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Distribution of transmitted charge through a double-barrier junction
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The distribution function of transmitted charge through a double-barrier junction is studied at zero tempera-
ture and at small applied voltage. Both a semiclassical model, in which the transport is described by jump rates,
and a quantum-mechanical model, which averages over resonant and nonresonant states, are used to determine
the characteristic function of the transmitted electrons. It is demonstrated that for large times the logarithm of
the characteristic function is equal within the two approaches. The charge distribution is in between a Gaussian
and a Poisson distribution if both barriers have equal height and reduces to a Poisson distribution if one barrier
is much higher than the othdiS0163-18206)06735-5

[. INTRODUCTION neglect charging effects and we assume small applied volt-
age as well as zero temperature.

The nature of the current flow at low temperatures The linear-response conductanGe of a double-barrier
through mesoscopic structures has received a lot of attentighnction is given by
during recent years. After initial focus on the conductance,
which measures the average number of electrons transmitted ~2e? Tl
in time, there has been an increasing interest in the noise G_T r+r, (1)
power, a measure for the variance of the transmitted charge.
At zero temperature, these current fluctuations are due to thith I';<1 the transmission probability through barrier
discreteness of the electron charge. It has been found theb=1,2, andN the number of transverse modes at the Fermi
retically, that the zero-frequency shot-noise poWecan be  energy. Interestingly, the two approaches to derive &g
suppressed below its classical value characteristic for uncogre of a completely different natufeé® The semiclassical
related electron transpomp.ssoi=2€ 1, With | the average derivation consists essentially of the addition of the resis-
current. This suppression is due to correlated electron trangances of both junctions, whereas the gquantum-mechanical
mission imposed by the Pauli principle® Consequently, it ~derivation involves an average over resonant and nonreso-
has been shown that in a double-barrier juncti®drcan be nant states. Physically, this averaging may correspond either

suppressed down tPpisson° -2 depending on the relative to an applied v_oItage larger than the width pf the resonance
height of the barriers. For a metallic, diffusive conductorOr to & summation over the modes in a multichannel conduc-

various calculations yield tha® = Ppuison > 2 The shot-  tor if the distance between the barriers is larger than the
noise suppression in these two systems has been observe@rmi wavelength.
experimentally-8-22 The role of the presence of phase coherence on the fluc-
Recently, Levitov and Lesovik have gone one step furthefuations in the current is still an intriguing isstfe?® For
by studying the fulldistribution functionof charge transmit- €xample, the one-third suppression of the shot noise in a
ted through a mesoscopic conductdiThis function gives Mmetallic, diffusive conductor was originally surmised to be
the probability that a certain number of electrons are transof quantum-mechanical origit?. However, later derivations
mitted during a given time interval. Their quantum- through a semiclassical approach yielded a suppression by
mechanical analysis demonstrates that the attempts to trar@0e-third as well***3'with respect to the shot-noise power
mit electrons are periodic in time, yielding a binomial in the double-barrier junction, a quantum-mechanical theory
distribution of transmitted electrons. On the basis of this reby Chen and Tin§and a semiclassical theory by Davies
sult, Lee, Levitov, and Yakovets have calculated the chargét al.” give identical results, namely,
distribution function for transport through a metallic, diffu-
sive conductof* _ Ti+r3
In this paper, we derive the complete distribution of trans- P= (I'1+T,)2 Proisson @
mitted charge through a double-barrier junction, by two dif-
ferent methods: Firstly, we follow a semiclassical approachAn additional aim of the present paper is to check to which
in which phase is neglected but the Pauli principle is acextent this insensitivity to the presence of phase coherence
counted for. Here, the electron transport is described by clagpplies also for the complete distribution of transmitted
sical jump rates. Secondly, we take a quantum-mechanic&harge.
approach, where we average the result of Ref. 23 over the The quantity of interest i®(t), denoting the probability
distribution of transmission probabilities through the double-that exactlyn electrons have been transmitted during a time
barrier system. In our calculations, we restrict ourselves tdntervalt. An alternative way to describe this distribution is
high tunnel barriers and assume that they are perfectly plahrough its characteristic functiop(\,t). They are mutually
nar, so that intermode scattering is absent. Furthermore, welated according lie)
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* _ a semiclassical approach. Section Ill repeats this analysis for
x(\, )= 2 P,(t)e™, (33  the double-barrier junction. The quantum-mechanical calcu-
n=0 lation is given in Sec. IV, after which we conclude in Sec. V.

