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Optical properties of self-affine thin films are studied in the quasistatic approximation. The eigenmodes of a
self-affine surface manifest strongly inhomogeneous spatial distributions characterized by various degree of
localization. On a metal self-affine film, the intensities in areas of high local fields~‘‘hot’’ zones! exceed the
applied field intensity by approximately three orders of magnitude. The spatial locations of the hot zones are
very strong functions of the frequency and polarization of the incident light.@S0163-1829~96!08435-4#

It is well known that surfaces formed by condensing
atomic beams onto a low temperature substrate are charac-
terized by microscopic surface roughness.1 A number of op-
tical phenomena are strongly enhanced on a rough metal
film.2 This enhancement is commonly associated with exci-
tation of surface plasmon oscillations. Two varieties of sur-
face plasmons are typically recognized:~1! surface plasmon
waves ~SPW’s! and localized surface plasmons~LSP’s!.
SPW’s propagate laterally along the metal surface; LSP’s are
confined to metal particles that are much smaller in size than
the wavelength of the incident light.

Recent evidence suggests that cold-deposited metal films
are self-affine fractal structures.1,3 Self-affine surfaces ob-
tained in the process of film growth belong to the Kardar-
Parisi-Zhang universality class.4 Unlike statistically self-
similar structures, in order to reveal scale invariance, a self-
affine surface~SAS! requires different scaling factors in the
(x,y) plane and in the normal direction,z.

Fractal structures do not possess translational invariance,
and ordinary running waves~such as SPW’s! are not, in gen-
eral, eigenmodes of a self-affine surface. Also, we anticipate
that plasmon oscillations associated with different roughness
features strongly interact with each other via dipolar or, more
generally, multipolar forces. Thus, plasmon oscillations on a
self-affine surface are neither conventional SPW’s nor inde-
pendent LSP’s. They should be treated as collective eigen-
modes which are formed by the interaction between different
features of a self-affine film.

Contrary to the case of ‘‘usual’’ roughness, there is no
correlation length for self-affine surfaces, which means that
the inhomogeneities of all sizes are present according to a
power-law distribution.5 A self-affine surface is ‘‘prickly’’;
in particular, it contains roughness features of very small
~asymptotically zero! radii of curvature, i.e., the profile’s de-
rivatives can be very large.~Of course, this kind of diver-
gence is only formal, because scale invariance appears as
intermediate asymptotics between, at least, the atomic length
scale and the size of a sample.! Unlike a random surface with
small spatial inhomogeneities, the contribution of highest

spatial harmonics~with the amplitude larger than the har-
monic wavelength! does play an important role in the Fourier
decomposition of a self-affine surface. All this means that
neither the Rayleigh perturbation approximation6–8 nor a
Kirchoff ~geometrical optics! approach can be applied to de-
scribe optical properties of a self-affine structure.9 ~Apart
from the two basic approaches, there is in existence a phase
perturbation approach,10,11 which is in some sense interme-
diate between these two basic methods and also cannot be
applied for a self-affine surface.!

An alternative approach is based on the microscopic ‘‘dis-
crete dipole approximation’’~DDA! which was suggested by
Purcell and Pennypacker12 and developed by Draine13 for
calculation of the optical response of an object of arbitrary
shape.~A self-affine film can be thought of as a special kind
of an odd-shaped object.! The DDA replaces the solid object
by an array ofN point dipoles, with the spacing between the
dipoles small compared to the wavelength and sizes of spa-
tial inhomogeneities. Each dipole has an oscillating polariza-
tion in response to both an incident wave and the electric
fields due to all of the dipoles in the array; the self-consistent
solution for the dipole polarizations can be obtained as the
solution to a set of coupled-dipole equations~CDE’s!.

For the polarizability,a0, of each individual dipole, the
Clausius-Mossotti relation is used:12–14
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wheree5e(l) is the bulk dielectric function andn is the
number density of dipoles. For polarizable point dipoles lo-
cated on a cubic lattice, this relation is exact in the zero-
frequency limit.~At finite frequencies, small corrections ap-
pearing due to a radiative reaction can be typically
neglected.! If the lattice period isa, then the density number
n5a23.

