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A simple analytical embedded-atom method~EAM! model is developed. The model includes a long-range
force. In this model, the electron-density function is taken as a decreasing exponential function, the two-body
potential is defined as a function like a form given by Roseet al. @Phys. Rev. B33, 7983 ~1986!#, and the
embedding energy is assumed to be an universal form recently suggested by Banerjea and Smith. The embed-
ding energy has a positive curvature. The model is applied to seven fcc metals~Al, Ag, Au, Cu, Ni, Pd, and Pt!
and their binary alloys. All the considered properties, whether for pure metal systems or for alloy systems, are
predicted to be satisfactory at least qualitatively. The model resolves the problems of Johnson’s model for
predicting the properties of the alloys involving metal Pd. However, more importantly,~i! by investigating the
structure stability of seven fcc metals using the present model, we found that the stability energy is dominated
by both the embedding energy and the pair potential for fcc-bcc stability while the pair potential dominates and
is underestimated for fcc-hcp stability; and~ii ! we find that the predicted total energy as a function of lattice
parameter is in good agreement with the equation of state of Roseet al. for all seven fcc metals, and that this
agreement is closely related to the electron density, i.e., the lower the contribution from atoms of the second-
nearest neighbor to host density, the better the agreement becomes. We conclude the following:~i! for an
EAM, where angle force is not considered, the long-range force is necessary for a prediction of the structure
stability; or ~ii ! the dependence of the electron density on angle should be considered so as to improve the
structure-stability energy. The conclusions are valid for all EAM models where an angle force is not consid-
ered.@S0163-1829~96!07727-2#

I. INTRODUCTION

Pair potentials have until now been the most popular ap-
proach for calculating bulk and defect properties of solids.
However, a pair-potential model does not represent the free-
electron energy in real metals, which is of considerable im-
portance in calculations for various problems, such as va-
cancy formation energy and elastic constants; also, the
ambiguity of volume concerning a defect is not avoided in
the pair potentials.1,2 On the other hand, although self-
consistent energy-band and total-energy calculations using
the density-functional formalism3 have shown exactitude for
treating such problems, using them to perform calculations
for a system containing a large number of particles is not a
practical proposal at the moment. Hence developing an em-
pirical ~or semiempirical! method which can solve these
problems of a pair potential, but which is more efficient than
the first-principles technique, is of great interest. In the last
ten years, this technique for treating metal systems~even for
treating covalent materials4! has been developed and used
successfully in quite extensive fields of computer simulation
involving material science.1,2,4,5,7–13This method was origi-
nally presented by Daw and Baskes,1 and its basic ideal can
be interpreted in the framework of density-functional
theory.3 From the point of view of this theory, the energy
required to place a small impurity atom in a lattice is deter-
mined solely by the electron density at that particular site,
without considering the origin of the electron density.3 A

significant contribution of Daw and Baskes is that they ex-
tended this ideal to write the energy as an embedding energy
plus a core-core repulsion potential. This embedding energy
and repulsion potential can then be obtained by fitting ex-
perimental data. Though this method is found to be simple, it
can correctly represent the structure and energetics of more
flexible metal systems, such as surface, defects, impurities
et al.1 This method is called the embedded-atom method
~EAM!. Subsequently, various similar models were also pro-
posed by many authors.2,4,5,7–12

In the development of this method, as seen, an underlying
theme is computational simplicity, so that the interactions
may readily be used for large molecular dynamics or Monte
Carlo simulations. The EAM of Daw and Baskes is simple,
but its embedded energy and pair potential are given in the
form of spline functions.1 Indeed, this will give rise to some
inconvenience for calculations. More unfortunately, due to
its unanalytical form this EAM model is not easy to use to
make an extension including an angle force, while a more
flexible EAM model should include an angle force.4 Like-
wise, the initial EAM of Daw and Baskes cannot be used to
study alloys, since the information used in Daw and Baskes’
empirical fit actually only determines the embedding energy
and its first two derivatives for electron densities near the
average host electron density of the bulk pure materials at
equilibrium.5 Foiles, Bakes, and Daw gave another modified
version, where the total energy of a system is designed to
follow the equation of state of Roseet al.,6 and the pair
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potential is assumed to be an analytical form. The embed-
ding energy can be determined by this total energy minus the
energy of the pair potential, and becomes a tabulate function
of the host electron density.5 Thus properties away from the
equilibrium state are regarded as fitted in this method. Fol-
lowing this ideal, many authors also constructed various
specified potential models.7–10 Johnson’s analytical nearest-
neighbor model7 is, more or less, inspired by this ideal. But,
the weakness of this scheme is that the second derivative of
the embedding energy will become smaller than zero in the
case when the two-body potential changes more rapidly than
the equation of state of Roseet al. This behavior may give
an incorrect coordination dependence between bond length
and energy,13 and is not observed in the calculations of
effective-medium or quasiatom theory.14–16In addition, as in
the initial EAM of Daw and Baskes, this method may be
difficult to extend to include an angle force due to the unana-
lytical form of the embedding energy. Though Johnson gave
an analytical EAM model7,9 which is similar to Foiles,
Baskes, and Daw’s model, Johnson’s model suffers from
some problems of dilute-limit heats of the solution and the
phase stability of alloy systems involving metal palladium.8,9

In the present paper we will present an alternative com-
pletely analytical EAM model which includes a long-range
force. In this model, the electron-density function is taken as
an exponentially decreasing function, the two-body potential
is defined as a function like a form given by Roseet al.6 and
the embedding energy is assumed to be of the universal form
recently suggested by Banerjea and Smith.17 The potential
parameters of this model are determined by fitting the basic
bulk properties of a pure metal. This development is impor-
tant because~i! its embedded energy has a positive curvature
and this potential resolves the problem of Johnson’s potential
model mentioned above;~ii ! its simple and analytical form
may be easy to use to make a further extension including an
angle force; and~iii ! this model can reproduce the equation
of state of Roseet al.6 very well ~see below!, and this point
is necessary for calculating the properties of a system, say an
alloy system, where the host electron density is well away
from that of bulk pure material at equilibrium. To our knowl-
edge, our present model is the simplest one in its form. One
of our purposes is to present a simpler and more practicable
EAM model.

In order to test the reliability of our present model, the
model is applied to seven fcc metals~Al, Ag, Au, Cu, Ni, Pd,
and Pt! and all their binary alloys. The properties, including
the equation of state, surface relaxation, surface energy, di-
vacancy binding energy, and the formation energy of va-
cancy at~111! surfaces of the seven pure metals, as well as
the dilute-limit heats of solution of the alloys, the heats of
formation, and the lattice constants of the intermetallic com-
pounds withL12 andL10 structures, are calculated. All the
results predicted, whether for pure metals or their alloys, are
found to be in agreement with those from experiments or
from more level calculations expected for only one case of
impurity Pd in host Ni. Moreover, in order to understand the
limit of an EAM model, we investigate the structure stability
and equation of state and discuss their physical origins.
These will show that~i! for an EAM, where angle force is
not considered, the long-range force is necessary for a pre-
diction of the structure stability; and~ii ! the dependence of

the electron density on angle should be considered so as to
improve the structure-stability energy.

