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Dynamics of the O-H•••O bond proton glass of the typeM12x~NW4)xW2AO4 (M5Rb or K,W5H or D,
A5P or As! has been simulated using the Monte Carlo stochastic-dynamics method that allows one to simulate
real time dynamics. The simulation is based both on microscopic interactions of protons and on interaction
with an external static electric field. The polarization decay and response to step field has been compared with
the Kohlrausch-Williams-Watts stretched exponential form and with predictions of a microscopic ‘‘bound
charge carrier’’ model. Studying the proton dynamics by a field cooling simulation has revealed nonergodic
behavior at low temperatures.@S0163-1829~96!07526-1#

I. INTRODUCTION

Proton glass is an Ising pseudospin glass with a random
bias field.1,2 The Ising pseudospins are the O-H•••O protons
which have spin 1 if located on one side of the H bond, and
spin21 if on the other side. These pseudospins~called spins
from here on! interact with each other and with a random
bias field originating in the random cation placement. This
random bias field smears out the dielectric permittivity cusp
one would otherwise see, in analogy with the magnetic sus-
ceptibility cusp3 seen in magnetic spin glasses as temperature
decreases.

The prototype proton glass discovered by Courtens4 is
Rb12x~NH4)xH2PO4 ~RADP!, a mixed crystal whose par-
ent constituents are RbH2PO4 ~RDP! which is ferroelectric
~FE! below Tc5147 K, and NH4H2PO4 ~ADP! which is
antiferroelectric~AFE! belowTN5148 K. Both crystals have
the same tetragonal structure at room temperature in the
paraelectric~PE! phase. Because Rb1 and NH4

1 ions are
nearly the same size, good crystals over the whole range
0,x,1 can be grown. The frustrated FE and AFE interac-
tions suppress both the FE and AFE transitions in the range
0.22,x,0.74. Astemperature drops for crystals in thisx
range, the normal PE behavior goes over into proton glass
~PG! behavior, but only gradually because of the random
bias field. Accordingly one can speak of PE and PG regimes,
but not of distinct PE and PG phases.

Numerous dielectric experiments have been performed on
proton glass, spanning the range from audio5–7 through radio
and microwave8 frequencies and~in the broader sense! into
the infrared,9 and into the Raman10,11and Brillouin12 scatter-
ing regimes. Except for the highest frequencies~Brillouin
and above! at which one sees inertial effects associated with
local and phonon mode effects, these experiments disclose a
relaxational response resulting from stochastic jumps of pro-
tons within their hydrogen bonds. Specifically, the dielectric
ac response of proton glass starts at high temperatures in the
PE phase as a soft mode similar to that of the FE crystal9 and
moves on cooling to lower frequencies, transforming into a
structural relaxation mode in the PG regime. As is character-
istic of disordered systems, this mode has a frequency spec-
trum significantly wider than that of Debye relaxation, which
indicates emergence of a large spread of permittivity time

constants with decreasing temperature.
The physical processes governing the dynamics on the

microscopic scale are the transverse optical mode, the acous-
tic shear mode, and the proton relaxation mode. In the opti-
cal mode, the phosphate and alkali~or ammonium! ions,
which alternate in chains lying along thec axis, oscillate
against each other. In the shear mode, the unit cell distorts
away from its tetragonal cross section due to motion in the
ab plane. In the relaxational mode, the protons make sto-
chastic yet correlated jumps within their hydrogen bonds by
a process unique to hydrogen-bonded crystals. This process
consists of three parts. First, ‘‘Takagi groups’’ or ‘‘bound
charge carriers’’ are created by the process

H2PO41H2PO4→ HPO41H3PO4.

Next, these carriers in effect diffuse through the crystal by
the processes

HPO41H2PO4→H2 PO41HPO4,

H3PO41H2PO4→H2PO41H3PO4.

Finally, the carriers annihilate by the process

HPO41H3PO4→H2PO41H2PO4.

The optical, shear, and relaxational modes interact, but at
the lower frequencies~below about 1011 Hz! the relaxational
mode can be treated as responding to the average positions
of the heavy ions involved in the optical and shear modes.