1 (~ .
Pa(t)= Zf da ef'm‘)(()\,t). (3b) Il. SIMPLE EXAMPLE: SINGLE-BARRIER JUNCTION

) ) ) ) Let us illustrate our approach, by calculating the distribu-
It is often more convenient to determingA.t) instead of  tjon of transmitted charge through a single-channel, single-
Pn(t). Normalization requires thag(0,t)=1. Furthermore, paprier junction, with a transmission probabili<1. The
it follows from Eq. (3a) that the average number of electrons gqyerage current through the barriee €2VT/h=evy, with

transmitted during a timeis given by y=eVI'/h the tunnel rate through the barrier. The probabil-
o ity P,(t) thatn electrons have been transmitted in a time
nH= NP () =lim — y(\,b). 4) obeys the master equation
n=0 A—0 I&)\
dPy(t)
More generally, one can express tkiln momentu,(t) of gi 7PV, (113
the distribution according to
- 9 \K dPn(t) .
we(©)=nk(t) = lim (m) Y(\1). (5) gt~ YPn-aO=yPa(), if n=1, (11h
A—0

with the initial conditionP,(0)= &y, . Equation(11) can be
éolved straightforwardly by various means. Here, we adopt
an approach that appears to be useful for the double-barrier
junction. The solution of Eq(11a is Pqy(t) =exp(—y). We
gefine the waiting-time distributiog(t)=—dPgy(t)/dt, de-
noting the probability density that an electron is transmitted

We note that the average current is simphkygeu,(t)/t,
whereas the noise power is proportional to the varianc
of the number of transmitted electrons P
=2€?lim, ... vam(t)/t=2e?lim_..[ u(t) — u,?(t)]/t. The
logarithm of the characteristic function can be expanded a

follows: immediately after having waited a tinte
5 (in)k _
Inxy(\,t)= 2, %Kk(t), (6) p(t)=rye . (12)
k=1 K!
) o We write
with «(t) thekth cumulant of the distribution. The moments
and the cumulants have a direct polynomial relafiofor P.(1)=G,(t) = Gpq(1), (13

example,xq(t) = u1(t), ka(t)= pma(t) — wi?(t). N

The quantum-mechanical analysis by Levitov andwhereG,(t) denotes the probability thator more electrons
Lesovike® has vyielded the characteristic function of the are transmitted during a tintelt can be calculated according
charge through a single-channel conductor at zero temperé&e
ture and at small voltag¥,

t t t
x(M ) =[(eM—=1)T+1]eVPh, 7) Gn(t)=fodt1ftldtz-~-ft 1dtnw(tl)

n—

with T the transmission probability at the Fermi level

through the conductor. The generalization to a spin- XYt =ty) - Pt =tn o). (14)
degenerate, multichannel conductor is giveR®by Since this is a convolution, one has for the Laplace transform
N
XN(k,t)=|Hl [(e™=1)T +1]%VM, ® Gn(s)Ef dt e Gy (t)= [W(s)]", (15)
- 0

with T, the [th transmission eigenvalue. From EdS) and  \\here the Laplace transform of EAL2) is given by
(8) one can immediately derive the Landauer formula for the

conductance and the formula for the shot-noise pdifer, y

2e2 N W(s)= s+’ (16)
G= Tzl T © Erom Egs.(13), (15), and(16), we find
463V ~
P=——2 Ti(1-T). (10 Po(S)= G55y (17)

Note that Eq(10) is only valid in the phase-coherent regime, Yielding for the distribution in time
whereas in the absence of phase coheréhig given by a

different equatiori® In Section I1, it is demonstrated how the _ (Vt)nef 17 (18)
charge distribution through a single barrier can be derived in n! '

Pa(t)
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This is the Poisson distribution, as one would expect for the (y)2""1  (41)2" (yt)2tl _

uncorrelated electron transfers through the barrier. The chaPn(t)= —7 T + e ", if n=1.
o AN 2(2n—=1)! (2n)! 2(2n+1)!

acteristic function is given by (24b)

x(\,H)=exd yt(e*—1)]. (19 For arbitraryy, and y,, we can evaluate from E@23) the
Laplace transform of the characteristic function
Indeed, in the limifT=T"—0, Egs.(7) and(19) coincide.

