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Optical properties of self-affine thin films
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Optical properties of self-affine thin films are studied in the quasistatic approximation. The eigenmodes of a
self-affine surface manifest strongly inhomogeneous spatial distributions characterized by various degree of
localization. On a metal self-affine film, the intensities in areas of high local fiéhtst” zones) exceed the
applied field intensity by approximately three orders of magnitude. The spatial locations of the hot zones are
very strong functions of the frequency and polarization of the incident [[§%163-18206)08435-4

It is well known that surfaces formed by condensingspatial harmonicgwith the amplitude larger than the har-
atomic beams onto a low temperature substrate are charagtonic wavelengthdoes play an important role in the Fourier
terized by microscopic surface roughnégsnumber of op-  decomposition of a self-affine surface. All this means that
tical phenomena are strongly enhanced on a rough metaeither the Rayleigh perturbation approximafighnor a
film.2 This enhancement is commonly associated with exciKirchoff (geometrical opticsapproach can be applied to de-
tation of surface plasmon oscillations. Two varieties of sur-Scribe optical properties of a self-affine structtiréApart
face plasmons are typically recognizétl) surface plasmon from the _two basic applri)aches,_th_ere is in eX|sten_ce a phase
waves (SPW’'g and localized surface plasmor&SP’s). pgrturbauon approacH; Whlch is in some sense interme-
SPW'’s propagate laterally along the metal surface; LSP’s ariate between these two basic methods and also cannot be
confined to metal particles that are much smaller in size tha@Pplied for a self-affine surfade. _ o
the wavelength of the incident light. An glternaﬂve approa}ch is based on the microscopic “dis-

Recent evidence suggests that cold-deposited metal filnf@ete dipole approximationtDDA) which was suggested by
are self-affine fractal structurés. Self-affine surfaces ob- Purcell and Pennypa_cl%@rand developed by Dralﬁ%fo_r
tained in the process of film growth belong to the Kardar-Calculation of thg op_t|cal response of an object of grbltrary
Parisi-Zhang universality cladsUnlike statistically self- Shape(A self-affine film can be thought of as a special kind
similar structures, in order to reveal scale invariance, a selfof an odd-shaped objetThe DDA replaces the solid object
affine surfaceSAS) requires different scaling factors in the by an array olN point dipoles, with the spacing between the
(x,y) plane and in the normal direction, cﬁpqles small cqmpared to the wavelength apd sizes of spa-

Fractal structures do not possess translational invariancéial inhomogeneities. Each dipole has an oscillating polariza-
and ordinary running wavesuch as SPWisare not, in gen-  tion in response to bo?h an |_nC|dent wave and the el_ectrlc
eral, eigenmodes of a self-affine surface. Also, we anticipaté€lds due to all of the dipoles in the array; the self-consistent
that plasmon oscillations associated with different roughnesgolution for the dipole polarizations can be obtained as the
features strongly interact with each other via dipolar or, moresolution to a set of coupled-dipole equatid@DE'’s).
generally, multipolar forces. Thus, plasmon oscillations on a_ For the polarizability.ao, of each individual dipole, the
self-affine surface are neither conventional SPW's nor inde€lausius-Mossotti relation is useff:
pendent LSP’s. They should be treated as collective eigen-
modes which are formed by the interaction between different 3 -1
features of a self-affine film. ag=— ——,

Contrary to the case of “usual” roughness, there is no 4mm e+2
correlation length for self-affine surfaces, which means that
the inhomogeneities of all sizes are present according to where e=¢€(\) is the bulk dielectric function and is the
power-law distributior. A self-affine surface is “prickly”;  number density of dipoles. For polarizable point dipoles lo-
in particular, it contains roughness features of very smaltated on a cubic lattice, this relation is exact in the zero-
(asymptotically zerpradii of curvature, i.e., the profile’s de- frequency limit.(At finite frequencies, small corrections ap-
rivatives can be very largéOf course, this kind of diver- pearing due to a radiative reaction can be typically
gence is only formal, because scale invariance appears asglected.f the lattice period is, then the density number
intermediate asymptotics between, at least, the atomic length=a 3.
scale and the size of a samplenlike a random surface with The known formula for the polarizability of a dielectric
small spatial inhomogeneities, the contribution of highestsphere in vacuum is given by the expression similaf1jo
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whereR,, is the radius of the spherical monomer. Comparing
(1) and (2), we conclude that instead of point dipoles, one
can equally employ spherical particlesonomergplaced on

a cubic lattice in the volume of an object. To make the for-
mulas (1) and (2) identical, the radius of monomerg,,,
must be chosen so that

