
Plasma instabilities in a steady-state nonequilibrium one-dimensional solid-state plasma
of finite length

K. Kempa and P. Bakshi
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02167-3811

E. Gornik
Institute for Solid State Electronics and Microstructure Center, Technische Universita¨t Wien, Austria

~Received 15 March 1996!

We show theoretically that strong plasma mode generation is possible in a nonequilibrium steady-state
quasi-one-dimensional bounded solid-state plasma, in which a nonequilibrium distribution is maintained by
appropriate injection/extraction of carriers. We calculate the density response of realistic model systems using
the random-phase approximation, determine the normal modes of the bounded carrier plasma, and show that
strong plasma instabilities can be generated under suitable conditions. Such stimulated plasma oscillations
could lead to sources of terahertz electromagnetic radiation.@S0163-1829~96!01135-6#

I. INTRODUCTION

Nonequilibrium plasmas can develop plasma oscillations,
since for the excited particles of such plasmas this is one of
the available energy dissipation channels.1 This can be
viewed as the result of plasma wave generation due to net
downwards ~in energy! single-particle transitions, arising
from population inversion in the particle distribution. This
effect can be used to generate or amplify electromagnetic
radiation. When a constant current is applied to drive the
plasma away from equilibrium, the resulting spontaneous
plasma wave generation is called the current-driven plasma
instability ~CDPI!. While CDPI’s are well known in gaseous
plasmas, to our knowledge their solid-state analogs have not
yet been directly observed.2,3 This is due to the fact that a
direct transfer of energy from a current into a plasma mode
requires that the carrier velocities exceed a certain threshold.
This threshold velocity in solid-state systems is of the order
of the Fermi velocity.4–8 In uniform solid-state plasmas, even
those at modulation-doped heterojunctions where scattering
with phonons is strongly reduced, it is difficult to accelerate
carriers to reach this very high threshold without generating
strong plasma heating. In modulated lower-dimensional plas-
mas, such as quantum wires with a superposed periodic po-
tential modulation along the length of the wire, the threshold
velocity can be substantially reduced.9 Unlike the unmodu-
lated systems, the instability can then occur in the domain of
essentially cold electron transport, and thus the driving fields
do not enhance the dissipative collisions. Even though this
scenario is quite promising, the generation of plasma waves
could be possible only for low temperatures, rendering many
applications of this phenomenon impractical.

In this paper we examine in detail an idea for achieving
plasma wave generation, and subsequent decay of these
plasma waves into electromagnetic radiation.3 We consider a
boundedsolid-state plasma which can accommodate several
eigenmodes. Such a system plays the role of a plasma mode
resonator.3 For the pump mechanism we assume an energeti-
cally selective injection and extraction process. By reducing
the active size of the device below the corresponding mean

free path for phonon scattering, one can overcome collisional
losses while still maintaining electron-electron interactions,
necessary for the development of collective effects. The
charge-density oscillations of a bounded plasma couple di-
rectly to the electromagnetic radiation, and no additional
coupling mechanism is thus necessary to convert the plasma
wave energy into electromagnetic radiation.

II. THEORY

A model which simulates the conditions of the proposed
idea consists of a quantum well confined by infinite potential
walls located atx50 andx5L. A given potential profile is
assumed between the walls. We first consider a quasi-one-
dimensional well. In the random-phase approximation~RPA!
the density response of electrons to the external potential
perturbation of the formVext(x;t)5Vext~x,v!exp~2ivt! with
frequencyv, is given by

dr~x;v!5E dx8x0~x,x8;v!VT~x8;v!, ~1!

wherex0~x,x8;v! is the single-electron susceptibility given
by
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« andC«(x) are single-electron eigenvalues and eigenfunc-
tions, respectively, corresponding to a chosen ground-state
~static! potential inside the well. Here we useq51. The total
dynamic potential is given by
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whereVext~x;v! is the external dynamic potential. The sec-
ond term on the right is the Hartree potential.k is the di-