The generalization of Eq(19) to the case of a spin- TOn8)= 1 (s+y1+72)? 1
degenerate,.multichannel condyc_tor is straightforward upon XS = Y1t Y2 | (S v (st v2)—€Nyiys
the assumption that the transmission of the different channels (25

is independent. .Usrng the result that the characterrs_tlc fun' Jielding for the characteristic function in time
tion corresponding to the sum of independent variables i

given by the product of the characteristic functions of the B(\)
separate variablé$,one obtains x(Nt)=exg —3(y,+ yz)t]{ coshi 3 B(Mt]+ iy
1 2
xn(Nt) =exd 2Nyt(e*~1)]. (20) 2yly2(e“—1)) . ]
— ——————|sinf[ 3 B(M)t], 26
(y1+7v2)B(N) 2B (28

lll. CLASSICAL APPROACH

with  B(N)=(y1+ ¥2)2+47y,v,(e*—1). For a spin-

We now study the double-barrier junction. The tunnel ratedegenerate, multichannel conductor we have
through barriei = 1,2 isy;=eVI'; /h. Due to the Pauli prin-
ciple, the number of electrons in the double-barrier junction
can be either O or 1.

Our analysis is similar to the single-barrier case. How- in
ever, one now has to take into account two possible initial . 2y172(e"—1)
conditions at=0: either 0 electrons in the junction—a situ- (y1+7v2)BN)
ation with probability y,/(y;+y,)—or 1 electron—
probability y,/(y,+ v,). The distribution of transmitted
charge is thus given by

B(N\)
v1t vz

xn(N ) =exd —N(y, + 72)'[][ costiz B(Mt]+

2N
Sinf[%ﬁ(k)t]] : (27)

Note that again we have made the assumption of independent

channels, implying that the Pauli exclusion principle applies

within each separate channel only. Physically, this situation

corresponds to the absence of intermode scattering.

P, ()= Lpgm(tHL PM(t), (21) Equation(27) is the central result of our semiclassical
Y1t Y2 Y1t Y2 analysis. Let us evaluate from EdS) and(27) the first two

0 ) , ) ) moments of the charge distribution. The average number of
where Pp(t) starts fromj electrons in the junction at gectrons transmitted during a tintds

t=0. The probability that at least electrons have been

transmitted can be expressed as
py()=2N-—"122 ¢, (28)
_ 1. Y1t Y2
G(s)= slva(s) Pa(9)]", (228 in agreement with Eq(1). For the second moment we find
L (D)= aN? 17 5, 7172( ¥t 75)
GiP(s)= a9 Ya(9)Ya(s)]" Y, (22D re (1% 72)° (71+72)°
o~ (7172)
with ;(s)=y;/(s+ ;). From Egs.(13), (21), and(22) we +4N m{l—exl{—Wﬁ y2)tl}. (29
obtain
The Fano factor, defined as the ratio of the variance to the
~ S(y1+ v2) + ¥+ ¥22+ v1 v average number of transmitted electronsr(t)
Po(s)= (Y1t 72 (5t 70 (5T 79 (238 =[uy(t) — w12(t) ) m(t), follows from Egs.(28) and(29),

2, 2 _
(o N2 2nvi(l-e RECD
if n=1. (y1+72)* (y21+ 72t

(23b) The Fano factor gives the relative magnitude of the current
o o i fluctuations. Indeed, for largg r(t) yields the shot-noise
The distribution function in time can be obtained through thesuppression according to Eq4) and(2). In Fig. 1 we have
inverse Laplace transform. In general, it yields a rather CUMpottedr (t), for ;= y,=y. We find that (t) goes from 1 at
bersome expression. However, for the case of a symmetrign )it indicative of uncorrelated electron transmission, to