This paper is arranged as follows: First, we give our po-
tential model. Then we present some applications of the
model to the seven pure metals and their alloys, and the
structure stability and equation of state are also discussed in
detail. Finally, we summarize our main conclusions.

II. MODEL AND METHOD

Within the framework of the EAM theory, the total inter-
nal energy of the system ofN atoms is described as the
energy required to embed theseN atoms into the homoge-
neous electron gas caused by surrounding atoms plus a cor-
rection of energy from two-body interactions. Thus this total
energy can be expressed as1

Etot5(
i
Fi~r i !1(

i. j
f~r i j !, ~1!

whereEtot is the total internal energy,Fi(r i) is the embed-
ding energy required to place atomi in an electron density
r i , f(r i j ) is the two-body potential between atomsi and
j , r i j is the separation distance related to the specified pair of
atoms i and j , and r i denotes the host electron density at
atom i due to all other atoms. According to the linear super-
position approximation this host electron density can be writ-
ten as the sum of the electron densityf (r j i ) of the individual
atom j , i.e.,

r i5 (
j ~Þ i !

f ~r j i !. ~2!

Note that the embedding functionF(r) is universal, in
that it does not depend on the source of the host electron
density. Thus the same embedding function can be used prin-
cipally to calculate the energy of an atom in an alloy that is
used in the pure material. However a trap should be avoided;
i.e., in this situation the embedding energy must be deter-
mined in a wide range of host electron density rather than
only at equilibrium. Foiles, Baskes, and Daw5 have shown
that this can be accomplished by requiring that the total en-
ergy as a function of lattice parameter follows the equation
of state of Roseet al.6 We will show that it can also be
attained by virtue of an alternative method below.

As seen above, Eq.~1! has a clearcut physical picture, but
based on different underlying theories it can be interpreted in
different manners.2,11 This makesF(r), f(r ), and f (r ) able
to take different specific functional forms, respectively. Fin-
nis and Sinclair proposed that thed-d hybridization in the
second-moment approximation can be described by Eq.~1!.
This ‘‘N-body’’ potential has been applied to defects in bcc
metals.2 The ‘‘local volume forces’’ represents an alternative
parametrization of the EAM by Voter and Chen, and has
been applied to surface relaxation and grain boundaries in
binary metallic alloys.10 The ‘‘glue model’’ of Ercolessi,
Tosatti, and Parrinello also belongs to the EAM class of
models, and has been applied mainly to surface
reconstructions.11 The embedding function and pair interac-
tion can also be obtained from first-principles calcu-
lations.18,19 In practice, one prefers an empirical or semi-
empirical approach to obtain these functions. In many earlier
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EAM models,5,10f is assumed to be an analytical form, and
F(r) is a tabulated function of the host electron density.
More recently Johnson gives an analytic EAM model for fcc
metals.7 The deficiencies of these models were mentioned in
Sec. I, and we do not attempt to repeat it here. In our present
scheme, we have fixed analytical forms off(r ), F(r), and
f (r ), chosen to be physically plausible, and adjusted so that
they would well reproduce basic physical properties of a
pure metal.

Banerjea and Smith have shown that a simple exponential
function can be used to represent the host electron density
quite well for bulk, near-vacancies, and free surfaces, and for
diatomics.17 Thus, at the approximation level, we can assume
that the atomic electron density also follows this exponential
form, and we obtain

f ~r !5 f eexp@2x~r2r e!#, ~3!

where f e is a scaling constant,r e is the equilibrium nearest
distance, andx is an adjustable parameter that must be de-
termined. In obtaining additional functions of the EAM, a
caution should be kept in mind; that is, the embedding func-
tion should have positive curvature. This ensures that the
bond strength decreases with increasing coordination.13 In
our model we take the embedding function as the universal
form suggested by Banerjea and Smith;17 then

F~r!52F0F12 lnS r

re
D nG S r

re
D n1F1S r

re
D . ~4!

Note that we add a linear term@the second term on the left in
Eq. ~4!# to the original formula of Benerjea and Smith.17 This
treatment does not destroy its positive definition curvature.
Benerjea and Smith pointed out17 that a decreasing exponen-
tial curvature function combining with the universal embed-
ding function may yield the model function of Roseet al.6

We expect that the sum of two model functions similar to
that of Roseet al.also give the invariant form~or at least an
approximate form! of the Roseet al.model function. Thus in
our EAM model we define the two-body potential as an ana-
lytical form like the Roseet al.model function. We have

f~r !52a@11b~r /r a21!#exp@2b~r /r a21!#. ~5!

Below we will see that the above functions can reproduce the
equation of Roseet al. very well ~this is not guaranteed by
the fitting!. Thus we believe that we obtain a set of functions
for the EAM which can well describe the properties away
from equilibrium. Though the method of Foiles, Baskes, and
Daw5 also gives a set of functions for the EAM, in this
method the embedding energy will be negatively defined as
the two-body potential changes more rapidly than the equa-
tion of state of Roseet al.We now turn back. In Eqs.~4! and
~5!, re represents the host electron density at equilibrium,
andF0 andn are two constants. We takeF05Ec2Ev

f , and
n50.5, whereEc andEv

f are the cohesive energy and va-
cancy formation energy, respectively. We do this without
any physical consideration and only for convenience. The
remainder—r a , F1 , a, and b—plus another parameterx
appearing in Eq.~3! make up five parameters that must be
determined for pure element systems.f e is a scaling factor,
and cancels from the model for the pure element system
because only ratios of electron densities occur in Eq.~5!.

Without a loss in general, for pure metals thef e can be taken
as unit. But for an alloy system the scaling factorf e should
be specified by the properties of the alloy. Details will be
given in Sec. III.

Having specified the functional forms off (r ), f(r ), and
F(r), we now describe the fitting procedure. The parameters
x, a, b, r a , andF1 are determined by minimizing the root-
square deviation (Xrmx) between calculated and experimental
thermodynamic data. This is accomplished using a simplex
procedure.20 For the materials Al, Ag, Au, Cu, Ni, Pd, and Pt
the experimental data consist of the three elastic constants
(C11, C12, andC44), the vacancy formation energy (Ev

f ),
the equilibrium lattice constant (a0), and the cohesive en-
ergy (Ec). In fitting we take the cutoff distance as
r cut51.65a0 . The fitting results and the potential parameters,
together with the experimental data to which they were fit-
ted, are displayed in Table I. As seen in Table I, the calcu-
lated lattice constants and the vacancy formation energies are
in excellent agreement with the respective experimental data,
expect for the vacancy formation energy of Ni, with an error
of 0.03 eV. For cohesive energies the agreement of the pre-
diction and experiment is also seen to be good, and the larg-
est difference is 0.05 eV between the prediction and the ex-
periment. The calculated elastic constants are in general
agreement with experimental results, though for Ni the dif-
ference ofC12 between the predicted and experimental re-
sults remains as large as 21%.