The known formula for the polarizability of a dielectric
sphere in vacuum is given by the expression similar to~1!,
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whereRm is the radius of the spherical monomer. Comparing
~1! and ~2!, we conclude that instead of point dipoles, one
can equally employ spherical particles~monomers! placed on
a cubic lattice in the volume of an object. To make the for-
mulas ~1! and ~2! identical, the radius of monomers,Rm ,
must be chosen so that

a35~4p/3!Rm
3 . ~3!

This relation implies that the spheres slightly overlap, so that
the total volume of all the spheres is equal to the volume of
the original object under consideration.

Remarkably, the solutions to the CDE, witha0 defined in
~1! or ~2! and~3!, accurately describe the optical response of
an object within the purely dipole approximation.12–16In this
regard, it is worth noting that the Maxwell equations in mac-
roscopic media also contain only dipoles~via the polariza-
tion term!.

To simulate a self-affine film, we use the restricted solid-
on-solid ~RSS! model.17,18 In this model, a particle is incor-
porated into the growing aggregate only if the newly created
interface does not have steps which are higher than one lat-
tice unit, a. The surface structure of such deposits is rela-
tively simple, because there are no overhangs. In this way
strong corrections to scaling effects are eliminated and the
true scaling behavior appears clearly, even for small dimen-
sions. In the long-time regime, the height-height correlation
function for a self-affine surface has the form17,18

^@h~R!2h~0!#2&;R2H, ~4!

where R is the radius vector in the plane normal to the
growth direction,z, and the scaling exponent~codimen-
sion!, H, is related to the fractal dimension,D, through the
formulaH532D. For the RSS model,D52.6 and the scal-
ing formula ~4! is valid for large values of the average
height,h̄, ~which is proportional to the deposition time!, such
that h̄@ l z, wherez52(d11)/(d12)522H ( l is the linear
size of a system andd is the dimension of the embedding
space!.18 Our simulations satisfied this condition, and the
scaling relation~4! is well pronounced.

In the simulations, we removed the bulk~regular! part of
the computer-generated film so that the resultant sample had,
at least, one hole. Clearly, the removal of the bulk part of a
film does not affect the scaling condition~4!. A typical simu-
lated self-affine film is shown in Fig. 1.

Below, we assume that the~lateral! size of a sample,l , is
much less than the wavelength,l!l, so that the quasistatic
approximation is valid.~For example, forl51 mm, the
length, l , and the height,h, can be in the range from 0.1 to
0.5 mm and 10 nm to 100 nm, respectively.! Then, the
coupled-dipole equations have the form12,16

di ,a5a0SEa
~0!1(

j ,b
Wij ,abdj ,bD , ~5!

wheredi is the amplitude of the dipole moment induced on
the i th particle,E(0) is the applied field amplitude, and

Wij ,ab52
dabr i j

223r i j ,ar i j ,b
r i j
5 ~6!

is the interaction operator between the two dipoles, with the
radius vectorsr i and r j . The Greek indices denote the Car-
tesian tensor components~not to be confused with the polar-
izability, a).

Note that within the quasistatic approximation, a self-
affine film can be thought of as a particle of very irregular
shape. As shown in Refs. 12–14, the DDA is a good ap-
proximation for a particle of arbitrary material and shape
provided the number of dipoles,N, is large enough that the
boundary of the cubic array satisfactory approximates the
desired particle~film, in our case! shape. A second necessary
condition for the dipole array to provide an accurate repre-
sentation of a homogeneous irregular object is that the length
scale for variation of the field within the object must be large
compared to the lattice period,a. For an object of a simple
~e.g., convex! shape, the above criteria can be formulated
quantitatively.13 In our case, validity of the approximation
can be checked out by performing numerical simulations for
different N. The approximation is justified, if the obtained
results do not vary withN ~see below!.

According to ~2!, there is a resonance ate8522. We
introduce

X[2Re@a0
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23 3e9
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,

wheree[e81 i e9. The variableX indicates a closeness to
the resonance of an individual particle and, thus, plays the
role of a frequency parameter, andd characterizes dielectric
losses. ~The smaller d the higher the quality factor,
q;d21, of the resonance.! The general solutions to~5! and
~6! expressed in terms of parametersX andd depend only on
morphology of an object; they are independent of material
properties. Substituting a given dielectric function,
e5e(l), to the above formulas, we can explicitly express
parametersX5X(l) and d5d(l) in terms of the wave-
length, i.e., the general solutions can be specified for any
material.16

