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The distribution function of transmitted charge through a double-barrier junction is studied at zero tempera-
ture and at small applied voltage. Both a semiclassical model, in which the transport is described by jump rates,
and a quantum-mechanical model, which averages over resonant and nonresonant states, are used to determine
the characteristic function of the transmitted electrons. It is demonstrated that for large times the logarithm of
the characteristic function is equal within the two approaches. The charge distribution is in between a Gaussian
and a Poisson distribution if both barriers have equal height and reduces to a Poisson distribution if one barrier
is much higher than the other.@S0163-1829~96!06735-5#

I. INTRODUCTION

The nature of the current flow at low temperatures
through mesoscopic structures has received a lot of attention
during recent years. After initial focus on the conductance,
which measures the average number of electrons transmitted
in time, there has been an increasing interest in the noise
power, a measure for the variance of the transmitted charge.
At zero temperature, these current fluctuations are due to the
discreteness of the electron charge. It has been found theo-
retically, that the zero-frequency shot-noise powerP can be
suppressed below its classical value characteristic for uncor-
related electron transport,PPoisson[2eI, with I the average
current. This suppression is due to correlated electron trans-
mission imposed by the Pauli principle.1–5 Consequently, it
has been shown that in a double-barrier junctionP can be
suppressed down to12PPoisson,

6–12 depending on the relative
height of the barriers. For a metallic, diffusive conductor
various calculations yield thatP5 1

3PPoisson.
13–17 The shot-

noise suppression in these two systems has been observed
experimentally.18–22

Recently, Levitov and Lesovik have gone one step further
by studying the fulldistribution functionof charge transmit-
ted through a mesoscopic conductor.23 This function gives
the probability that a certain number of electrons are trans-
mitted during a given time interval. Their quantum-
mechanical analysis demonstrates that the attempts to trans-
mit electrons are periodic in time, yielding a binomial
distribution of transmitted electrons. On the basis of this re-
sult, Lee, Levitov, and Yakovets have calculated the charge
distribution function for transport through a metallic, diffu-
sive conductor.24

In this paper, we derive the complete distribution of trans-
mitted charge through a double-barrier junction, by two dif-
ferent methods: Firstly, we follow a semiclassical approach,
in which phase is neglected but the Pauli principle is ac-
counted for. Here, the electron transport is described by clas-
sical jump rates. Secondly, we take a quantum-mechanical
approach, where we average the result of Ref. 23 over the
distribution of transmission probabilities through the double-
barrier system. In our calculations, we restrict ourselves to
high tunnel barriers and assume that they are perfectly pla-
nar, so that intermode scattering is absent. Furthermore, we

neglect charging effects and we assume small applied volt-
age as well as zero temperature.

The linear-response conductanceG of a double-barrier
junction is given by

G5
2e2

h
N

G1G2

G11G2
, ~1!

with G i!1 the transmission probability through barrier
i51,2, andN the number of transverse modes at the Fermi
energy. Interestingly, the two approaches to derive Eq.~1!
are of a completely different nature.25,26 The semiclassical
derivation consists essentially of the addition of the resis-
tances of both junctions, whereas the quantum-mechanical
derivation involves an average over resonant and nonreso-
nant states. Physically, this averaging may correspond either
to an applied voltage larger than the width of the resonance
or to a summation over the modes in a multichannel conduc-
tor if the distance between the barriers is larger than the
Fermi wavelength.

The role of the presence of phase coherence on the fluc-
tuations in the current is still an intriguing issue.27–29 For
example, the one-third suppression of the shot noise in a
metallic, diffusive conductor was originally surmised to be
of quantum-mechanical origin.13 However, later derivations
through a semiclassical approach yielded a suppression by
one-third as well.14,30,31With respect to the shot-noise power
in the double-barrier junction, a quantum-mechanical theory
by Chen and Ting6 and a semiclassical theory by Davies
et al.7 give identical results, namely,

P5
G1
21G2

2

~G11G2!
2PPoisson. ~2!