3
3-3:(477/3) Ry (©)) FIG. 1. The self-affine film obtained in the restricted solid-on-

. L . . solid model. The scaling exponeht=0.4 and the fractal dimen-
This relation implies that the spheres slightly overlap, so that;;,p=3-H=26

the total volume of all the spheres is equal to the volume of
the original object under consideration.

Remarkably, the solutions to the CDE, wiily defined in Wi = —
(1) or (2) and(3), accurately describe the optical response of 'ap
an object within the purely dipole approximati&i*in this _ _ . _
regard, it is worth noting that the Maxwell equations in mac-is the interaction operator between the two dipoles, with the
roscopic media also contain only dipolésa the polariza- radius vectors; andr;. The Greek indices denote the Car-

2
8aﬁrij—3rij'arij'ﬁ
r5

(6)

ij

tion term. tesian tensor componen(tsot to be confused with the polar-
To simulate a self-affine film, we use the restricted solid-izability, a). o o
on-solid (RS9 model*”*8In this model, a particle is incor- Note that within the quasistatic approximation, a self-

porated into the growing aggregate only if the newly createcffine film can be thought of as a particle of very irregular
interface does not have steps which are higher than one laghape. As shown in Refs. 12-14, the DDA is a good ap-
tice unit, a. The surface structure of such deposits is relaProximation for a particle of arbitrary material and shape
tively simple, because there are no overhangs. In this waprovided the number of dipoles|, is large enough that the
strong corrections to scaling effects are eliminated and th@oundary of the cubic array satisfactory approximates the
true scaling behavior appears clearly, even for small dimendesired particléfiim, in our casg shape. A second necessary
sions. In the long-time regime, the height-height correlatiorcondition for the dipole array to provide an accurate repre-

function for a self-affine surface has the fdfime sentation of a homogeneous irregular object is that the length
scale for variation of the field within the object must be large
([h(R)—h(0)]?)~R?", (4)  compared to the lattice period, For an object of a simple

(e.g., convex shape, the above criteria can be formulated
where R is the radius vector in the plane normal to the quantitatively*® In our case, validity of the approximation
growth direction,z, and the scaling exponeritodimen- can be checked out by performing numerical simulations for
sion), H, is related to the fractal dimensioB, through the different N. The approximation is justified, if the obtained
formulaH=3-D. For the RSS modeD =2.6 and the scal- results do not vary wittN (see below.
ing formula (4) is valid for large values of the average  According to (2), there is a resonance at=—2. We
height,h, (which is proportional to the deposition tijmesuch  introduce
thath>1¢, where=2(d+1)/(d+2)=2—H (I is the linear
size of a system and is the dimension of the embedding — R acl= R 1+ 3(e'—1)
space.'® Our simulations satisfied this condition, and the N %o m le—1]?
scaling relation4) is well pronounced.

In the simulations, we removed the bullegulay part of — and
the computer-generated film so that the resultant sample had,

at least, one hole. Clearly, the removal of the bulk part of a . 1 _5 3¢
film does not affect the scaling conditiéf). A typical simu- =—Imlag "]=Ry [e—1]%

lated self-affine film is shown in Fig. 1.

Below, we assume that thatera) size of a sampld, is  wheree=¢€’+i€”. The variableX indicates a closeness to
much less than the wavelengtks\, so that the quasistatic the resonance of an individual particle and, thus, plays the
approximation is valid.(For example, forx=1 um, the role of a frequency parameter, afccharacterizes dielectric
length,l, and the heighth, can be in the range from 0.1 to |osses. (The smaller § the higher the quality factor,
0.5 um and 10 nm to 100 nm, respectivglyThen, the g~ &1, of the resonanceThe general solutions t5) and
coupled-dipole equations have the fdfrif (6) expressed in terms of parametrand 6 depend only on

morphology of an object; they are independent of material
properties. Substituting a given dielectric function,
di.«=ao ESM% Wijapdig | ® = €(\), to the above formulas, we can explicitly express
parametersX=X(\) and §=46(\) in terms of the wave-
whered; is the amplitude of the dipole moment induced onlength, i.e., the general solutions can be specified for any
theith particle,E(© is the applied field amplitude, and material‘®
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FIG. 2. The spectral variable (solid line),
and decay parametef, (dashed ling versus the
wavelength\, for silver particles in vacuum.