For a comparison, it is worth mentioning that in the model
of Foiles, Baskes, and Daw the largest difference between
the predicted and the experimental results are found to be
equal to 0.18 eV and 20% for vacancy formation and elastic
constants, respectively, though the cohesive energy and the
lattice constant are identical to the respective experimental
values.5 Thus our model can predict the vacancy formation
energy better than that of Foiles, Baskes, and Daw, and the
elastic constants as good as those of Ref. 5.

Figures 1~a! and 1~b! show our resulting functions of the
f(r ) and theF(r) of the seven metals. From the figures we
can see that the two-body potentials include long-range in-
teractions, and the general characters of the shapes of the
embedding energies from the present model are identical to
those from first-principles calculation;14–16 that is, a mini-
mum is seen in the embedding energies, and then the embed-
ding energies rise monotonically with the host electron den-
sity. In other words, the embedding energies have a positive
curvature in the present potential model. The positive curva-
ture of the embedding function determined by the scheme of
Ref. 5 cannot be always maintained, because it will become
negatively defined for the case in which the two-body poten-
tial changes more rapidly than the equation of state of Rose
et al.

Baskes4 extended an analytical nearest-neighbor EAM
model to include directional bonding~angle force!, where the
two-body potential is obtained from an inversion of total
energy minus embedding energy which is assumed to be an
analytical form in advance. This modified EAM is complex
even for the simplification of first-neighbor interactions. As
is well known, a long-range force is important for treating
the problems involving long-range correlation. If we make
an extension of the modified EAM to include a long-range
force, the process will become more complex. Our present
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EAM model is simple, and includes the long-range force.
This model should be easier to extend, including an angle
force where the two-body potential is obtained by an inver-
sion method similar to that of Baskes. We will make this
extension in a sequel to this paper.

III. APPLICATION TO BULKS, DEFECTS, SURFACES,
AND ALLOYS

Generally, in computer simulations, the potential function
and its first derivatives with respect to atomic coordinates
should be continuous at all geometries of the system. This
can be accomplished by forcing the atomic electron density
f (r ) and pair potentialf(r ) and their first derivatives
f (r )8 andf(r )8 to go smoothly to zero at a cutoff distance
using a cutoff function. However, in our present model we
consider only a long-range interaction, instead of any cutoff
procedure. We find that when we take a cutoff distance of
r cut51.65a0 , which lays between the fifth and the sixth
neighbors, the ratio of energy from the fifth neighbor to the
total internal energy are all consistently less than 0.05% for
all seven metals. Thus we believe that the potential goes
smoothly to zero within the error of 0.05%.

A. Structure stability and equation of state

In the present EAM model, the fitting is not artificially
constrained by the requirement that the fcc crystal structure
be more stable than a bcc and a hcp with an idealc/a ratio,
in which the bcc or hcp have the same atomic volume in
magnitude as the fcc does. However, as known, the global
stability is very important, and will guarantee that any small

perturbations will not lead to a spontaneous transformation
to a different lattice structure. Therefore, calculation of the
cohesive energies of each structure can provide an important
information to test the reliability of the potential. We will
calculate the cohesive energies of the fcc, bcc, and hcp for all
seven metals Al, Ag, Au, Cu, Ni, Pd, and Pt with a cutoff
distance of r cut51.65a0 . The calculated results, together
with the results derived from the experimental stacking fault
or phase diagram information~see Table VI in Ref. 4!, are
listed in Table II. From the table we see that the calculated
energies of fcc-hcp stability~the difference of cohesive en-
ergies between two dissimilar structures! are generally less
than as much as one order of magnitude of the experimental
value, and the calculated energy of the fcc-bcc stability is
equal to about a factor of 2 of the corresponding experimen-
tal value in magnitude. However, from the calculations it can
be obtained that the fcc structures have the largest cohesive
energy, that the hcp mediates, and that the bcc is the lowest
for all seven metals. This agrees with the experimental value.
Thus we conclude that the present model withr cut51.65a0
can be used to predict the structural stability of fcc metals
investigated though the predicted values are consistently un-
derestimated.

In order to understand the physical origin of the structure
stability, we perform calculations about the effect of cutoff
distance on the structure stability for all seven metals with
the potential parameters given in Table I. In the calculations,
we find that the potential parameters are valid for calculating
basic properties of the seven metals such as lattice constant,
elastic constants, cohesive energy, and vacancy formation
energy, when the cutoff distance is taken to be larger than
1.225a0 @third-nearest neighbor~NN!#, while the potential
parameters need to be refitted for a cutoff distance less than
1.225a0 . But whether for the refitting potential parameters
or for the present potential parameters, the calculated ener-
gies of the fcc-hcp stability~or fcc-bcc stability! follows the
same pattern as a function of cutoff distance for all seven
metals, but differs by a scaling factor. They are either posi-
tive or negative, as shown by Johnson21. A typical curve of
the energy versus cutoff distance is plotted in Fig. 2 for Au.
By further calculations we find that for all seven metals,
when the cutoff distance is taken to lay in the range from
1.225a0 to 1.3540a0 , or 1.5812a0 to 1.6833a0 , the fcc
structure is most stable where there are more atoms for the
fcc than the corresponding hcp. Also, when the cutoff dis-
tance is larger than 1.225a0 ~third NN! the fcc is always
favored energetically over the bcc. We note that when the
cutoff distance is taken as 1.20a0 , which corresponds to the
second NN of fcc, the third NN of bcc and hcp and the
cohesive energy of hcp and bcc are larger than that of fcc.
This is because that within this cutoff distance the bcc has 26
atoms, and the fcc 18 atoms. Therefore, for the EAM, where
an angle force is not considered, a range of force which
attains the third NN of the fcc structure is necessary for a
prediction of the structure stability. In fact, we will show that
to describe the fcc-hcp stability accurately a long-range force
has to be considered for the EAM.