FIG. 1. The self-affine film obtained in the restricted solid-on-
solid model. The scaling exponentH50.4 and the fractal dimen-
sionD532H52.6.
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As an example, in Fig. 2, we show the wavelength depen-
dences,a3X(l) anda3d(l), for silver particles„we used the
data of Ref. 19 fore(l) in Ag…. For X andd near 350 nm
and towards longer wavelengths, thel dependences are as-
sociated with collective surface plasmon resonances.~Here-
after, we use units such thata51.! As seen in Fig. 2,X
changes significantly between 350 and 800 nm; hence, dif-
ferent dipole eigenmodes of a sample can be excited by ap-
plied fields with different frequencies. In the wavelength re-
gion from 800 nm toward longer wavelengths,ueu@1 and
X are almost constant@X'X052a3/Rm

3 524p/3; see for-
mulas ~2! and ~3!#. This means that a change inl in this
region does not change the resonant dipole mode, which can
be referred to as the ‘‘zero-frequency mode,’’ or simply, as
the ‘‘zero mode.’’16 ~Note, however, that, whereas
X'const for l.800 nm, the relaxation constantd de-
creases for wavelength longer than 800 nm.!

As seen in Fig. 2, the allowed values ofX for silver range
approximately between24 and 5; accordingly, on Ag film,
only the modes withX values in this interval can be excited.
These modes, however, cover a very broad spectral range
including the ultraviolet, visible, and infrared regions of the
electromagnetic spectrum.

To solve the CDE~5!, we used a diagonalization of the
interaction matrix ~6!. In terms of the eigenfunctions,
cna(r i)[( iaun), and eigenvalues,wn , of the operatorW,
the solutions of the CDE~5! can be expressed as16,20

di ,a5(
b

a i ,abEb
~0!52(

jnb

~ iaun!~nu jb!

~X1wn!1 id
Eb

~0! . ~7!

To perform calculations for large samples, with the num-
ber of particles~dipoles!, N, forming a self-affine film more
than 10 000, we used the Lanczos algorithm.21

In Fig. 3, we plot the density of the eigenmodes,

r~X!5
1

N K (
n

d~X2wn!L ,
where the angular brackets denote averaging over an en-
semble of samples. The mode density satisfies the following

sum rule:*r(X)dX53.20 We used two different ensembles
of random samples: one consisted of 12 relatively small
samples, withN;103, and the other one included four much
larger samples, withN;104 each. As seen in the figure, the
results are close for the two ensembles. The modes cover a
wide spectral interval, fromX'25.3 to X'9.5. Note that
for silver films, however, modes only in the range between
24 and 5 can be excited~see Fig. 2 and the following dis-
cussion!.

In Figs. 4, we show plots for the real and imaginary parts
of the ‘‘parallel’’ and ‘‘perpendicular’’ components of the
mean polarizability per particle,a i[(1/2)^a i ,xx1a i ,yy& and
a'[^a i ,zz&. @The same, as in the case ofr(X), random en-
sembles were used for calculations ofa(X).# The parallel
component,a i , characterizes the polarizability of a self-
affine film in the (x,y) plane, whereas the perpendicular
component,a' , gives the polarizability in the normal,z,
direction. The polarizability components satisfy the sum
rule: *a',i(X)dX5p.20

FIG. 2. The spectral variable,X ~solid line!,
and decay parameter,d ~dashed line!, versus the
wavelength,l, for silver particles in vacuum.

FIG. 3. Density of dipolar eigenmodes,r(X), for the ensemble
of self-affine samples consisting ofN;103 dipoles each~dashed
line! and for the ensemble of larger samples, withN;104 each
~solid line!.
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From the figures it is clear that there is a strong dichroism
expressed in the difference between the two spectra,a i(X)
anda'(X). The modes contributing most toa i ~the ‘‘longi-
tudinal’’ modes! are located in the long wavelength part of
the spectrum~negativeX; see also Fig. 2!, whereas the
‘‘transverse’’ modes tend to occupy the short wavelength
part of the spectrum~positiveX). To some extent, this can be
understood by roughly considering a film as a prolate spher-
oid, where the longitudinal and transverse modes are shifted
to the red and blue, respectively, in comparison with the
eigenmode of a sphere. However, in contrast to the case of a
spheroid, there is a large variety of eigenmodes in self-affine
films, as follows from Figs. 3 and 4. Really, the widths of the
spectra in Figs. 3 and 4 are much larger than the width of an
individual resonance,d; this indicates a strong inhomoge-
neous broadening associated with a variety of the dipolar
eigenmodes on a self-affine surface. Thus, the dipole-dipole
interactions of constituent monomers in a self-affine film
‘‘generate’’ a wide spectral range of resonant modes.