As an example, in Fig. 2, we show the wavelength depensum rule: [ p(X)dX=3.2° We used two different ensembles
dencesa®X(\) anda38()\), for silver particleswe used the of random samples: one consisted of 12 relatively small
data of Ref. 19 fore(\) in Ag). For X and & near 350 nm samples, witiN~ 10°, and the other one included four much
and towards longer wavelengths, thedependences are as- larger samples, wittN\~10* each. As seen in the figure, the
sociated with collective surface plasmon resonang@ésre- results are close for the two ensembles. The modes cover a
after, we use units such that=1. As seen in Fig. 2X  wide spectral interval, fronX~ —5.3 to X~9.5. Note that
changes significantly between 350 and 800 nm; hence, difor silver films, however, modes only in the range between
ferent dipole eigenmodes of a sample can be excited by ap-4 and 5 can be excite@ee Fig. 2 and the following dis-
plied fields with different frequencies. In the wavelength re-cussion.
gion from 800 nm toward longer wavelengtig|/>1 and In Figs. 4, we show plots for the real and imaginary parts
X are almost constanfiX~ X,= —a3/R§1= —47/3; see for- of the “parallel” and “perpendicular” components of the
mulas (2) and (3)]. This means that a change Jnin this  mean polarizability per particley = (1/2)( a; yx+ i y,) and
region does not change the resonant dipole mode, which cam, =(«; ;). [The same, as in the case @fX), random en-
be referred to as the “zero-frequency mode,” or simply, assembles were used for calculations ®fX).] The parallel
the “zero mode.*® (Note, however, that, whereas component,a;, characterizes the polarizability of a self-
X=const for A>800 nm, the relaxation constart de- affine film in the ,y) plane, whereas the perpendicular
creases for wavelength longer than 800 nm. component,«, , gives the polarizability in the normat,

As seen in Fig. 2, the allowed valuesXffor silver range  direction. The polarizability components satisfy the sum
approximately betweer 4 and 5; accordingly, on Ag film, rule: [« |(X)dX= .20
only the modes wittX values in this interval can be excited.
These modes, however, cover a very broad spectral range r
including the ultraviolet, visible, and infrared regions of the o0
electromagnetic spectrum. 045

To solve the CDH5), we used a diagonalization of the 3

interaction matrix (6). In terms of the eigenfunctions, 0'40_5
Una(ri)=(ialn), and eigenvaluesy,, of the operatoilV, 035
the solutions of the CDES5) can be expressed '42° 0303

(ia|n)(nljB) ]
= ) (0)— _ A P =(0) 203
di.a E/;' %i,asEp j%a (X+Wn)+i5E'B - I

To perform calculations for large samples, with the num- 0.10—2
ber of particleqdipoles, N, forming a self-affine film more 0053
than 10 000, we used the Lanczos algoritHm. ]

In Fig. 3, we plot the density of the eigenmodes, FAY

1
p(X)= N<; 5(X_Wn)> ’ FIG. 3. Density of dipolar eigenmodes(X), for the ensemble
of self-affine samples consisting &f~10° dipoles each(dashed
where the angular brackets denote averaging over an efine) and for the ensemble of larger samples, with-10* each
semble of samples. The mode density satisfies the followingsolid line).
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o erties of a self-affine film do not depend on the number of
monomersN, and, therefore, on the linear sizepf the film.

The calculations that were performed for the ensembles of
samples with very different numbers of particles and linear
sizes give similar result§We do not show in Fig. &) the
results of calculations for R&X) for the ensemble of
samples witlN~ 10*; they are close to those obtained for the
ensemble witiN~ 10°.] Note also that the fact that the spec-
tra are almost independent of the number of the dipdigs,
justifies the used discrete dipole approximation.

