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Validity of Avrami’s kinetics for random and nonrandom distributions of germs
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Up to now, the time dependence of the volume fraction during a first-order phase transition has been often
described by Avrami’s model, in which nucleation is assumed to occur randomly in the infinite volume. In this
paper we present a computer simulation of the phase transition in order to verify the validity of Avrami's
kinetics in the cases of random and nonrandom distribution of germ nuclei. Our results indicate that Avrami’s
kinetics is the correct solution, provided the distribution of nuclei is random and the extended volume is
computed by including the so-callgghantomnuclei. It is also shown that the general solution in the form of
a functional of the extended volumes is appropriate for both nucleus distributi0E63-182806)07426-7

INTRODUCTION phantom nuclei in the computation of the extended volume,
in order to obtain the analytic expression of the phase-
Phase transitions represent one of the most important topransition kinetics. With reference to poi(it) we underline
ics in materials science, since they are usually encountered fhat Avrami’s prescription of consideringhantom nucleto
the production cycle of materials. The kinetics of these tranget the correct kinetics is by no means a trivial issue. As a
sitions play a fundamental role in the definition of the micro-matter of fact two papers have been recently dedicated to the
structure and, therefore, of the mechanical properties of thBroblem of phantoms, i.e., whether they have to be included
final product. The time dependence of the volume fraction of? the computation of the extended volume or HO]E_'”
the new phase is generally described by Avrami's thebry Ref. 11 the noncorrectness of Avrami's prescriptipoint
which has also been successful in describing crystallizatiorii)] Was claimed, and an alternative kinetics has been de-
polymerization, and surface reconstruction kineticsn the rived not considering the phantom nuclei in the evaluation of
framework of Avrami's model, the phase transition is as-the extended volume.

sumed to occur by nucleation and growth. The former takes N this paper we present a comp'EJter simulation of the
place at random in the infinite volumé.In particular the phase transition according to Avrami's model. Simulations

new phase fills up the whole volume of the original phase/Vére performed in the case of batindomand nonrandom
through nuclei which start growing at preexisting germs dis distributions of germs. Our results show that Avrami's con-

tributed in the volume. When nucleation occurs at a preexg:lusions are correct and his general solution in the form of a
isting distribution of germs, it is usually called heteroge_functional correctly describes the kinetics for both random

neous nucleation proce&aith the term “germ” we refer and non-random germ arrang_ements. The paper is_o_rganized
to a preexisting site, of null size, which, once “lighted,” aS follows: the first s_ectlon is d_evoted to summarizing the
gives rise to a growing nucleus. main result_s of Avre_lm_l’s model; in the second sectlor_n, after
In his papers Avrami provides the solution of the kinetic 91ving a brief description of the computer program, simula-
problem once the heterogeneous nucleation and the particiins under different nucleation conditions for random and
growth laws have been established. It is worth noticing thaponrandom distributions of germs are reported and dis-
by this model no information about the morphology of the CUSSe€d
system during the transition is accessible. On the other hand,
this kind of information is accessible by computer simula- RESULTS AND DISCUSSION
tions which, in turn, are becoming a very useful tool in this
scientific field®®1° Nevertheless, to the best of the authors’
knowledge no computer simulations, aimed at verifying To set the ground for the results described in this paper, a
Avrami’s kinetics, have been reported in the literature. Webrief summary of the most salient points of Avrami’s theory,
do believe that this kind of computation is needed to verifywhich dates back to 1939-40, is indispensable.
two fundamental and delicate issues regardinghe exten- It is necessary to give some definitions. The word “ex-
sion of the relationship between the extended and the noriended” denotes the fraction of the transformed volume each
overlapping volumes of single nuclei also in the case of inhucleus would have if its growth were not impeded by the
finitesimal incremenfsand (ii) the necessity of including impingement upon other nuclei. Several regions of the ex-

A. Avrami’s model
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solution (2), due to its complexity, is useless for getting
meaningful information from real kinetics.

