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A simple analytical embedded-atom meth@hM) model is developed. The model includes a long-range
force. In this model, the electron-density function is taken as a decreasing exponential function, the two-body
potential is defined as a function like a form given by Resel. [Phys. Rev. B33, 7983(1986], and the
embedding energy is assumed to be an universal form recently suggested by Banerjea and Smith. The embed-
ding energy has a positive curvature. The model is applied to seven fcc it#dtadg, Au, Cu, Ni, Pd, and Bt
and their binary alloys. All the considered properties, whether for pure metal systems or for alloy systems, are
predicted to be satisfactory at least qualitatively. The model resolves the problems of Johnson’s model for
predicting the properties of the alloys involving metal Pd. However, more importditlyy investigating the
structure stability of seven fcc metals using the present model, we found that the stability energy is dominated
by both the embedding energy and the pair potential for fcc-bec stability while the pair potential dominates and
is underestimated for fcc-hcp stability; afid) we find that the predicted total energy as a function of lattice
parameter is in good agreement with the equation of state of &aslefor all seven fcc metals, and that this
agreement is closely related to the electron density, i.e., the lower the contribution from atoms of the second-
nearest neighbor to host density, the better the agreement becomes. We conclude the falipengan
EAM, where angle force is not considered, the long-range force is necessary for a prediction of the structure
stability; or (ii) the dependence of the electron density on angle should be considered so as to improve the
structure-stability energy. The conclusions are valid for all EAM models where an angle force is not consid-
ered.[S0163-18206)07727-2

I. INTRODUCTION significant contribution of Daw and Baskes is that they ex-
tended this ideal to write the energy as an embedding energy
Pair potentials have until now been the most popular applus a core-core repulsion potential. This embedding energy
proach for calculating bulk and defect properties of solidsand repulsion potential can then be obtained by fitting ex-
However, a pair-potential model does not represent the fregeerimental data. Though this method is found to be simple, it
electron energy in real metals, which is of considerable im-can correctly represent the structure and energetics of more
portance in calculations for various problems, such as vaflexible metal systems, such as surface, defects, impurities
cancy formation energy and elastic constants; also, thetal® This method is called the embedded-atom method
ambiguity of volume concerning a defect is not avoided in(EAM). Subsequently, various similar models were also pro-
the pair potentiald? On the other hand, although self- posed by many authofg:®~12
consistent energy-band and total-energy calculations using In the development of this method, as seen, an underlying
the density-functional formalisirhave shown exactitude for theme is computational simplicity, so that the interactions
treating such problems, using them to perform calculationsnay readily be used for large molecular dynamics or Monte
for a system containing a large number of particles is not &arlo simulations. The EAM of Daw and Baskes is simple,
practical proposal at the moment. Hence developing an enbut its embedded energy and pair potential are given in the
pirical (or semiempirical method which can solve these form of spline functions.Indeed, this will give rise to some
problems of a pair potential, but which is more efficient thaninconvenience for calculations. More unfortunately, due to
the first-principles technique, is of great interest. In the lasits unanalytical form this EAM model is not easy to use to
ten years, this technique for treating metal systéewven for make an extension including an angle force, while a more
treating covalent materidlshas been developed and usedflexible EAM model should include an angle forté.ike-
successfully in quite extensive fields of computer simulationwise, the initial EAM of Daw and Baskes cannot be used to
involving material scienc&?*°~13This method was origi- study alloys, since the information used in Daw and Baskes’
nally presented by Daw and BasKeand its basic ideal can empirical fit actually only determines the embedding energy
be interpreted in the framework of density-functional and its first two derivatives for electron densities near the
theory® From the point of view of this theory, the energy average host electron density of the bulk pure materials at
required to place a small impurity atom in a lattice is deter-equilibrium? Foiles, Bakes, and Daw gave another modified
mined solely by the electron density at that particular siteyersion, where the total energy of a system is designed to
without considering the origin of the electron densith  follow the equation of state of Roset al.’ and the pair
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potential is assumed to be an analytical form. The embedthe electron density on angle should be considered so as to
ding energy can be determined by this total energy minus thamprove the structure-stability energy.

energy of the pair potential, and becomes a tabulate function This paper is arranged as follows: First, we give our po-
of the host electron densifyThus properties away from the tential model. Then we present some applications of the
equilibrium state are regarded as fitted in this method. Folmodel to the seven pure metals and their alloys, and the
lowing this ideal, many authors also constructed variousstructure stability and equation of state are also discussed in
specified potential models® Johnson’s analytical nearest- detail. Finally, we summarize our main conclusions.
neighbor modélis, more or less, inspired by this ideal. But,

the weakness of this scheme is that the second derivative of Il. MODEL AND METHOD

the embedding energy will become smaller than zero in the - yyiihin the framework of the EAM theory, the total inter-
case when the two-body potential changes more rapidly thag energy of the system dfl atoms is described as the

the_equation of state (.Jf Rost al. This behavior may give nergy required to embed theBeatoms into the homoge-
an incorrect coordination dependence between bond Iengﬁbous electron gas caused by surrounding atoms plus a cor-

apfd te_znerg)},d_and IS not_cibser\r/]eo(lf%;llatlhe gg!c_ulatlon_s of rection of energy from two-body interactions. Thus this total
effective-medium or quasiatom theoty.*°In addition, as in energy can be expressed’as

the initial EAM of Daw and Baskes, this method may be

difficult to extend to include an angle force due to the unana-

lytical form of the embedding energy. Though Johnson gave Ewo= 2 Filp)+ 2 #(rij), 1)

an analytical EAM modél° which is similar to Foiles, ' )

Baskes, and Daw’'s model, Johnson’s model suffers fromwhereE, is the total internal energys;(p;) is the embed-
some problems of dilute-limit heats of the solution and theding energy required to place atanin an electron density
phase stability of alloy systems involving metal palladitim. p; ¢(ri;) is the two-body potential between atornsand

In the present paper we will present an alternative comj, rij is the separation distance related to the specified pair of
pletely analytical EAM model which includes a long-range atomsi and j, and p; denotes the host electron density at
force. In this model, the electron-density function is taken asatomi due to all other atoms. According to the linear super-
an exponentially decreasing function, the two-body potentiaposition approximation this host electron density can be writ-
is defined as a function like a form given by Rasteal®and  ten as the sum of the electron dendify;;) of the individual

the embedding energy is assumed to be of the universal forgtomj, i.e.,

recently suggested by Banerjea and Srhitthe potential

parameters of this model are determined by fitting the basic

bulk properties of a pure metal. This development is impor- Pi:j;) f(rji). 2

tant becausé) its embedded energy has a positive curvature

and this potential resolves the problem of Johnson's potential Note that the embedding functidf(p) is universal, in
model mentioned abovsii) its simple and analytical form that it does not depend on the source of the host electron
may be easy to use to make a further extension including adensity. Thus the same embedding function can be used prin-
angle force; andiii) this model can reproduce the equation cipally to calculate the energy of an atom in an alloy that is
of state of Roset al® very well (see below, and this point used in the pure material. However a trap should be avoided;
is necessary for calculating the properties of a system, say dre., in this situation the embedding energy must be deter-
alloy system, where the host electron density is well awaynined in a wide range of host electron density rather than
from that of bulk pure material at equilibrium. To our knowl- only at equilibrium. Foiles, Baskes, and Dahave shown
edge, our present model is the simplest one in its form. Onéhat this can be accomplished by requiring that the total en-
of our purposes is to present a simpler and more practicablergy as a function of lattice parameter follows the equation