Now we plot the total energy of Au as a function of near-
neighbor~NN! distance for the three structures of fcc, bcc,
and hcp in Fig. 3~a!. The corresponding component term,
i.e., the contribution of the pair potential~or embedding

FIG. 1. ~a! Two-body potential and~b! embedding energy.
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function! to the total energy~for convenience, hereafter we
call them the pair potential term and embedding function
term, respectively! as a function of NN distance is also ex-
hibited in Fig. 3~b! @or Fig. 3~c!#. Figure 3~a! is equivalent to
Fig. 2 because the energy of the structure stability is defined
as the difference between the cohesive energies of two dis-
tinct structures, and the cutoff distance can be expressed by
the NN distance~for example, the cutoff distance of 1.8a0
corresponds to the sixth NN of the fcc structure, the eighth
NN of the bcc structure, and the ninth NN of the hcp struc-
ture!. From Fig. 3 we can see that if the cutoff distance is
less than the ideal hcp third-neighbor distance, the energies

~the total energies, or that of each of the two component
terms! of the hcp and fcc lattice structures are the same.
Moreover, from Figs. 3~b! and 3~c! we can observe that at
long range for the pair potential and embedding function
terms, the bcc has a higher energy than the fcc~or the hcp! of
about 0.008 and 0.018 eV, respectively. The sum is just
about the energy of the fcc-bcc stability@see Table II or Figs.
2 and 3~a!#. From these figures, we can also see that the
difference between pair potential terms of the fcc and hcp
structures@see Fig. 3~b!# is almost the same as that between
their total energies@see Fig. 3~a!# for all near-neighbor dis-
tances considered, while the difference between embedding
function terms of the fcc and hcp structures is approximately
equal to zero. These can be understood, i.e.,~i! if the embed-
ding energy is a slow changing function of the host density;
~ii ! if the increase of the host electron density due to includ-
ing the atoms away well from the nearest neighbor can al-
most be neglected for the three structures~fcc, bcc, and hcp!;
or ~iii ! if for the first two near neighbors the fcc structure has
the same distance and number of atoms as the hcp. Hence the
large difference between the host electron densities of the
bcc and fcc structures results in an obvious deviation in their
embedding energies, while almost the same host electron
densities for the fcc and hcp lead to their embedding energies
being almost the same. Due to these, compared with the pair
potential, the contribution of the embedding energy to the
energy of the fcc-hcp stability can be neglected, while it
cannot for fcc-bcc stability. This indicates that the variation
of the energies~see Fig. 2! of the fcc-bcc stability is domi-
nated by both the embedding energy and pair potential, and

FIG. 2. Energy of the structure stability as a function of cutoff
distance for metal Au. The circle-line is for the fcc-fcp stability, and
the square-line is for the fcc-bcc stability.

TABLE I. Metal properties used in fit and fitting parameters. Where two numbers are given, the top
number is the calculated value, and the lower number is the experimental value.

Al Ag Au Cu Ni Pd Pt

a0 ~Å! 4.05 4.09 4.08 3.615 3.52 3.89 3.92
4.05a 4.09a 4.08a 3.615a 3.52a 3.89a 3.92

Ec ~eV! 3.32 2.83 3.90 3.52 4.45 3.88 5.72
3.36b 2.85c 3.93c 3.54c 4.45c 3.91b 5.77c

C11 ~erg/cm3) 0.90 1.21 1.77 1.68 2.38 2.24 3.09
1.14d 1.24d 1.86d 1.70d 2.465d 2.341c 3.47d

C12 ~erg/cm3) 0.702 0.938 1.50 1.263 1.78 1.79 2.59
0.619d 0.934d 1.57d 1.225d 1.473d 1.76c 2.51d

C44 ~erg/cm3) 0.330 0.467 0.43 0.752 1.08 0.726 0.793
0.316d 0.461d 0.42d 0.758d 1.247d 0.712c 0.765d

Ev
f ~eV! 0.73 1.10 0.90 1.31 1.63 1.40 1.49

0.75e 1.10f 0.90f 1.30f 1.60g 1.40g 1.50f

Xrms ~%! 6.65 0.02 0.57 0.13 6.54 0.27 1.44

Potential parameters
x ~Å21) 2.50 3.50 4.00 3.00 3.10 4.30 4.30
a ~eV! 0.0834 0.4420 0.2774 0.3902 0.3768 0.3610 0.4033
b 7.5995 4.9312 5.7177 6.0641 6.5840 5.3770 5.6379
F1 ~eV! 20.1392 0.7684 0.4728 1.0241 0.8784 0.6185 0.6815
r a ~Å! 3.0169 2.2689 2.4336 2.3051 2.3600 2.3661 2.3839

aReference 35. eReference 34.
bReference 33. fReference 38.
cReference 36. gReference 39.
dReference 37. hReference 40.
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by only the pair potential for the fcc-hcp stability. The
former is obvious, and can be seen from Fig. 3, while the
latter may give rise to some question due to the small value
of energy of the fcc-hcp stability~see Table II!. The latter
can be illustrated by more detailed results. When the cutoff
distance is taken asr cut51.20a0 , which corresponds to the
second NN of the fcc structure and the third NN of the hcp
structure, the energy of the fcc-hcp stability of Au is found to
be20.008 eV. The contribution of the pair potential to this
energy is20.008 eV, while the contribution of the embed-

ding energy to the energy is found to be equal to
5.331025 eV. Hence, compared with the pair potential, the
contribution of the embedding energy to the energy of the
fcc-hcp stability can be neglected. Our calculations show that
this conclusion does not depend on the choice of cutoff dis-
tance and material. This conclusion should be valid for all
EAM models where the atomic electron density has a rapidly
decreasing form and the angle force is not considered.

We have shown that the energy of the fcc-hcp stability is
underestimated using our present EAM potential. Therefore,
in order to increase the energy of the fcc-hcp stability we
should include the contribution of the embedding function to
the stability. This may be completed by considering the de-
pendence of the atomic electron density on angle. With this
electron density the difference between the host electron den-
sities of the fcc and hcp should occur for the first two near
neighbors, and this will lead to a difference between the
embedding energies. Of course, a long-range pair potential
can also be used to improve the structure stability. This point
can be illustrated by making a comparison between fcc and
hcp structures. At the first two near neighbors the fcc and hcp
have the same atoms and near-neighbor distance, while be-
tween the second- and third-nearest neighbors of fcc
(r cut51.154 71a0) the corresponding hcp has two atoms.
The third-nearest neighbor of the fcc (r cut51.22475a0) has
24 atoms, and corresponds to the fourth-nearest neighbor of
the hcp. The fourth-nearest neighbor of the hcp has 18 at-
oms. Thus at a cutoff distance ofr cut51.154 71a0 the hcp
has two more atoms than the fcc, while atr cut51.224 75a0
the fcc has six more atoms than the hcp. Hence the energy of
the fcc-hcp stability depends on the competition between the
six atoms of the fcc and the two atoms of the hcp. In this
situation, in order to make the fcc is more stable than the
hcp, the pair potential has to change slowly between the
distances of 1.154 71a0 and 1.2247a0 . This slow change re-
quires a smallb appearing on Eq.~5!, i.e., the pair potential
should be a long-range one. The following example may let
one more clearly understand this point.