(y172)"(S+ y1+ ¥2)? (30

Pl =y (57 7)™ H(s+ 7)™ 1

double-barrier junctiony, = y,=, one has 1 at larget, indicative of a more correlated electron trans-
mission. It is already within one percent of its final value at
"o t=50, which corresponds to an average number of 25
Po()=| 1+ =|e™ ™, 249 VO
o(t) 2 (243 transmitted electrons for each channel.
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FIG. 1. The Fano factor(t), giving the ratio of the variance to FIG. 2. The distribution of transmission probabilities through a

the average number of transmitted electrons, versus tifee a  double-barrier junction in a quantum-mechanical model, according
symmetric double-barrier junction with tunnel rates=y,=y. to Eq. (33), for I'y=0.02 andl",=0.03.

The solid line gives the resulEg. (30)] of the semiclassical analy-

sis and the dashed line the quantum reéut)), according to Eq.  is bimodal, in the sense that the transmission probabilities
(37). are either close t@ ,;;,~0 or close toT .

o The ensemble average of a linear statistic over all possible
The cumulants of the charge distribution can be detertransmission probabilities is given by(Z,a(T)))

mined from the logarithm of Eq27) =JImdTp(T)a(T). It is convenient to switch variables

Inxn(N D) =N[B(N) = (y1+ ¥2) Jt+2N In(1+e FMY from T to » with T=Tua/(1+v%), so that p(v)=po
=N(T'1+T',)/27 is uniform over the rangg0,v,,,]. In

“oN N2+ 2N Inl 1+ B(N) practice, the upper limit,,,, can be often replaced by infin-
Y1+ v ity. The ensemble average for theh power (n=1) of the

: transmission probability is given by
2y17,(e*=1)

(vt 72)BON)

N o
FoR
In general, it is cumbersome to derive the cumulants from =1 0
th|§ result. However, for largg only the first term remains (2m—-2)! (4T )™
of importance. = 5 .
There are various alternative methods to derive the above [((m=1)!]" (I'y+T)

results. For.example, one can use the approach outlined @ubstituting this result into Eq$9) and (10), we recover for
the Appendix of Ref. 33. (G) and(P) the expressions given by Eqd) and (2).
In order to obtain the ensemble average of all the cumu-
IV. QUANTUM-MECHANICAL APPROACH lants of the distribution function, we average the logarithm
(of the characteristic functioff. For the double-barrier junc-
tion, we obtain from Eq(8)

tant 3 B(M)t]|. (3D

m
Tmax

1+1°

(34

Whereas in a semiclassical picture the transmission pro
ability through the double-barrier junction is just a constant,
in a quantum-mechanical approach, the transmission prob- 2eV/t [
ability T, of theIth mode varies according to a Fabry-Perot (InXN()\,t)>=pOTJ dv In
type of formula, 0

(e”\_ 1)Tmax+ 1
1+ 12

r,.r =N[BN) = (y1t72)It, (35)
1t 2
i ! ’ with B(N) = (y1+72)*+4 (e'*—1). This is the ke
- - - - - Y1 T Y2 Y172 T . y
1=2yid=Ty)A=Tz)cosp+(1-Ty)(1=1) 3 result of the quantum-mechanical evaluation. Using &j.

we find for the ensemble average of the first three cumulants
whereg, is the phase accumulated in one round trip between

the barriers. The distribution functiop(T)=(Z,8(T—T))) Y172

of the transmission probabilities through the system can be {ra(B))=2N v+ yzt’ (369
obtained from the assumption that tie are uniformly dis-
tributed between 0 and 23 In the limit T'y,T',<1 this Y172 Yo+ ¥
) 1t 72)
impli t))=2N———5—t, 36h
implies (Ka(1)) (yit 7)° (36b)
T NI4T 1 33 V12
= 1
p(T) 7(T14+T2) (T3(T0-T) 33 (Ks(t)>=2Nmt(ﬁ—zﬁwﬁﬁyg
if Te[Tmin:Tmad, and p(T)=0 otherwise, with — 29193+ 9%). (360

Tmin:4F1F2/[(F1+F2)2+4772] and Tmax:4r1F2/
(I';+T,)2. The distribution functiorf33) is plotted in Fig. 2. Since(Inyy(\,t)) is proportional tot, all the cumulants are
Similar to a metallic, diffusive conductdf,this distribution  linear int as well. This implies for the Fano factor



