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Dynamic admittance of mesoscopic conductors: Discrete-potential model
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We present a discussion of the low-frequency admittance of mesoscopic conductors in close analogy with
the scattering approach to dc conductance. The mesoscopic conductor is coupled via contacts and gates to a
macroscopic circuit which contains ac-current sources or ac-voltage sources. We find the admittance matrix
which relates the currents at the contacts of the mesoscopic sample and of nearby gates to the voltages at these
contacts. The problem is solved in two steps: we first evaluate the currents at the sample contacts in response
to the oscillating voltages at the contacts, keeping the internal electrostatic potential fixed. In a second stage an
internal response due to the potential induced by the injected charges is evaluated. The self-consistent calcu-
lation is carried out for the simple limit in which each conductor is characterized by a single induced potential.
Our discussion treats the conductor and the gates on equal footing. Since our approach includes all conductors
on which induced fields can change the charge distribution, the admittance of the total response is current
conserving, and the current response depends only on ac-voltage differences. We apply our approach to a
mesoscopic capacitor for which each capacitor plate is coupled via a lead to an electron reservoir. We find an
electrochemical capacitance with density-of-state contributions in series with the geometrical capacitance. The
dissipative part of the admittance is governed by a charge-relaxation resistance which is a consequence of the
dynamics of the charge pileup on the capacitor plates. We specialize on a geometry displaying an Aharonov-
Bohm effect only at nonzero frequencies. For a double barrier with a well coupled capacitively to a gate the
low-frequency admittance terms may have either sign, reflecting either a capacitive or a kinetic-inductive
behavior. The validity of a second-quantization-current-operator expression which neglects spatial information
is examined for perfect leads in both the frequency and the magnetic-field ddi®@air63-18206)06332-1

I. INTRODUCTION emphasizes coherent transmission from one electron reser-
voir to anothe’~2°To be definite we envisage a system of
Investigation of the ac properties of electrical conductorscapacitively coupled mesoscopic conductors which may be
provides important information on the internal charge andlefined with the help of gatesee Fig. 1 The conductors
potential distribution of the sample. Pieper and Pricave  and gates are connected via electron reservoastacts to a

measured the complex dynamic magnetoconductance of dis-
ordered mesoscopic rings, Chenal? have measured the
magnetic-field symmetry of a capacitance tensor, and Kou-
venhovenet al® have observed the dependence of photon-
assisted tunneling on the interaction with a microwave field.
Theoretical studies of the frequency dependence of current-
current correlation spectté and of the current response to
oscillating field§~2® have been carried out. In contrast to dc
transport, which is fully characterized if the transmission
probabilities are known, the ac-transport properties are sen-
sitive to thephaseof the scattering matrix elements. Deriva-
tives of the scattering-matrix elements with respect to the
energy are related to the charge injected into the conductor.
In nonstationary conditions charge accumulation occurs and
causes induced fields. Consequently a self-consistent treat-
ment of the electron-electron interactions plays an important
role. What is needed is an ac conductance which is charge
and current conservimg:?* It is the purpose of this work to
extend our earlier discussiols;?! and to provide some of
the technical details omitted.

Our approach to the ac conductance of mesoscopic con-
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FIG. 1. A mesoscopic conductor with a nearby gate. The long-

ductors is in a close conceptual analogy with the scatteringange Coulomb forces acting among different conductors ensure
approach to dc conduction, especially to the version whichhat the total charge in the volunt vanishes.
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macroscopic circuit which contains ac-current and ac-voltagéng. This external potential ia priori arbitrary except for the
sources. Since in ac transport we can induce current from thigoundary conditions that must be satisfied in the reservoirs.
conductor into the gates, and vice versa, it is necessary tim reality the electrons “see” a total potential and not only
treat all metallic constituents of the sample on equal footingthe external potential. The total current response must be
Consequently in the treatment given here, there is no distindndependent of the initial choice of the external potential and
tion between conductors and gates. All constituents are coris unique. Thus in this inital step we are permitted to choose
sidered as conductors. Each conductor may have an arbitragn arbitrary ‘external-potential profile.” In many works an
number of contacts. We want to determine the currentrbitrary potential profilgfor instance one corresponding to
(8l (am)(w)> at contacte of conductom in linear response to  a uniform external fieldis taken with the implicit but incor-
an oscillating voltageé‘vg‘)(m) at contactg of conductor rect understanding that the response to Sl_Jch a field already
n, represents the complete answer. The choice of the external
perturbation which we adopt is motivated by the geometry of
our samples. In our structure with contafteservoir$ it is
(31" (w))=2 g'3" () VY (w). (1) natural to choose an external perturbation which acts only on
ne the carriers in the leads but not inside the sample. Thus
The theoretical task is to find an expression for the dynamiWithin the noninteracting treatment the sample can be de-
cal conductance coefficien(admittance)sgfy”;”)(w)- Every- scnbe.d by its g!obal scattering law. In the dc limit this per-
where in the system a stationary magnetic field is allowed: i}{urbaﬂon leads n qdwect way to the dc conductances known
om the transmission approach. But even in the ac case this

is arbitrary inside the sample, and in each lead it is required " . : .
to be constant and perpendicular to the lead. choice of perturbation lets us find an answer which can be

In order to start from a conceptually clear situation we€*Pressed in terms (%'; the scattering matrix. _
assume that all electric-field lines emanating from one of the 1he amplitudesb,,,(E) of electron waves leaving the
conductors terminate at nearby conductors. Then a suffeonductorm in channelw of lead « at energyE are related
Cienﬂy |arge Gauss volum@ (see F|g 1 can be choséf to the amplltudea(ﬁmu)(E) of electron waves which are inci-
through which there is no electric flux. Consequently thedent on the same conductarin channelu of lead 8 by the
total charge is conserved. Conservation of the overall charg@ﬁaﬁorfl
on all conductors implies that the currents are conserved.

Thus the columns of the admittance matrix must add up to b™(E)= >, s(a’g)(E)a(ﬁm)(E). )
zero. If the circuit is in an electrically insulating environ- B

ment, then applying a uniform ac potential on the whole
externalcircuit leads to an overall spatially uniform effective
potential. This only affects the phases of the wave functions’, . L .

but has no observable effect. Hence the ac-current responSi2N @mplitudes of waves incident from reservimnto res-
can depend only on voltage differences. This implies that th&VOIr @, and fora=4 the reflection amplitudes of waves
rows of the conductance matrix must also add up to zero, ncident from reservoir. For the external respongsuper-

To achieve these sum rules of the columns and rows ofCiPt €xt), we obtain the admittance
the admittance matrix, the presence of interactions is crucial. e? R
Only because of the interactions does a simultaneous and g‘;x“m)(w)=—J dETI 1™ (E) 8,5~ a%)T(E)
equal potential shift at all contacts cause the same potential h

Heres&”[‘,,)(E) is a submatrix of the unitary scattering matrix
S™(E) of conductorm. For a# g it contains the transmis-

shift everywhere in the sample. Were the electrons un- FM(E)— FM(E+ o)
charged particles, instead, then a simultaneous and equal po- X a”é)(E-i-ﬁw)] A B .
tential shift at the contacts would lead to an oscillatory ac- ho

cumulation and depletion of particles inside the conductors. 3

For “neutral electrons” this particle distribution would cost -

no electrostatic energy, or, in other words, it would bear ndHere the unit matrix {”(E) denotes the identity operator on

induced potential. According to the continuity equation thethe space spanned by all active channels in leaaf con-

sum of all particle currents at the contacts of the samples iguctorm at energyE. In Eq. (3), f{"(E)=f(E—n{") is

equal to the time derivative of the total particle number in-the Fermi-Dirac distribution in reservo@ of conductorm.

side the samples. Consequently, for neuirel, noninteract- Equation(3) gives the particle current at contaetin re-

ing) electrons the sum of all currents is not conserved. Thesponse to an external perturbation which acts on the carriers

current response of noninteracting electrons does not reprin lead 8. Note that the noninteracting response is zero be-

sent an acceptable approximation of the actual system: it isveen contacts belonging to different conductors.

