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Up to now, the time dependence of the volume fraction during a first-order phase transition has been often
described by Avrami’s model, in which nucleation is assumed to occur randomly in the infinite volume. In this
paper we present a computer simulation of the phase transition in order to verify the validity of Avrami’s
kinetics in the cases of random and nonrandom distribution of germ nuclei. Our results indicate that Avrami’s
kinetics is the correct solution, provided the distribution of nuclei is random and the extended volume is
computed by including the so-calledphantomnuclei. It is also shown that the general solution in the form of
a functional of the extended volumes is appropriate for both nucleus distributions.@S0163-1829~96!07426-7#

INTRODUCTION

Phase transitions represent one of the most important top-
ics in materials science, since they are usually encountered in
the production cycle of materials. The kinetics of these tran-
sitions play a fundamental role in the definition of the micro-
structure and, therefore, of the mechanical properties of the
final product. The time dependence of the volume fraction of
the new phase is generally described by Avrami’s theory1,2

which has also been successful in describing crystallization,
polymerization, and surface reconstruction kinetics.3–7 In the
framework of Avrami’s model, the phase transition is as-
sumed to occur by nucleation and growth. The former takes
place at random in the infinite volume.1,2 In particular the
new phase fills up the whole volume of the original phase
through nuclei which start growing at preexisting germs dis-
tributed in the volume. When nucleation occurs at a preex-
isting distribution of germs, it is usually called heteroge-
neous nucleation process.8 With the term ‘‘germ’’ we refer
to a preexisting site, of null size, which, once ‘‘lighted,’’
gives rise to a growing nucleus.

In his papers Avrami provides the solution of the kinetic
problem once the heterogeneous nucleation and the particle
growth laws have been established. It is worth noticing that
by this model no information about the morphology of the
system during the transition is accessible. On the other hand,
this kind of information is accessible by computer simula-
tions which, in turn, are becoming a very useful tool in this
scientific field.6,9,10Nevertheless, to the best of the authors’
knowledge no computer simulations, aimed at verifying
Avrami’s kinetics, have been reported in the literature. We
do believe that this kind of computation is needed to verify
two fundamental and delicate issues regarding~i! the exten-
sion of the relationship between the extended and the non-
overlapping volumes of single nuclei also in the case of in-
finitesimal increments2 and ~ii ! the necessity of including

phantom nuclei in the computation of the extended volume,
in order to obtain the analytic expression of the phase-
transition kinetics. With reference to point~ii ! we underline
that Avrami’s prescription of consideringphantom nucleito
get the correct kinetics is by no means a trivial issue. As a
matter of fact two papers have been recently dedicated to the
problem of phantoms, i.e., whether they have to be included
in the computation of the extended volume or not.11,12 In
Ref. 11 the noncorrectness of Avrami’s prescription@point
~ii !# was claimed, and an alternative kinetics has been de-
rived not considering the phantom nuclei in the evaluation of
the extended volume.

In this paper we present a computer simulation of the
phase transition according to Avrami’s model. Simulations
were performed in the case of bothrandomandnonrandom
distributions of germs. Our results show that Avrami’s con-
clusions are correct and his general solution in the form of a
functional correctly describes the kinetics for both random
and non-random germ arrangements. The paper is organized
as follows: the first section is devoted to summarizing the
main results of Avrami’s model; in the second section, after
giving a brief description of the computer program, simula-
tions under different nucleation conditions for random and
nonrandom distributions of germs are reported and dis-
cussed.

RESULTS AND DISCUSSION

A. Avrami’s model

To set the ground for the results described in this paper, a
brief summary of the most salient points of Avrami’s theory,
which dates back to 1939–40, is indispensable.

It is necessary to give some definitions. The word ‘‘ex-
tended’’ denotes the fraction of the transformed volume each
nucleus would have if its growth were not impeded by the
impingement upon other nuclei. Several regions of the ex-
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tended volume can be identified~see Fig. 1!, namely the
following: ~i! thesingle nucleusregions corresponding to the
nonoverlapping portion of the extended volume. This vol-
ume is denoted byV18 ~ii ! thedouble nucleusregions, defined
by the overlap of two nuclei. This volume is indicated by
V28 and ~iii ! the triple nucleusregions are identified as the
portion of the extended volume resulting from the overlap of
three nuclei. This volume is indicated byV38 .