An additional aim of the present paper is to check to which
extent this insensitivity to the presence of phase coherence
applies also for the complete distribution of transmitted
charge.

The quantity of interest isPn(t), denoting the probability
that exactlyn electrons have been transmitted during a time
interval t. An alternative way to describe this distribution is
through its characteristic functionx(l,t). They are mutually
related according to32
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x~l,t !5 (
n50

`

Pn~ t !e
inl, ~3a!

Pn~ t !5
1

2pE2p

p

dl e2 inlx~l,t !. ~3b!

It is often more convenient to determinex(l,t) instead of
Pn(t). Normalization requires thatx(0,t)51. Furthermore,
it follows from Eq.~3a! that the average number of electrons
transmitted during a timet is given by

n~ t !5 (
n50

`

nPn~ t !5 lim
l→0

]

i ]l
x~l,t !. ~4!

More generally, one can express thekth momentmk(t) of
the distribution according to

mk~ t ![nk~ t !5 lim
l→0

S ]

i ]l D kx~l,t !. ~5!

We note that the average current is simplyI5em1(t)/t,
whereas the noise power is proportional to the variance
of the number of transmitted electrons P
52e2limt→` varn(t)/t52e2limt→`@m2(t)2m1

2(t)#/t. The
logarithm of the characteristic function can be expanded as
follows:

lnx~l,t !5 (
k51

`
~ il!k

k!
kk~ t !, ~6!

with kk(t) thekth cumulant of the distribution. The moments
and the cumulants have a direct polynomial relation,32 for
example,k1(t)5m1(t), k2(t)5m2(t)2m1

2(t).
The quantum-mechanical analysis by Levitov and

Lesovik23 has yielded the characteristic function of the
charge through a single-channel conductor at zero tempera-
ture and at small voltageV,

x~l,t !5@~eil21!T11#eVt/h, ~7!

with T the transmission probability at the Fermi level
through the conductor. The generalization to a spin-
degenerate, multichannel conductor is given by23

xN~l,t !5)
l51

N

@~eil21!Tl11#2eVt/h, ~8!

with Tl the l th transmission eigenvalue. From Eqs.~5! and
~8! one can immediately derive the Landauer formula for the
conductance and the formula for the shot-noise power,2,4

G5
2e2

h (
l51

N

Tl , ~9!

P5
4e3V

h (
l51

N

Tl~12Tl !. ~10!

Note that Eq.~10! is only valid in the phase-coherent regime,
whereas in the absence of phase coherenceP is given by a
different equation.30 In Section II, it is demonstrated how the
charge distribution through a single barrier can be derived in

a semiclassical approach. Section III repeats this analysis for
the double-barrier junction. The quantum-mechanical calcu-
lation is given in Sec. IV, after which we conclude in Sec. V.

II. SIMPLE EXAMPLE: SINGLE-BARRIER JUNCTION

Let us illustrate our approach, by calculating the distribu-
tion of transmitted charge through a single-channel, single-
barrier junction, with a transmission probabilityG!1. The
average current through the barrierI5e2VG/h[eg, with
g5eVG/h the tunnel rate through the barrier. The probabil-
ity Pn(t) that n electrons have been transmitted in a timet
obeys the master equation

dP0~ t !

dt
52gP0~ t !, ~11a!

dPn~ t !

dt
5gPn21~ t !2gPn~ t !, if n>1, ~11b!

with the initial conditionPn(0)5d0,n . Equation~11! can be
solved straightforwardly by various means. Here, we adopt
an approach that appears to be useful for the double-barrier
junction. The solution of Eq.~11a! is P0(t)5exp(2gt). We
define the waiting-time distributionc(t)[2dP0(t)/dt, de-
noting the probability density that an electron is transmitted
immediately after having waited a timet,

c~ t !5ge2gt. ~12!