crucial to take the Coulomb interaction into account. Theo- Our second step contains the crucial point: the calculation

retically, ac transport is interesting, since it requires an exof the effective potential seen by interacting particles and the

plicit treatment of interactions. It is under the influence of thedetermination of the internal response. For this purpose we

mutually interacting charges distributed over the variousconsider all conducting units which interact via long-range

samples that current conservation is restored. Coulomb forces. Any charge pileup on one conductor in-
Our first step, however, is to consider ttr@on-current-  duces counterbalancing charges on the other conductors. Up

conserving response of the electrons to an externally appliedo here the approach is very general, and is actually the com-

potential. In this step the internal effective electrostatic po-mon starting point for a more detailed treatment which takes

tential is kept fixed. The electrons are treated as noninteracthe electrostatic potential landscape into accdlihtere we
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\:y FIG. 2. Magnetic external per-

<1, (1)) turbation: the lead is formed into a

AN loop which is threaded by an

Aharonov-Bohm flux. To screen

the electric fields generated by the

~ oscillating flux, a compensating

‘j\)\\ flux is applied through a thin ring
“ area outside the loop.

approximate the potential landscape by a single potentiahis case, the theory presented here has been extended by
U™ which is locally induced on each conductor We in-  Christen and Btiiker.3* Finally we stress that our theory
troduce the long-range Coulomb interactions via formal geodoes not treat charge quantizatiin®23and strictly speak-
metrical capacitance€,, which relate the(instantaneoys ing cannot be applied to a system where such effects are
total chargesQ(™ accumulated on the conductarsto the  important.

local potential parameters. In matrix notati@+ CU. Such We note here that the external ac-respog%‘m)(w) of
an assumption is commonly used to treat Coulomb-blockadg&g. (3) is also valid in the presence of dansport From
effects. e"t(m)(w) the mixed(dc,a9 coefficients of the second-order

The central result of this paper is the following exIOVGSSiOHexternal response to simultaneous dc and ac-voltage pertur-
for the true admittance of the system including interactiongations in a transport state can be obtained. At zero fre-
(superscript ): guency, these nonlinear coefficients coincide with(thedg

coefficients of the external quadratic dc response derived in
z gext(m } M1, (@) Ref. 30. On the other hand, the interacting ac response
m I(m”)(w) of Eq. (4) is only valid for an equilibrium refer-
ence state. If the reference state carries a steady current, the
(4)  effective dc potential inside the conductors is in general not
the same as at equilibrium. This dc-potential difference in-
fluences the ac admittance. For small dc voltages this field

95" (@)= EnegS8 ™ () —

x| 2 955 "(w)

The matrix effect can be treated with a self-consistent scheme which is
analogous to that used here for the internal ac resptinse.
Mn(©) =62y 925" (@) ~1wCrnn 5
mediates the interaction and insures charge conservation. !l GENERAL ASPECTS OF THE ac RESPONSE
The interacting admittance E¢) fulfills current conserva- We consider a conductSrwith time-oscillating voltages
tion applied to the contacts. First we calculate the response to an
external perturbatiorwhich treats the carriers as noninteract-
2 g'a(gm)(w)zq (6) ing pgrticles._ The internal potential i_s kep_t fi)_(_ed. Only the_
Ma total interacting response has physical significance and is

unique: the external perturbation itself is arbitrary up to
boundary conditions. Therefore, we choose a simple form of
the external perturbation. We assume that the external per-

and invariance under an overall potential shift,

E g'(m”( )=0, (7) turbation acts on the carriers only in the leads and reservoirs.
We give two alternative but equivalent ways of experi-
as required, and the reality condition mental configurations which achieve this situation: we can
accelerate the carriers either electrically or magnetically.
I(mn (@)= gl(mn *(— ). (8) For an external circuit with zero impedance, we can ac-

celerate the carriers with time-oscillating magnetic fluxes
The discreteness of this theory makes it suitable to structsee Fig. 2 Two requirements should be fulfilled: the exter-

tures where the effective potential can reasonably be apial perturbation is restricted to the contacts, and it preserves
proximated by a single parametéor example, for a ballistic  the equilibrium state in each reservoir. Then only the leads
wire). A more sophisticated analy$is has refined this ap- are left for the acceleration. We imagine bending each lead
proach, and relates an effective potential landscape to a loctd form a wire loop over a length2Rg, as in Fig. 2. Each
density of states. However, this local theory has only beetead loop is threaded by a magnetic Aharonov-Bohm flux
developed to leading order in frequency, in contrast to thed¢4(t) which does not penetrate into the multiprobe struc-
closed result of the discrete-potential model. Our theory camure. The influence of this flux on the carriers in the corre-
even be applied to tunneling systerfsingle- or double- sponding loop is easily visualized. In order to avoid the per-
barrier problemsfor which it is reasonable to include only turbation to act anywhere else on the structure, just outside
the voltage in the well. It cannot be applied to a single junc-the loop the flux is counterbalanced by an opposite flux of
tion, where the dipole across the junction matters. To treatqual magnitude. Thus the total flux beyond the loop is zero.
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FIG. 3. Electric external perturbation: the reservoir is surrounded by a capacitor shifting its electric potential: the fields of the inner plate
and the wire connecting it to an ac source are fully screened by the outer plate everywhere beyond the reservoir. Fringing fields accelerate
the carriers in the portion of the lead passing through the opening of the capacitor.

If the typical cross-section diameter of the lead is much -
smaller than the loop radius, then a tangential vector poten- (8l (w))V=2 Kop( )8V (), 13
tial of nearly constant magnitude acts on the carriers in the p
loop. For the microscopic Hamiltoniahl=3,(p,—eA)?/ are the same. This is ensured by the equality
2m+V(r), with A(r,t)=Ao(r)+ SA(r,t), the perturbation  dxy4(7)/d7=rk(s(7) demonstrated in Appendix A. Thus
the electric and magnetic perturbations are equivalent.
A 3. Equations(12) and (13) are the starting point for a con-
Hi=H=Ho= _f drij(r,t)- 6A(r,1), (9 ventional linear-response calculatid?° as reviewed in Ap-

R pendix A. In contrast to this standard method, in Sec. Il we
where Hy==,(pn—eAo)%/2m+V(r), can be expressed in obtain the ac admittance with an elementary approach which
terms of macroscopic variables, is closer to physical intuition. Moreover, this approach also
applies to a situation where a time-dependent perturbation is
superimposed on a reference state carrying a steady current.

~ I1l. CURRENTS INDUCED BY EXTERNAL
Herel ; denotes the current at contg@f and 6¢ 4 denotes PERTURBATIONS

the magnetic flux threading the lead logp

Alternatively, we can imagine an external circuit with an . :
infinite impedance. The electrochemical potentigl of res- current Va.”a“O’W' o) away from the reference state..Th|s
ervoir B8 is the sum of its electric and its chemical potential. response is defined as the difference of the expectation val-