EAM model. of state of Roseet al® We will show that it can also be
In order to test the reliability of our present model, the attained by virtue of an alternative method below.
model is applied to seven fcc metéfs, Ag, Au, Cu, Ni, Pd, As seen above, E@l) has a clearcut physical picture, but

and Pj and all their binary alloys. The properties, including based on different underlying theories it can be interpreted in
the equation of state, surface relaxation, surface energy, dlifferent manneré:** This makesF(p), ¢(r), andf(r) able
vacancy binding energy, and the formation energy of vato take different specific functional forms, respectively. Fin-
cancy at(111) surfaces of the seven pure metals, as well asiis and Sinclair proposed that tlied hybridization in the
the dilute-limit heats of solution of the alloys, the heats ofsecond-moment approximation can be described by(Hq.
formation, and the lattice constants of the intermetallic com-This “N-body” potential has been applied to defects in bcc
pounds withL1, andL1, structures, are calculated. All the metals? The “local volume forces” represents an alternative
results predicted, whether for pure metals or their alloys, ar@arametrization of the EAM by Voter and Chen, and has
found to be in agreement with those from experiments obeen applied to surface relaxation and grain boundaries in
from more level calculations expected for only one case obinary metallic alloys® The “glue model” of Ercolessi,
impurity Pd in host Ni. Moreover, in order to understand theTosatti, and Parrinello also belongs to the EAM class of
limit of an EAM model, we investigate the structure stability models, and has been applied mainly to surface
and equation of state and discuss their physical originsreconstructiond! The embedding function and pair interac-
These will show thati) for an EAM, where angle force is tion can also be obtained from first-principles calcu-
not considered, the long-range force is necessary for a prdations’®'° In practice, one prefers an empirical or semi-
diction of the structure stability; angi) the dependence of empirical approach to obtain these functions. In many earlier
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EAM models®!° ¢ is assumed to be an analytical form, and Without a loss in general, for pure metals thecan be taken
F(p) is a tabulated function of the host electron density.as unit. But for an alloy system the scaling fact@rshould
More recently Johnson gives an analytic EAM model for fcche specified by the properties of the alloy. Details will be
metals’ The deficiencies of these models were mentioned ingiven in Sec. III.
Sec. |, and we do not attempt to repeat it here. In our present Having specified the functional forms 6fr), ¢(r), and
scheme, we have fixed analytical forms#fr), F(p), and  F(p), we now describe the fitting procedure. The parameters
f(r), chosen to be physically plausible, and adjusted so thaf, a, 3, r,, andF, are determined by minimizing the root-
they would well reproduce basic physical properties of asquare deviationX,,,) between calculated and experimental
pure metal. thermodynamic data. This is accomplished using a simplex
Banerjea and Smith have shown that a simple exponentigrocedure® For the materials Al, Ag, Au, Cu, Ni, Pd, and Pt
function can be used to represent the host electron densitlie experimental data consist of the three elastic constants
quite well for bulk, near-vacancies, and free surfaces, and fofc,,, c,,, andC,,), the vacancy formation energ),
diatomics'’ Thus, at the approximation level, we can assumene equilibrium lattice constantag), and the cohesive en-
that the atomic electron density also follows this exponentiapygy (£.). In fitihng we take the cutoff distance as
form, and we obtain r .= 1.65,. The fitting results and the potential parameters,
_ o together with the experimental data to which they were fit-
F(r)=feexd = x(r=re)l, © ted, are displayed in Table I. As seen in Table I, the calcu-
wheref, is a scaling constant,, is the equilibrium nearest lated lattice constants and the vacancy formation energies are
distance, and, is an adjustable parameter that must be dein excellent agreement with the respective experimental data,
termined. In obtaining additional functions of the EAM, a expect for the vacancy formation energy of Ni, with an error
caution should be kept in mind; that is, the embedding funcof 0.03 eV. For cohesive energies the agreement of the pre-

n n

+Fy

tion should have positive curvature. This ensures that theliction and experiment is also seen to be good, and the larg-
our model we take the embedding function as the universgberiment. The calculated elastic constants are in general
form suggested by Banerjea and Sntitihen agreement with experimental results, though for Ni the dif-
_ Al P P sults remains as large as 21%.
Flp)= Fo[l In( “ For a comparison, it is worth mentioning that in the model
Elotat)r]]z?é\;\;]ee%dr? %gr%?:rﬁrgg?;ggg?g;zr%Osnn:irﬁrlﬁiz N the predicted and the experimental results are found to be
9. 9 J equal to 0.18 eV and 20% for vacancy formation and elastic
Eaelnc?u”r(\a/gtﬁrg fi?(lg:)goc;gtrﬁgiS&th%\t/i'i\iﬁ(e;ri?]isye]?sg)l(z?l?sgé-Iamce constant are identical to the respective experimental
9 values® Thus our model can predict the vacancy formation
ihat of Roseet &l also give the ivariant foror at least an _€13SHC CONSIaNts as good as those of Ref. 5
X 9 Figures 1a) and 1b) show our resulting functions of the
our EAM model we define the two-body potential as an ana- o .
lytical form like the Roseet al. model function. We have can see that the two-body potentials include long-range in
d(r)=—a[1+B(rir,—1)]exd — B(r/r,—1)]. (5) embedding energies from the present lrQodeI are identical to
those from first-principles calculatidf7*® that is, a mini-
equation of Roset al. very well (this is not guaranteed by ding energies rise monotonically with the host electron den-
the fitting.. Thus we believe that we obtain a set of functionssity. In other words, the embedding energies have a positive
from equilibrium. Though the method of Foiles, Baskes, andure of the embedding function determined by the scheme of
Daw’ also gives a set of functions for the EAM, in this Ref. 5 cannot be always maintained, because it will become
the two-body potential changes more rapidly than the equajal changes more rapidly than the equation of state of Rose
tion of state of Roset al. We now turn back. In Eqg4) and ¢t gl.
andF, andn are two constants. We tak&,=E.—E!, and  model to include directional bondiri@ngle forcg, where the
n=0.5, whereE; and Ef) are the cohesive energy and va- two-body potential is obtained from an inversion of total
any physical consideration and only for convenience. Theanalytical form in advance. This modified EAM is complex
remainder—+,, F;, «, and B—plus another parametey  even for the simplification of first-neighbor interactions. As
determined for pure element systerfis.is a scaling factor, the problems involving long-range correlation. If we make
and cancels from the model for the pure element systeran extension of the modified EAM to include a long-range