Nevertheless, as Avrami demonstrafesd we will show
shortly, Eq.(2) can be simplified when the random distribu-
tion of germs is taken into account. In order to do that the
fundamental concept gghantomgerms(or phantom nuclei
was introduced by Avrami. Those are all the germs which
are captured by the growing new phasee Fig. 1L The
“capture” of germs, as modeled in Ref. 2, led to the follow-
ing expression for the actual nucleation rate:

dN,
dt

_[1-viy) I
[1-V(O] ®)

whereV/(t) is the fraction of transformed volume at running
time t anddN,/dt is the nucleation rate one would have in
the absence of germ capture by the transformed volume, that

FIG. 1. Pictorial vi f th lei Dotted is including thephantom germsFig. 1). In Eq. (3) the sub-
indicat.eV" IiC(teon(taheVIfrgn(;f()trrﬁer:jussllu%r;ar;?ihmeeT]t(')no?/t(tefla:prﬁlzsscripts ‘a” and "p” stand for "actual” and *including
1, LG 1 H . H
regions. Single hatched areas indicate YHeregions and double phantoms,” respectively. Although the buried nuclei do not

- . } contribute to the transformed volum¥,(t), Avrami pro-
hatched areas indicate tMg regions. In the figure two overlapped d to take them into account in calculatin in
phantom nuclei are also shown. In Avrami’'s model the phantompose 0 fake ne u u g Ve,
germs are allowed to growd(N,/dt) becoming phantom nuclei. It order to.restore th? Completg randomness of the S)fstem.
is evident that they do not contribute to the transformed volume,und,er this assumption, the ratio between the nonoverlapping
although they contribute to the/,. They have to be considered so POrtion of the volume and the extended one reads, on the

as to restore the complete randomness of the germ distribution. aV€rage,

Vi(t)
tended volume can be identifiq@dee Fig. 1, namely the Vi edl) =1-vi, @

following: (i) the single nucleusegions corresponding to the

nonoverlapping portion of the extended volume. This vol-Where

ume is denoted by (ii) thedouble nucleusegions, defined CdN

by the overlap of two nuclei. This volume is indicated by Vv, eit):f — 0, «(t,2)dz, (5)
V; and (iii) the triple nucleusregions are identified as the 0 dz

ortion of the extended volume resulting from the overlap of. . . .
Fhree nuclei. This volume is indicated h%{,, P %%in which v1edt,z) is the extended volume, at tinte of a

, single nucleus which starts growing at tiet. V, ¢(t) is

ngh_er order \_/olumes,\/m, are |dgnt|f|§q In a sm_ular the extended volume with the inclusion of the phantom nu-
way. Since a regiorifor the sake of simplicity we omitted |6 ‘\ioreover, Avrami assumed E6f) to hold even in the

the adject|ve_overlappe(d)f a certain _order grows at th_e €X° case of infinitesimal incrementsV; anddV, ¢, that is
pense of regions of lower order, it is possible to define the

extended volume of ordd. It represents the volume which

the region of ordek would have if regions of higher order dvi(t)

did not overlap it. On the basis of geometrical consider- mzl_v(t)- (6)
ations, the following relation holds between the extended and

! H .
the overlapped volumegy e andVr,, respectively: Since the increment of the nonoverlapping volume is equal

to the increment of the transformed one, E8). becomes

©

Vi al)= 2 (m)V' M
O kT v ,
1—v( MV ol t). (7)
Regarding the transformed volumeékineticy, always
through geometrical considerations, Avrami found the fo"lntegration of Eq(7) gives
lowing equation:
V(t)=1—e V1 eV, ®
V() =2 (=)™, o (1). (2)  Equation(8) is simpler than Eq(2) and it is Avrami’s for-
m=1 mula In the case of a random distribution of germs,