PHYSICAL REVIEW B 15 SEPTEMBER 1996-IVOLUME 54, NUMBER 11

540163-1829/96/54~11!/8231~4!/$10.00 8231 © 1996 The American Physical Society



electric constant of the material. To avoid the Coulomb sin-
gularity of the Hartree term, we assume that the electron gas
has a very small widtha, and that the induced density does
not change across this dimension. We next expanddr andx0
in the Fourier series

dr~x;v!5 (
n51

`

an~v!sin~qnx!, ~4!

x0~x,x8;v!5 (
n51

`

(
n851

`

Bnn8~v!sin~qnx!sin~qn8x8!, ~5!

whereqn5np/L, andn is a positive integer. Substituting~4!
and ~5! into ~2!, we obtain

(
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where
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4
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K0(z) being the modified Bessel function of order zero, and

En5E
0

L

dx8Vext~x8!sin~qnx8!. ~9!

For Vext(x)5V0sin(qmx),

En5~V0L/2!dnm . ~10!

The solution of Eq.~6!, for an~v!, is given symbolically by

a5@12Bv#21BE. ~11!

Our formalism may be compared to that of Das Sarma and
Lai,10 who considered a quasi-one-dimensional~1D! ~infi-
nite! electron gas.

A normal mode of the system occurs when the charge-
density oscillation response at a given frequency becomes
large for an arbitrarily small external perturbation. A
bounded system can have several normal modes, which can
be determined by examining the charge-density response
@Eq. ~4!# as a function of complexv. The sign of the imagi-
nary part of the frequency,g5Im~v!, if negative, indicates
that the mode represents damped density oscillations~as a
result of various losses in the system!, and if positive it rep-
resents growing plasma oscillations~instability!. When the
electron distribution is out of equilibrium, its excess energy
can lead to an instability. Note that, since the instability is a
‘‘normal mode,’’ albeit with a complexv, its characteristics
do not depend on the form of the external potentialVext(x).

III. INSTABILITIES IN BOUNDED SYSTEMS

We first consider a simple well, with no internal potential,
and an equilibrium electron distribution~which cannot lead
to an instability!. We obtain the mode structure using the
formalism of Sec. II. Figure 1 showsuam~v!u vs Re~v! for
three values ofqm ~m52, 4, and 6!, Eq. ~10!. We normalize
the distances byL0552 Å, and wave vectors by 1/L0. For the
unit of energy we choose«05\2/2m* L 0

2521 meV, with the
effective mass for GaAs,m*50.0665me . The Bohr length
in this medium is approximately 104 Å, andL0 is taken to be
half of that. We normalize the energy and frequencies by«0.
In this calculation, in these reduced units we takeL570,
a51, «f51 ~i.e., L53640 Å, a552 Å, and«F521 meV in
the normal units!, andg50.02 ~or 0.53 meV!. The response
spectrum consists of a series of peaks, corresponding to
standing plasma waves in the quasi-1D box. The two most
prominent peaks in each curve represent the strongest plas-
mon resonances for a givenqn . The oscillator strength be-
tween various peaks changes, so that this pair of peaks
moves toward higher frequencies for increasingqn . This dis-
persion follows approximately the dispersion relation for a
1D plasmon,10 shown by the arrows in Fig. 1. With increas-
ing L or «F , the number of possible resonances in the box
increases, and finally, for very largeL, only one peak, which
follows the dispersion of a one-dimensional electron-gas
~1DEG! plasmon, will dominate the spectrum as expected.

Now we consider a scheme which gives rise to an insta-
bility. The electron energy spectrum in the well is discrete
with «5\2n2p2/2m* L2, wheren is an integer. Levels below
«F are occupied. When additional electrons are injected into
levels located well above the Fermi level, strong downwards
transitions will occur to the unoccupied states below, capable
of generating plasmons, and an instability can occur. In order
to maintain this population inversion in a steady state, it is
necessary to extract carriers from the lower~unoccupied!
band efficiently. To illustrate this effect, we inject electrons
into a band of energies between«151.55 and«252.1. In
terms of the notation of Sec. IIf «51 for «1,«,«2 and for
«,1, and is zero otherwise. The correspondinguam~v!u vs
Re~v! for g50.02 is shown by the dashed line in Fig. 2, for
m56. Comparison of Fig. 2 with the corresponding curve of
Fig. 1 reveals an additional resonance atv50.52 ~i.e., 10.9