From Figs. 3 and 4, we also make an important conclu-
sion that in the quasistatic approximation, the optical prop-

erties of a self-affine film do not depend on the number of
monomers,N, and, therefore, on the linear size,l , of the film.
The calculations that were performed for the ensembles of
samples with very different numbers of particles and linear
sizes give similar results.@We do not show in Fig. 4~b! the
results of calculations for Rea(X) for the ensemble of
samples withN;104; they are close to those obtained for the
ensemble withN;103.# Note also that the fact that the spec-
tra are almost independent of the number of the dipoles,N,
justifies the used discrete dipole approximation.

The field distributions of eigenmodes on a self-affine sur-
face are extremely inhomogeneous. On such surface, there
are ‘‘hot’’ spots associated with areas of high local fields,
and ‘‘cold’’ zones with small local fields.~Similar patch-
worklike picture of the field distribution is observed in frac-
tal clusters.16,22,23! Spatial locations of the modes are very
sensitive to both frequency and polarization of the applied
field.

To demonstrate this, in Figs. 5, we show the intensity
distributions for the local fields,uE(Ri)u2, on the film-air
interface@Ei ,a[Ea(Ri)5a0

21di ,a , wheredi ,a are defined in
~7!, andRi[(xi ,yi), wherexi andyi are the coordinates of
the dipoles on the surface of a film#. The results are shown
for different values of frequency parameter,X, and polariza-
tions of the applied field,E(0). Note that the local field dis-
tributions,uE(Ri)u2, can be measured with the use of a near-
field scanning optical microscope, provided the probe is
passive.24

As seen in Fig. 5, for a modest value ofd50.03, which is
typical for metals in the visible and near-infrared parts of the
spectrum, the local field intensities in the hot zones can sig-
nificantly, up to three orders of magnitude, exceed the inten-
sity of the applied field~for smaller values ofd, the enhance-
ments can be even larger!. The high frequency and
polarization sensitivity of the field distributions is also obvi-
ous from the figure.

Strongly inhomogeneous distributions of local fields on a
self-affine surface bring about large spatial fluctuations of
local fields and strong enhancements of optical processes.
These enhancements are especially large for nonlinear opti-
cal phenomena which are proportional to the local fields
raised to some high power.

At first, we consider the field enhancements averaged
over all particles ~dipoles! forming a self-affine film,
^uEi u2&/uE(0)u2. By generalizing the result of Ref. 20 for non-
symmetric systems, such as rough thin films, we obtain that

Gi ,'5dS 11
X2

d2 D Ima i ,' , ~8!

for the linearly polarizedE(0) that lies in the plane (x,y) and
normal to it, respectively. According to~8!, the enhancement
factorG'(X2/d)Ima for uXu@d, i.e., it can be very large,
provided Ima is not too small. Since a self-affine film is
characterized by a strong inhomogeneous broadening, we an-
ticipate large enhancements for this object@as seen in Figs. 3
and 4, Ima(X) is relatively large in a wide range ofuXu,
including the valuesuXu@d#. In the far Lorentz wing, when
uXu→`, the absorption Ima'd/X2 andG'1. For metals,
however,X remains almost constant in the long-wavelength
part of the spectrum,uXu'uX0u524p/3 ~see Fig. 2!,

FIG. 4. The real~b! and imaginary~a! parts of the parallel,
a i , and perpendicular,a' , components of the polarizability. For
Ima, the results for samples withN;104 andN;103 dipoles each
~solid and dashed lines, respectively! are shown. For Rea, only the
results of calculations withN;103 are shown~the results of calcu-
lations for Rea with N;104 are similar!.
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whereas d decreases towards the longer wavelength
(}l21, according to the Drude model!. Thus, in this region,
G'(X0

2/d)Ima(X0)}l, i.e., the enhancement increases to-
wards the ir part of the spectrum.16

For thin films, it is more important to study the surface-
averaged enhancement, with the averaging over particles on
the interface only:Gs[^uE(Ri)u2&s /uE(0)u2, where the sign
^ &s denotes averaging over the dipoles on the surface of the
film.