Dielectric measurements have recently been applied to
study the nonergodic behavior of polarization in the PG re-
gime. Below some temperature the upper time constant limit
becomes infinite or at least longer than the observation time,
indicating the onset of nonergodicity. In the nonergodic re-
gime, the system cannot reach a new state of minimum free
energy required by changing external conditions~tempera-
ture, field, pressure, etc.! The onset of nonergodicity has
been studied by Levstiket al.13 and by us14 using the field
cooling technique, in which the polarization is measured in a
cycle consisting of successive zero field cooling~ZFC!, field
heating ~FH!, field cooling ~FC!, and zero field heating
~ZFH! processes. Below the temperature of the onset of non-
ergodicityTc, the value of polarization at given temperature
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and electric field depends on whether this state of the crystal
has been obtained in a FH or FC process.

Theories for proton glass begin with the Slater/Takagi
model for FE crystals of the RDP type15,16and the Nagamiya
and other theories for AFE crystals such as ADP.17,18 The
coupling of these theories to explain proton glass properties
in mixed crystals because of frustrated FE and AFE interac-
tions has been done in several different ways.19–21 In all of
these models, the interactions between the ‘‘acid’’
O-H•••O bond protons~or deuterons! can be represented as
Ising interactions between pseudospins. The acid protons
also feel a bias in the time average if they have one neigh-
boring NH4

1 ion which is hydrogen bonded to one of the
proton’s oxygen neighbors, while the other oxygen has a
Rb1 neighbor which forms no hydrogen bond with it. The
bias effect cannot be represented by a pseudospin-
pseudospin interaction; in pseudospin language it is repre-
sented as a random bias field interacting with the pseudospin.
So far, quantum effects have been considered relatively un-
important in proton glass behavior, except insofar as they
determine the pseudospin-pseudospin coupling strength
which depends strongly~about a factor of 2! on whether the
crystal is deuterated.

Previous computer simulations have been made by Selke
and Courtens,22 who used the Monte Carlo Metropolis algo-
rithm to reproduce the topology of the experimentally deter-
mined phase diagram, by Grimm and Parlinksi,23 who stud-
ied the local motion of protons in a two-dimensional glass
model for deuterated RADP by means of a molecular-
dynamics method, and by us1,24 employing the Monte Carlo
stochastic-dynamics approach.

This paper continues with a description in Sec. II of the
proton-proton interactions used in this simulation. Section III
explains the basic program outline and important details of
the algorithms used. The results for the step electric field
response~Sec. IV! and for nonergodic behavior~Sec. V! are
then described, analyzed, and compared with the experimen-
tal data. Finally, we outline in Sec. VI our other Monte Carlo
results and what direction future simulations should take.

II. MODEL INTERACTIONS

We now describe the interactions1,21,25employed in gen-
eral in our simulation technique, together with numerical val-
ues of these interactions~in units of the Slater15 temperature
TSlater5«0 /kB) employed in the simulations reported in this
paper. According to the Slater model15 the ferroelectric tran-
sition temperatureTc ~in a pure ferroelectric crystal such as
RbH2PO4) is given bykBTc5«0/ln2, so«0 in temperature
units ranges from 70 to 160 K for various ferroelectric crys-
tals which are constituents of proton and deuteron glasses.

The specific interactions1,22 we employ in our simulation
are as follows.

~i! Interaction between two protons at the top, or two
protons at the bottom, of a PO4 group.

~ii ! Interaction between one proton at the top, and one
proton at the bottom, of a PO4 group; these two interactions
together give both the Slater energy«0 which is higher for
the nonpolar than for the polarW2AO4 groups and explains
the ferroelectric transition, and the Takagi energy«1 which
is the creation energy for Takagi16 WAO4 and W3AO4

groups. The Takagi groups are ‘‘bound charge carriers’’
whose effective diffusion by means of proton intrabond
transfer in O-H•••O bonds is the major mechanism for po-
larization change in these crystals. Our choices for the inter-
action energies«0 and«1 yield «155«0 .

~iii ! Interaction of two protons across an ammonium ion
from each other which reflects the ammonium ion’s procliv-
ity to form strong hydrogen bonds only with two oxygens
which are adjacent in a projection along the tetragonal axis,
out of the four more or less tetrahedrally arranged oxygens
which it bonds to. This interaction causes the antiferroelec-
tric transition in the fully ammoniated crystal. In mixed crys-
tals this interaction together with the previous two ‘‘ferro-
electric’’ interactions constitute the frustrated interactions
which lead to proton glass behavior.

~iv! A corresponding interaction, probably weak~zero in
this simulation! between the above two hydrogens but in the
case that the cation site is occupied by an alkali ion and not
ammonium.