FIG. 1. uam~v!u vs Re~v! for three values ofqm ~m52, 4, and
6!, for a simple well, with no internal potential. The frequencies are
in units v0 with «05qv0521 meV. The Fermi energy is«F521
meV. The arrows indicate the successively increasing eigenmode
frequencies for a quasi-1D electron gas, for the correspondingqm .
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meV! andv50.73~15.3 meV!, while the double-peak struc-
ture ~of Fig. 1! is shifted to higher frequencies as a result of
the increased electron density in the system due to injection.
By changingg we can study the stability characteristics of
these plasmon modes. We find that these features~v50.52
and 0.73! represent unstable modes. Forv50.52 there is a
pole at positiveg50.055 ~i.e., 1.2 meV!, as shown by a
dramatic enhancement of the density response and a reduc-
tion in its width atg50.055~solid line in Fig. 2!. A similar
enhancement occurs forv50.73 andg50.056. The double-
peaked structure, on the other hand, represents stable modes,
since their response becomes singular for vanishingg. These
unstable modes are the analogs of the current-driven acoustic
~unstable! modes we found in uniform as well as modulated
systems in our earlier work.7,9 As in those cases, there is an
energy gap in the distribution function in this scenario. The
occurrence of two unstable modes, rather than one, is due to
plasma wave reflections arising from the finite size of the
system. This is a robust instability, well in excess of the
dissipative collision rate in a typical system. The growth rate
of the instability can be further enhanced by choosing higher
energies and a larger width for the injected band.

Another scheme for generating plasma instabilities in
bounded systems is to introduce a deep potential modulation
inside an empty quantum well. With deep enough modula-
tion, well-separated, narrow, minibands are formed. By in-
jection into the second, or higher miniband, it is possible to
obtain downwards transitions which generate plasmons in
the injected carrier plasma. This scenario can be simulated
by applying a periodically modulated potential of the form
A@12sin(2px/d)#, with periodd, between the walls of our
model system. The corresponding ground-state single-
particle energies are shown in Fig. 3~a! for period
d52pL05327 Å, for different amplitudes of the potential
modulationA, and show the formation of narrow band struc-
tures for sufficiently large valves ofA. Selectively injecting
carriers into the second band of ten levels@states 12–21; see
Fig. 3~a!# for all cases, theg for an unstable plasma mode vs
A is shown in Fig.3~b!. The growth rateg also depends onN,
the number of injected states. For the case ofA51.2 ~i.e.,
25.2 meV!, the maximumg50.079 ~i.e., 1.66 meV! occurs
for N510, when the second band is fully occupied. General
features of this instability are the following: the energy gap

between the second and first minibands must be larger than
the energy gap between the second and third minibands; then
the mode frequency lies between these two gaps, andg has a
maximum at a certain injection level.

These calculations show the feasibility of achieving a
strong instability~in both schemes above!, with a growth rate
far in excess of the dissipative collision rates, which typi-
cally do not exceed 0.5 meV for currently available samples
at low temperatures. Thus devices based on these ideas could
be practical. We note that the energies and growth rates can
be scaled by changing the size (L), and by changing the
strength of the modulation potential (A), for the second
scheme. From the fabrication point of view, the first scheme
has the advantage that it does not need any internal potential
modulation, while the second does not require an occupied
well; i.e., doping or other carrier generating schemes are not
needed.

We point out that the instabilites considered here are
largely insensitive to the dimensionality of the system, as
long as a three-band population scenario is maintained
through proper injection and extraction schemes, and should
be essentially unchanged in ‘‘fat’’ wire systems. Such sys-
tems are easier to fabricate, and would allow a larger level of
injection.

