p
q4f 8~r!

1
1

v~q! S 1

x0~q;r s!
1

p2

kF
D

3S f ~r!1
3

2
r f 8~r! D . ~A14!
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