Avrami’s formula should be equal to the series expansion
At this point two considerations are required: the first isreported in Eq(2). We point out, once again, that thg ., in
that Avrami’s theory is independent of the space dimensioriEq. (8) is given by Eq.(5), explicitly including phantom
and of the shape of the nuclei; the second is that the formaiuclei.
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Avrami’s formula can be also derived by considering the

ratio between the increments of the nonoverlapping portion 1.20 :
of the nucleus and the extended one. For a single actual o 1.00FE
nucleus with “birth time” z, the ratio between the incre- E I b
ments of the nonoverlapping portion of the nucléu9 and 3 0.80 I a
the extended on& ) is assumedo be given by ;
g 0.60 [
o' (1,2) 1-V(t) S [
w1 b2 1-V(2) © g 040p
. . o = 020 |
where the volume increments are in the time intetvahd [
t+dt. By summing in EQ.(9) on the population of actual 000 =& + 1w v 1y by
nuclei, we get 0 5 10 15 20
t dN, oy oft,2) [dN, Time (s)
df v'(t,2) dz=[1—V(t)]df _—
0 dz o 1-V(z) | dz FIG. 2. The fractions of transformed volunvt), A(t) (dots,

andB(t) (full line) are reported as a function of time for the case
(10 C1. Simulation parameters for cureeare a=1 sL g=1,b=0.1
s~ 1, Ny=2500, anch=400; for curveb area=1s %, q=1,b=0.1
Since the increment of the nonoverlapping volume is equa$ *, No=10 000, anch=500. TheA(t) kinetics coincides with the

to the increment of the transformed volume, EtQ) reads  V(t) one. See text for the definition @(t) and B(t). The Vy
volume in theB(t) function is computed including phantoms.

dNy]
dz %%

t
VO =[1-V(Td [ v, oft2

is worth underlining that in order to preserve the random
=[1-V(1)]dV; 1), (11 hypothesis, the germs buried by a growing nucleus are al-
) ) lowed to grow as well.

where use of Eq(3) has been made. The integration of Eq. ag previously stated, we usedrexn square lattice al-
(12) leads to Eq(8). . though Avrami's theory is for a phase transition occurring on

It is worth noting that, because of the cancellation of theap, jnfinite surface. For this purpose we used the well known
[1-V(2)] terms in Eq.(10), the V; ¢ quantity includes the  Born—van Karman boundary conditions. However, by run-
contribution of the phantom nuclei. Moreover, we point OUthing the program without the boundary conditiofthe
that Avrami used two definitions for the extended vol- growth is stopped at the border of the latlic® substantial

ume: in the first ong1939 the extended volume did not gijfferences between the two simulations were observed, in-
contain the phantom contribution whereas in the secon@jcating that border effects are irrelevant.

wo_rk (1940 it did._l\l_e_vertheles_s Eq$l) and(2) still remain The program outputs are the transformed surfat@),
valid for both definitions; obviously th¥y, (as well as the  consisting of all the points which, at timteare labeled with
Vi ex) are numerically different in both cases. any number different from zero; the overlapped surfaces,

V/ (), for i=1-20 which is given by all the points labeled
with i; the V| o, quantity that was computed by using Eq. 1.
B. Computer program and results From these quantities the additional outpwtst)=E:]°:1

The program has been written for two-dimensiof@D) ()™ *Vme(t) andB(t)=1—exp(—V; ) were calculated.
and 3D transitions. For the sake of simplicity in what follows ~ TWo cases have been considered with reference to the
we will refer only to the two-dimensional case. The transi-fandomness of the nucleation procesé) germs nuclei are
tion takes place in a square lattice made up&fn points. In ~ randomly distributed in the space. _Therefore the choice of
this matrixN, points, from which the phase transition could nucleus for growth can be sequential: case @);germs
start, are chosen. These “labeled” points represent Avrami'§iuclei are ordered to form a square sublattice. The germs
“germ nuclei’ which start growing in time interval,t+dt are randomly

Following Avrami’s assumptions, the number of nuclei Chosen in the sublattice: case C2.