bond strength decreases with increasing coordinafidn.  est difference is 0.05 eV between the prediction and the ex-
) ference ofC,, between the predicted and experimental re-
Pe (P_e Pe
of Foiles, Baskes, and Daw the largest difference between
treatment does not destroy its positive definition CurvatureConstants, respectively, though the cohesive energy and the
ding function may yield the model function of Roseal? energy better than that of Foiles, Baskes, and Daw, and the
approximate formof the Roseet al. model function. Thus in (1) and theF(p) of the seven metals. From the figures we
teractions, and the general characters of the shapes of the
Below we will see that the above functions can reproduce thenum is seen in the embedding energies, and then the embed-
for the EAM which can well describe the properties awaycurvature in the present potential model. The positive curva-
method the embedding energy will be negatively defined agegatively defined for the case in which the two-body poten-
(5), pe represents the host electron density at equilibrium, Baske$ extended an analytical nearest-neighbor EAM
cancy formation energy, respectively. We do this withoutenergy minus embedding energy which is assumed to be an
appearing in Eq(3) make up five parameters that must beis well known, a long-range force is important for treating
because only ratios of electron densities occur in &  force, the process will become more complex. Our present
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06 . . . . ,_m} perturbations will not lead to a spontaneous transformation
o4 | A 2 to a different lattice structure. Therefore, calculation of the
- = cohesive energies of each structure can provide an important
information to test the reliability of the potential. We will
calculate the cohesive energies of the fcc, bee, and hep for all
seven metals Al, Ag, Au, Cu, Ni, Pd, and Pt with a cutoff
distance ofr ,=1.65,. The calculated results, together
with the results derived from the experimental stacking fault
or phase diagram informatiofsee Table VI in Ref. ¥ are
listed in Table Il. From the table we see that the calculated
energies of fcc-hcp stabilitythe difference of cohesive en-
53, ergies between two dissimilar structurese generally less
A than as much as one order of magnitude of the experimental
value, and the calculated energy of the fcc-bcc stability is
equal to about a factor of 2 of the corresponding experimen-
Ni tal value in magnitude. However, from the calculations it can
2r Agu ] be obtained that the fcc structures have the largest cohesive
pd energy, that the hcp mediates, and that the bcc is the lowest
ol Au | for all seven metals. This agrees with the experimental value.
Thus we conclude that the present model with=1.65,
can be used to predict the structural stability of fcc metals
investigated though the predicted values are consistently un-
derestimated.
<} . In order to understand the physical origin of the structure
e stability, we perform calculations about the effect of cutoff
00 05 1o is 20 3830 35 40 48 distance on the structure stability for all seven metals with
plog - . . :
the potential parameters given in Table I. In the calculations,
we find that the potential parameters are valid for calculating
basic properties of the seven metals such as lattice constant,
L ) elastic constants, cohesive energy, and vacancy formation
EAM model is simple, and includes the long-range force.gnergy, when the cutoff distance is taken to be larger than
This model should be easier to .ex'gend, njcludlng an.angla_zz\pﬁo [third-nearest neighbofNN)], while the potential
force where the two-body potential is obtained by an invery o meters need to be refitted for a cutoff distance less than
sion method similar to that of Baskes. We will make this 555, Byt whether for the refitting potential parameters
extension in a sequel to this paper. or for the present potential parameters, the calculated ener-
gies of the fcc-hep stabilityor fcc-bece stability follows the
lll. APPLICATION TO BULKS, DEFECTS, SURFACES, same pattern as a function of cutoff distance for all seven
AND ALLOYS metals, but differs by a scaling factor. They are either posi-
tive or negative, as shown by JohnsdnA typical curve of
he energy versus cutoff distance is plotted in Fig. 2 for Au.
y further calculations we find that for all seven metals,
hen the cutoff distance is taken to lay in the range from
2298, to 1.354@,, or 1.5812, to 1.683%,, the fcc
structure is most stable where there are more atoms for the

using a cutoff function. However, in our present model wefCC than the corresponding hcp. Also, when the cutoff dis-

consider only a long-range interaction, instead of any cutoff@nce iS larger than 1.2 (third NN) the fcc is always
procedure. We find that when we take a cutoff distance ofavored_ energe'tlcally over the bCC'. We note that when the
fou=L1.65,, which lays between the fifth and the sixth cutoff distance is taken as_la(g which corresponds to the
neighbors, the ratio of energy from the fifth neighbor to theS€cond NN of fcc, the third NN of bce and hep and the

total internal energy are all consistently less than 0.05% fo ohe_swe energy of hc_p _and_bcc are Igrger than that of fcc.
all seven metals. Thus we believe that the potential goe his is because that within this cutoff distance the bcc has 26

smoothly to zero within the error of 0.05%. atoms, and the fcc 18 atoms. Therefore, for the EAM, where
an angle force is not considered, a range of force which
attains the third NN of the fcc structure is necessary for a
prediction of the structure stability. In fact, we will show that
In the present EAM model, the fitting is not artificially to describe the fcc-hcp stability accurately a long-range force
constrained by the requirement that the fcc crystal structurbas to be considered for the EAM.
be more stable than a bcc and a hcp with an idéalratio, Now we plot the total energy of Au as a function of near-
in which the bcc or hcp have the same atomic volume imeighbor(NN) distance for the three structures of fcc, bcc,
magnitude as the fcc does. However, as known, the globand hcp in Fig. 8). The corresponding component term,
stability is very important, and will guarantee that any smalli.e., the contribution of the pair potenti&br embedding

b
T

02+

03|

two-body potential (eV)

04 -

Al

embedding energy (eV)
2

FIG. 1. (a) Two-body potential andb) embedding energy.

Generally, in computer simulations, the potential function
and its first derivatives with respect to atomic coordinate
should be continuous at all geometries of the system. Thi
can be accomplished by forcing the atomic electron densit
f(r) and pair potential¢(r) and their first derivatives
f(r)’ and¢(r)’ to go smoothly to zero at a cutoff distance

A. Structure stability and equation of state
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TABLE |. Metal properties used in fit and fitting parameters. Where two numbers are given, the top
number is the calculated value, and the lower number is the experimental value.