We can shiftu 5 by 5V 4(t) by embedding reservojs in a ues of the current operatoy, in the_ perturbed) and in the
capacitor whose outer plate is put to ground and whose inndeference (0) ensemble, respectively,

plate is at a voltagesV4(t), as shown in Fig. 3. Then the - - ~

accelerating fields due to the external perturbation act on the (0l =(la)p=(lao- (14

carriers only in the portion of the lead between one capacito{yjje standard linear-response theory would extract such an
plate and the other. Under thes;e assumptions the usual Miypectation value from correlations averaged over the refer-
croscopic e'?CtF'C perturbatiofdr Q(r,t_)V(r,_t) can be ex- ence ensemble, we calculgié ), directly for the perturbed
pressed again in terms of macroscopic variables, ensemble. For independent electrons it is sufficient to specify
the population of a complete set of one-particle states in the
|:|1:2 @B5VB- (12) presence of the pert_urbation. _
B When an oscillating magnetic flux threads logp the
. carriers “feel” the perturbing fields along the loop of
Here Q denotes the total charge in reservgirwhich is a  length 2rR;. The magnetic perturbation takes the form
well-defined quantity because the impedance of the extern®f an electric dipolar energy on this loop:-(ep/
circuit is infinite. We are interested in the averaged yariatiOWn)[5¢Bexp(—iwt)+5¢Eexp@wt)]/(27TRﬁ). Here p; stands
of the currentl,, which is related toQ, by I,= for the longitudinal component of the momentum operator.
—-dQ,/dt. Carriers coming from the reservoir and traversing the loop
When these two perturbations generate the same voltageither absorb or emit an energyiw, n=1,2,..., or are
8V g(t)=dd¢s/dt, then the linear response generated by arfransmitted at their incident energy. To first order in the per-
oscillating flux, turbation, only one energy quantufw is absorbed or emit-
ted. On both sides of the loop the wave function can be
5 ¢_2 4 5 - expressed as a linear combination o+f incidefit) (and out-
(0l o(@))?= 3 Kap(@) 5¢p(w), (12 going (—) unperturbed e|genstat¢$(ﬂu?E>exp(—|Et/h) and
|Gy exp(—iEUA), whereu is the channel index. These
and the linear response generated by an oscillating voltagestates form a complete orthonormal set. This is known as the

The response we are looking for is the time-dependent
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completeness theorem in scattering theBrigxplicit expres- . e R R

sions for these states are given in Appendix B. Independent ()= ﬁf dE dE'[&[(E)a,(E")

of the perturbation, the reservoir injects carriers with a popu-

lation according to fz(E) into incident eigenstates —BZ(E)BQ(E’)]ei(E‘E/)”h. (17)

|Gy exp(—iEUA) in the portion between reservoir and
loop. These Fermi-Dirac distributed states emerge from the
loop into the portion between the loop and the sample in &quation(17) has been derived in Refs. 4 and 38. In Appen-
time-dependent state dix B this derivation is discussed for the case of a nonzero
magnetic field. In the presence of the time-dependent electric
or magnetic perturbation acting in the contacts, the incident
~, )\ —iEUA N et wave in leads has the forn,fdEag, (E)| ¥, g(t)). Here
W e(t)=legee +CB|9DfBu,)E+>e . the amplitudesay,(E) obey Ferrr’;i—Dirac Bstatistics, and
_C,8|(P§3J[J,)E,>eiiE7t/ﬁ (15) |\Ifbu£_(t)> is expression(15). The most general incident
wave is formed by a superposition of the incident waves at
_ _ _ all leadsX [ dEay(E)| W g(1)).
with c;=edVy/hw andE. =E*fiw. Equation(15) is ob- In Fourier space the relation for the incident amplitudes
tained by matching the wave functions at the two loop ends¢or for the corresponding annihilation operaiois
and is valid up to corrections of the order df.(—k)/|k|,
wherek and k.. are the longitudinal wave vectors in lead
B and channel associated with the energi€&sandE.. , a,(E)={3"(E)—c,A.(E,)+C,a (E)}. (18)
respectively. Equation(15) is, therefore, valid for high- “ * e o
velocity states along the lead. Only these states couple effec-
tively to the sample. As we discuss in Appendix B, the low-The outgoing amplitudes are found with the help of E),
velocity states can be neglected.
Similar considerations can be carried out for an electric
perturbation. We suppose the junction to be adiabatic be-
tween reservoir and leagfl. In the absence of a perturbation, b,(E)= >, S.p(E){ag(E) —cpap(EL ) +cpag(E_)}. (19
there is a reservoir state:%ﬁf%)exp(—iEt/ﬁ) which is trans- p
mitted into the incident statep{;, =) exp(~iEt/4) in the lead,
and |\Ifﬁu£(t)> designates the corresponding unperturbedy, Egs.(18) and(19) the amplitudes, (E) andb,(E) of the
(reservoir plus leadstate. Let us adiabatically switch on the | nhertyrbed eigenstates in leactonsist of contributions of
electric tlme-dep_end_ent ) pertu_rbatlore[ 5VBe_xp(—|wt) particles incident in leag at energyE which are unaffected
j—b\/;;e%(pth)], which is uniform in the reservoir and_ Van- hy the time-modulated perturbation, and at energdies
ishes in the _Iead. The ) Stat@l’?%'f(t» .evolves IO \yhich have emitted or absorbed a modulation guantum.
|\If;3u’E(t)>. This state gains additional time-dependence, We use Eqs(18) and (19) in Eq. (17) to replacea and

exp(—iEth)~exp(—i[Et+&g())/A), in the reservoir, and oA, ,
consists of a superposition of unperturbed eigenstates in tt%w'th a’ andb’. Now(l,,), can be calculated as an expec-

lead. The extra phase obeys(t)=[dt[esV exp(—iwt) ta}tj?n y:alue of a singl_e-p_article operator obeying
+edViexp(at)]. For the wave function in the reservoir we (agu(E)ag,(E))p=1(E). This yields the current response
find (61,)p according to Eq.(14). The resulting admittance is

given by Eq.(3).
The external admittance E@) fulfills the following ba-

| o e(D)=leheE)e B + ¢l ooy e IE+1/A sic properties. For a general reference state, the reality con-
(168 \ o —iE_t/h dition Eg. (8) is satisfied. Further, the ac admittance for a
_CE|9°Bu,E>e o (16) vanishing frequency reduces to the differential dc conduc-

tance. If the reference state is an equilibrium state, the reci-

In the lead we find the same resliq. (15)] as for the Procity relation g&5(w,—B)=gg(w,B), and the
magnetic perturbation. The range of validity is again re-fluctuation-dissipation theoren$,s(w) = €(w,kT)[g,p(w)
stricted to high-velocity states. The statas/’;u’E(t» which +g;;a(w)] is obeyed, where the current-current correlations
evolve adiabatically fronf¥ 4, g(t)), have the same occupa- S,z(w) are provided by Ref. 38. If, on the other hand, the
tion probability f 5(E) in the presence of the perturbation as reference state is a transport state, the real parts of the ad-
the [V g, (1)) in the unpertgrbed case. mittances do not show much similarity to the corresponding
Let us introduce operatogs,, which annihilate an incom-  current-current correlations, which contain fourfold products
ing carrier in channel in lead « and operatord,, which  of scattering-matrix elements. For a steady state, the admit-
annihilate an outgoing carrier in channeln leade. Letus  tance depends on the Fermi distributions of the various res-
denote bya, andb, the vector of these operators. The num-ervoirs, f 5(E) = f(E— up).
ber of components of these vectors is equal to the number of An expansion of the admittance to the lowest orders in
open channels in the lead. At moderate frequencies the frequency is instructive. To second order we find, from Eq.
current operator is given by 3,
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dN dN,z\? dN 1 9s,5(E) 39S 4(E)
ext, .\ _ a2 @B 2,4 ap aB _ _— t ap _ DB
gaﬁ(w) 9.p5(0)—iwe dE +w e( dE) apB dE —47TijdETr Spp(E) JE JE Sap(E)
+0(03). (20) —dfg(E)
“\TaE @)
Here is a partial density of states, and
|
sl 4(E) 9s,4(E)| 92 (—df (E)
Zept Tl TR ) T o B
5 h deTr 4( JE JE aEZ(sa,B(E)Saﬁ(E)) dE -
T oo AN 2 (22
(4m)\ 4
|
has the dimension of a resistance. neling occurs between different conductors, and that the