~v! A parallel-bond or dipolar interaction~zero in this
simulation! between protons which are close to each other
but not attached to the same PO4, so that this interaction is
mostly of the electric dipole type; this interaction is satisfied
for both the ferroelectric and antiferroelectric observed
phases.

~vi! An interaction between the proton and the lattice,
which is nonzero only if one of the oxygens in its
O-H•••O bond is H bonded to an ammonium ion, while the
other oxygen’s cation neighbor is an alkali ion and not am-
monium; this is the random bias interaction while all the
other interactions~i!–~v! are pseudospin-pseudospin interac-
tions. The positive value 0.4 in this simulation tends to repel
the proton away from the oxygen which is hydrogen bonded
to an ammonium ion.

~vii ! An interaction with a static external electric field
applied along the tetragonal axis of the crystal. In the field
each proton has additional energyUe whose sign is deter-
mined by the sign of the proton pseudospin.

The disagreement of the theories on which interactions
are present or are significant for proton glass behavior, and
the fact that these are mean-field theories which take random
cation placement into account only in an average way, em-
phasize the need for Monte Carlo simulations in which the
cations can be placed randomly, and any desired number and
strength of interactions can be included in the model without
greatly increasing simulation run time. In particular, simula-
tions of dynamic phenomena can be made almost as easily as
for static effects, while development of theories for dynamic
phenomena is rather difficult and various approximations
must be made.

III. MONTE CARLO PROGRAM DESCRIPTION

We begin the simulation by specifying run parameters and
initial conditions. Run parameters include temperature, elec-
tric field, crystal size, interaction energy parameters, run
length, interval between storage of output parameters, and
fraction x of ammonium ions. The initial conditions avail-
able are a completely ferroelectric proton configuration, a
completely antiferroelectric one, and a random configuration
obtained as the result of a previous run. Output parameters
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include internal~configurational! energy, polarization, and
the fractional numbers of the two types of ferroelectric
H2PO4 groups and the four types of antiferroelectric groups.

At the start of each run, each cation is specified to be an
NH4

1 ion if a random numberr (0,r,1) is less thanx,
and a Rb1 ion if r.x. This randomness, together with the
randomness of the proton jumps described below, insures
that the simulation has essentially the same randomness as
the actual crystal.

The body of the calculation consists of moving protons
from one end of their O-H•••O bonds to the other with
probabilities based on temperature and on the proton’s inter-
actions with other protons, with the lattice, and with any
external electric field.

We use the following method to decide when the protons
make their intrabond jumps:

O-H•••O↔O•••H-O,

which are responsible for the unique features of proton glass
dynamics. Starting with the protons in the chosen initial con-
figuration, we calculate the configurational energy change
B resulting as each proton jumps to the other side of its bond.
This energy is based on the Ising pseudospin interactions of
the proton with its neighboring protons, with the lattice, and
with the external field, as explained in Sec. II. From this
energy changeB, the temperatureT, and a random number
R, we calculate, from Eq.~2! below, the timeTJ when each
proton will jump. The proton with the earliest jump time
TJ1 is found from this timetable, and is moved to the other
end of its bond. The ‘‘clock’’ measuring the total elapsed
time is advanced toTJ1 , and energy changesB are calcu-
lated for its next jump and the jumps of the neighbors it
interacts with. Then new jump time intervalsTJ are calcu-
lated for this proton and its neighbors, and corresponding
jump timesTJ11TJ are entered into the timetable. The ear-
liest jump timeTJ2 in the new timetable is found, and the
above procedure is repeated. The process is continued until
the total number of jumps specified as the run length is
reached. This approach, similar to one developed by Bortz,
Kalos, and Lebowitz,26 allows us to perform real-time dy-
namic simulations.

We use the following procedure to calculate the time in-
terval TJ in attempt time units from one jump of a given
proton to its next jump. First, we calculate the resulting con-
figurational energy changeB. Then, a random number gen-
erator selects a random numberR between 0 and 1. ThisR
has the physical significance that the functionR(TJ) is the
probability that the proton will not jump in an intervalTJ
since its previous jump. It obeys the differential equation

2dR/dt5n0R/~11eB/T!,

which in terms ofTJ[n0t (n0 equals jump attempt fre-
quency! becomes

2dR/dTJ5R/~11eB/T!.

For eachR within an intervaldR, there corresponds aTJ
within an intervaldTJ . The correct correspondence between
R andTJ is obtained by integration:

2E dR/R52 lnR5E dTJ /~11eB/T!5TJ /~11eB/T!;

~1!