In Fig. 6~a!, we show the results of our calculations for
the enhancements,Gsi andGs' , as functions ofX, for the
applied fields polarized alongx andz, respectively. The de-
cay parameter was set constant in these simulations,
d50.03. In Fig. 6~b!, Gsi andGs' are plotted versus the

wavelength,l, for silver self-affine surfaces@the spectral
dependencies,X(l) and d(l), were used; see Fig. 2#. As
seen in Fig. 6~b!, the enhancement,Gs , increases towards
the long-wavelength part of the spectrum reaching the values
;103 for Gsi . This is because the quality factors
(q;1/d;ue21u2/3e9) increase for the modes located in the
long-wavelength part of the spectrum~see Fig. 2!, that can
easily be proved by using the Drude formula for the dielec-
tric function e(l).16 Thus, the dipole interactions shift the
resonant frequencies toward the smaller frequencies where
the quality factors for metals are significantly larger.~There-
fore, the enhancements can be much larger than for an iso-
lated metal sphere; to some extent, similar effects occur for
the longitudinal mode in a prolate spheroid.2!

To study localization of eigenmodes on a self-affine sur-
face, we calculated the mode pair-correlation function de-
fined as

nn~R!5
1

C(
ia

@~ iaun!#2

3S 1

p~2Rr1r2! (
j ,b;R<Ri j,R1r

@~ jbun!#2D ,
~9!

FIG. 5. Spatial distributions of the local field intensities,
uE(Ri)u2, on the self-affine surface for different values of frequency
parameter,X, and polarizations of the applied field,E(0). ~a!
X523, E(0)5(2)21/2(1,1,0); ~b! X522, E(0)5(2)21/2(1,1,0);
~c! X523, E(0)5(0,0,1). The decay parameterd50.03 in all the
cases.

FIG. 6. The average enhancements,Gsi andGs' , of local fields
on the surfaces of self-affine films for the applied fields polarized
along thex andz axes, respectively.~a! Gsi andGs' as functions of
X (d50.03); ~b! Gsi andGs' as functions ofl for silver films.
~The results are averaged over two samples!.
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where the normalization constantC is defined by the require-
mentn(0)51, and the summations are over dipoles on the
surface only. The sum overj in Eq. ~9! includes the dipoles
within the ring formed by the circles~around thei th dipole!
of radiiR andR1r; the area of the ring isp(2Rr1r2), and
r is small,r51.5a, in our calculations.@Note that definition
~9! can be formally written as

nn~R!;( i , jPs;a,bd~Ri j2R!@~ iaun!#2@~ jbun!#2,

whereRi j[Ri2Rj .
25# If the mode is localized within a cer-

tain area of radiusR0, thenn(R) is small forR.R0 and the
rate of decay ofn(R) atR.R0 reflects a character of local-
ization ~strong or weak! for the staten.27

The formula ~9! is a discrete function of its argument,
n. To obtain a smooth correlation function,n(R,X), we av-
eragenn(R) over small intervalDX for an ensemble of ran-
dom samples:

n~R,X!5 K @K~X,DX!#21( nn~R!L , ~10!

where the summation is taken over alln such that
uX2wnu<DX andK(X,DX) is the number of terms in the
sum.

The results of our calculations ofn(R,X) averaged over
two samples are shown in Fig. 7~a!. The linear size of both
square samples isl519 so that the largest value ofR is
A2l'27.

The calculatedn(R,X) are well approximated by the for-
mula n(R,X)5exp$2@R/L(X)#k%, wherek'0.7 ~rms for the
used approximation was about 731022). When the expo-
nent is larger than one,k.1, the modes are commonly
called superlocalized; in our case, withk'0.7, the modes
can be referred to as sublocalized~or quasilocalized!, on av-
erage.