The field distributions of eigenmodes on a self-affine sur-
face are extremely inhomogeneous. On such surface, there
are “hot” spots associated with areas of high local fields,
and “cold” zones with small local fields(Similar patch-
worklike picture of the field distribution is observed in frac-
X tal clusters®??23 Spatial locations of the modes are very
sensitive to both frequency and polarization of the applied
field.

To demonstrate this, in Figs. 5, we show the intensity
distributions for the local fields|E(R;)|?, on the film-air
interface(E; ,=E (R))=aq 1di,a, whered; , are defined in
(7), andR;=(x;,y;), wherex; andy; are the coordinates of
the dipoles on the surface of a filniThe results are shown
for different values of frequency paramet#r, and polariza-
tions of the applied fieldE(®). Note that the local field dis-
tributions,|E(R;)|?, can be measured with the use of a near-
field scanning optical microscope, provided the probe is
passive’

As seen in Fig. 5, for a modest value & 0.03, which is
typical for metals in the visible and near-infrared parts of the
spectrum, the local field intensities in the hot zones can sig-
nificantly, up to three orders of magnitude, exceed the inten-
sity of the applied fieldfor smaller values ob, the enhance-
ments can be even largerThe high frequency and
polarization sensitivity of the field distributions is also obvi-
ous from the figure.

0.4—

FIG. 4. The real(b) and imaginary(a) parts of the parallel,
|, and perpendicularg, , components of the polarizability. For

Ima, the results for samples witi~ 10* andN~ 10° dipoles each ; o i
(solid and dashed lines, respectivelye shown. For Re, only the Strongly inhomogeneous distributions of local fields on a

results of calculations with~10° are shown(the results of calcu- self-affine surface bring about large spatial flluctuations of
lations for Rer with N~ 10* are similay. local fields and strong enhancements of optical processes.

These enhancements are especially large for nonlinear opti-
From the figures it is clear that there is a strong dichroisntal phenomena which are proportional to the local fields
expressed in the difference between the two speatf@)  raised to some high power.
anda, (X). The modes contributing most tg, (the “longi- At first, we consider the field enhancements averaged
tudinal” mode$ are located in the long wavelength part of over all particles (dipoleg forming a self-affine film,
the spectrum(negative X; see also Fig. 2 whereas the (|Ei|?)/|[E(®)|2. By generalizing the result of Ref. 20 for non-
“transverse” modes tend to occupy the short wavelengthrsymmetric systems, such as rough thin films, we obtain that
part of the spectrurfpositiveX). To some extent, this can be
understood by roughly considering a film as a prolate spher-
oid, where the longitudinal and transverse modes are shifted
to the red and blue, respectively, in comparison with the
eigenmode of a sphere. However, in contrast to the case offar the linearly polarized®® that lies in the planex,y) and
spheroid, there is a large variety of eigenmodes in self-affin@ormal to it, respectively. According (@), the enhancement
films, as follows from Figs. 3 and 4. Really, the widths of the factor G~ (X?/8)Ima for |X|> 5, i.e., it can be very large,
spectra in Figs. 3 and 4 are much larger than the width of aprovided Imx is not too small. Since a self-affine film is
individual resonanceg; this indicates a strong inhomoge- characterized by a strong inhomogeneous broadening, we an-
neous broadening associated with a variety of the dipolaticipate large enhancements for this objle seen in Figs. 3
eigenmodes on a self-affine surface. Thus, the dipole-dipolend 4, Imx(X) is relatively large in a wide range d¥|,
interactions of constituent monomers in a self-affine filmincluding the value$X|> §]. In the far Lorentz wing, when
“generate” a wide spectral range of resonant modes. |X|—<, the absorption Im~ §/X? and G~1. For metals,
From Figs. 3 and 4, we also make an important concluhowever,X remains almost constant in the long-wavelength

sion that in the quasistatic approximation, the optical proppart of the spectrum,|X|~|X,|=—4=/3 (see Fig. 2

2

X
G,L:5(1+? ImaH,L, ©)]
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FIG. 6. The average enhancemel@s, andGg, , of local fields
on the surfaces of self-affine films for the applied fields polarized
along thex andz axes, respectivelya) Gg andGg, as functions of
X (6=0.03); (b) Gg) and G, as functions of\ for silver films.
(The results are averaged over two samples