8148 M. J. M. de JONG 54

(Ka(1)) 7§+ yg statistics of charge transport through a double-barrier junc-

{r(t))= = 5, (37)  tion does not reveal whether phase coherence is present or
(k1(t))  (y1t+72) absent.

which is constant in time and equal to the latgealue of This insensitivity to the presence of phase coherence does

Eq. (30) (see Fig. L If y,;>v, (or vice versa Eqg. (35 not imply that phase breaking is not of influence in a real

reduces to a Poisson distributibsee Eq(20)], as expected. experiment. This depends on the physical process which de-

For a symmetric double-barrier junction with,=7y,=v,  stroys the phase coherence. For example, using the method

expression(35) simplifies considerably: given in Ref. 31, one can show that electron-electron scatter-
, ing inside the double-barrier system, in which both phase
(Inxn(\ 1)) =2Nyt(eM?—1). (38 coherence is destroyed and energy is redistributed among the
For thekth cumulant, we find from Eq<6) and (38) electrons, increases the shot noise above the value dREq.
However, the analysis in the present paper demonstrates that
Nyt merely breaking the phase leaves the charge transport
(k1) = Zi=1- (39 through the system unaffected. This is in contrast to the re-

sult of Ref. 29, in which incoherence is modeled by adding
The charge distribution is thus somewhere between a Gausgandom phases to the wave function on each round trip. The
ian (where x,=0 for k=3) and a Poisson distribution authors find that this increases the shot noise, so that we
(Where k= 2Nyt for all k). conclude that their model is not equivalent to just destroying
the phase.
It might be interesting to determine the role of inelastic
processes inside the tunnel barrier on the charge distribution.
V. CONCLUSIONS We think that these effects can well be taken into account
using the semiclassical analysis, whereas a complete

Let us make the_comparlson between the_ outcome of &, antum-mechanical derivation looks more complicated.
two approaches, i.e., between the semiclassical resu

nother extension of the work described in this paper would
Inxn(\.t) from Eq. (31) and the quantum resufinyn(\Y))  pe 1o repeat the semiclassical analysis for a metallic, diffu-

given in Eq.(35), where we have averaged over the distri- i e conductor, and compare the outcome with the quantum-
bution of transmission probabilities. The semiclassical resulf,ochanical derivation of Ref. 24.

yields a more complicated expression, however, the most |, symmary, we have derived the complete distribution of

important contribution, which is proportional @ is pre-  yangmitted charge through a double-barrier junction at zero
ciselyequivalent to the resu(5). The other terms are either (e mperature and at low voltage. We have used a semiclassi-
constant(do not depend o) or vanish exponentially with 4| anproach on the basis of classical jump rates as well as a
t. Only on short time scale;, corresp(_)ndmg to the transfer of,antum-mechanical approach, in which the result of Levi-
a few electrons, we see sizeable differences between botly and Lesovik for an arbitrary mesoscopic condutis
approaches. We surmise that these differences at $me#l  4yeraged over the distribution of transmission probabilities
not due to the neglect of the phase, but rather depend on thgroygh the system. Our results are in precise agreement with
precise way the reservoirs are modeled in both approachegyevious values for the conductance and for the shot-noise
The quantum-mechanical derivation is based on 8).  powerS” Within both approaches, we have determined the
which applies for arbitrary transmission elgenvalugs betweeTbgarithm of the characteristic function, which become
0 and 1. Here, the number of electrons transmitted has gqyivalent at large times. It is found that for symmetric tun-

maximum valuen(t) =2NeVth. Our semiclassical calcula- pe| parriers, the charge distribution is between a Gaussian
tion assumes independent tunnel events and is therefore only,q 3 Poisson distribution.

valid for small transmission probabilities. However, the
number of electrons which can be transmitied) is not
bounded. Even though this seems not to be very important
for the case of high tunnel barriers, one may expect that it
leads to differences on a small time scale. Therefore, we just
draw conclusions from the comparison at larieHere we

find that the two results are equal, and that, as a consequence,| would like to thank C. W. J. Beenakker and L. F. Feiner
all the cumulants are also equal. This demonstrates that tHer useful comments.
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