We write

Pn~ t !5Gn~ t !2Gn11~ t !, ~13!

whereGn(t) denotes the probability thatn or more electrons
are transmitted during a timet. It can be calculated according
to

Gn~ t !5E
0

t

dt1E
t1

t

dt2•••E
tn21

t

dtnc~ t1!

3c~ t22t1!•••c~ tn2tn21!. ~14!

Since this is a convolution, one has for the Laplace transform

G̃n~s![E
0

`

dt e2stGn~ t !5
1

s
@c̃~s!#n, ~15!

where the Laplace transform of Eq.~12! is given by

c̃~s!5
g

s1g
. ~16!

From Eqs.~13!, ~15!, and~16!, we find

P̃n~s!5
gn

~s1g!n11 , ~17!

yielding for the distribution in time

Pn~ t !5
~gt !n

n!
e2gt. ~18!
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This is the Poisson distribution, as one would expect for the
uncorrelated electron transfers through the barrier. The char-
acteristic function is given by

x~l,t !5exp@gt~eil21!#. ~19!

Indeed, in the limitT5G→0, Eqs.~7! and ~19! coincide.
The generalization of Eq.~19! to the case of a spin-

degenerate, multichannel conductor is straightforward upon
the assumption that the transmission of the different channels
is independent. Using the result that the characteristic func-
tion corresponding to the sum of independent variables is
given by the product of the characteristic functions of the
separate variables,32 one obtains

xN~l,t !5exp@2Ngt~eil21!#. ~20!

III. CLASSICAL APPROACH

We now study the double-barrier junction. The tunnel rate
through barrieri51,2 isg i5eVG i /h. Due to the Pauli prin-
ciple, the number of electrons in the double-barrier junction
can be either 0 or 1.

Our analysis is similar to the single-barrier case. How-
ever, one now has to take into account two possible initial
conditions att50: either 0 electrons in the junction—a situ-
ation with probability g2 /(g11g2)—or 1 electron—
probability g1 /(g11g2). The distribution of transmitted
charge is thus given by

Pn~ t !5
g2

g11g2
Pn

~0!~ t !1
g1

g11g2
Pn

~1!~ t !, ~21!

where Pn
( j )(t) starts from j electrons in the junction at

t50. The probability that at leastn electrons have been
transmitted can be expressed as

G̃n
~0!~s!5

1

s
@c̃1~s!c̃2~s!#n, ~22a!

G̃n
~1!~s!5

1

s
c̃2~s!@c̃1~s!c̃2~s!#n21, ~22b!

with c̃ i(s)5g i /(s1g i). From Eqs.~13!, ~21!, and ~22! we
obtain

P̃0~s!5
s~g11g2!1g1

21g2
21g1g2

~g11g2!~s1g1!~s1g2!
, ~23a!

P̃n~s!5
~g1g2!

n~s1g11g2!
2

~g11g2!~s1g1!
n11~s1g2!

n11 , if n>1.

~23b!

The distribution function in time can be obtained through the
inverse Laplace transform. In general, it yields a rather cum-
bersome expression. However, for the case of a symmetric
double-barrier junction,g15g2[g, one has

P0~ t !5S 11
gt

2 De2gt, ~24a!

Pn~ t !5F ~gt !2n21

2~2n21!!
1

~gt !2n

~2n!!
1

~gt !2n11

2~2n11!! Ge2gt, if n>1.

~24b!

For arbitraryg1 andg2, we can evaluate from Eq.~23! the
Laplace transform of the characteristic function

x̃ ~l,s!5
1

g11g2
F ~s1g11g2!

2

~s1g1!~s1g2!2eilg1g2
21G ,

~25!

yielding for the characteristic function in time

x~l,t !5exp@2 1
2 ~g11g2!t#H cosh@ 1

2b~l!t#1S b~l!

g11g2

2
2g1g2~e

il21!