(including phantomswhich start growing per unit time, at ~ The simulations performed in cases C1 and C2 are re-
time z, is given by AN,=Nob exp(—bz)Az. The nucleus Ported in Figs. 2 and 3. As expected in both casesA¢
radius grows according B(t,z) = a(t—2)%, wherea, q are ~ Output coincides withV(t), whereasB(t) is equal toV(t)
constants and is the actual time whereasis the time at  Only for the case C1. The extended volumes were computed,
which a particular nucleus start growing. Points at a distanc€" the basis of Eq(l), by using the overlapped volumes,
less or equal tharR(t,z) (around the growing nucleus V/,. The simulation takes into account regions with at most
change from “0” (which indicates the untransformed sur- 20 superpositions. In Fig. 4 we report the evolution of the
faces to “1.” In the case of superposition of two or more overlapped regions/;, (m runs from 1 to 20, as a function
nuclei, the points of the overlapped region are labeled with ®f time for the kinetics of Fig. Zcurvea). It can be seen that
number equal to the number of superpositions. In our pro99% of the transformed phase has already occurred when
gram a number of superpositions as large as 20 was used.\ ; starts growing. Therefore the evaluation\of ¢,(t) is, in
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] FIG. 5. Plot ofV; ¢{t¥ ) versus(m+1) (dot9. The selected
FIG. 3. The fractions of transformed volumgt), A(t) (full time t* is obtained from Fig. 4 foN, =V, .. The full line is a

line), andB(t) (dashed lingare reported as a function of time for jinear pest fit; quantitative result of the fit is also reported.
the case C2. Simulation parameters are the same as in(Bigl &

A(t) kinetics coincides with th¥/(t) one. See text for the definition
of A(t) andB(t). TheV; ¢ volume in theB(t) function is com-

puted including phantoms whether Eq(12) is satisfied or not is to consider the selected

timest* for which V,,=V/ ., since in this case Eq12)
implies V; o (th1)=m+1. In Fig. 5 we report th&/; ¢

practice, exact. In the simulations reported in Figs. 2 and 4the1) extracted'by the computer simu.lation as a function of

the V¢, term in theB(t) expression was computed by in- (m+1). The obtained straight line definitely demonstrates the

cluding phantoms. correctness of_ Eql2). _ _ _
Referring to the case C1, it is worth remembering that in__ The simulations of casg) show that Avrami's expression

Ref. 2 Avrami showed that all the important quantities of thelEd: (8)] is the correct solution of the phase transition prob-
kinetics can be expressed in terms of Mg, As an ex- lem for arandom distribution of germs. On the other hand, in

ample, the following equation: the case C2, where the germs are not distributed at random,
Eq. (8) does not work anymore as also pointed out by
Vi o Martin.®
V'/“_W e Vie (12 An accurate study about the effect of the impingement

geometry on the kinetics of the phase transition was under-

states that at any time the overlapped volumes are distributd@ken by Pric through computer simulations. In his simu-

according to Poisson’s formula. The simplest way to checkations all germs start growing at the same time, namely
dNy/dtx5(t) (6 being Dirac’s delta function so that no

phantom nuclei are present. This is the main difference be-
tween our simulations and those of Pri€dt is worth un-
derlining that Price considered only ordered distributions of
germs, so that his simulations fulfill the case C2 of the
present paper. Our results for C2 are in complete agreement
with the simulations of Ref. 10, which show discrepancies
between Avrami’'s formula and the real kinetics. However,
such a discrepancy was attributed in Ref. 10 to the modeling
of the impingement process Avrami proposed in Ref. 2,
whereas, in the present work, simulations for the case C1
indicate those discrepancies as due to the lack of random-
ness.

Another issue which deserves to be discussed is the ne-
cessity of including phantom clusters for obtaining the exact
solution of the kinetics. For this purpose we computed the
B(t) function evaluatingV, o, without the contribution of
phantoms, from now on indicated wi¥f ... We still used
Eqg. (1) which holds also in this case. The results are shown

0.3 -

V'm

0.1 —

()

0.0 -
I ! \ [ I in Fig. 6(a) for the case C1. The dots are th¢t); the full
0 5 10 15 20 line (dashed lingis theB(t) function including(not includ-
t(s) ing) the contribution of phantoms. In order to reduce the

stochastic error the curves have been obtained by averaging
FIG. 4. Time dependence of the extension of the overlapped®Vver five runs in which just as many seeds, for generating the
regionsV/, up tom=20. The computation refers to the simulation pseudorandom sequence, have been employed. The error bar
reported in Fig. 2a). has not been reported because its magnitude is within the
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wherel(z) is the nucleation ratey is the transformed vol-