We use the potential parameters listed in Table I to cal-
culate the energy of the fcc-hcp stability with a cutoff dis-
tance ofr cut51.65a0 . The energy is found to be underesti-
mated. However, if we refit the potential parameters by
forcing the total internal energy of a fcc metal~say, Au! is
lower by 0.005 eV~the experimental value! than the total
internal energy of the hcp, we obtain the refitting potential
parametersa50.5317 eV, b51.9324, x54.60 Å21,
F150.3681 eV, andr a51.2714 Å. This fitting error is
Xrms53.6%. Using these refitting parameters to calculate the
energy of the fcc-hcp stability, the fcc is energetically fa-
vored over the hcp by 0.0042 eV~over the bcc by 0.033 eV!.
Thus in this situation our present EAM model predicts that
the fcc-hcp stability~or the fcc-hcp stability! is in good
agreement with the experimental value of 0.005 eV~or 0.04
eV!. However, we note that the refittingb51.9324 is far
smaller than theb55.7177 given in Table I. This results in
that the refitting pair potential withb51.9324 has a longer
range than the previous fitting one withb55.7177. For the
other six metals we also have a similar conclusion. There-
fore, for an EAM where an angle force is not included, in
order to predict the fcc-hcp stability accurately a long-range
pair potential needs to be considered. One may conclude that

FIG. 3. ~a! Total energy as a function of near-neighbor distance
for metal Au. The circle is for bcc, the down triangle for hcp, and
the up triangle for fcc.~b! Pair potential term as a function of
near-neighbor distance for metal Au. The circle is for bcc, the down
triangle for hcp, and the up triangle for fcc.~c! Embedding function
term as a function of near-neighbor distance for metal Au. The
circle is for bcc, the down triangle for hcp, and the up triangle for
fcc.
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by a similar consideration of long-range atomic electron den-
sity, the fcc-hcp stability should also be correctly predicted.
However, we will see in the following that a smaller value of
x appearing in Eq.~3! can yield a serious deviation of the

calculated total energy of the present EAM model from the
equation of state of Roseet al. A deeper insight into the
origin of the physics of structure stability should cast more
level calculations. Skriver22 has shown that one-electron

FIG. 4. Equations of state for metals Al, Ag, Au, Cu, Ni, Pd, and Pt. The solid curves are from the present model, and the dashed curves
are from Roseet al. ~Ref. 6!.
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theory can be used to explain the stability of metals over a
wide range.

We have discussed the stability of crystal structure for all
seven metals. We now calculate the equation of state of the
total energy as a function of the lattice constant. As is well
known, the study of alloys or defects such as dislocations
and interstitials requires a knowledge of the interatomic po-
tential at distances very different from the equilibrium one.
Therefore the total-energy dependence of the lattice constant
has to be compared with the equation of state of Roseet al.
Roseet al.6 have shown that the sublimation energy of most
metals as a function of lattice constant can be correctly de-
scribed by the equation. The predictions of our model are
compared in Fig. 4 with the calculated results from the equa-
tion of state of Roseet al. for Al, Ag, Au, Cu, Ni, Pd, and Pt.
The predicted results of our model are in good agreement
with those from the equation of state of Roseet al. The
agreement is best for Pt, Pd, and Au, and Ag, medium for Cu
and Ni, and fair for Al. We find the agreement is closely
related to the contribution of the atoms of the second-nearest
neighbor to the host density. We obtain that this contribution
is equal to 0.309, 0.091, 0.053, 0.251, 0.246, 0.045, and
0.043 for Al, Ag, Au, Cu, Ni, Pd, and Pt, respectively. Ac-
cording to these results we conclude that the lower the con-
tribution of the atoms of the second-nearest neighbor to the
host density, the better the agreement@the larger the value of
x appearing in Eq.~3!, the less the contribution of the atoms
of the second near neighbor to the host electron density!.
This can be understood by considering the relationship
among the universal embedding energy, the host density, and
the model function of Roseet al. If the atomic electron den-
sity is assumed to be a decreasing exponential function the
lower the contribution of the atoms of the second-nearest
neighbor to the host electron density is, the more similar
decreasing exponential form the summation of atomic elec-
tron density@i.e., the host electron density@see Eq.~3!## has.
Benearjea and Smith17 have shown that a host density with a
decreasing exponential form incorporating the universal em-
bedding energy may lead to the model function of Roseet al.
Therefore, the agreement between the calculated total energy
and the equation of state of Roseet al.should be better if the
contribution of atoms of the second-nearest neighbor to the
host electron density is less. A detailed example can be used
to interpret this point. We refit the properties of Ni by requir-
ing Xrms to be smaller than 3.0%, and we obtain the potential
parameters ofa50.1438 eV, b58.0235, x52.50 Å21,
F1520.6945 eV, andr a52.6759 Å. We find that though
the fitting accuracy is improved for the calculation of the
properties of metal Ni at equilibrium, the total energy as a
function of lattice parameter cause a more serious deviation
from the equation of state of Roseet al. than the one dis-
played in Fig. 4~e!. This is due to the fact thatx52.50
Å21 is smaller than 3.10 Å21 ~see Table I!, and using
x52.5 Å21 to calculate the contribution of atoms of the
second-nearest neighbor to the host density is found to be
equal to 0.456, which is larger than 0.246 obtained using
x53.10 Å21. It should be emphasized that in our fitting we
do not sacrifice accuracy for calculating the properties at
equilibrium so as to satisfy the equation of state of Rose
et al. for the other six metals. Foiles, Baskes, and Daw have

emphasized5 that the set of functions in the EAM should be
good when they can reproduce the Roseet al.model func-
tion well.

B. Vacancy formation energy at„111… surface
and divacancy binding energy

A direct application to the divacancy binding energy can
further illustrate the reliability of the present potential model.
The divacancy binding energy is the difference between the
energies of two well-separated vacancies and two first-
neighbor vacancies. For the unreleased divacancy we can
write the binding energyE2v

b as

E2v
b 52Ev

f 2S (
i>3

N

@Fi„re2 f ~r 1i !2 f ~r 1i !…2Fi~re!#

1f~r e!2 (
i ~Þ1!

f~r 1i !D , ~6!

where, without loss of generality, we assume that the two
first-neighbor vacancies are produced in the lattice positions
of two the nearest atoms, i.e., atoms 1 and 2;Ev

f is the un-
released vacancy formation energy; andr e is the equilibrium
nearest distance. The predictions of the binding energy of
divacancies is reported in Table II using Eq.~6!. A positive
value indicates an attraction between the vacancies. The cal-
culations are in very good agreement with the experimental
values, with the exceptions of Pt and Cu, for which the cal-
culated binding energy is larger than the experimental esti-
mates.