~g11g2!b~l! D sinh@ 1
2b~l!t#J , ~26!

with b(l)5A(g11g2)
214g1g2(e

il21). For a spin-
degenerate, multichannel conductor we have

xN~l,t !5exp@2N~g11g2!t#H cosh@ 1
2b~l!t#1S b~l!

g11g2

2
2g1g2~e

il21!

~g11g2!b~l! D sinh@ 1
2b~l!t#J 2N. ~27!

Note that again we have made the assumption of independent
channels, implying that the Pauli exclusion principle applies
within each separate channel only. Physically, this situation
corresponds to the absence of intermode scattering.

Equation ~27! is the central result of our semiclassical
analysis. Let us evaluate from Eqs.~5! and~27! the first two
moments of the charge distribution. The average number of
electrons transmitted during a timet is

m1~ t !52N
g1g2

g11g2
t, ~28!

in agreement with Eq.~1!. For the second moment we find

m2~ t !54N2
~g1g2!

2

~g11g2!
2 t

212N
g1g2~g1

21g2
2!

~g11g2!
3 t

14N
~g1g2!

2

~g11g2!
4 $12exp@2~g11g2!t#%. ~29!

The Fano factor, defined as the ratio of the variance to the
average number of transmitted electrons,r (t)
[@m2(t)2m1

2(t)#/m1(t), follows from Eqs.~28! and ~29!,

r ~ t !5
g1
21g2

2

~g11g2!
2 1

2g1g2~12e2~g11g2!t!

~g11g2!
3t

. ~30!

The Fano factor gives the relative magnitude of the current
fluctuations. Indeed, for larget, r (t) yields the shot-noise
suppression according to Eqs.~1! and~2!. In Fig. 1 we have
plottedr (t), for g15g2[g. We find thatr (t) goes from 1 at
small t, indicative of uncorrelated electron transmission, to
1
2 at larget, indicative of a more correlated electron trans-
mission. It is already within one percent of its final value at
gt550, which corresponds to an average number of 25
transmitted electrons for each channel.
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The cumulants of the charge distribution can be deter-
mined from the logarithm of Eq.~27!

lnxN~l,t !5N@b~l!2~g11g2!#t12N ln~11e2b~l!t!

22N ln212N lnF11S b~l!

g11g2

2
2g1g2~e

il21!

~g11g2!b~l! D tanh@ 1
2b~l!t#G . ~31!

In general, it is cumbersome to derive the cumulants from
this result. However, for larget, only the first term remains
of importance.

There are various alternative methods to derive the above
results. For example, one can use the approach outlined in
the Appendix of Ref. 33.

IV. QUANTUM-MECHANICAL APPROACH

Whereas in a semiclassical picture the transmission prob-
ability through the double-barrier junction is just a constant,
in a quantum-mechanical approach, the transmission prob-
ability Tl of the l th mode varies according to a Fabry-Perot
type of formula,

Tl5
G1G2

122A~12G1!~12G2!cosf l1~12G1!~12G2!
,

~32!

wheref l is the phase accumulated in one round trip between
the barriers. The distribution functionr(T)[^( ld(T2Tl)&
of the transmission probabilities through the system can be
obtained from the assumption that thef l are uniformly dis-
tributed between 0 and 2p.34 In the limit G1 ,G2!1 this
implies

r~T!5
NG1G2

p~G11G2!

1

AT3~Tmax2T!
, ~33!

if TP@Tmin ,Tmax#, and r(T)50 otherwise, with
Tmin54G1G2 /@(G11G2)

214p2# and Tmax54G1G2 /
(G11G2)

2. The distribution function~33! is plotted in Fig. 2.
Similar to a metallic, diffusive conductor,13 this distribution

is bimodal, in the sense that the transmission probabilities
are either close toTmin'0 or close toTmax.