Let us first concentrate on the first-order term. Under theCoulomb interaction enters solely via the long-range part
action of the external oscillating potentiaV,, the total between conductor pairs. We introduce a discrete set of in-
chargeQq accumulated within a volum& which encloses duced internal potentials sUM which are related to the
the sample satisfie®(w)=—iwQq(w) =3 (5l (w)). A  piled-up chargessQ™ with the help of electrostatic-
simultaneous and equal variation of all chemical potentialsapacitance elemenG,,,
gives an excess charge in the sample determined by the total
density of state€ ,;dN,z/dE. Comparing with Eq.(20),
we see that we canﬁinterlz)réNaB/dE as thepartial density 8Q"™(w)= En: CrndU (@),
of states of(), associated with carriers coming from probe
B and leaving through probe. Note that, as gartial den-  with C,,,=C,,, and=,C,,=0. To proceed we must find the
sity of statesdN,;/dE does not need to be positive. relationship between the internal potentials and the electro-

Like the first-order admittance term, the second-orderchemical potentials.
term does in general not have a definite sign either. Expres- The current at contaet in conductom is the sum of the
sion (22) is positive in the simplest case of a one-terminalresponses of noninteracting carriers to the oscillating exter-
structure. In that cas®],,S,,=const, and the second term in nal potentialssuf” (w) =esV{”(w), and to the oscillating
the square bracket @,, vanishes. The®,,, can be inter- internal potentialdU™ (),
preted as a charge-relaxation resistaffcEhe expression for
this particular case is given beldg. (32)] in terms of the .
eigegfunctions. We n(?tice that(?[n ft]he ge]neral case only théd! (@) =2 955 (@) 8V (@) + g5 ™ (@) UM (w),
first term in the numerator d 4 is always positive. p (24)

(23

whereg™(™ () describes the current response of noninter-
IV. CURRENTS INDUCED BY INTERNAL acting carriers at contaet in conductorm to the oscillating
PERTURBATIONS internal potential UM (w). Below we determine

The admittance of noninteracting electrons derived abovéU ™ (w) self-consistently. Note that at this stage the cur-
is neither charge nor current conserving. The lack of chargeent( 5l (M) depends only on the potentials applied to its own
and current conservation is typical for any time-dependenconductorm. The wave functions of carriers of one conduc-
external response, and is not a feature of the particular ager vanish in all other conductors and, do not feel any effect
proach discussed here. We now introduce a simple selfof the potential beyond their conductor. Here the absence of
consistent scheme to achieve overall charge and current cotunneling is crucial. Now we make use of the fact that the
servation. We consider an assembly bf conductors current response of the interacting system is invariant under
representing both the proper conductors and the gates usedan overall potential shift. Fixing attention on conductar
form it, and restrict ourselves from now on to equilibrium  and shifting the overall potential by U™ yields
reference state: all reservoirs connected to the same conduc-
tor have the same electrochemical potentjaf” = (™. m extm) m -

Within a discrete-potential approach, we derive the interact{9' « (“’)>:EB Gap  (@)[OVp (0)=6U M (w)]. (29
ing admittance matrix)', which relates the current variation

(81'M(w)) to the voltage variationSV(ﬁ”)(w) as in Eq.(1).  Comparision with Eq(24) implies that the internal response
Here each conductdris connected to one or several reser-is given byg™™(w)= —Eﬁgzﬁ(m)(w). The internal poten-

voirs (l,), and is characterized by a noninteracting admit-tials SU(™ depend via long-range Coulomb forces on the

tance matrixg‘;’;tf') as in Sec. III. It is assumed that no tun- external potentials at the other conductSt3he charge on
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each conductom is that permitted by the long-range Cou- ing units whose capacitive coupling is determined by a single
lomb interaction Eq(23). This yields a self-consistent con- parameterC playing the role of an electrostatic geometry-
dition for each conductor, dependent capacitance. Because of the current conservation,
Eq. (6), and the invariance under an overall potential shift,
Eq. (7), the four admittance elements are all identical up to
the sign,(81M)y=—(81@)y=g' (V¥ - sv3). From Egs.

. ) L (4) and(5) we obtain
Combining(25) and (26) and solving the resulting inhomo-

geneous linear system, we obtain 1 1 1 1
(@) —iCo ' ¢™D(w)  ¢®(w)’

2 (A M(w)=—i0), CopdU™M(w).  (26)

(28)
SUM(w)=2 (M Hpn(0) 2 955" () 8V (w), _ o
n ap Up to second order inw, g® ™ is given in terms of the

(27 corresponding scattering matric€€” and Fermi functions

where the matrixM has been defined in E¢5). Thus we  f(™(E)=f(E—u(™) of the reservoirs on each side, accord-

recover the individual currents from E(@5) and obtain Eq.  ing to Egs.(20)—(22) specialized to one-lead conductdts.

(4) for the admittance matrix of the interacting system.  For eachm, g®™(w), anddN(™/dE, andD‘™ are scalars.
The interacting admittance) fulfills the key properties Expansion in powers of frequency in a form analogous to the

(6), (7) and(8) stated in Sec. |, and reduces to the noninterdmacroscopic picture determines the electrochemical capaci-

acting admittance at zero frequency where no charge acciance and the charge-relaxation resistance,

mulation occurs. In particular, property) follows from Egs.

(4) and (23) and the sum rules of the electrostatic- 9'(w)=—iC,0+RCiw?+0(w?), (29
capacitance elements. It also fulfills the fluctuation-
dissipation theoreff and the reciprocity relatiort$:? For the 1 1 1 1 1

i i i — =4 +
admlttance elements reI.a'tmg dlfferemn%n) colr(lglrf)ctors c, C 2\ AND/dE " dNP/dE)" (30
with a purely capacitive response, ieg. ;" ()
= —iwc{"s+O(w?), microreversibility impliesc("7(B) Ry=R+RP=DM+D2. (31)

=c{" (=B). On the other hand¢{"%(B) is in general
different  from c{")%(~B).> Only their sums |n contrast to the macroscopic case, the capacitahcand
clm =3 4™, are even functions of the magnetic field, resistanceR, governing the ac admittance of a coherent ca-
c%‘(m”)(B)=ct:t(”m)(B), since they are the second deriva- pacitor are thermodynamic quantities which reflect the be-
tives of a thermodynamic potential. havior of the system as a whole. In fact, the charge-
In the limit of a large capacitance eleme@f, between relaxation resistanc®{™ on each side and the corrections to
the two conductorg andk, the two internal potential§; the standard classical capacitance are determined by the scat-
andU, become lockedU;=U,. On the other hand, if one tering properties of the whole reservoir-to-plate arm, statisti-
has a partition of the total assembly of conductors into subeally averaged at the corresponding reservoir.
sets with vanishing mutual capacitance, then the charge van- To leading order in frequency, the purely capacitive re-
ishes separately in each subset. sponse of the system is governed by the electrochemical ca-
The situation considered in Ref. 20 is a special limit of thepacitanceC, = esQ™/5u™: the deviation of this mesos-
model considered here. There, a mesoscopic conductor wasepic capacitanceC, from the conventional capacitance
capacitively coupled to a macroscopic environment charace = 5§Q™M/sU(™ relating charges and on-plate voltages can
terized by an infinite density of statedN/dE. With  be appreciated from E¢30): C, formally looks like a series
dN/dE>>|C|/€?, the interacting admittance provided by connection ofC and of two quantum capacitances. In meso-

Ref. 20 follows directly from Eqgs(4) and (5). scopic systems all three may be of the same order of magni-
tude. For a mesoscopic sample, it has to be taken into ac-
V. DISCRETE-POTENTIAL MODEL: EXAMPLES count that the two capacitor plates do not accomodate the
) capacitively induced charges directly at the surface. As dis-
Coherent two-plate capacitor cussed by Luryi in the context of a spatially confined two-