TJ52~11eB/T!lnR. ~2!

Here, 11eB/T is the jump time constant~mean value of
TJ) in units of the attempt time~inverse attempt frequency!.
A common choice of the well-known Metropolis algorithm
is 1 if B is negative andeB/T if B is positive; this gives the
proper ratioe2B/T for upward and downward jump prob-
abilities. Our choice is less common but also obeys the de-
tailed balance condition and does not have an artificial kink
in time constant vsB at B50.

The time evolution of crystal parameters is partially pre-
served by storing, after everyI w jumps, the FE order param-
eter, the two AFE order parameters, the configurational en-
ergy, the clock time in units of the attempt time, and
percentages of each type of HyPO4 group, wherey50 to 4.
The final crystal configuration is stored also. The FE order
parameter is at the same time a properly normalized polar-
izationP (P51 for a completely polarized crystal!. It is this
normalized polarization that we discuss hereafter.

A recent modification to the program allows us to switch
the static external field on or off after a certain number of
jumps. We have performed two types of simulations involv-
ing the field. First, we have studied the polarization response
to an electric field step. Starting from the ferroelectric con-
figuration, we compare the polarization decay without the
field and its rise in the electric field both for FE (x50) and
PG (x50.5) crystals. These runs have been performed at
various temperatures and values of the electric field. The
number of steps in these runs is 23105, and the field is
applied in the middle of the run.

A second program modification allows us to study the
nonergodic behavior of the proton glasses by modeling the
cycle of the ZFC, FH, FC, and ZFH processes. After a run at
a given temperature we calculate the average value of the
polarization and change the temperature by a small step~the
largestDT50.01 in units of the Slater temperature!. Since
the dynamics of the system at low temperatures is slow, we
have to increase the total number of jumps up to 107 for each
temperature. Consequently, such simulations consume con-
siderable computer time, requiring a few weeks of computa-
tion on our HP-Apollo 9000/720 workstation.

IV. RESPONSE TO STEP ELECTRIC FIELD

In the first above-mentioned type of simulation we obtain
both the decay from a fully polarized configuration without
field and the polarization rise from zero in the external field.
We check the results against the exponential law

P/Pi5exp@2~ t2t1!/t1#, ~3!

wherePi is the initial polarization andt1 is the time con-
stant. The simulated decay starts only after at least one pair
of ‘‘bound charge carriers’’ has been created, so we must use
an additional parametert1 to offset the beginning of decay
from t50. To describe the polarization rise in the field to its
final valuePf we use the expression
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P/Pf512exp@2~ t2t2!/t2#. ~4!

Here the parametert2 offsets the start of rise to the moment
t2 when the field is applied.

When the polarization decay becomes ‘‘nonexponential,’’
we check it against the phenomenological Kohlrausch-
Williams-Watts~KWW! ‘‘stretched exponential’’ law, given
by

P/Pi5exp@2~ t/t!b#, ~5!

wheret is the ‘‘time constant’’ andb is a ‘‘stretch expo-
nent’’ between 0 and 1.

The decay is also checked against the expression from our
‘‘bound charge semiconductor’’ model, which is rather com-
plicated but which in the proton glass temperature regime
has approximately a ‘‘logarithmic gaussian’’ form given by

P/Pi5exp@2 ln2~11t/t!#. ~6!

We omit the obvious counterparts of expressions~5! and~6!
for the case of polarization rise.

We have made simulations for the values of external field
energyUE50.1, 0.3, and 0.5~in units of Slater temperature
TSlater! both for FE (x50) and PG (x50.5) model crystals.
These simulations were made on a ‘‘crystal’’ consisting of
838385512 unit cells ~4096 protons! with periodic
boundary conditions. We do not recalculateUE to the exact
value of actual external electric field, but a simple estimate
shows that fields employed in our simulations are about one
order of magnitude higher than those available in practice.
We have to choose such high values in order to obtain more
pronounced data.

The simulations show the expected result, that the decay
takes place with a single time constant at high temperatures
and down to the onset of proton glass behavior. Figure 1
shows the typical results forT52.25TSlater, UE50.5 for FE
and PG samples. Both decays are well described by Debye
relaxation~3!. The polarization rise for the FE crystal is de-

scribed by the KWW law~5! with an unusual value of
‘‘stretch exponent’’b51.25. We ascribe this fast ‘‘squeezed
exponential’’ rise of polarization to the extremely high value
of external field, since the results forUE50.1 giveb51. For
the PG sample the polarization rise is stretched even at high
temperatures,b50.9.