The ensemble average of a linear statistic over all possible
transmission probabilities is given by ^( la(Tl)&
5*Tmin

TmaxdTr(T)a(T). It is convenient to switch variables

from T to n with T5Tmax/(11n2), so that r(n)5r0
[N(G11G2)/2p is uniform over the range@0,nmax#. In
practice, the upper limitnmax can be often replaced by infin-
ity. The ensemble average for themth power (m>1) of the
transmission probability is given by

K (
l51

N

Tl
mL 5r0E

0

`

dnS Tmax
11n2D m

5N
~2m22!!

@~m21!! #2
~G1G2!

m

~G11G2!
2m21 . ~34!

Substituting this result into Eqs.~9! and~10!, we recover for
^G& and ^P& the expressions given by Eqs.~1! and ~2!.

In order to obtain the ensemble average of all the cumu-
lants of the distribution function, we average the logarithm
of the characteristic function.24 For the double-barrier junc-
tion, we obtain from Eq.~8!

^ lnxN~l,t !&5r0
2eVt

h E
0

`

dn lnF ~eil21!Tmax
11n2

11G
5N@b~l!2~g11g2!#t, ~35!

with b(l)5A(g11g2)
214g1g2(e

il21). This is the key
result of the quantum-mechanical evaluation. Using Eq.~6!,
we find for the ensemble average of the first three cumulants

^k1~ t !&52N
g1g2

g11g2
t, ~36a!

^k2~ t !&52N
g1g2~g1

21g2
2!

~g11g2!
3 t, ~36b!

^k3~ t !&52N
g1g2

~g11g2!
5 t~g1

422g1
3g216g1

2g2
2

22g1g2
31g2

4!. ~36c!

Since ^ lnxN(l,t)& is proportional tot, all the cumulants are
linear in t as well. This implies for the Fano factor

FIG. 1. The Fano factorr (t), giving the ratio of the variance to
the average number of transmitted electrons, versus timet for a
symmetric double-barrier junction with tunnel ratesg15g25g.
The solid line gives the result@Eq. ~30!# of the semiclassical analy-
sis and the dashed line the quantum result^r (t)&, according to Eq.
~37!.

FIG. 2. The distribution of transmission probabilities through a
double-barrier junction in a quantum-mechanical model, according
to Eq. ~33!, for G150.02 andG250.03.

54 8147DISTRIBUTION OF TRANSMITTED CHARGE THROUGH . . .



^r ~ t !&[
^k2~ t !&

^k1~ t !&
5

g1
21g2

2

~g11g2!
2 , ~37!

which is constant in time and equal to the large-t value of
Eq. ~30! ~see Fig. 1!. If g1@g2 ~or vice versa!, Eq. ~35!
reduces to a Poisson distribution@see Eq.~20!#, as expected.
For a symmetric double-barrier junction withg15g2[g,
expression~35! simplifies considerably:

^ lnxN~l,t !&52Ngt~eil/221!. ~38!

For thekth cumulant, we find from Eqs.~6! and ~38!

^kk~ t !&5
Ngt

2k21 . ~39!

The charge distribution is thus somewhere between a Gauss-
ian ~where kk50 for k>3) and a Poisson distribution
~wherekk52Ngt for all k).

V. CONCLUSIONS

Let us make the comparison between the outcome of the
two approaches, i.e., between the semiclassical result
lnxN(l,t) from Eq. ~31! and the quantum result^ lnxN(l,t)&
given in Eq.~35!, where we have averaged over the distri-
bution of transmission probabilities. The semiclassical result
yields a more complicated expression, however, the most
important contribution, which is proportional tot, is pre-
ciselyequivalent to the result~35!. The other terms are either
constant~do not depend ont) or vanish exponentially with
t. Only on short time scales, corresponding to the transfer of
a few electrons, we see sizeable differences between both
approaches. We surmise that these differences at smallt are
not due to the neglect of the phase, but rather depend on the
precise way the reservoirs are modeled in both approaches.
The quantum-mechanical derivation is based on Eq.~8!,
which applies for arbitrary transmission eigenvalues between
0 and 1. Here, the number of electrons transmitted has a
maximum valuen(t)52NeVt/h. Our semiclassical calcula-
tion assumes independent tunnel events and is therefore only
valid for small transmission probabilities. However, the
number of electrons which can be transmittedn(t) is not
bounded. Even though this seems not to be very important
for the case of high tunnel barriers, one may expect that it
leads to differences on a small time scale. Therefore, we just
draw conclusions from the comparison at largert. Here we
find that the two results are equal, and that, as a consequence,
all the cumulants are also equal. This demonstrates that the