Al Ag Au Cu Ni Pd Pt

ag (A) 4.05 4.09 4.08 3.615 3.52 3.89 3.92
4.08 4.0 4.08 3.618 3.52 3.89% 3.92

E. (eV) 3.32 2.83 3.90 3.52 4.45 3.88 5.72
3.3¢ 2.85 3.9% 354 4.45 3.9P 5.7F

C.; (erglcn?®) 0.90 1.21 1.77 1.68 2.38 2.24 3.09
1.14 1.24 1.86 1.7¢" 2.465 2.34F 3.47

C,, (erglcnt) 0.702 0.938 1.50 1.263 1.78 1.79 2.59
0.61¢' 0.934 157 1.22% 1.47% 1.76 2.5

Cy4 (erglcnt) 0.330 0.467 0.43 0.752 1.08 0.726 0.793
0.316' 0.461 0.42% 0.758! 1.247 0.712 0.7658'

Ef (ev) 0.73 1.10 0.90 1.31 1.63 1.40 1.49
0.75 1.1d 0.9d 1.3d 1.60 1.40 1.50

Xyms (%) 6.65 0.02 0.57 0.13 6.54 0.27 1.44

Potential parameters

x A™Y 2.50 3.50 4.00 3.00 3.10 4.30 4.30

a (eV) 0.0834 0.4420 0.2774 0.3902 0.3768 0.3610 0.4033

B 7.5995 4.9312 5.7177 6.0641 6.5840 5.3770 5.6379

Fi (eV) —0.1392 0.7684 0.4728 1.0241 0.8784 0.6185 0.6815

ra (R) 3.0169 2.2689 2.4336 2.3051 2.3600 2.3661 2.3839

%Reference 35. ®Reference 34.

bReference 33. Reference 38.

‘Reference 36. 9Reference 39.

dreference 37. hReference 40.

function) to the total energyfor convenience, hereafter we (the total energies, or that of each of the two component
call them the pair potential term and embedding functionterms of the hcp and fcc lattice structures are the same.
term, respectivelyas a function of NN distance is also ex- Moreover, from Figs. ®) and 3c) we can observe that at
hibited in Fig. 3b) [or Fig. I¢)]. Figure 3a) is equivalentto |ong range for the pair potential and embedding function
Fig. 2 because the energy of the structure stability is definegerms, the bee has a higher energy than thedethe hep of

as the difference between the cohesive energies of two digthout 0.008 and 0.018 eV, respectively. The sum is just
tinct structures, and the cutoff distance can be expressed yyout the energy of the fcc-bec stabiljsee Table Il or Figs.
the NN distancefor example, the cutoff distance of B§ 2 and 3a)]. From these figures, we can also see that the

corresponds to the sixth NN of the fcc structure, the eighthyitference between pair potential terms of the fcc and hcp
NN of the bcc structure, and the ninth NN of the hcp struc-

; : ) ~“structureqsee Fig. 8)] is almost the same as that between
ture). From F|g. 3 we can see Fhat i thg cutoff distance 'Stheir total energiegsee Fig. 8a)] for all near-neighbor dis-
less than the ideal hcp third-neighbor distance, the eNerdi&3nces considered, while the difference between embedding
function terms of the fcc and hcp structures is approximately
T equal to zero. These can be understood, (ieif the embed-
H g ding energy is a slow changing function of the host density;
: it e (i) if the increase of the host electron density due to includ-
wl b | ing the atoms away well from the nearest neighbor can al-
H most be neglected for the three structuifes, bcc, and hcp
Foenee. e or (iii) if for the first two near neighbors the fcc structure has
e I the same distance and number of atoms as the hcp. Hence the
large difference between the host electron densities of the
o bcc and fcc structures results in an obvious deviation in their
embedding energies, while almost the same host electron
densities for the fcc and hcp lead to their embedding energies
Y R e being almost the same. Due to these, compared with the pair
cut-off distance (ag) potential, the contribution of the embedding energy to the
energy of the fcc-hcp stability can be neglected, while it
FIG. 2. Energy of the structure stability as a function of cutoff cannot for fcc-bcc stability. This indicates that the variation
distance for metal Au. The circle-line is for the fcc-fep stability, and of the energiegsee Fig. 2 of the fcc-bec stability is domi-
the square-line is for the fcc-bec stability. nated by both the embedding energy and pair potential, and

0.06
0.05

A
T T
0
A\ Lad
Y

0.00

energies of structure stability (eV)
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24 : : ding energy to the energy is found to be equal to
I L 5.3x 10 ° eV. Hence, compared with the pair potential, the
contribution of the embedding energy to the energy of the
fcc-hep stability can be neglected. Our calculations show that
Foe o e 1 this conclusion does not depend on the choice of cutoff dis-
HCP: downtriangle tance and material. This conclusion should be valid for all
EAM models where the atomic electron density has a rapidly
decreasing form and the angle force is not considered.
. We have shown that the energy of the fcc-hep stability is
underestimated using our present EAM potential. Therefore,
o0l i in order to increase the energy of the fcc-hcp stability we
0 2 4 e e s should include the contribution of the embedding function to
(a) near-neighbor the stability. This may be completed by considering the de-
pendence of the atomic electron density on angle. With this
electron density the difference between the host electron den-
sities of the fcc and hcp should occur for the first two near
neighbors, and this will lead to a difference between the
amb BOC. cirdle | embedding energies. Of course, a long-range pair potential
FCC: uptriangle can also be used to improve the structure stability. This point
HCP: downtriangle . . .
can be illustrated by making a comparison between fcc and
hcp structures. At the first two near neighbors the fcc and hecp
have the same atoms and near-neighbor distance, while be-
. tween the second- and third-nearest neighbors of fcc
(rew=1.154 7h,) the corresponding hcp has two atoms.
The third-nearest neighbor of the fce (=1.2247%,) has
0 2 4 e 8 10 24 atoms, and corresponds to the fourth-nearest neighbor of
the hcp. The fourth-nearest neighbor of the hcp has 18 at-
oms. Thus at a cutoff distance of,=1.154 7R, the hcp
has two more atoms than the fcc, whilergt=1.224 7%,
the fcc has six more atoms than the hcp. Hence the energy of
28 [ . the fce-hep stability depends on the competition between the
six atoms of the fcc and the two atoms of the hcp. In this
PG, upmangle situation, in order to make the fcc is more stable than the
255 HCP: downtriangle hcp, the pair potential has to change slowly between the
distances of 1.154 &} and 1.224@,. This slow change re-
quires a small3 appearing on Eq5), i.e., the pair potential
should be a long-range one. The following example may let

375

-3.80 |

total energies({eV)

-385 |

125 F

pair potential terms (eV)

-1.30 |

-256

embedding function terms(eV)