As temperature decreases, the FE sample undergoes the
ferroelectric phase transition and the number of jumps in our
simulations has been too small to observe the extremely slow
relaxation, which would be governed by domain wall migra-
tion. The PG sample has no phase transition and develops a
larger and larger spread in time constants. In the proton-glass
state the polarization behavior~shown in Fig. 2 for
T5T Slater, UE50.5) can be satisfactorily described both by
the ‘‘stretched exponential’’ law~5! and the ‘‘bound charge
carrier’’ model~6!. We see that~6! works better at the initial
stage of decay, while~5! takes over at later stages. Though
we cannot clearly distinguish the two alternatives using the
data obtained so far, the simulation results are in good quali-
tative agreement with dielectric experiments5–11 that show
nonexponential response in the PG regime. Future simula-
tions are planned to determine more closely the shape of the
response, to apply the exact expression forP from the
‘‘bound charge carrier’’ model, and to obtain the temperature
dependence of the parameters involved.

V. NONERGODIC BEHAVIOR

For studying nonergodic behavior we consider the nor-
malized polarizationP as a function of time at each tempera-
ture. Typical plots ofP vs t are shown in Fig. 3~note the
different time scales for high- and low-temperature curves!.
At high temperaturesP quickly relaxes to equilibrium after
the temperature change, so the plot ofP vs time is generally
horizontal with some fluctuations. Below the ergodic tem-
perature, equilibrium cannot be reached during the time of
‘‘observation,’’ and slow relaxation occurs as sudden jumps
of P. These jumps, instead of a smooth asymptotic behavior,
result from the finite size of the model crystal. The cause of
the polarization change is the diffusion of the Takagi pairs.

FIG. 1. Normalized polarization as a function of jump time~in
attempt time units! for FE ~circles! and PG ~diamonds! model
samples at a high temperature~in units ofTSlater). The polarization
decays from a fully polarized initial condition~solid lines: Debye
relaxation! and rises after applying the external field~solid lines:
KWW law!.

FIG. 2. Normalized polarization as a function of jump time~in
attempt time units! for PG model sample at a low temperature.
Solid line: ‘‘bound charge carrier’’ model; dashed line: KWW law.
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When our small model sample has no Takagi pairs at all, the
polarization is frozen in for a long time. Then, following the
creation of a pair, the polarization changes. After the annihi-
lation of the pair the polarization is frozen in at a new level.

We take the average value ofP as the polarization at a
given temperature, because one might consider the computer
as a ‘‘measuring device’’ that returns the quantity averaged
over the observation time. Calculations that specify the total
elapsed time~in attempt time units! rather than the total
number of jumps for each run will probably better simulate
the real experiment, in which temperature is changed by
steps at a constant rate. However, this modification of the
program will waste computer time for runs at high tempera-
tures, because the system will remain unchanged for a long
time after equilibrium has been reached. We have not yet
performed such simulations.

The average value ofP is plotted againstT in Figs. 4 and
5, to display temperature dependence of normalized polariza-
tion for each process of cooling and heating. The results of

the nonergodic behavior simulations are in good qualitative
agreement with the experimental data.13,14 Figure 4 shows
the field heating and field cooling processes for three values
of the external field energyUE . At high temperatures the
normalized polarization obeys the Curie lawP5C/T ~shown
by dashed lines! both for FH and FC runs. At lower tempera-
tures we see departure from this law. The FC behavior can be
qualitatively described by the formula

P5Pi tanh@C/~PiT!#. ~7!

This expression~shown by solid lines! gives the Curie law
with the same constantC as the high-temperature expansion
and allows for the low-temperature saturation ofP. We see
that for the lowest field,UE50.1, Eq.~7! gives a good de-
scription in the whole temperature range. For higher fields,
however, the description is worse. We attribute this discrep-
ancy to the nonlinear behavior in an electric field much
higher than attainable in a real experiment.

Figure 5 shows the low-temperature parts of the FH and
ZFH processes. This behavior can be described by the gen-
eralization of Eq.~7! in the form

P5$Pi2~Pi2Pf !„12exp@2~T/Te!
g#…%tanh@C/$•••%T#,

~8!

where the missing factor in the hyperbolic tangent is the
same as in the braces,Te is the ergodic temperature, and
Pi andPf are the initial and the final values of polarization,
respectively.