Our present model is also used to calculate the vacancy
formation energy at the~111! surfaces for all seven metals.
The surface-vacancy formation energy is the lowest energy
required to remove an atom from the surface, and usually the
atom is brought to a reservoir which determines the atomic
chemical potential. For crystals built from only a single spe-
cies the chemical potential is the cohesive energy.23 The
physics behind this is that the removed atom is brought to
step and kink sites, and the step or the kink will not be
changed. In other words, adsorbing metal atom at a kink site
of a realistic metal surface releases an energy equal to the
bulk cohesive energy. The unrelaxed surface-vacancy-
formation energy then is

Evac~111!
f 5 1

2 ~Evac~111!22Ec2E~111!!, ~7!

whereE(111) is the total energy of a thin slab with~111!
surfaces,Evac(111) is the total energy of the slab where a
vacancy is created at each surface, andEvac(111)

f denotes the
vacancy formation energy at the~111! surface. The calcu-
lated values for the surface-vacancy-formation energies are
given in Table II along with the available results from the
first-principles calculations.23,24 The agreement between the
present calculations and the first-principles calculations is
satisfactory.

C. Surface relaxation and surface energy

We have calculated the divacancy binding energy, the co-
hesive energies of the fcc, hcp, and bcc and the equation of
state, and the surface-vacancy-formation energies. All the
above results are in reasonable accordance with experimental
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data or the results from first-principles calculations. Further,
we will investigate the multilayer relaxation of surfaces for
the metals Al, Ag, Au, Cu, Ni, Pd, and Pt using our present
EAM model ~see Tables III and IV!.

In this study the surface energy and the geometry of the
low-index faces~100!, ~110!, and ~111! are calculated. The
surface energy is the energy difference between the energy
of a periodic slab of atoms and the energy of the same num-
ber of atoms in the bulk metal. In all cases, the relaxation of
each atom layer parallel to the surface is allowed to occur.
This is performed by minimizing the total energy of the
slabs. The slabs are sufficiently thick to guarantee that the
surface energies and geometries are independent of the thick-
ness. In the calculation we have not made any effort to
search for an energetically favored reconstruction. The EAM
is a good tool for the investigation of reconstruction, though.

The surface energies obtained for the low-index faces of
these seven metals are presented in Table III, and the results
from first-principles calculations,25 or from experiments26 are
also included in this table. For all cases, the close-packed
~111! face has the lowest energy, followed by the~100! and
~110! faces. The trend is in good agreement with first-
principles calculations, but the calculated values, compared
with experimental data or the first-principles calculation, are

consistently too small. This is a common conclusion whether
these calculations are from Refs. 5, 12, or 27. Therefore, in
the theoretical framework of the EAM for a more accurate
calculation of surface energy the EAM should include a cor-
rection involving electron density, as Daw pointed out19 and
Baskes showed.4 We will extend our present EAM model to
consider this point in the sequel to this paper.

The change in interlayer spacingDz’s for the relaxed
~110!, ~100!, and~111! surfaces of the seven metals are cal-
culated using the present potential mode, and a comparison
between the theoretical results and experimental data is pre-
sented in Table IV. As shown in Table IV, for relaxations of
~100!, ~110!, and ~111! faces, our model gives comparable
magnitudes in interlayer spacings to the experimental or
more level calculations. Note that all top-layer spacings
show a small contraction. Further, the rougher~110! surfaces
show a larger relaxation than the smoother~100! and ~111!
faces do. In addition, for~110! surfaces the relaxation shows
an oscillating behavior of contraction-dilation-contraction.
These general features agree with the trends found in the
experiment, or with results from more level calculations.

D. Alloy and impurities

The present model has been used to investigate pure metal
systems, and the results are satisfactory. However, one of the
attractive features of the EAM formalism is that it has a form
that can be applied directly to metallic alloys. Here we will
show that our model can be used to investigate the alloy
systems.

In an EAM model, for a binary alloy system with type-
a atoms and type-b atoms, there exist two kinds of electron
density functionsf a(r ) and f b(r ), two kinds of embedding
energy functionsFa(r) andFb(r), and three kinds of pair
potential functionsfaa(r ), fbb(r ), andfab(r ). Usually the
six functions f a(r ), f b(r ), Fa(r), Fb(r), faa(r ), and
fbb(r ) are assumed to be transferable from monatomic sys-
tems to alloy systems. The remaining functionfab(r ) is as-
sumed to be the geometric mean of monatomic pair poten-
tials by the model of Foiles, Baskes, and Daw,5 or
alternatively to be a density-weighted combination of mon-
atomic pair potentials by the model of Johnson.8 The former

TABLE II. The energy of structure stability, vacancy formation energy at the~111! surface, and the
divacancy binding energy.

Al Ag Au Cu Ni Pd Pt

Efcc-Ebcc ~eV! 0.0168 0.0254 0.0265 0.0220 0.033 0.0370 0.0430
0.10a 0.03a 0.04a 0.04a 0.07a 0.10a 0.15a

Efcc-Ehcp ~eV! 0.0003 0.0012 0.0005 0.0012 0.0010 0.0016 0.0011
0.05a 0.003a 0.005a 0.006a 0.015a 0.02a 0.02a

E2v
b ~eV! 0.16 0.40 0.30 0.48 0.55 0.45 0.48

0.38b 0.2–0.6c 0.12d 0.33e 0.1–0.2c

Evac(111)
f ~eV! 0.42 0.53 0.51 0.64 0.81 0.69 0.81

0.36,f0.66g 0.67f 0.92f

aReference 4. eReference 43.
bReference 41. fReference 24.
cReference 39. gReference 23.
dReference 42.

TABLE III. Surface energies~in the unit of erg/cm2) for seven
pure metals. The first row is the results predicted by the present
EAM model. The second row is those from the first-principles cal-
culations of Skriver and Rosengaard~Ref. 25!. The experimental
values correspond to average surface energies, which are from Ref.
26.

Al Ag Au Cu Ni Pd Pt

~100! 579 821 683 1261 1654 1157 1228
1200 1710 2090 1900 2480

~110! 627 883 728 1361 1786 1240 1309
1290 1790 2310

~111! 524 765 618 1180 1540 1074 1120
1270 1120 1610 1960 2630 1880 2350

Expt. 1160 1250 1500 1830 2450 2050 2480

8406 54J. CAI AND Y. Y. YE



alloy potential model is imaginary if one of the monatomic
two-body potentials is negative and the other positive. The
latter alloy potential model has been proven to be invariant
for transformations in the monatomic model from which they
are derived, and this invariance holds for any number of
different elements in an alloy.8 The alloy model of Johnson
has been applied to fcc- and bcc-based binary alloys.9,28We
will use the density-weighted model to investigate the dilute-
limit heats of solution, and the heats of formation of a fcc-
based binary alloy in our present calculations.