2T | 7 one more clearly understand this point.
260 . : : . We use the potential parameters listed in Table | to cal-
¢ z ¢ ¢ ’ ! culate the energy of the fcc-hcp stability with a cutoff dis-
(© near-neighbor tance ofr ,~=1.65,. The energy is found to be underesti-

mated. However, if we refit the potential parameters by

FIG. 3. (a) Total energy as a function of near-neighbor distance]corCIng the total internal energy of a fcc metahy, AU is
for metal Au. The circle is for bce, the down triangle for hep, and lower by 0.005 eV(the experimental valyethan the total
the up triangle for fcc.(b) Pair potential term as a function of INternal energy of the hcp, we obtain the refitting potlentlal
near-neighbor distance for metal Au. The circle is for bee, the dowrParameters «=0.5317 eV, p=1.9324, x=4.60 A1,
triangle for hcp, and the up triangle for fog) Embedding function F1=0.3681 eV, andr,=1.2714 A. This fitting error is
term as a function of near-neighbor distance for metal Au. TheX/ms=3.6%. Using these refitting parameters to calculate the
circle is for bce, the down triangle for hep, and the up triangle forenergy of the fcc-hep stability, the fcc is energetically fa-
fcc. vored over the hcp by 0.0042 gdver the bce by 0.033 eV

Thus in this situation our present EAM model predicts that

by only the pair potential for the fcc-hcp stability. The the fcc-hep stability(or the fcc-hep stability is in good
former is obvious, and can be seen from Fig. 3, while theagreement with the experimental value of 0.005(e¥0.04
latter may give rise to some question due to the small valueV). However, we note that the refitting=1.9324 is far
of energy of the fcc-hcp stabilitysee Table ). The latter  smaller than thgd=5.7177 given in Table I. This results in
can be illustrated by more detailed results. When the cutofthat the refitting pair potential witiB=1.9324 has a longer
distance is taken as. = 1.20a,, which corresponds to the range than the previous fitting one wig=5.7177. For the
second NN of the fcc structure and the third NN of the hcpother six metals we also have a similar conclusion. There-
structure, the energy of the fcc-hcp stability of Au is found tofore, for an EAM where an angle force is not included, in
be —0.008 eV. The contribution of the pair potential to this order to predict the fcc-hcp stability accurately a long-range
energy is—0.008 eV, while the contribution of the embed- pair potential needs to be considered. One may conclude that
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FIG. 4. Equations of state for metals Al, Ag, Au, Cu, Ni, Pd, and Pt. The solid curves are from the present model, and the dashed curves
are from Roseet al. (Ref. 6).

by a similar consideration of long-range atomic electron dencalculated total energy of the present EAM model from the
sity, the fcc-hep stability should also be correctly predicted.equation of state of Roset al. A deeper insight into the
However, we will see in the following that a smaller value of origin of the physics of structure stability should cast more
x appearing in Eq(3) can yield a serious deviation of the level calculations. Skrivéf has shown that one-electron
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theory can be used to explain the stability of metals over @mphasizetthat the set of functions in the EAM should be

wide range. good when they can reproduce the Re$eal. model func-
We have discussed the stability of crystal structure for alttion well.

seven metals. We now calculate the equation of state of the

total energy as a function of the lattice constant. As is well B. Vacancy formation energy at(111) surface

known, the study of alloys or defects such as dislocations and divacancy binding energy

and interstitials requires a knowledge of the interatomic po- A direct application to the divacancy binding energy can
tential at distances very different from the equilibrium one.further illustrate the reliability of the present potential model.
Therefore the total-energy dependence of the lattice constarrhe divacancy binding energy is the difference between the
has to be compared with the equation of state of Ris#l.  energies of two well-separated vacancies and two first-
Roseet al® have shown that the sublimation energy of mostneighbor vacancies. For the unreleased divacancy we can
metals as a function of lattice constant can be correctly dewrite the binding enernggv as

scribed by the equation. The predictions of our model are
compared in Fig. 4 with the calculated results from the equa- b §

tion of state of Roset al.for Al, Ag, Au, Cu, Ni, Pd, and Pt. E2,=2E,~ ( ;3 [Filpe=f(r1) = (ru))=Fi(pe)]

The predicted results of our model are in good agreement

with those from the equation of state of Roseal. The

agreement is best for Pt, Pd, and Au, and Ag, medium for Cu +o(re) _izl) ¢(r1i)) ' ©®)

and Ni, and fair for Al. We find the agreement is closely ) )

related to the contribution of the atoms of the second-neare¥fhere, without loss of generality, we assume that the two
neighbor to the host density. We obtain that this contributiorfI"St-neighbor vacancies are produced in the lattice positions
is equal to 0.309, 0.091, 0.053, 0.251, 0.246, 0.045, an@' two the nearest atoms, i.e., atoms 1 and&gis the un-
0.043 for Al, Ag, Au, Cu, Ni, Pd, and Pt, respectively. Ac- released vacancy formatlon_energy; apds th_e e_qwhbnum
cording to these results we conclude that the lower the corfi€arest distance. The predictions of the binding energy of

tribution of the atoms of the second-nearest neighbor to thglvaca.nc[es Is reported n Table 1l using ). A positive
host density, the better the agreemghe larger the value of value indicates an attraction between the vacancies. The cal-

y appearing in Eq(3), the less the contribution of the atoms culations are in very good agreement with the experimental

f th d iahbor to the host elect densit values, with the exceptions of Pt and Cu, for which the cal-
ot Ihe second near neighior o the host electron denstty ¢ e binding energy is larger than the experimental esti-

This can be understood by considering the relationshi[?Hates
among the universal embedding energy, the host density, and o, present model is also used to calculate the vacancy

the model function of Roset al. If the atomic electron den- formation energy at thé111) surfaces for all seven metals.
sity is assumed_ to _be a decreasing exponential function thepq surface-vacancy formation energy is the lowest energy
lower the contribution of the atoms of the second-nearesfeqyired to remove an atom from the surface, and usually the

neighbor to the host electron density is, the more similatyom is brought to a reservoir which determines the atomic
decreasmg gxponentlal form the summation of atomic elecé_hemical poten.tial. For crysta_ls built from (_)nly a single spe-
tron densityfi.e., the host electron densitgee Eq(3)]] has.  ¢jes the chemical potential is the cohesive enéfgyhe
Benearjea and Sm&ﬁ_have shown that a host density with @ physics behind this is that the removed atom is brought to
decre_asmg exponential form incorporating t_he universal eMstep and kink sites, and the step or the kink will not be
bedding energy may lead to the model function of Reisal.  changed. In other words, adsorbing metal atom at a kink site
Therefore, the agreement between the calculated total energy 5 reglistic metal surface releases an energy equal to the
and the equation of state of Roseal. should be bgtter ifthe pulk cohesive energy. The unrelaxed surface-vacancy-
contribution of atoms_of the second_-nearest neighbor to thegy mation energy then is