Equation~8! describes the ZFH process whenPf50. For
this process

P>Piexp@2~T/Te!g#, ~9!

because in the tanh argument$•••%T,C at low temperature
becauseT is small, and at higher temperature because
$•••% is small.

For the FH process, one first setsPi50 in Eq. ~8! and
then setsPf5Pi . Then

P>Pi„12exp@2~T/Te!g#… ~10!

FIG. 3. Typical time dependence of polarization in the field-
heating process. Note the different time scales for high~circles,
T51.91) and low~diamonds,T50.15) temperatures.

FIG. 4. Field-heating and field-cooling processes for three val-
ues of external field.

FIG. 5. Field-heating and zero-field-heating processes for three
values of external field.
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at low temperature because the tanh factor is near unity. At
higher temperature,P approaches the expression of Eq.~7!.

The parameters used in the fit to Eq.~8! are shown in
Table I. The values of the exponentg are of special interest.
The following simple considerations14 based on the bound
charge semiconductor model27,28 give g56. The dielectric
relaxation results from the diffusion of HPO4 and H3PO4
‘‘bound charge carrier’’ groups by means of intrabond pro-
ton transfer. Below the ergodic temperatureTe the random
potential barriers encountered by these groups are so high
that on a reasonable time scale the diffusing groups are con-
fined to some regions. During the observation time the po-
larization in the inaccessible portion of the crystal remains
frozen in. Thus the amount of polarization change must be
proportional to the volume of the regions accessible to the
diffusion. The diffusion takes place in a fractal potential with
individual potential steps distributed randomly up and
down.28 Therefore, the maximum barrier encountered in dif-
fusingN net steps is proportional toN1/2 ~this is similar to
the dependencer}N1/2 for position vs step number in the
well-known ‘‘drunkard’s walk’’!. At a given temperature
T, the diffusion distance possible in a reasonable time is thus
proportional toT2, and the volume available to the diffusing
group is proportional toT6. However, more elaborate
analysis29 that takes more details of the bound charge semi-
conductor model into account but still makes some approxi-
mations givesg53. Surprisingly, theT6 dependence better
fits the experimental results.14,29 Our computer simulations
give g56 except for the highest field, when the best fit has
been obtained withg53. Thus presently we cannot distin-
guish the two possibilities from our simulations.

Another puzzle revealed in the simulations is the strong
dependence of the ergodic temperatureTe on the electric
field. With increasing field one might expect a small de-
crease inTe ~because the ordering effect of the external field
decreases the range of states available to a system!, but we
did not expect such a strong dependence. Moreover, for the
highest field the ergodic temperature differs significantly for

the field-heating and zero-field-heating processes. Future
simulations are needed to determine whether these results are
computer artifacts or are due to the extremely high electric
field.

VI. CONCLUSION

The reported results are only the first step in applying the
Monte Carlo stochastic dynamics method, but they show that
the method is a useful tool for studying the microscopic na-
ture of proton glass. Further simulations and improvements
of the algorithm are needed. At low temperatures much of
the computer time is spent for the situation when a proton
returns to its previous position after the next jump, without
changing the polarization of the sample. For better efficiency
at low temperatures, the algorithm must directly consider the
processes of creation, diffusion, and annihilation of ‘‘bound
charge carriers’’ rather than the jumps of individual protons.
Other possible applications include calculating the ac permit-
tivity in an alternating electric field and applying the method
to other proton glass systems, such as the quasi-one-
dimensional betaine phosphate–betaine phosphite mixed
crystal.30

Besides the results reported in this paper, other results
have been obtained in the framework of Monte Carlo sto-
chastic dynamics study. The phase diagram including effects
of coexistence of the PE/PG phase with the FE or AFE phase
has been mapped out. Permittivities for various frequencies
have been obtained using Fourier analysis and have been
compared with the predictions of our microscopic ‘‘bound
charge carrier’’ model and with experimental ac permittivity
results. Effects of the random bias ‘‘field’’ caused by random
cation placement have been studied and the paths of the
WAO4 andW3AO4 bound charge carriers, which in effect
move by intrabond proton transfer, have been followed from
creation to annihilation. All these results will be published
elsewhere.
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temperature in the low temperature regime.

UE C Te g Pi ,Pf MCS ~LT!

0.1 0.15 0.53 6 0.138 0.13106

0.3 0.43 0.37 6 0.33 103106

0.5 0.73 0.19~FH! 3 0.485 53106

0.31 ~ZH!
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