In the density-weighed model it is necessary to know the
electron-density scaling factorf e . Johnson pointed out that
the factor can be determined by the relationships
f e5Ec /V. The physical reality is that the electron density is
proportional to the cohesive energy and inversely propor-
tional to the atomic volume. In our present calculations a
slight modification should be made for the scaling factor, i.e.,
f e is assumed to be equal to (Ec /V)g. g is an adjustable
parameter to be determined by the dilute-limit heats of solu-
tion. We find that the dilute-limit heats of solution can be
well described wheng is taken as 0.8 for Cu and Ni, 1.0 for
Pd and Pt, 1.1 for Ag and Au, and 1.65 for Al, but there is a
special case in whichg should be taken as 0.6 for Al in the
alloys involving Ni or Cu, and 0.3 for Ni in the alloys in-
volving Au.

The dilute-limit heat of solution for a guest atom of type
b in a host lattice witha-type atoms can be calculated as the
summation of the following four terms:~1! the energy re-
quired to form a vacancy in the bulk ofa-type atoms;~2! the
energy needed to move ab-type atom from the bulk of
b-type atoms to infinite to form an isolateb-type atom;~3!
the energy released to put the isolatedb-type atom into the
position of the vacancy produced in the first step; and~4! a
volume relaxation energy. Following Johnson8 this volume
relaxation energy can be determined by the relationship of
Evol52@1.167(Va /Vb21)#2, where Va and Vb corre-
spond to thea- andb-type atom volumes, respectively, and
Evol is the volume relaxation energy. The heats of solution
for all combinations of the seven fcc elements Al, Ag, Au,
Cu, Ni, Pd, and Pt are given in Table V, together with the
available experimental data.29 In addition, the data for alloys
involving metal Al from Miedema alloy theory30 are also

TABLE V. Dilute-limit heat of solution of 42 alloys. The first
rows are from the present calculation, and the second rows are from
the experiment~Ref. 29!. The data with asterisks are from Mediema
alloy theory calculations~Ref. 30!. All energies are in eV.

Host
Al Ag Au Cu Ni Pd Pt

Al 20.50 20.96 21.77 22.08 22.92 21.14
Ag 20.61 20.11 0.04 0.50 20.32 0.13

20.23* 20.16 0.39 20.11
Au 21.11 20.10 21.07 0.17 20.33 0.26

20.98* 20.19 20.19 20.20
Cu 21.29 0.07 20.37 0.05 22.28 21.51

20.33* 0.25 20.13 0.11 20.39 20.30
Ni 21.30 0.49 0.11 0.04 21.65 21.24

20.84* 0.22 0.03 20.09 20.33
Pd 23.25 20.29 20.29 22.85 22.54 20.21

21.94* 20.29 20.36 20.44 0.06
Pt 21.54 0.19 0.25 22.32 22.58 20.19

20.53 20.28 20.04

TABLE IV. Surface relaxation of the top-layer spacingDz’s for the low-index faces~in unit of Å%!.

Al Ag Au Cu Ni Pd Pt

~100! Dz12 24.98 21.55 26.69 20.43 20.76 22.84 25.55
23a 0b 0b 21.1c 23.2d ,u0.2ue

Dz23 20.015 0.15 1.10 0.03 20.05 0.33 0.866
0a 1.7b 11.7c

Dz34 0.014 0.004 0.168 20.00 0.00 20.024 0.128

~110! Dz12 210.2 25.39 212.5 23.60 23.77 26.89 29.18
27.0a 25.7f 28.5g 28.7h 26.0i

Dz23 1.20 0.88 2.43 0.45 0.41 1.02 2.07
12.0f 12.3g 13.0h 11.0i

Dz34 20.71 20.31 20.53 20.34 20.33 20.0414 20.506
23.5f 20.5h

~111! Dz12 24.18 21.71 25.06 21.17 21.32 22.402 24.23l

21a ,u2u j 0b 20.7k 0b ,u0.4u
Dz23 0.18 0.1 0.74 0.001 0.00 0.203 0.567

0a

Dz34 20.007 20.006 20.099 0.001 0.00 20.011 20.074

aReference 18. gReference 48.
bReference 46. hReference 51.
cReference 47. iReference 52.
dReference 50. jReference 45.
eReference 53. kReference 49.
fReference 44. lReference 54.
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included in this table. The general agreement~excluding the
values of impurity Pd in host Ni! can be seen in the table.
The dilute-limit heats of solution of binary systems contain-
ing Pd predicted by Johnson have remarkable disagreements
with experimental data, i.e., the wrong trends are predicted
for the properties of the dilute-limit heats of solution of al-
loys involving Pd~see Table II in Ref. 8!. With the present
method, this wrong is cancelled except for the case of Pd in
Ni.

The heats of formation of an alloy is the difference of the
total cohesive energies between the alloy and their pure con-
stituents. We calculate the heats of formation for all interme-
tallic compounds of the seven fcc metals to form an
A3B-type alloy with L12 structure, aB3A-type alloy with
L12 structure, and anAB-type alloy withL10 structure. We
do not consider the tetragonal distortion of anL10 super-
structure. The calculated heats of formation and lattice con-

stants for the 63 binary alloys together with available data
from the first-principles calculations31,32 are summarized in
Table VI. Compared with the first-principles calculations, the
results are good for Cu-Ni, Ag-Pd, Au-Pd, Au-Pt, Ag-Pt,
Ag-Ni, and Ni3Al alloy systems, fair for Au-Ni and Cu-Au
alloy systems, and weak for Cu-Pt, Cu-Pd, Cu-Ag, and
Ag-Au alloy systems in magnitude. All calculated values are
in qualitative agreement with first-principles calculations.
The other results involving metal Al can be compared with
the data from Miedema alloy theory.30 The agreement is also
found to be good for the alloys AlNi, AlAg, and AlPd, and
fair for the alloys AlCu and AlAu. Unlike the model of
Johnson, where the heats of formation are predicted to be
opposite to the results of first-principles calculations for the
alloy containing metal Pd~see Fig. 1 in Ref. 9!, our present
model resolves these problems of Johnson’s. In general, for
our present model the weak results can be improved by a

TABLE VI. Heats of formation and lattice constants. The first rows are the results from the present
calculations, the second rows are data from first-principles calculations~Refs. 31, 32, and 10! excluding the
data ofAB-type compounds containing metal Al, where the values are from Miedema theory calculations
~Ref. 30!. The values with asterisks are from the prediction of Vegard law.

System
a0
~Å!

DE
~eV! System

a0
~Å!

DE
~eV! System

a0
~Å!

DE
~eV! System

a0
~Å!

DE
~eV!