host electron density is less. A detailed example can be used

to interpret this point. We refit the properties of Ni by requir- E\f/aqlll): 3(Evaq111~ 2Ec— E(111), (7

ing X;ms to be smaller than 3.0%, and we obtain the potential . . .
parameters ofe=0.1438 eV, 3=8.0235, y=2.50 A", where E 114 is the total energy of a thin slab witfl11)
F,=—0.6945 eV, and,=2.6759 A. We find that though surfaces,Evac(lll) is the total energy of the slab where a
the fitting accuracy is improved for the calculation of the Vacancy is created at each surface, gk 11 denotes the
properties of metal Ni at equilibrium, the total energy as avacancy formation energy at th@1l) surface. The calcu-
function of lattice parameter cause a more serious deviatiolted values for the surface-vacancy-formation energies are
from the equation of state of Ros al. than the one dis- 9diven in Table Il along W|tr124the available results from the
played in Fig. 4e). This is due to the fact thay=2.50 first-principles calculatlon%?' The agreement betwee_n the_
A1 is smaller than 3.10 Al (see Table ), and using pre_sent calculations and the first-principles calculations is
x=2.5 A1 to calculate the contribution of atoms of the Satisfactory.

second-nearest neighbor to the host density is found to be
equal to 0.456, which is larger than 0.246 obtained using
x=3.10 A~1. It should be emphasized that in our fitting we  We have calculated the divacancy binding energy, the co-
do not sacrifice accuracy for calculating the properties ahesive energies of the fcc, hcp, and bcc and the equation of
equilibrium so as to satisfy the equation of state of Rosestate, and the surface-vacancy-formation energies. All the
et al. for the other six metals. Foiles, Baskes, and Daw havabove results are in reasonable accordance with experimental

N

C. Surface relaxation and surface energy
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TABLE Il. The energy of structure stability, vacancy formation energy at(l) surface, and the
divacancy binding energy.

Al Ag Au Cu Ni Pd Pt
Etcc-Epec (€V) 0.0168 0.0254  0.0265 0.0220 0.033 0.0370  0.0430
0.10" 0.03 0.04 0.04 0.07 0.10* 0.18
EtecEncp (€V) 0.0003 0.0012  0.0005 0.0012 0.0010 0.0016 0.0011
0.08 0.008  0.008 0.006 0.018% 0.02 0.02
ES, (eV) 0.16 0.40 0.30 0.48 0.55 0.45 0.48
0.3¢ 0.2-0.6 0.1& 0.3% 0.1-0.2
E\f,aqlm (eV) 0.42 0.53 0.51 0.64 0.81 0.69 0.81
0.36f0.66 0.67 0.97

8Reference 4.

bReference 41.
‘Reference 39.
dReference 42.

®Reference 43.
fReference 24.
9Reference 23.

data or the results from first-principles calculations. Furthergconsistently too small. This is a common conclusion whether
we will investigate the multilayer relaxation of surfaces for these calculations are from Refs. 5, 12, or 27. Therefore, in
the metals Al, Ag, Au, Cu, Ni, Pd, and Pt using our presenthe theoretical framework of the EAM for a more accurate
EAM model (see Tables Ill and 1V calculation of surface energy the EAM should include a cor-
In this study the surface energy and the geometry of theection involving electron density, as Daw pointed’8and
low-index faces(100), (110), and (111) are calculated. The Baskes showetiWe will extend our present EAM model to
surface energy is the energy difference between the energyonsider this point in the sequel to this paper.
of a periodic slab of atoms and the energy of the same num- The change in interlayer spacingz's for the relaxed
ber of atoms in the bulk metal. In all cases, the relaxation 0f110), (100), and(111) surfaces of the seven metals are cal-
each atom layer parallel to the surface is allowed to occurculated using the present potential mode, and a comparison
This is performed by minimizing the total energy of the between the theoretical results and experimental data is pre-
slabs. The slabs are sufficiently thick to guarantee that theented in Table IV. As shown in Table IV, for relaxations of
surface energies and geometries are independent of the thickt00), (110), and (111) faces, our model gives comparable
ness. In the calculation we have not made any effort tanagnitudes in interlayer spacings to the experimental or
search for an energetically favored reconstruction. The EAMmore level calculations. Note that all top-layer spacings
is a good tool for the investigation of reconstruction, though.show a small contraction. Further, the rougtiEt0) surfaces
The surface energies obtained for the low-index faces oéhow a larger relaxation than the smootkE90 and (111)
these seven metals are presented in Table Ill, and the resufeces do. In addition, fof110 surfaces the relaxation shows
from first-principles calculation%, or from experiment€are  an oscillating behavior of contraction-dilation-contraction.
also included in this table. For all cases, the close-packedhese general features agree with the trends found in the
(117) face has the lowest energy, followed by ti®0) and  experiment, or with results from more level calculations.
(110 faces. The trend is in good agreement with first-
principles calculations, but the calculated values, compared

with experimental data or the first-principles calculation, are D. Alloy and impurities

The present model has been used to investigate pure metal
TABLE III. Surface energiein the unit of erg/ci) for seven  Systems, and the results are satisfactory. However, one of the
pure metals. The first row is the results predicted by the preser@ttractive features of the EAM formalism is that it has a form
EAM model. The second row is those from the first-principles cal-that can be applied directly to metallic alloys. Here we will
culations of Skriver and Rosengaaflef. 25. The experimental show that our model can be used to investigate the alloy
values correspond to average surface energies, which are from Refystems.

26. In an EAM model, for a binary alloy system with type-
. a atoms and typé atoms, there exist two kinds of electron
Al Ag  Au Cu Ni Pd Pt density functionsf,(r) andf,(r), two kinds of embedding
(100 579 821 683 1261 1654 1157 1228 €nergy functhnsFa(p) andFy(p), and three kinds of pair
potential functionsp,(r), épp(r), andg,p(r). Usually the
1200 1710 2090 1900 2980 G functions fo(r), fo(r), Fa(p): Fu(p), daa(f), and
(110 627 883 728 1361 1786 1240 1309 a(r), To(1), Falp), Fulp), daqlr), an
1290 1790 2310 dpp(r) are assumed to be transferable from monatomic sys-
tems to alloy systems. The remaining functi@g,(r) is as-
(119 12?3 171250 1%11% 11;86% 12562(()) 11%;‘(1) 1222% sumed to be the geometric mean of monatomic pair poten-
tials by the model of Foiles, Baskes, and Dawgr
Expt. 1160 1250 1500 1830 2450 2050 2480 alternatively to be a density-weighted combination of mon-

atomic pair potentials by the model of John€ofhe former
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TABLE IV. Surface relaxation of the top-layer spacing’s for the low-index facesin unit of A%).