statistics of charge transport through a double-barrier junc-
tion does not reveal whether phase coherence is present or
absent.

This insensitivity to the presence of phase coherence does
not imply that phase breaking is not of influence in a real
experiment. This depends on the physical process which de-
stroys the phase coherence. For example, using the method
given in Ref. 31, one can show that electron-electron scatter-
ing inside the double-barrier system, in which both phase
coherence is destroyed and energy is redistributed among the
electrons, increases the shot noise above the value of Eq.~2!.
However, the analysis in the present paper demonstrates that
merely breaking the phase leaves the charge transport
through the system unaffected. This is in contrast to the re-
sult of Ref. 29, in which incoherence is modeled by adding
random phases to the wave function on each round trip. The
authors find that this increases the shot noise, so that we
conclude that their model is not equivalent to just destroying
the phase.

It might be interesting to determine the role of inelastic
processes inside the tunnel barrier on the charge distribution.
We think that these effects can well be taken into account
using the semiclassical analysis, whereas a complete
quantum-mechanical derivation looks more complicated.
Another extension of the work described in this paper would
be to repeat the semiclassical analysis for a metallic, diffu-
sive conductor, and compare the outcome with the quantum-
mechanical derivation of Ref. 24.

In summary, we have derived the complete distribution of
transmitted charge through a double-barrier junction at zero
temperature and at low voltage. We have used a semiclassi-
cal approach on the basis of classical jump rates as well as a
quantum-mechanical approach, in which the result of Levi-
tov and Lesovik for an arbitrary mesoscopic conductor23 is
averaged over the distribution of transmission probabilities
through the system. Our results are in precise agreement with
previous values for the conductance and for the shot-noise
power.6,7 Within both approaches, we have determined the
logarithm of the characteristic function, which become
equivalent at large times. It is found that for symmetric tun-
nel barriers, the charge distribution is between a Gaussian
and a Poisson distribution.
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25M. Büttiker, IBM J. Res. Dev.32, 63 ~1988!.
26J. H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins,

Phys. Rev. B47, 4603~1993!, and references therein.
27A. Shimizu and M. Ueda, Phys. Rev. Lett.69, 1403~1992!.
28R. Landauer, Phys. Rev. B47, 16 427~1993!; Ann. N. Y. Acad.

Sc.755, 417 ~1995!; ~unpublished!.
29J. H. Davies, J. Carlos Egues, and J. W. Wilkins, Phys. Rev. B52,

11 259~1995!; see also J. Carlos Egues, S. Hershfield, and J. W.
Wilkins, ibid. 49, 13 517~1994!.

30M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B51,
16 867~1995!.

31M. J. M. de Jong,Shot Noise and Electrical Conduction in Me-
soscopic Systems, Ph.D. thesis, Leiden University, Leiden
~1995!; M. J. M. de Jong and C. W. J. Beenakker, Physica A~to
be published!.

32See, for example, H. Crame´r, Mathematical Methods of Statistics
~Princeton University Press, Princeton, 1946!.

33Yu. M. Galperin, N. Zou, and K. A. Chao, Phys. Rev. B49,
13 728~1994!.

34J. A. Melsen and C. W. J. Beenakker, Physica B203, 219~1994!.

54 8149DISTRIBUTION OF TRANSMITTED CHARGE THROUGH . . .