Higher order volumes,Vm8 , are identified in a similar
way. Since a region~for the sake of simplicity we omitted
the adjective overlapped! of a certain order grows at the ex-
pense of regions of lower order, it is possible to define the
extended volume of orderk. It represents the volume which
the region of orderk would have if regions of higher order
did not overlap it. On the basis of geometrical consider-
ations, the following relation holds between the extended and
the overlapped volumesVk ex andVm8 , respectively:

Vk ex~ t !5 (
m5k

` Smk DVm8 . ~1!

Regarding the transformed volume~kinetics!, always
through geometrical considerations, Avrami found the fol-
lowing equation:

V~ t !5 (
m51

`

~2 !m11Vm ex~ t !. ~2!

At this point two considerations are required: the first is
that Avrami’s theory is independent of the space dimension
and of the shape of the nuclei; the second is that the formal

solution ~2!, due to its complexity, is useless for getting
meaningful information from real kinetics.

Nevertheless, as Avrami demonstrated,2 and we will show
shortly, Eq.~2! can be simplified when the random distribu-
tion of germs is taken into account. In order to do that the
fundamental concept ofphantomgerms~or phantom nuclei!
was introduced by Avrami. Those are all the germs which
are captured by the growing new phase~see Fig. 1!. The
‘‘capture’’ of germs, as modeled in Ref. 2, led to the follow-
ing expression for the actual nucleation rate:

dNa

dt
5@12V~ t !#

dNp

dt
~3!

whereV(t) is the fraction of transformed volume at running
time t anddNp/dt is the nucleation rate one would have in
the absence of germ capture by the transformed volume, that
is including thephantom germs~Fig. 1!. In Eq. ~3! the sub-
scripts ‘‘a’’ and ‘‘ p’’ stand for ‘‘actual’’ and ‘‘including
phantoms,’’ respectively. Although the buried nuclei do not
contribute to the transformed volume,V(t), Avrami pro-
posed to take them into account in calculating theV1 ex in
order to restore the complete randomness of the system.2

Under this assumption, the ratio between the nonoverlapping
portion of the volume and the extended one reads, on the
average,

V18~ t !

V1 ex~ t !
512V~ t !, ~4!

where

V1 ex~ t !5E
0

t dNp

dz
v1 ex~ t,z!dz, ~5!

in which v1 ex(t,z) is the extended volume, at timet, of a
single nucleus which starts growing at timez,t. V1 ex(t) is
the extended volume with the inclusion of the phantom nu-
clei. Moreover, Avrami assumed Eq.~4! to hold even in the
case of infinitesimal incrementsdV18 anddV1 ex, that is

dV18~ t !

dV1 ex~ t !
512V~ t !. ~6!

Since the increment of the nonoverlapping volume is equal
to the increment of the transformed one, Eq.~6! becomes

dV~ t !

12V~ t !
5dV1 ex~ t !. ~7!

Integration of Eq.~7! gives

V~ t !512e2V1 ex~ t !. ~8!

Equation~8! is simpler than Eq.~2! and it isAvrami’s for-
mula. In the case of a random distribution of germs,
Avrami’s formula should be equal to the series expansion
reported in Eq.~2!. We point out, once again, that theV1 ex in
Eq. ~8! is given by Eq.~5!, explicitly including phantom
nuclei.

FIG. 1. Pictorial view of the nuclei arrangement. Dotted areas
indicateV18 , i.e., the transformed volume of the nonoverlapping
regions. Single hatched areas indicate theV28 regions and double
hatched areas indicate theV38 regions. In the figure two overlapped
phantom nuclei are also shown. In Avrami’s model the phantom
germs are allowed to grow (dNp/dt) becoming phantom nuclei. It
is evident that they do not contribute to the transformed volume,
although they contribute to theVm8 . They have to be considered so
as to restore the complete randomness of the germ distribution.
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Avrami’s formula can be also derived by considering the
ratio between the increments of the nonoverlapping portion
of the nucleus and the extended one. For a single actual
nucleus with ‘‘birth time’’ z, the ratio between the incre-
ments of the nonoverlapping portion of the nucleus~v8! and
the extended one~v1 ex! is assumedto be given by2

] tv8~ t,z!