Note that for individual modes, the best fit ofnn(R) in ~9!
can be achieved with varyingkn ; then, the values ofkn
range from 0.4 to 1.1. This indicates that there are, in gen-
eral, both kind of modes: superlocalized (kn.1) and sublo-
calized (kn,1). However, after averaging over smallDX
for an ensemble of random samples, the dependence
n(R,X) in ~10! is well approximated by the function
exp$2@R/L(X)#k% with constantk'0.7. Thus, although the

FIG. 7. ~a! The mode correlation function,n(R,X). ~b! The
mode correlation length,Ln ~dots!, and the average correlation
length, L(X) ~solid line!. ~The averaging was performed for the
spectral intervalDX50.2 for 2 random samples; see the text for
details!.

FIG. 8. The spatial distribution,ucnu25(au( iaun)u2, for the
mode with the eigennumberwn'0.16 ~a!. The distribution,
(au( iaun)u2, for the mode with the minimum eigennumber,
wn'25.25, for an original sample~b!, and for the sample obtained
from the original one by removal the whole part of the film with
coordinatesx>10. ~Arbitrary units are used for the vertical axis!.
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degree of localization is different for different modes, we can
say that, on average, the modes are sublocalized.

In Fig. 7~b!, we plot random correlation lengths,Ln , for
individual modes, whereLn ~dots in the figure! are found
from the formulann(R)5exp@2R/Ln#

k, when it is used to
interpolate the results of calculations ofnn(R) in ~9!. @For
the sake of simplicity,Ln shown in Fig. 7~b! were found
assuming thatkn5k50.7 for all modes; the results of cal-
culations forLn with adjustablekn are qualitatively similar.#
The solid line in Fig. 7~b! represents the average correlation
length, L(X), found from the relation n(R,X)
5exp@2R/L(X)#k (k50.7), that was applied to interpolate
n(R,X) in ~10!. As seen in the figure,L(X)'4.5 for most of
the eigenmodes, and it decreases down toL(X)'2 for the
modes close to the edges of the spectrum.

To illustrate localization of modes, in Fig. 8~a!, we plot
ucnu25(a@( iaun)#2 for the mode withwn'0.16 as a func-
tion of the position on the surface,Ri ~arbitrary units are
used for the vertical axis!. In Fig. 8~b!, we also show the
mode with the minimum eigennumber,wn'25.25. This
mode is localized in only one,x, direction. It is interesting to
note that removal of the whole part of the sample with
x>10 almost does not change the mode distribution@Fig.
8~c!#.

We also calculated optical properties for random films
obtained from the original self-affine films by their partial
smoothing. As was mentioned, a self-affine surface simulates
a thin film deposited on a cold substrate. Heating up the
substrate allows a deposited particle to diffuse on the surface
searching for an energetically more stable position; this re-
sults in a partial smoothing of the film. To simulate approxi-
mately the heating~annealing! of a self-affine film, each par-
ticle which initially had less than three neighbors~bonds!
was moved to the nearest position where the particle had
three or more bonds. As a next step, we allowed particles to
move to near positions, provided this results in decreasing
the average height of the film; then, the film was again
smoothed by the first procedure. To some extent, the de-
scribed processes simulate film annealing and can be used to
model surfaces which are smoother than the original self-
affine surfaces, but still random.

We briefly mention the main results obtained in our cal-
culations for the smoothed films~the corresponding figures
are not shown!. The smoothing of films results in a decreased
inhomogeneous broadening; in accordance with this, the
spectral range where enhancements occur is also decreased.
~We note, however, that the absolute maximum for the en-
hancement on smoothed films can be larger than that on
self-affine films.! For metal smoothed films, in the important
long-wavelength part of the spectrum, the enhancement is
less than for the original self-affine surfaces~by about an
order of magnitude!. The modes on the smoothed films also
show some tendency to localization~similar to the case of
self-affine surfaces, they are quasilocalized!.

To summarize, we showed that for a self-affine surface
the spatial distributions of local fields are extremely inhomo-
geneous and consist of hot and cold zones. Some of the
dipolar eigenmodes on a self-affine film are strongly local-
ized ~whereas others involve into excitation a significant
fraction of the film!. The local field distributions are very
sensitive to the frequency and polarization of the applied
field. Large spatial fluctuations of local fields bring about
strong enhancements of optical processes on a self-affine
film.

We also note that the results reported here are valid within
the quasistatic approximation, i.e., they can be applied only
to films with the lateral size smaller than the wavelength.
Though the optical properties of self-affine films with the
size larger than the wavelength are probably, in many re-
spects, similar to those considered here, there are significant
differences anticipated as well.
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