In this section, we compare the standard macroscopic pigdimensional electron gas, the quantum capacitance is a con-
ture with the mesoscopic description of a capacitor consistsequence of the Pauli principle, which requires an extra
ing of two plates connected via leads to electron reservoirsgnergy for filling a limited space with electrons. As a result,
as sketched in Fig.(d). Here the dc part 0§®™ m=1  such limited space does not completely screen an applied
and 2, vanishes. A conventional macroscopic capacitor, ddiransversgelectric field. In our case, the screening length
picted in Fig. 4b), is described by an electrostatic geometri-over which the fields penetrate into the conductor may be
cal capacitanc€ in series with dc-resistancd®; andR,.  comparable to the plate dimension. The injected charge
The current response of this system has the formedN™/dE is stored inside platen over this screening
8l={—iCw+RC?w?+0(w%}6V, with R=R;+R,. The length. ThussU™ represents an average of the change in
parameter€, R;, andR, express features which are specific the effective potential landscape over the plate. The key
to the separate constituents of the macroscopic system. point is thatedU(™ cannot be identified with the experimen-
this respect, the situation is very different for a coherentally controlled electrochemical potential change at the con-
capacitor. The mesoscopic capacitor consists of two conductact, su(™=esV(™. The distinction of electrostatic capaci-
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— charge quantization into account. We introduce the width
of the resonance and use the abbreviatiga|?
ot ot =(Eg—E,)2+T'?/4. Here E¢ is the Fermi energy anH, is
Myreble prebV,e™ the energy of the resonant state of the quantum well. For the
external admittance of the quantum-well arm we find
- —jewt _jwt
(a) 95(/79 96U29 N h dN 2
9™ w)=—iwe’—+ %! =—=|| =—=| , (33
~U dE 2e°/\dE
dN T a4
dE ~ 27]A]2" (34
R, I i R, and for the interacting admittance,
(b) C ,( h
| — 2
g(w)=-i0C,+w Cu(ﬁ , (35
FIG. 4. (a) Mesoscopic coherent two-plate capacitidn. Mac-
roscopic two-plate capacitor.
1 1 1
(36)

tance and electrochemical capacitance becomes irrelevant if [ E+ e’(dN/dE) -

both densities of states to the left and to the right are large g

compared taC. ] ) The charge-relaxation resistance is just equél/ge? (half a

~ Let us give an interpretation ?nt)the charge-relaxation reyesistance quantumThe lack of an energy dependence in
sistanceR,. The first factor inRy™ is half the resistance the charge-relaxation resistance is implied by the fact that
guantum, the lead-reservoir interface resistance of a singl@ri>:<7¢>2' due to the effectivesingle-channelature of

quantum channel discussed by Sharvin and IfAfjhis re-
sistance is multiplied by the rafib(7$"?)/(74")2, where
74" is the time carriers incident from the leads dw&llon
the mth capacitor platé®

e M) h (S(dgMIdE)),

(32

the scattering matrix.

If the quantum well is threaded by a magnetic fitbas in
Fig. 5, then the resonating enerBy depends periodically on
¢ with periodh/e, implying a ¢ dependence of the scatter-
ing amplitudes but not of the scattering probabilities. Conse-
quently the electrochemical capacitance exhibits an
Aharonov-Bohm effect®® This implies that an Aharonov-

T 267 (A)? 267 {(2(dgVIdE) )}

Bohm effect shows up in the admittance at nonzero frequen-
The brackets() denote both a quantum-mechanical and acies only. This is a striking example for the observability of
statistical averageRgm) can be directly expressed in terms of the scattering phases in the ac response.
energy derivatives of the eigenvalugs)=exp(#™). The
presence of such a ratio in the current response suggests a
non-self-averaging system. For a small number of channels
M, the resistanc®{" usually scales as W,,. For large As a next example we consider a quantum well which
M,,, on the other hand, Pendry and co-workéfshave contains a long-lived state connected to two “probes” via
shown that in the diffusive regime the probability distribu- tunneling barriers and capacitively coupled to a nearby gate
tion of the conductance makes extreme excursionS, OQsee the inset of F|g)6The Scattenng maitrix amplltudes are
“maximal fluctuations.” We may expect this non-self-
averaging system to react to an energy change with maximal saU’Bu(E):[(saﬁgvu_i(ravrﬁu)1/2/A]exm S F+i6844),
changes of the phases for a minimum number of eigen-
channels, whereas in the other eigenchannels no phaggere A=E—E,+il'/2, «,8=1 and 2, andu and v are
changes take place. Thus a non-self-averaging system {hannel indices. HerE,,, is the width of the resonance due
likely to exhibit a larger charge-relaxation resistance than g, decay into channel in leada, I',==,T,, is the total
usual system. In addition, the charge distribution of Iocalizec{jecay width into leady, andT'=3,T",, is the total width of
states in the insulator between the capacitor plates is likely tgo resonance. The phasés, and 5, are taken to be en-
be another important source of mesoscopic fluctuatiois. ergy independent. For simplicity we assign to the gate an
study this effect an approach is required which treats thg.finite density of states as in Ref. 20. At zero temperature

microscopic potential landscape. _ _ for the admittance at the contacts of the two-barrier quantum
Next we consider a very asymmetric capacitor. One caye|| we find

pacitor arm is macroscopic with an infinite density of states,

the other capacitor arm is a one-contact quantum well: the
“plate” contains a long-lived state which is separated from

the wire by a tunneling barrier. We treat this example only to
illustrate our theory. A more realistic discussion has to takeHere

Capacitively coupled quantum well with long-lived state

Ghp( @) =Gap(0) —1wE o+ °D . (37)
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2
€ sV
912(0) =~ 912(0) = — 921(0) =922 0) = =T
G P10 ag
" h TAx%+1) (38)
are the dc conductances=2(E—E,)/T", and E¢ is the 4 gate
Fermi energy of the reference state. The terms multiplying
w are called emittances and are given by
E o ,dN T, 5 (-1
a’B_e E F(X2+ 1) aB(X ) T 8U(1)
Ty x2—1-4y(x?+1) 2 V@ = su?
'\ 1+2y(x°+1) (39

The density of statedN/dE=2/[ 7I'(x?>+1)] is evaluated FIG. 5. One-contact quantum well with a long-lived state
at Er. Note that the total density of state,zdN,z/dE threaded by an Aharonov-Bohm fldx, with capacitive coupling to
defined in Eq(20) is identical with the one-contact density @ macroscopic gate. Edge states X follow the contours of the

of states Eq(34). The degree of screening present in theconducting tip and the quantum well, and there is a transmission
system is determined by the parameferwhose inverse is probability(--) for hopping between the edge state and the resonat-
proportional to the ratio of the geometrical charging energyn9 State:

and the quantum charging energyy ‘=4(dN/

dE),{€%/2C). Here AN/dE),.2/(#T) is the total den-
sity of states at resonance. The term multiplying is al-

ready a complicated expression given by

r
5aﬁ(3x2—1)—?ﬁ

D sl 4N ?[ h r,
s~ ¢\ 4| | 2e2) 22 +1)
8y2(x*+1)3

X [11 2702+ D)2

(3x°—1)—

J . (40

The dependence of the diagonal emittance eler&gi(tEr)

The admittancés(w) = 6l (w)/ 6V(w) of this electric circuit

up to second order in the frequency G(w)=(1/R)
—iw[C—L/R?]+ w?(L/R)[2C—L/R?]. Neither the first
nor second order have a definite sign. The first-order term
switches from capacitive behavior to inductive behavior if
L=CR?. The second-order term becomes negative if
L>2CR?,

At low frequencies a correctiofri wE to the dc conduc-
tance may be difficult to measure. The emittance elements
Eo1=Co1 andEy,= Cy,, Which give the capacitively induced
current into the gate in response to voltage oscillations at

on the Fermi energy is depicted in Fig. 6 for various valuesontacts 1 and 2, are easier to meagufer our system it

of y~1 and a ratiol'; /' =0.75. Similarly,D,(Eg) is de-

turns out that these capacitance coefficients are

picted in Fig. 7 as a function of the Fermi energy for variousc = — (T'1/T)C, andCq,= —(I',/T)C,, with C,, given by

values of 1. In the absence of screening (*=0), the
Coulomb effects vanish and the admittamteeduces to the
external admittance. In this casEaBEaB=e2(d N/dE),
wheredN/dE is given by Eq.(34) with '=T";+1',. On the
other hand, for perfect screening£0) the induced Cou-

Eq. (30).