] tv1 ex~ t,z!
5
12V~ t !

12V~z!
, ~9!

where the volume increments are in the time intervalt and
t1dt. By summing in Eq.~9! on the population of actual
nuclei, we get

dE
0

t

v8~ t,z!FdNa

dz Gdz5@12V~ t !#dE
0

t v1 ex~ t,z!

12V~z! FdNa

dz Gdz.
~10!

Since the increment of the nonoverlapping volume is equal
to the increment of the transformed volume, Eq.~10! reads

dV~ t !5@12V~ t !#dE
0

t

v1 ex~ t,z!FdNp

dz Gdz
5@12V~ t !#dV1 ex~ t !, ~11!

where use of Eq.~3! has been made. The integration of Eq.
~11! leads to Eq.~8!.

It is worth noting that, because of the cancellation of the
@12V(z)# terms in Eq.~10!, theV1 ex quantity includes the
contribution of the phantom nuclei. Moreover, we point out
that Avrami used two definitions for the extended vol-
ume: in the first one~1939! the extended volume did not
contain the phantom contribution whereas in the second
work ~1940! it did. Nevertheless Eqs.~1! and~2! still remain
valid for both definitions; obviously theVm8 ~as well as the
Vk ex! are numerically different in both cases.

B. Computer program and results

The program has been written for two-dimensional~2D!
and 3D transitions. For the sake of simplicity in what follows
we will refer only to the two-dimensional case. The transi-
tion takes place in a square lattice made up ofn3n points. In
this matrixN0 points, from which the phase transition could
start, are chosen. These ‘‘labeled’’ points represent Avrami’s
‘‘ germ nuclei.’’

Following Avrami’s assumptions, the number of nuclei
~including phantoms! which start growing per unit time, at
time z, is given byDNp5N0b exp(2bz)Dz. The nucleus
radius grows according toR(t,z)5a(t2z)q, wherea, q are
constants andt is the actual time whereasz is the time at
which a particular nucleus start growing. Points at a distance
less or equal thanR(t,z) ~around the growing nucleus!
change from ‘‘0’’ ~which indicates the untransformed sur-
faces! to ‘‘1.’’ In the case of superposition of two or more
nuclei, the points of the overlapped region are labeled with a
number equal to the number of superpositions. In our pro-
gram a number of superpositions as large as 20 was used. It

is worth underlining that in order to preserve the random
hypothesis, the germs buried by a growing nucleus are al-
lowed to grow as well.

As previously stated, we used an3n square lattice al-
though Avrami’s theory is for a phase transition occurring on
an infinite surface. For this purpose we used the well known
Born–Van Karman boundary conditions. However, by run-
ning the program without the boundary conditions~the
growth is stopped at the border of the lattice! no substantial
differences between the two simulations were observed, in-
dicating that border effects are irrelevant.

The program outputs are the transformed surface,V(t),
consisting of all the points which, at timet, are labeled with
any number different from zero; the overlapped surfaces,
Vi8(t), for i51–20 which is given by all the points labeled
with i ; theVk ex quantity that was computed by using Eq. 1.
From these quantities the additional outputsA(t)5(m51

N0

(2)m11Vm ex(t) andB(t)512exp~2V1 ex! were calculated.
Two cases have been considered with reference to the

randomness of the nucleation process:~i! germs nuclei are
randomly distributed in the space. Therefore the choice of
nucleus for growth can be sequential: case C1;~ii ! germs
nuclei are ordered to form a square sublattice. The germs
which start growing in time intervalt,t1dt are randomly
chosen in the sublattice: case C2.