Al Ag Au Cu Ni Pd Pt
(100 Az —4.98 —-1.55 —6.69 —0.43 —-0.76 —2.84 —5.55
-32 o° o° -1.1 -3.2 <|0.2°®
Azys —0.015 0.15 1.10 0.03 —0.05 0.33 0.866
0 1.7 +1.7
Az, 0.014 0.004 0.168 -0.00 0.00 —0.024 0.128
(110 Az, —-10.2 —-5.39 —-12.5 —-3.60 -3.77 —6.89 —-9.18
-7.0 -5.7 -8.5 -8.7" -6.0
Az, 1.20 0.88 2.43 0.45 0.41 1.02 2.07
+2.d +2.3 +3.0" +1.0
Azgy -0.71 -0.31 —-0.53 -0.34 —-0.33 —0.0414 —0.506
-35 -0.8
(111 Az —-4.18 =171 —5.06 -1.17 —-1.32 —2.402 —4.23
-12 <|2| o° -0.7¥ o° <|0.4
Azyy 0.18 0.1 0.74 0.001 0.00 0.203 0.567
Oa
Azsy —0.007 —0.006 —0.099 0.001 0.00 —0.011 —-0.074
3Reference 18. 9Reference 48.
bReference 46. PReference 51.
‘Reference 47. iReference 52.
dReference 50. iReference 45.
®Reference 53. KReference 49.
fReference 44. IReference 54.

alloy potential model is imaginary if one of the monatomic  In the density-weighed model it is necessary to know the
two-body potentials is negative and the other positive. Theelectron-density scaling factdy,. Johnson pointed out that

latter alloy potential model has been proven to be invarianthe factor can be determined by the relationships
for transformations in the monatomic model from which theyf =E_/Q. The physical reality is that the electron density is
are derived, and this invariance holds for any number Obroportiona| to the cohesive energy and inverse|y propor-
different elements in an alldyThe alloy model of Johnson tional to the atomic volume. In our present calculations a
has been applied to fcc- and bee-based binary afld§sVe  gjight modification should be made for the scaling factor, i.e.,
v_V|II_ use the den5|ty_-we|ghted model to investigate the d|Iute-fe is assumed to be equal t&E{/Q)?. y is an adjustable

limit heats of solution, and the heats of formation of a fcc-parameter to be determined by the dilute-limit heats of solu-
based binary alloy in our present calculations. tion. We find that the dilute-limit heats of solution can be

TABLE V. Dilute-limit heat of solution of 42 alloys. The first well described whery is taken as 0.8 for Cu and Ni, 1.0 for

rows are from the present calculation, and the second rows are frofad @nd Pt, 1.1 for Ag and Au, and 1.65 for Al, but there is a
the experimen(Ref. 29. The data with asterisks are from Mediema SPecial case in whicly should be taken as 0.6 for Al in the

alloy theory calculationgRef. 30. All energies are in eV. alloys involving Ni or Cu, and 0.3 for Ni in the alloys in-
volving Au.
Host The dilute-limit heat of solution for a guest atom of type
Al Ag Au Cu Ni Pd Pt b in a host lattice witha-type atoms can be calculated as the
summation of the following four termg1) the energy re-
Al —050 -0.96 -1.77 —-208 —292 —114  qujred to form a vacancy in the bulk eftype atoms{2) the
Ag —061 —-011 004 050 -032 013 energy needed to move laxtype atom from the bulk of
-0.23 —-0.16  0.39 -011 b-type atoms to infinite to form an isolatetype atom;(3)
Au —-111 -0.10 —1.07 017 -033 0.26 the energy released to put the isolatetype atom into the
—-0.98* -0.19 —-0.19 —0.20 position of the vacancy produced in the first step; éida
Cu —-129 0.07 —-0.37 0.05 —2.28 —1.51  volume relaxation energy. Following John&dhis volume
-0.33* 0.25 —0.13 0.11 -0.39 —0.30 relaxation energy can be determined by the relationship of
Ni —-130 049 011 0.04 —-165 —1.24 Evo=—[1.167,/Q,—1)]%, where Q, and Q, corre-
—0.84* 0.22 0.03 -0.09 -0.33 spond to thea- andb-type atom volumes, respectively, and
Pd —-325 —-0.29 —0.29 —2.85 —254 -0.21 E,o is the volume relaxation energy. The heats of solution
—1.94* —0.29 —0.36 —0.44 0.06 for all combinations of the seven fcc elements Al, Ag, Au,
Pt —154 019 025 —-232 —258 —0.19 Cu, Ni, Pd, and Pt are given in Table V, together with the
—053 —-028 —0.04 available experimental dafaIn addition, the data for alloys

involving metal Al from Miedema alloy theof§ are also
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TABLE VI. Heats of formation and lattice constants. The first rows are the results from the present
calculations, the second rows are data from first-principles calculatiRefs. 31, 32, and 2Cexcluding the
data of AB-type compounds containing metal Al, where the values are from Miedema theory calculations
(Ref. 30. The values with asterisks are from the prediction of Vegard law.

ag AE ag AE ag AE agp AE
System (A) (eV) System (A) (eV) System (A) (eV) System (A) (eVv)

AlAg; 4.089 —-0.08 AlAu; 4.081 -0.17 AICwk 3.705 —-0.31 AINi; 3.622 -0.35

4.080 4.073 3.724 3.573 —0.41
AlAg  4.082 -0.12 AlAu 4.079 —0.23 AlCu 3.803 —0.39 AINi 3.740 —0.43
4.07¢ —0.10 4.06% —0.38 3.833 —0.18 3.78% —0.49
Al,Ag 4070 —0.09 ALAu 4.076 —0.17 ALCu 3.917 —-0.28 ALNi 3.879 —0.30
4.060° 4.058 3.94F 3.918
AlPd; 3970 —0.44 APy 3.991 —0.14 AgAy 40 —0.03 AgCu 3.744 0.06
3.930° 3.953 4.060 —0.18 3.680 0.34
AIPd  4.012 —-064 APt 4.034 —021 AgAu 4.076 —0.03 AgCu 3.873 0.08
3.97¢ —0.87 3.985 4.046 —0.24 3.800 0.47
AlPd  4.038 —0.48 APt 4.065 —0.15 AgAu 4.0 -0.02 AgCu 3.992 0.05
4.010° 4.018 4.038 —0.18 3.920 0.36
AgNi; 3.668 0.16 AgPg 3.935 —0.03 AgP§ 3.956 0.05 AuCy 3.697 —0.17
3.663 0.26 3.946 —0.01 3.963 0.10 3.70 —0.26
AgNi  3.822 021 AgPd 3.980—-0.05 AgPt 3.994 007 AuCu 3.823-0.15
3.808 0.34 3.996 —0.02 4.00%5 0.18 3.84 -0.28
AgNi  3.967 015 AgPd 4.032 —0.03 AgP§ 4.039 006 AgCu 3.959 —0.07
3.948 0.2 4.046 —0.04 4.048 0.10 3.96 —0.14
AuNi; 3.680 011 AuPg 3.937 —0.06 AuP§ 3.961 0.07 CuNj 3.543 0.01
3.660 0.05 3.938 —0.06 3.966 0.08 3.544 0.02
AuNi  3.845 015 AuPd 3.983 -0.08 AuPt 4.000 0.08 CuNi 3566 0.02
3.800F 0.06 3.985 —0.11 4.006 0.11 3.568 0.04
AuNi  3.982 010 AyPd 4.031 —0.06 AwPt 4.040 006 CNi 3591 0.01
3.940  0.05 4.033 -0.10 4.046  0.06 3.59f 0.01
CuPg 3.797 —0.39 CuP§ 3.820 —0.31 NiPd 3.772 —0.29 NiP§ 3.790 —0.29
3.82F —0.06 3.842 —0.14 3.798 3.820¢
CuPd  3.705 —0.56 CuPt 3.719 —0.49 NiPd 3.654 —0.47 NiPt 3.668 —0.52
3.752 —0.08 3.768 —0.12 3.708 3.720¢
CuPd 3.637 —046 CuPt 3.641 —042 NiPd 3.563 —0.41 NiPt 3.567 —0.48
3.684 —0.09 3.69t —0.12 3.613 3.620
PtP4  3.896 —0.04 PtPd 3.903 —0.05 PdP§ 3.911 —0.03
3.898" 3.908 3.913