VI. DISCUSSION

In this work we have discussed the currents at the contacts

lomb effects are most effective and enforce charge neutralityt 5 system of conductors in response to small time-

in the quantum well.

The diagonal elementg,, and D,, are negative for
Fermi energie€, close to the resonance energiinetic-
inductive behavior except for sufficiently largey and for
T, larger thanl'§,=T/2 andI'y,=T"/3. The diagonal ele-
ments are always positive far from resonar(cesistive-
capacitive behavior ForT' ,<TE:? | E,, andD,, are posi-
tive functions ofEg for any value ofy.

Positive off-diagonal elementg&,; and D,; indicate
kinetic-inductive behavior, whereas negatikg; and D .4

oscillating changes in the electrochemical potentials at these
contacts. Our result for the admittanddsgs. (4) and (5)]
describes the transition from a regime where the samples can
be charged at negligible electrostatic-energy expense to a
regime where the electrostatic energy completely prevents
charge from piling up in the samples. This transition is char-
acterized by an increasing strength of the response of the
system to the internal potentials. The internal response is
peculiar to interacting carriers, and allows us to restore the
invariance under an overall shift of the electrochemical po-

indicate resistive-capacitive behavior. We always findtentials. This invariance is intimately related to total charge

kinetic-inductive behavior sufficiently near to the resonancegconservation. In this description, any gates are included in

whereas far from resonance, usually resistive-capacitive bahe system and are treated on equal footing with the conduc-

havior occurs. However, ify>1/4 thenE,z is kinetic-  tors.

inductive for any Fermi energy. We have illustrated our results by treating a mesoscopic
For a two-terminal sample, a macroscopic analog exhibeapacitor as well as a quantum well with capacitive coupling

iting a negative linear term and a negative second-order terrto a gate. If one capacitor plate has the form of a ffhgn

in the admittance can be thought of as a self-inductance idharonov-Bohm effect results, which is peculiar to ac rather

series with a parallel connection of a capacitor and a resistothan to dc transport.



54 DYNAMIC ADMITTANCE OF MESOSCOPIC ... 8139

0.6 | i L. i 1
@ CE
0.4 1 C / \ -
SU = 5y o~ <\ FIG. 6. Dependence of the diagonal admit-
?] ,4’ N tance elemenE,; on the Fermi energ¥g, for
0.2 ’ Sy = an asymmetrically coupled quantum wedee the
- inse) with T';/I'=0.75. E;; is in units of
W €?(dN/dE){T';/T") and is shown as a function
0.0 - - of 2(Ec—E,)/T for y=0, 0.25, 0.35, 1, and 10
: (from bottom to top. At y=0 (double ling the
guantum well is charge neutral. At=0.25 (full
| line) the crossover takes place between kinetic-
—0.21 inductive and capacitive behaviors &4(Eg)
near resonance.
-0.4 T T T T T
-6 —4 -2 0 2 4 6
2 (), —E)/T
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APPENDIX A: LINEAR RESPONSE VIA RESPONSE

KERNEL
. . ) . - e R
In this appendn.( we find the lexternal linear-current re- I, (t)= HE dE’dE”aJ;(E’)Aw(a,E’,E”)
sponse, Eq(3), using standard linear response thetrs? iz

The derivation is restricted to the case of a perturbation away
from an equilibrium state; i.e. the reference state is an equi-
librium state with zero average currents in the leads. A mag-
netic field is allowed which is constant in the leads and per- -
pendicular to them. A, s(@,E E")=1,8,,8,5—Sh,(E')S,s(E").  (Ad)

The generalized susceptibilities given in Eq$2) and
(13) in response to a magnetic perturbat{dy. (10)] or to

X é&( En)ei(E' —ENt/h

an electric perturbatiofEq. (11)], respectively, are given in 12 l I I I '
terms of commutator expectations by the following 1.0 -
expression§’?° 084 i
v [ - 0.6 -
Kap(7) == 2([1a(7),Qp(0)1)eO(7), (A1) -
DF 0.4_ I
P A 0.2 1 -
kip(1) == (oD g0)])e®().  (A2) 0.0 -
drYg(n)/d7=s(7) follows from Egs.(41) and (42), and 027 I
from (1,)o=—(dQ,/dt)o by making use of the property AT ] J 7 p
([A(7),B(0)])o=([A(0),B(— 7)])o. Both perturbations 2 ((),-E)/T
thus give rise to the same ac conductance if

In the following we calculate the magnetic response func-theFllSr'rZi' e?]i?ender}gf ;’rf] t:se ﬂ?;ﬂi;ﬁd?::aﬁ elljzrn@t?fr]:l\jvell
tion. From Egs. (1), (12, and (42, and from 9Fr, y y coupied g

. . with T';/T=0.75. Dy, is in units of e*dN/dE)Z(h/
Vplw)=—lwdpp(w) the ac conductance in freqUENCY yoy 1 joT) and is shown as a function of Bf—E,)/T for

space is determined by v=0, 0.25, 0.35, 1, and 1@rom bottom to top. At y=0 (double
1 (= line) the quantum well is charge neutral. Around=0.35 (dash-
RPN - ; SO .
Jupl®)= h_J dre! @O (7)1 5(0)])o. (A3) dotted_ I.|nE) the crossover takes place between kinetic-inductive and
wJo capacitive behaviors db,(E¢) near resonance.
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The average$), are both quantum mechanical and statis-causality requirements:?>112|n fact, the scattering matrix
tical averages in the reference equilibrium statejs itself a response function. It is related to the retarded
(0)o=Tr{poO}. Within the independent-electron approxi- mgtri_xT(E) 48 Correspondingly the scattering matrix is ana-
mation, the density operat@, is determined by the popula- Iytic in the complex upper-half plane: for each scattering

tion at equilibrium of the incoming one-particle states, whichelement

is just the equilibrium distributiof (E) common to all res-
ervoirs. Defining ﬁﬁm(E)=éLm(E)éBm(E) we have
(ngm(E))o=f(E), and for A#B we have (NaNg)o
=(Np)o(Ng)o. In (A4), 1, is the identity operator on the
space of all active channels in lead Strictly speaking it is

an energy-dependent operator because the number of op
channels increases with increasing energy. However, as di

cussed in Appendix B, the low-velocity channels with

thresholds close to the Fermi energy are weakly coupled t

the mesoscopic structure and their contribution may be n

region over whichf(E) changes is smaller than the typical

interchannel energy, it is justified to considey ds well as
the scattering-matrix dimensions, as energy independent.

Since the lead currents vanish at equilibrium, instead of

ia(r) andiB(O) in Egs.(A2) and(A3) one can equivalently
use the current variation8l ,(7) and 6l z(0) defined in Eq.
(14). Consequently, the sums and integrals in the operato
l,(7) and14(0) contain only nondiagonal terms. For ex-
ample, in Eq(44) the terms withe =y andE’ =E" make no
contribution tol ,(t).

The quantum statistical average of the commutator in Eq.