IV. DISCUSSION

In order to achieve the generation of growing plasma
waves in a bounded plasma, we propose to employ a vertical

FIG. 2. uam~v!u vs Re~v! for m56, for a simple well~as in Fig.
1!, with additional carrier injection into the band of energies be-
tween 32.5 and 44 meV. The frequencies are in unitsv0, with
«05qv0521 meV. Curves for two differentg’s are shown.

FIG. 3. ~a! The energy vs state index.~b! Re~v! vsA ~triangles!,
andg vsA ~filled circles! for a square well with additional periodic
potential modulation of the formA @12sin(2px/d)#, with d5327
Å. For ~b!, carriers are selectively injected into the second band of
ten levels~levels 12–21!.
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‘‘ mesa’’ structure, in which a quasi-1D electron plasma is
confined in a quantum well, with injection from one side into
a specified level, and extraction from the other side from
specified levels. One possibility is to employ two resonant-
tunneling energy filters, with proper energy levels. Another
possibility involves periodical superlattices with proper ar-
rangement of minibands so as to Bragg reflect, or transmit
electrons in and extract out from desired levels of the quan-
tum well ~a similar arrangement was used by Faistet al.11!.

Once the conditions for instability have been realized, a
charge-density oscillation will develop in the active region.
This effectively constitutes an oscillating dipole which will
emit electromagentic radiation at the frequency of the plasma
wave, if an efficient coupling scheme to free space can be
introduced~see below!.

As a first priority it is important to prove the existence of
the instability. At the onset of the instability a measurable
increase of the device current is expected, since another loss
channel is opened. Another means of detecting the onset
would be the observation of an absorption change, when
sweeping an external frequency through the resonance.

The plasma wave amplitude will saturate at a given value
determined through the onset of various loss mechanisms
~including nonlinear effects!, when they match the growth
rate. The saturation level will determine the possible radia-
tion power.

An estimate of the emission power can be given, assum-
ing state-of-the-art tunneling injection structures. Assuming
an injected current of 0.1 mA for a 12mm2 A/cm2 mesa
structure, corresponding to a current density of 104 Å/cm2,
and a voltage drop of 1 mV across the confined structure, we
can expect a radiation power of 1029 W if we assume a
quantum efficiency of 1022–1023. By arranging an array of
devices which could in addition function as an antenna,
power levels in the range of 1023–1024 W are basically pos-
sible ~for 106 structures!.

The basic phenomenon discussed here might be realized
in other experimental arrangements as well. In principle, the
instability might develop in a superlattice of 2DEG, with
potential modulation in the perpendicular direction as in our
quasi-1D example. The advantage of such a system is that a

much higher current can be employed. On the other hand,
since there are not true minigaps in a superlattice of 2DEG, it
will be necessary to have an extraction process which is
faster than the filling-up rate due to electron-phonon scatter-
ing, so that the quasi-steady-state population arrangement
necessary for the instability can be maintained. Recent work
by Faist et al.11 lends support to this possibility; it was
shown that a local population inversion in a quantum cascade
laser system, with no true minigap, was maintained in spite
of strong electron-phonon scattering.

It is important to note that our mechanism relies on the
collective-mode excitation of the system, to be contrasted
with the single-particle, spontaneous emission mechanism of
the quantum cascade lasers.11 As a result, one can achieve a
much strongerstimulatedemission in which the collective
mode plays the role of a Fabry-Perot resonator.

We note that, in general, competing processes, which
cause nonradiative interminiband transitions~electron-
phonon interactions, Auger processes, etc.! have longer time
scales than the injection/extraction and plasma-field-induced
transition rates, and therefore it should be possible to main-
tain the required carrier population arrangements to assure
the instability.

Operation at temperatures above cryogenic levels is gen-
erally possible due to the collectivity of the macrocharge
oscillations on which the device operation rests. Plasma ef-
fects can naturally extend this operational principle to do-
main of the microcharge oscillations. There is no ‘‘in-
principle’’ restriction to cryogenic temperature operation for
devices based on plasma~collective! effects. The phenom-
enon of plasma instability-induced stimulated emission as
discussed in this paper utilizes the principle of microcharge
oscillations at the collective level. Devices based on these
ideas could operate at temperatures above cryogenic levels.
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