The simulations performed in cases C1 and C2 are re-
ported in Figs. 2 and 3. As expected in both cases theA(t)
output coincides withV(t), whereasB(t) is equal toV(t)
only for the case C1. The extended volumes were computed,
on the basis of Eq.~1!, by using the overlapped volumes,
Vm8 . The simulation takes into account regions with at most
20 superpositions. In Fig. 4 we report the evolution of the
overlapped regions,Vm8 ~m runs from 1 to 20!, as a function
of time for the kinetics of Fig. 2~curvea!. It can be seen that
99% of the transformed phase has already occurred when
V138 starts growing. Therefore the evaluation ofV1 ex(t) is, in

FIG. 2. The fractions of transformed volumeV(t), A(t) ~dots!,
andB(t) ~full line! are reported as a function of time for the case
C1. Simulation parameters for curvea area51 s21, q51, b50.1
s21, N052500, andn5400; for curveb area51 s21, q51, b50.1
s21, N0510 000, andn5500. TheA(t) kinetics coincides with the
V(t) one. See text for the definition ofA(t) andB(t). TheV1 ex
volume in theB(t) function is computed including phantoms.
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practice, exact. In the simulations reported in Figs. 2 and 3
the V1 ex term in theB(t) expression was computed by in-
cluding phantoms.

Referring to the case C1, it is worth remembering that in
Ref. 2 Avrami showed that all the important quantities of the
kinetics can be expressed in terms of theV1 ex. As an ex-
ample, the following equation:

Vm8 5
V1 ex

m!
e2V1 ex, ~12!

states that at any time the overlapped volumes are distributed
according to Poisson’s formula. The simplest way to check

whether Eq.~12! is satisfied or not is to consider the selected
times t* for which Vm8 5Vm118 , since in this case Eq.~12!
implies V1 ex (tm11* )5m11. In Fig. 5 we report theV1 ex

(tm11* ) extracted by the computer simulation as a function of
~m11!. The obtained straight line definitely demonstrates the
correctness of Eq.~12!.

The simulations of case~i! show that Avrami’s expression
@Eq. ~8!# is the correct solution of the phase transition prob-
lem for a random distribution of germs. On the other hand, in
the case C2, where the germs are not distributed at random,
Eq. ~8! does not work anymore as also pointed out by
Martin.9

An accurate study about the effect of the impingement
geometry on the kinetics of the phase transition was under-
taken by Price10 through computer simulations. In his simu-
lations all germs start growing at the same time, namely
dNp/dt}d(t) ~d being Dirac’s delta function!, so that no
phantom nuclei are present. This is the main difference be-
tween our simulations and those of Price.10 It is worth un-
derlining that Price considered only ordered distributions of
germs, so that his simulations fulfill the case C2 of the
present paper. Our results for C2 are in complete agreement
with the simulations of Ref. 10, which show discrepancies
between Avrami’s formula and the real kinetics. However,
such a discrepancy was attributed in Ref. 10 to the modeling
of the impingement process Avrami proposed in Ref. 2,
whereas, in the present work, simulations for the case C1
indicate those discrepancies as due to the lack of random-
ness.

Another issue which deserves to be discussed is the ne-
cessity of including phantom clusters for obtaining the exact
solution of the kinetics. For this purpose we computed the
B(t) function evaluatingV1 ex without the contribution of
phantoms, from now on indicated withV1 ex

a . We still used
Eq. ~1! which holds also in this case. The results are shown
in Fig. 6~a! for the case C1. The dots are theV(t); the full
line ~dashed line! is theB(t) function including~not includ-
ing! the contribution of phantoms. In order to reduce the
stochastic error the curves have been obtained by averaging
over five runs in which just as many seeds, for generating the
pseudorandom sequence, have been employed. The error bar
has not been reported because its magnitude is within the

FIG. 3. The fractions of transformed volumeV(t), A(t) ~full
line!, andB(t) ~dashed line! are reported as a function of time for
the case C2. Simulation parameters are the same as in Fig. 2~a! The
A(t) kinetics coincides with theV(t) one. See text for the definition
of A(t) andB(t). TheV1 ex volume in theB(t) function is com-
puted including phantoms.

FIG. 4. Time dependence of the extension of the overlapped
regionsVm8 up tom520. The computation refers to the simulation
reported in Fig. 2~a!.