(43 is

<[é1;m(E)é9n(E)'é;’n’(’é’)éy’m’(E’)]>O
=8(E—E")S(E—E") 8, Sgg' Smamr S
X[fH(BE)—-f(E], (A5)

where again the diagonal termSy,h,E)=(0,n,E) and
(v',n",E")=(6",n",E") do not contribute. Furthemore, we
use the identi

Tr % A 4(a,E,E)Ay(B,E,E)

=T 280510~ Sh5(E)Sup(E) = Sho(E)Spa( E) 1.
(AB)

The sum of all terms of the type [[8'SS'S] has given rise

to Tr{ 6,41,] due to the unitarity of the scattering matrix and
the cyclic invariance of the trace. After performing the
T-integration, we find

e? ~ R -
gaﬁ(w)z—ﬁf dEf dETI23,51,— S, 5(E)S,p(E)

- f(E)—f(E
—sga(asﬁa(E)]%
1

X - —.
i(hwo+E—E+i0")

(A7)

€
glected. Thus at sufficiently low temperatures, such that th

f+oc
—

Regarding the double integral over the first teftime term
Bhoportional to the identity we argue in Appendix B that
nly the high-velocity states couple effectively to the sample.
hese states have thresholds much below the Fermi energy.
ghus we can extend the lower integration limits, which for

each channel are determined by their thresholds; 4o The

—2mi(Ey)
0

S(E')

B E —Er=ior -

) . (A8)

Qrincipal value of this double integral vanishes. The total
integral proportional to the identity matrix is

f dEf dE’

—iwf dE[f(E)—f(E+hw)].

f(E)—f(E")
hw+E—E'+i0"

(A9)
rs

With the help of Eq(A9), and of Eq.(A8) and its complex
conjugate, we find Eq.3) for the admittance.

APPENDIX B: CURRENT OPERATOR IN THE LEADS

In this appendix we justify expressigh7) for the asymp-
totic current operator in lead, at moderate frequencies, in
the presence of a stationary magnetic field (BgQ,) con-
stant in the lead and perpendicular to it. For simplicity, car-
rier motion in the lead is taken to be two dimensional, with
X, the longitudinal coordinate anyl, the transverse coordi-
nate. In the following we drop the subscriptsand 0.

In the perfect lead which is considered to be infinite and
invariant under longitudinal translations, the Hamiltonian
can be written as

~ 1 5

H= 5 (P—eA)"+V(y), (B1)
with A(X)=(—By,0,0). The motion is separable with a
complete set of eigenvectoxg, (x,y) =f, «(y)explkx) and
energieskE, . We takef, (y) to be normalized to unity,
Jdy|fy(u)|?=1. Writing k=0|k| (¢==1) andE, ,=E,
the two sets of quantum numberg,K) and (U,E,o) are
equivalent. The reduced Schiinger equation iry space is

k dependent,
+V(y) - Eu,k] fu,k(y) =0,

= -~

wherel;*=|eB|/% defines the magnetic length. Hence, un-
lessB=0, f  fulfill orthogonality relations only for a com-
mon k. The creation and annihilation operatagE) and
b(E) entering the current expressidi?7) refer to states
yielding a nonzero current, and are normalized to carry a

d2 2

Tdy”

ﬁZ
2m

24k
B

The double integral over the product of the scattering matriconstant current flux<pu‘k(y)=|hvu,k|‘1/2fuyk(y), where
ces can be removed in a direct and elegant way owing to, =(1/A)dE, /dk is the (nonzerg velocity. We set
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4,(E):=al(E) and by(E):=a{"(E). The operator
a{"(E) annihilates a carrier in the statpp{2) and
has the anticommutation rulegal”(E),al (E")],

=845 OuwO(E—E’). A similar normalization is necessary
in order for relation(2) between incident and outgoing am-

plitudes to hold.

The operator of the particle current flowing through the

cross sectiolCy situated ak is | (x,t) = [¢ dyj.(r.t), where

(B3)

J(rt)= %[xif(r,tﬁpx(r)xif(r,t)Jr H.c]

is the x component of the current-density operator at point
and
P.(r)=—i#dlox—eA(r) designating the kinetic longitudi-

r, with W(r,t) designating the field operator

nal momentum at. We find

1(x;t)= 2 dejdE'aW(Enuu,(x E,E')

uu’' oo’

><a (E")elE-ENA (B4)

' (x;E,E") f dyl g k(N Px(r) @y (1)

uu’

+ou k(NP (e ()]

eh oK'~
= 5m¢ dyxd (Y xur ke (Y)
2
x| k+k'+ I—g . (B5)
B

8141

ments(B5) have to be evaluated f&&' —E=7%w. We con-
centrate on a range of low frequencies. In particular, we re-
quire fiw to be far smaller than the typical subband spacing
AE between neighboring channels, so that in Eg6) k
#k’ if u#u’. To present specific estimates, two types of
confining potentials will be considered. We first treat the
case of a semiconduct¢GaAs with a small effective mass
m=0.07m, and a wire width of 700 A. This corresponds to a
subband spacing of the order of 2 meV in the absence of a
magnetic field. Below we show that for these parameters Eq.
(17) has a range of validity for frequencies up to'16~ 2.

Furthermore, fokT<AE corresponding td' < 10K, the
matrix elements are evaluated at the Fermi surface. For a
typical Fermi energy of 20 meV, the carriers at the Fermi
surface in the lower subbands have longitudinal velocities
vE~0.3x 10® cm/s. In the highest occupied subband, on the
other hand, the longitudinal velocity of the carriers at the
Fermi surface is much smaller, and tends to zero when the
Fermi energy approaches the channel threshold. It is clear
that expressiofil7) of the current operator does not hold for
subbands with thresholds close to the Fermi energy. How-
ever, in reality, these subbands are susceptible to the smallest
amount of disorder and might in fact be localized. It is, there-
fore, reasonable to estimate the accuracy of(E@. for sub-
bands with relatively high longitudinal velocitighere we
consider 0.% 10" cm/s<v<0.3x 10° cm/9 and to neglect
the contribution of the subbands with lowet (“low-
velocity cutoff”). This point will be discussed in more detail
at the end of this appendix.

We now show that all off-diagonal current-matrix ele-

mentsl ., (u,a)#(u’,a’), may be neglected for frequen-
cies up to 18" s~ 1. We make use of the Schwartz inequality
|Sdyf; (Y)fu k(¥)|<1 and of the fact that the subbands

Maklng use of the reduced Scklimger equatlon to calculate become flatter for |ncreas|ng magnet|c f|em k|/m>l)|:,

the eigenvalue differenceE(, ., —E, ), one finds an ex-

pression relating the current-matrix elemeh[f§, (x;E,E")
to the energy difference’ —E):

e E'-E
7 (x;E,E")=—

Ak —K)I? _—
( ) h |Uu,kvu’,k'|

ei(k, _k)xuuk u’k’
(B6)

with the overlap integralidyy = Sdyf]  ((Y) fur ke (Y).

uu’

Equation(B6) yields well-known exact relations in two par- o= (E’—

ticular cases:

wherevg is an average longitudinal Fermi velocity of the
subbandsi,u’ in the presence of an arbitraB:. In the case
o' =— o of oppositek vectors,|k’ —k|~2ke=2muv /%, for
the magnitude of the matrix elements in EB6), we obtain

I(r,—(r € hw Bg
| uu’ | h szF, ( )

which is less than 1-2% ofe/h for frequencies
E)/#% up to 13* s~ 1, where the low-velocity cut-

off has been used. In the casé= o, we evaluate the inte-

(i) If B=0, then foru#u’ the transverse functions are gral in Eq (B6) for a parabolic confining potentlal

orthogonal, and for u=u’ one has E'—E=(k'?