ume, k is an appropriate constant, ant—z)" stems from
“EJ the time dependence of the radius growth law with 1.
S Unfortunately, this equation hardly can be employed for de-
<>3 scribing phase transitions kinetics, due to its peculiar asymp-
- totic behavior. As a matter of fact, wherapproaches infin-
g ity the transformed fraction diverges with a power law of
5 time whatever the nucleation rate function is. The first and
“g the second derivatives of E4L3) are
[\
= dv t » )
a=nf<fol(z)(t—z)“ [1-V(z)]°dz (14)
2V t
g =n(n— 1)Kfol(z)(t—z)”‘z[l—V(z)]Zdz for n#1.
~~ = b
£ 2 ¢ ¢ Both the integrands are positive defined. As a consequence
E 0.03 3 . A the first and the second derivatives are always positive so
= 3 . that the following conclusions can be achievedi) V(t)
o 0.02 B ¢ diverges as a function of time since(«)>0; (i) no
;1_,\ 3 . ¢ flex point occurs in thé/(t) kinetics becaus¥®(t) #0Vt.
I 3 . As far as we know the only physical case for which the
= 0.01 3 * N above-mentioned functional can be found is when all germs
= . start growing simultaneoushk. This is a trivial case in that
0.00 I I ST S I dNy/dt=dN,/dt=(Ny/V,) (1), V, being the whole volume
0 5 10 15 20 and, consequently, phantom nuclei do not exist at all. In this
Time ) case V& ., =[tdN,/dxv, &(t,x)dx and by considering

vy o(t,X)=B(t—x)3, B being constant, E(8) gives

FIG. 6. The time dependence of the transformed fract\{t3
(full points) andB(t) with (without) phantoms, for the case C1, are
reported in panela) as full line (dashed ling In panel(b) the
relative difference Y(t) —B(t)]/V(t) is shown for both inclusion
(circle) and noninclusiondiamond of phantoms. All the curves Which is the well-known stretched exponential form widely
were obtained by averaging over five outputs. The parameters atsed in the literature. If kinetics were expressed in the form
a=1s1 g=1,b=0.1 s} Ny=10 000, anch=800. V[V{ ] it would be pretty appealing, since they would be
given as a function of the actual nucleation rate and micro-
scopic growth law of the nucleus, that is through quantities
experimentally accessibfé.

VIVE o=V =1-e MNMOBC  (1p)

No
V_O U1 ed)

symbol size. In Fig. @) the relative differencegV—B (in-
cluding ph))/V] and[(V—B (without ph))/V] are reported
as a function of time. We stress that while the included-
phantom relative difference approaches zero averaging over
a higher and higher number of runs, the nonphantom in- CONCLUSIONS
cluded difference remains practically const&t¥) whatever . .
number of runs is employed in the average. These results A Study on the validity of Avrami’s model has been pre-
suggest that the displacement betweerBf® kinetics com- §ented on the grou_nd of computer simulations. Qur results
puted without phantoms and th&t) kinetics is actually due indicate that Avrami’s formula is the correct solution of the
to a systematic error originating by the exclusion of phan-hase transition problem, provided the distribution of germs
toms from theV, ., computation. Therefore, for the case C1, is random and the contribution of phantoms to Wee, is
V(t)=B(t)=1—exp(—V; ) only holds whether phantoms taken into account. Once the condition of randomness is re-
are taken into account in thé, ., evaluation. laxed, Avrami's formula does not hold anymore. As a con-
In the frame of Avrami’'s theory, as we have previously sequence, in the random case, the ratio between the infini-
demonstrated, the inclusion of phantom nucleiMp ., is  tesimal increments of the volumes of the nonoverlapping
indispensable to get the right kinetics. However, one couldegion to the extended one is equal to the fraction of untrans-
wonder whether it is possible to find the solution of the ki- formed volume.
netic problem in the form of a functional[V] .,]. This
question has been the subject of two recent wotkéwhere
Lhe ?uthors proposed, in substitution of E8). the following ACKNOWLEDGMENTS
inetics:
. The authors are grateful to Professor A. Schiaffino for the
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