0 wavelength,\, for silver self-affine surfacefthe spectral

FIG. 5. Spatial distributions of the local field intensities, dependenciesX(N) and 6(\), were used; see Fig.]2As
|E(R;)|2 on the self-affine surface for different values of frequency S€€n In Fig. ), the enhancemenGsg, Increases towards
parameter,X, and polarizations of the applied fiel&®. (a)  the long-wavelength part of the spectrum reaching the values
X=—-3, E®=(2)"Y%1,1,0); () X=-2, E@=(2)"Y%1,1,0): ~10® for Gy . This is because the quality factors
(©) X=—3, E®=(0,0,1). The decay parametér=0.03 in all the (g~ 1/6~|e—1|?/3€") increase for the modes located in the
cases. long-wavelength part of the spectruipee Fig. 2, that can
easily be proved bby using the Drude formula for the dielec-
tric function e(\).1° Thus, the dipole interactions shift the
Whe[elas 6 decreases towards the longer wavelengthesonant frequencies toward the smaller frequencies where
(=N ,Zaccordmg to the Drude modelThus, in this region,  {he quality factors for metals are significantly larg@there-

G~ (Xy/ 8)Ima(Xp)=A, i.e., the enhancement increases to-fore, the enhancements can be much larger than for an iso-
wards the ir part of the spectrutf\. lated metal sphere; to some extent, similar effects occur for

For thin films, it is more important to study the surface- the longitudinal mode in a prolate spherdjd.
averaged enhancement, with the averaging over particles on To study localization of eigenmodes on a self-affine sur-
the interface onlyG,=(|E(R;)|?)s/|E®)|?, where the sign face, we calculated the mode pair-correlation function de-

()s denotes averaging over the dipoles on the surface of thééned as

film. 1 . 2
In Fig. @), we show the results of our calculations for va(R)= E% [(iafn)]
the enhancement§g and G, , as functions ofX, for the 1
applied fields polarized along andz, respectively. The de- — [G8IM 2],
cay parameter was set constant in these simulations, m(2Rp+p*) j.B:R<R<R+p

6=0.03. In Fig. 6b), Gy and G, are plotted versus the 9
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FIG. 7. (a) The mode correlation functiony(R,X). (b) The
mode correlation lengthl.,, (dotg, and the average correlation

length, L(X) (solid line). (The averaging was performed for the
spectral intervalAX=0.2 for 2 random samples; see the text for

details.
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FIG. 8. The spatial distributiony,|?== ,|(ia|n)|?, for the
mode with the eigennumbew,~0.16 (a). The distribution,
S l(ialn)|?, for the mode with the minimum eigennumber,

where the normalization constaBtis defined by the require-  ~ —5.25, for an original samplé), and for the sample obtained
ment»(0)=1, and the summations are over dipoles on th&rom the original one by removal the whole part of the film with

surface only. The sum ovegrin Eqg. (9) includes the dipoles
within the ring formed by the circleground theth dipole
of radii R andR+ p; the area of the ring is"(2Rp+ p?), and
p is small,p=1.5a, in our calculations|Note that definition
(9) can be formally written as

a(R)~Zi j cs.a,p8(Ry = R a|m) TPL( B[N 1%,

whereR;;=R;—R; .2%] I the mode is localized within a cer-
tain area of radiuR,, thenv(R) is small forR>R, and the
rate of decay ofv(R) at R>R, reflects a character of local-
ization (strong or weak for the staten.?’

The formula(9) is a discrete function of its argument,
n. To obtain a smooth correlation function(R,X), we av-
erager,(R) over small intervalA X for an ensemble of ran-
dom samples:

v(R,x>=<[K(x,AX>]—1E vn<R>>, (10)

where the summation is taken over afl such that
|X—w,|<AX andK(X,AX) is the number of terms in the
sum.

coordinates<=10. (Arbitrary units are used for the vertical axis

The results of our calculations of(R,X) averaged over
two samples are shown in Fig(dJ. The linear size of both
square samples ik=19 so that the largest value & is
V21=~27.