—k?)h2/2m; hencé®

i(K' —k)x (Vyxtvur k)
ﬁ? uu’

(x E,E’ )~—
Uy kUu’ k!

uu'

for B=0. (B7)

(i) If B#0 andE=E’, ther?

o' e
Lo (x;E,E)=oﬁéuu,5W, for anyB. (B8)

For a linear-response calculation, whether directly as iformal

V(y)=maey?/2, wherew, is taken to be 0.810" s
This potential yields eigenfunctions and eigenvalues

w; hk
=1 y+ o m), (B10)
wy\ 2h2K?
Eu,k=<u+%>m+(§y> TR (B11)

and a veIomtyvuk—(wy/Q)zﬁk/m Here w.= |eB|/m
—(h/ml ) is the cyclotron frequency andzzzw +w

The harmonic-oscillator eigenfunctiori§® form an ortho-
set (fDf{My=6,, with spatial width

Sec. Il or more formally as in Appendix A, the matrix ele- ((Ay?), )1’2—I(Q)(u+1/2)1’2, wherel(m—(h/mﬂ)l’2 is the
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zero-point amplitude of the oscillator with frequené€y. € o (PuktUuk)

From the dispersion relatioB11), one obtains the wave- loa(GE,E+hw)= Fel( )Xmﬁ Uk uk’
number differenceé’ —k=of(u—u")Q+ w]/v . wiCwk (B15)

The current-matrix element foor=0', u#u’ may for

< i . . .
©<() be written as for the diagonal elements. The transverse eigenfunctions for

hard walls with infinite potential steps vanish beyond the

IL’;’,(x;E,E+ﬁw)~UE L,ei(k’fk)x o % , lead edgey = +w/2 and satisfy Eq(B2) with V(y)=0 for
h (u-u")Q | —w/2<y<w/2. The exact solution for this confining poten-
(B12)  {ial are parabolic cylinder functions. However for our pur-

where Uy, (a/1Y) =l u 11 is the overlap integral of th

e PoOsemore insight is gained by working in the WKB approxi-

eigenfunctions of two harmonic oscillators located at

mation. The energy eigenvaluds, are determined by

guantization  conditions on the action integral
—uNhw/(Qmug). Since the overlap integral satisfies $p(y:yo,E)dy extended over the classical paths, where

. _ _ _ 271/2 A VA
|| <1, this matrix element is also less than 1-2 % Ofp(y,yO,E)—;[ZmE (Mwe(y—yo))°]™* and yo=—klg )
e/h for frequenciess up to 10ts 1. are the classical momentum and the center of the classical

For the diagonal current matrix element=u’,o =o' orbit, respectively. In theK,y,) plane there are three differ-
one finds S ' entregions delimited b= E..(yo) =Mw2(yo+ W/2)%/2: (i)
if EXE.(Yg), the electron does not feel any wall, and from

a distance a, and ay _=(w./Q?)x(k'—k)/m~a(u

e . (uctvur) a $pdy=(u+Di we find Ey=hodu+); (i) if
177(x;E,E+hw)= He'(k ‘k)xz’—'lm wl T | E_<E<E. or E,<E<E_, then the electron feels one of
vurvul B13) the walls, andE, ; has to be determined numerically from

$pdy=(u+aA; if in particular yo=*w/2 then

with ag=— o (ww,/Q?)A/(Mue). Sincef, is normalized, Euk=fhoc(2u+3); and (i) if E>E.(yo), the electron

U (0)=1. Hence U (ag/l®)=1 for B=0, and feels both walls, and, , has to be determined numerically
Uy, (31— 1 for high magnetic fields, because in this fom fﬁdeT/(l{Jrl)ﬁ; in this region a WKB approximation
limit the distanceag1/B vanishes more strongly than the fuk(y)*p “sinj¥,,pdy’] is well defined and for
width 1 e 1/BY2, For intermediate magnetic fields, an alge- E>E=(Yo) tends to the solution of a free particle in a box of
braic evaluation of the integral{,, shows that always width w. The WKB energy levels are quite accurate except
U830 /1) — 1|<0.01. This holds even in the worst case around the discontinuities at the borders between redions

of a minimal longitudinal Fermi velocity e =0.7x 107 cm/s (i), and(iii). The results show that the distance between the
and a maximal band number=10. Thus we obtain the same Subbands is minimal at the subband bottoms and increases

result as for zero magnetic field, see ER7). Further, the

phase factoe'® ~K¥* may be replaced by unity, because for
longitudinal Fermi velocities of at least 0<7L0’ cm/s, the
phase k' —k)x=o(w/vg)x (Ref. 4 is practically constant
over the typical dimension of a mesoscopic conductor fo
frequencies up to ¥ Hz. Thus the asymptotix depen-
dence of the phase factors can be dropped. Similarl
ikt vu) oy '=0 owing to the low-
velocity cutoff.

Let us next consider the case of hard-wall confining po
tential. To be specific we take a lead width of 300 A and us

the free-electron mass. A Fermi energy of 5 eV is used. Fo

simplicity we treat the wire as two dimensional. The lowest
subband has a longitudinal velocity:~1.2x 168 cm/s. We
omit the current contribution of states with-=<0.7x 10’

cm/s (low-velocity cutoff). In the caser’ = — o of opposite
k vectors, we then obtain, according tdB9),

17, 7|<0.0%e/# for frequenciesw up to 132 s~*. In the
case o¢'=0, u#u’, the condition Aw<AE implies
(K" =K) " *=(Eyx.—Euw k) 'ive, whereke andug are an
averagek vector and an average longitudinal velocity of the
two subbands at the Fermi energy. Then

uuk,u’k’

(Eu,kF_ Eu’ ,kF)
(B14)

IO’O’
uu’

e ..,
(X;E,E‘l‘ﬁw)wgﬁe'(k _k)Xﬁw

for u#u’, and

r

-

€

with increasing magnetic field and subband quantum num-
ber. Those parts of the bands corresponding to regipn
which are completely flat in the WKB approximation, con-
tribute a negligible amount to the current in virtue of the
low-velocity cutoff. In the higher subbandsi=(w/lg)?%/2)
corresponding to regiofiii ), the overlap integrals satisfy in
ood approximatiofd, = d,,. More caution is needed
or the lower subbands which are strongly influenced by the
magnetic field. Particularly critical for the evaluation of
(B14) and(B15) are those parts of the subbands correspond-
ing to the transition from regiofi) to region(ii), where the
energy starts to deviate from the band bottom at
Euyk=(u+1/2)ﬁ, because fou#u’ they give rise to the
smallest denominatof€, y_—E, k|, and foru=u’ to the

smallest overlaplf . A transverse eigenfunction of
subband u in region (ii) is typically proportional to

£ (z¥wi2) if zg~=w/2 is near the wall, and is well

approximated byffj‘”C)(z— Zo) when approaching regiofi).
With these trial functions and the WKB solution {ii ), we
have estimated the overlap integrals for the worst cases. In
general we findUyyy i |/|Ey k. —Eu k| <1/(4AE) for u
#u’, and ||[Uyuw|—1/<0.02. Here AE=3(%2/2m)
X (/w)?= 1.5 meV is the minimal subband spacing. By the
same reasoning as for light carriers, the matrix element
[(B14) and (B15)] is further reduced td| = a(e/h) Sy
within 1-2 % for arbitrary magnetic field and frequencies
o up to 10+ s 1.

In conclusion, one can neglect all off-diagonal matrix el-
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ements SS/’(X;E'E,)' (u,0)#(u’,o"), for frequencies upto  29€ Iess_ than 4% of the active channels relevant to the cur-
101 s~1. For any magnetic field we recover the asymptoticrem' This is so becguse the sut_)bar_lds are equqlly spaceq in
current operator in Eq(17), with matrix elements of the he worst case, while the longitudinal energy is approxi-
form mately quadratic in the longitudinal velocity. On the other
vo! , e hand, according to the microscopic expression we have de
Iy (E.E )Egﬁ5uu'5<r<r’- (B16) rived, the current displays considerable fluctuations as the
Fermi energy approaches a channel threshold. But we expect
This conclusion, however, is valid only if the low-velocity the prediction of these fluctuations not to be reliable. In fact
states can be considered to be weakly coupled to the mesare expect the phase of a carrier in a low-velocity state to be
scopic structure. This avoids any divergence arising for lonmore easily randomized, because the lower the velocity, the
gitudinal velocities tending to zer@~ermi energies tending shorter the effective dephasing/inelastic length, and the more
to a channel threshgldOn the one hand, one can say thatdifficult it is to fulfill the coherence condition for such a slow
the cutoff of all longitudinal velocities below a,,, while  carrier inside the mesoscopic sample. In this sense we con-
taking into account longitudinal velocities at the Fermi en-sider low-velocity carriers as being weakly coupled to the
ergy up to av .= 5vmin Corresponds to neglecting in aver- mesoscopic transport.
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