FIG. 5. Plot ofV1 ex(tm11* ) versus~m11! ~dots!. The selected
time t* is obtained from Fig. 4 forVm8 5Vm118 . The full line is a
linear best fit; quantitative result of the fit is also reported.
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symbol size. In Fig. 6~b! the relative differences@„V2B ~in-
cluding ph.!…/V# and @„V2B ~without ph.!…/V# are reported
as a function of time. We stress that while the included-
phantom relative difference approaches zero averaging over
a higher and higher number of runs, the nonphantom in-
cluded difference remains practically constant~4%! whatever
number of runs is employed in the average. These results
suggest that the displacement between theB(t) kinetics com-
puted without phantoms and theV(t) kinetics is actually due
to a systematic error originating by the exclusion of phan-
toms from theV1 ex computation. Therefore, for the case C1,
V(t)5B(t)512exp~2V1 ex! only holds whether phantoms
are taken into account in theV1 ex evaluation.

In the frame of Avrami’s theory, as we have previously
demonstrated, the inclusion of phantom nuclei inV1 ex is
indispensable to get the right kinetics. However, one could
wonder whether it is possible to find the solution of the ki-
netic problem in the form of a functionalV@V1 ex

a #. This
question has been the subject of two recent works,11,12where
the authors proposed, in substitution of Eq.~8! the following
kinetics:

V~ t !5kE
0

t

I ~z!~ t2z!n@12V~z!#2dz, ~13!

whereI (z) is the nucleation rate,V is the transformed vol-
ume,k is an appropriate constant, and (t2z)n stems from
the time dependence of the radius growth law withn.1.
Unfortunately, this equation hardly can be employed for de-
scribing phase transitions kinetics, due to its peculiar asymp-
totic behavior. As a matter of fact, whent approaches infin-
ity the transformed fraction diverges with a power law of
time whatever the nucleation rate function is. The first and
the second derivatives of Eq.~13! are

dV

dt
5nkE

0

t

I ~z!~ t2z!n21@12V~z!#2dz, ~14!

d2V

dt2
5n~n21!kE

0

t

I ~z!~ t2z!n22@12V~z!#2dz for nÞ1.

~15!

Both the integrands are positive defined. As a consequence
the first and the second derivatives are always positive so
that the following conclusions can be achieved:~i! V(t)
diverges as a function of time sinceV̇~`!.0; ~ii ! no
flex point occurs in theV(t) kinetics becauseV̈(t)Þ0;t.

As far as we know the only physical case for which the
above-mentioned functional can be found is when all germs
start growing simultaneously.10 This is a trivial case in that
dNp/dt5dNa/dt5(N0/V0)d(t), V0 being the whole volume
and, consequently, phantom nuclei do not exist at all. In this
case V1 ex

a 5*0
t dNa /dxv1 ex(t,x)dx and by considering

v1 ex(t,x)5b(t2x)3, b being constant, Eq.~8! gives

V@V1 ex
a #5VFN0

V0
v1 ex~ t !G512e2~N0 /V0!bt3, ~16!

which is the well-known stretched exponential form widely
used in the literature. If kinetics were expressed in the form
V@V1 ex

a # it would be pretty appealing, since they would be
given as a function of the actual nucleation rate and micro-
scopic growth law of the nucleus, that is through quantities
experimentally accessible.13

CONCLUSIONS

A study on the validity of Avrami’s model has been pre-
sented on the ground of computer simulations. Our results
indicate that Avrami’s formula is the correct solution of the
phase transition problem, provided the distribution of germs
is random and the contribution of phantoms to theV1 ex is
taken into account. Once the condition of randomness is re-
laxed, Avrami’s formula does not hold anymore. As a con-
sequence, in the random case, the ratio between the infini-
tesimal increments of the volumes of the nonoverlapping
region to the extended one is equal to the fraction of untrans-
formed volume.
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FIG. 6. The time dependence of the transformed fractionsV(t)
~full points! andB(t) with ~without! phantoms, for the case C1, are
reported in panel~a! as full line ~dashed line!. In panel ~b! the
relative difference [V(t)2B(t)]/V(t) is shown for both inclusion
~circle! and noninclusion~diamond! of phantoms. All the curves
were obtained by averaging over five outputs. The parameters are
a51 s21, q51, b50.1 s21, N0510 000, andn5800.
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