included in this table. The general agreem@nxcluding the stants for the 63 binary alloys together with available data
values of impurity Pd in host Mican be seen in the table. from the first-principles calculatiofs*? are summarized in
The dilute-limit heats of solution of binary systems contain-Table VI. Compared with the first-principles calculations, the
ing Pd predicted by Johnson have remarkable disagreementssults are good for Cu-Ni, Ag-Pd, Au-Pd, Au-Pt, Ag-Pt,
with experimental data, i.e., the wrong trends are predicted\g-Ni, and NizAl alloy systems, fair for Au-Ni and Cu-Au
for the properties of the dilute-limit heats of solution of al- alloy systems, and weak for Cu-Pt, Cu-Pd, Cu-Ag, and
loys involving Pd(see Table Il in Ref. B With the present Ag-Au alloy systems in magnitude. All calculated values are
method, this wrong is cancelled except for the case of Pd iin qualitative agreement with first-principles calculations.
Ni. The other results involving metal Al can be compared with
The heats of formation of an alloy is the difference of thethe data from Miedema alloy theof The agreement is also
total cohesive energies between the alloy and their pure corfieund to be good for the alloys AINi, AlAg, and AlPd, and
stituents. We calculate the heats of formation for all intermefair for the alloys AICu and AlAu. Unlike the model of
tallic compounds of the seven fcc metals to form anJohnson, where the heats of formation are predicted to be
A3zB-type alloy with L1, structure, aB;A-type alloy with  opposite to the results of first-principles calculations for the
L1, structure, and alB-type alloy withL1, structure. We  alloy containing metal Pésee Fig. 1 in Ref. @ our present
do not consider the tetragonal distortion of kfi, super- model resolves these problems of Johnson's. In general, for
structure. The calculated heats of formation and lattice coneur present model the weak results can be improved by a
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special choice ofy for a special alloy. For example, we take the (111) surface, are calculated. In all cases, the results are
vy=0.6 for Au andy=1.1 for Ag. We obtain the heats of in reasonable agreement with the experimental data or the
formation of AusAg, AuAg, and AgAu to be equal to data from first-principles calculation. In addition, the two
—0.16, —0.23, and—0.17 eV, respectively. These results energies of fcc-hcp and fcc-bec stabilities are also calculated.
are in excellent agreement with those from first-principleslt is found that the energy of the fcc-hcp stability is domi-
calculations (0.18 eV for AgAg and Ag;Au, and nated by only the pair potential, and is underestimated while
—0.24 eV and for AgAl, though in this situation the calcu- the energy of the fcc-bee stability is dominated by both the
lated dilute-limit heats of solution are underestimated by thepair potential and embedding energy. Likewise, by calculat-
v parameters for the Ag-Au system. Finally, we compare thdng the total energy of the seven metals, we find that the
calculated lattice constants with those from the first-present EAM model predicts the total energy as a function of
principles calculation or the prediction of Vegard law. Thethe lattice parameter to be in good agreement with the equa-
agreement can be also found to be good in Table VI. Irtion of state of Roset al. This agreement is closely related
addition, we use the refitting potential parameters of Nito the electron density, i.e., the lower the contribution from
(«=0.1438 eV, 3=8.0235, y=2.50 A", F,=-0.6945 atoms of the second-nearest neighbor to the host density, the
eV, andr,=2.6759 A to calculate the properties of alloys better the agreement becomes. These results are discussed in
involving metal Ni. Our results show that the dilute-limit detail. Thus we obtain thai) for an EAM, where angle force
heats of solution and the heats of formation of the alloyds not considered, a long-range force is necessary for the
involving metal Ni are predicted to be bad. This may resultprediction of the structure stability; ard) the dependence
from bad properties of metal Ni at the nonequilibriyie.,  of the electron density on angle should be considered for
the deviation of calculated total energy from the equation ofncreasing the energy of the fcc-hcp stability. Our present
state of Roset al.). model may be easy to use to make this extension. For alloy
systems, the heats of formation of the intermetallic com-
V. CONCLUSION pounds ofA;B, AB, andAB;, which consist of the seven
pure metals, are predicted to be in agreement with first-
We give a simple and analytical EAM model for fcc met- principles calculations or the data from Miedema alloy
als. The model includes a long-range force. In this model, théneory, and the dilute-limit heats of solution are also gener-
electron-density function is taken as a decreasing exponentiglly well represented by the present potential except for the
function, the two-body potential is defined as a function likecase of impurity Pd in host Ni. Moreover, the lattice con-
a form given by Roseet al, and the embedding energy is stants of the intermetallic alloys are predicted to be in agree-
assumed to be a universal form recently suggested by Bamnent with these from Vegard law or from the first-principles
erjea and Smith. The potential parameters of this model arga|culations. The present potential model solves the dis-
determined by fitting pure metal bulk properties such as latagreement between the experimental and calculated data by
tice constant, elastic constants, cohesive energy, and vacangyhnson'’s potential model for phase stability and dilute-limit
formation energy. The model does not require more rigorouseats of solution of the alloy systems with palladififh.
development than a pair potential. The model is applied to
seven fcc metals and all their binary alloys. For pure metal
systems, the properties of the seven metals Al, Ag, Au, Cu, ACKNOWLEDGMENT
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