The calculated(R, X) are well approximated by the for-
mula (R, X) =exp[—[R/L(X)]*}, wherex~0.7 (rms for the
used approximation was aboutx20 ?). When the expo-
nent is larger than onex>1, the modes are commonly
called superlocalized; in our case, wir0.7, the modes
can be referred to as sublocalizent quasilocalizeg on av-
erage.

Note that for individual modes, the best fit gf(R) in (9)
can be achieved with varying, ; then, the values ok,
range from 0.4 to 1.1. This indicates that there are, in gen-
eral, both kind of modes: superlocalized,t>1) and sublo-
calized (k,<1). However, after averaging over smallX
for an ensemble of random samples, the dependence
v(R,X) in (10) is well approximated by the function
exp{—[R/L(X)]*} with constantk~0.7. Thus, although the
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degree of localization is different for different modes, we can We briefly mention the main results obtained in our cal-
say that, on average, the modes are sublocalized. culations for the smoothed filmghe corresponding figures

In Fig. 7(b), we plot random correlation lengthls,,, for  are not shown The smoothing of films results in a decreased
individual modes, wheré., (dots in the figurg are found inhomogeneous broadening; in accordance with this, the
from the formulav,(R)=exd —R/L,], when it is used to spectral range where enhancements occur is also decreased.
interpolate the results of calculations of(R) in (9). [For  (We note, however, that the absolute maximum for the en-
the sake of simplicityL, shown in Fig. Tb) were found  hancement on smoothed films can be larger than that on
assuming thak,=«=0.7 for all modes; the results of cal- self-affine films) For metal smoothed films, in the important
culations forlL, with adjustablec, are qualitatively similai. long-wavelength part of the spectrum, the enhancement is
The solid line in Fig. Th) represents the average correlation |gss than for the original self-affine surfacésy about an
length, L(X), found from the relation »(R,X)  grder of magnitude The modes on the smoothed films also

=exfg —RIL(X)]“ (x=0.7), that was applied to interpolate g, some tendency to localizatigsimilar to the case of
v(R,X) in (10). As seen in the figurd, (X)~4.5 for most of self-affine surfaces, they are quasilocalized

the eigenmodes, and it decreases dowi (¥)~2 for the To summarize, we showed that for a self-affine surface

moggsilIilsotsrgtéolér:%l?zigtiisn cgftrrlneozgictirnunlgi. (@, we plot the spatial distributions of local fields are extremely inhomo-
|y |2=E [(ia|n)]2 for the mode with\,/v ~0916 és a f?mc- geneous and consist of hot and cold zones. Some of the
tiOT’l of tﬁe position on the surfac®; (;rbit.rary units are _dipolar eigenmodes on a self-a_lffine f"“_‘ are stron_gly_ I_ocal-
used for the vertical axjs In Fi S(t;) we also show the ized (whereas others involve into excitation a significant
mode with the minimum eige%numl:;em ~ 595 This fraction of the film. The local field distributions are very
mode is localized in only one, direction I? is intéreéting to sensitive o the _frequency'and poIarlzatlpn of the applied
note that removal of the Wﬁole art .of the sample Withf|eld. Large spatial fluctuations of local fields bring about
«=10 almost does not change thee mode distribugﬁ' strong enhancements of optical processes on a self-affine
501 g T film.

' We also note that the results reported here are valid within

btwiﬁ 3'5}? r(;]al&ulaterid ir?pl'[lcazf-pl}%ﬂert;ﬁ; fobr rra?di?m fr'tlimlsthe guasistatic approximation, i.e., they can be applied only
obtained 1ro € original sefi-afline S Dy eI partial ., ms with the lateral size smaller than the wavelength.

smoothing. As was mentioned, a self-affine surface S|mulate§hough the optical properties of self-affine films with the

:u::)hsl?rz;tlclamallcjﬁ/sso ztgg ggit:dcot'!\?téll:abtitr;tf?ﬁsg%E::Itnhge gﬁrftgfs ize larger than the wavelength are probably, in many re-
. posited p S gpects, similar to those considered here, there are significant
searching for an energetically more stable position; this re-

! . . : . .~ differences anticipated as well.
sults in a partial smoothing of the film. To simulate approxi-
mately the heatingannealing of a self-affine film, each par- Work at NMSU was supported in part by NSF under
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move to near positions, provided this results in decreasindational Laboratories was supported by the U.S. Department
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