AlAg3 4.089 20.08 AlAu3 4.081 20.17 AlCu3 3.705 20.31 AlNi3 3.622 20.35
4.080* 4.073* 3.724* 3.573 20.41

AlAg 4.082 20.12 AlAu 4.079 20.23 AlCu 3.803 20.39 AlNi 3.740 20.43
4.070* 20.10 4.065* 20.38 3.833* 20.18 3.785* 20.49

Al3Ag 4.070 20.09 Al3Au 4.076 20.17 Al3Cu 3.917 20.28 Al3Ni 3.879 20.30
4.060* 4.058* 3.941* 3.918*

AlPd3 3.970 20.44 AlPt3 3.991 20.14 AgAu3 4.0 20.03 AgCu3 3.744 0.06
3.930* 3.953* 4.060 20.18 3.680 0.34

AlPd 4.012 20.64 AlPt 4.034 20.21 AgAu 4.076 20.03 AgCu 3.873 0.08
3.970* 20.87 3.985* 4.046 20.24 3.800 0.47

Al3Pd 4.038 20.48 Al3Pt 4.065 20.15 Ag3Au 4.0 20.02 Ag3Cu 3.992 0.05
4.010* 4.018* 4.038 20.18 3.920 0.36

AgNi3 3.668 0.16 AgPd3 3.935 20.03 AgPt3 3.956 0.05 AuCu3 3.697 20.17
3.663* 0.26 3.940* 20.01 3.963* 0.10 3.70 20.26

AgNi 3.822 0.21 AgPd 3.980 20.05 AgPt 3.994 0.07 AuCu 3.82320.15
3.805* 0.34 3.990* 20.02 4.005* 0.18 3.84 20.28

Ag3Ni 3.967 0.15 Ag3Pd 4.032 20.03 AgPt3 4.039 0.06 Au3Cu 3.959 20.07
3.948* 0.22 4.040* 20.04 4.048* 0.10 3.96 20.14

AuNi3 3.680 0.11 AuPd3 3.937 20.06 AuPt3 3.961 0.07 CuNi3 3.543 0.01
3.660* 0.05 3.938* 20.06 3.960* 0.08 3.544* 0.02

AuNi 3.845 0.15 AuPd 3.983 20.08 AuPt 4.000 0.08 CuNi 3.566 0.02
3.800* 0.06 3.985* 20.11 4.000* 0.11 3.568* 0.04

Au3Ni 3.982 0.10 Au3Pd 4.031 20.06 Au3Pt 4.040 0.06 Cu3Ni 3.591 0.01
3.940* 0.05 4.033* 20.10 4.040* 0.06 3.591* 0.01

CuPd3 3.797 20.39 CuPt3 3.820 20.31 NiPd3 3.772 20.29 NiPt3 3.790 20.29
3.821* 20.06 3.844* 20.14 3.798* 3.820*

CuPd 3.705 20.56 CuPt 3.719 20.49 NiPd 3.654 20.47 NiPt 3.668 20.52
3.752* 20.08 3.768* 20.12 3.705* 3.720*

Cu3Pd 3.637 20.46 Cu3Pt 3.641 20.42 Ni3Pd 3.563 20.41 Ni3Pt 3.567 20.48
3.684* 20.09 3.691* 20.12 3.613* 3.620*

PtPd3 3.896 20.04 PtPd 3.903 20.05 PdPt3 3.911 20.03
3.898* 3.905* 3.913*
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special choice ofg for a special alloy. For example, we take
g50.6 for Au andg51.1 for Ag. We obtain the heats of
formation of Au3Ag, AuAg, and Ag3Au to be equal to
20.16, 20.23, and20.17 eV, respectively. These results
are in excellent agreement with those from first-principles
calculations (20.18 eV for Ag3Ag and Ag3Au, and
20.24 eV and for AgAu!, though in this situation the calcu-
lated dilute-limit heats of solution are underestimated by the
g parameters for the Ag-Au system. Finally, we compare the
calculated lattice constants with those from the first-
principles calculation or the prediction of Vegard law. The
agreement can be also found to be good in Table VI. In
addition, we use the refitting potential parameters of Ni
(a50.1438 eV,b58.0235, x52.50 Å21, F1520.6945
eV, andr a52.6759 Å! to calculate the properties of alloys
involving metal Ni. Our results show that the dilute-limit
heats of solution and the heats of formation of the alloys
involving metal Ni are predicted to be bad. This may result
from bad properties of metal Ni at the nonequilibrium~i.e.,
the deviation of calculated total energy from the equation of
state of Roseet al.!.

IV. CONCLUSION

We give a simple and analytical EAM model for fcc met-
als. The model includes a long-range force. In this model, the
electron-density function is taken as a decreasing exponential
function, the two-body potential is defined as a function like
a form given by Roseet al., and the embedding energy is
assumed to be a universal form recently suggested by Ban-
erjea and Smith. The potential parameters of this model are
determined by fitting pure metal bulk properties such as lat-
tice constant, elastic constants, cohesive energy, and vacancy
formation energy. The model does not require more rigorous
development than a pair potential. The model is applied to
seven fcc metals and all their binary alloys. For pure metal
systems, the properties of the seven metals Al, Ag, Au, Cu,
Ni, Pd, and Pt, including the equation of state of total energy
V s lattice constant, divacancy binding energy, surface en-
ergy, surface relaxation, and vacancy formation energies at

the ~111! surface, are calculated. In all cases, the results are
in reasonable agreement with the experimental data or the
data from first-principles calculation. In addition, the two
energies of fcc-hcp and fcc-bcc stabilities are also calculated.
It is found that the energy of the fcc-hcp stability is domi-
nated by only the pair potential, and is underestimated while
the energy of the fcc-bcc stability is dominated by both the
pair potential and embedding energy. Likewise, by calculat-
ing the total energy of the seven metals, we find that the
present EAM model predicts the total energy as a function of
the lattice parameter to be in good agreement with the equa-
tion of state of Roseet al. This agreement is closely related
to the electron density, i.e., the lower the contribution from
atoms of the second-nearest neighbor to the host density, the
better the agreement becomes. These results are discussed in
detail. Thus we obtain that~i! for an EAM, where angle force
is not considered, a long-range force is necessary for the
prediction of the structure stability; and~ii ! the dependence
of the electron density on angle should be considered for
increasing the energy of the fcc-hcp stability. Our present
model may be easy to use to make this extension. For alloy
systems, the heats of formation of the intermetallic com-
pounds ofA3B, AB, andAB3 , which consist of the seven
pure metals, are predicted to be in agreement with first-
principles calculations or the data from Miedema alloy
theory, and the dilute-limit heats of solution are also gener-
ally well represented by the present potential except for the
case of impurity Pd in host Ni. Moreover, the lattice con-
stants of the intermetallic alloys are predicted to be in agree-
ment with these from Vegard law or from the first-principles
calculations. The present potential model solves the dis-
agreement between the experimental and calculated data by
Johnson’s potential model for phase stability and dilute-limit
heats of solution of the alloy systems with palladium.8,9
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