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We present a discussion of the low-frequency admittance of mesoscopic conductors in close analogy with
the scattering approach to dc conductance. The mesoscopic conductor is coupled via contacts and gates to a
macroscopic circuit which contains ac-current sources or ac-voltage sources. We find the admittance matrix
which relates the currents at the contacts of the mesoscopic sample and of nearby gates to the voltages at these
contacts. The problem is solved in two steps: we first evaluate the currents at the sample contacts in response
to the oscillating voltages at the contacts, keeping the internal electrostatic potential fixed. In a second stage an
internal response due to the potential induced by the injected charges is evaluated. The self-consistent calcu-
lation is carried out for the simple limit in which each conductor is characterized by a single induced potential.
Our discussion treats the conductor and the gates on equal footing. Since our approach includes all conductors
on which induced fields can change the charge distribution, the admittance of the total response is current
conserving, and the current response depends only on ac-voltage differences. We apply our approach to a
mesoscopic capacitor for which each capacitor plate is coupled via a lead to an electron reservoir. We find an
electrochemical capacitance with density-of-state contributions in series with the geometrical capacitance. The
dissipative part of the admittance is governed by a charge-relaxation resistance which is a consequence of the
dynamics of the charge pileup on the capacitor plates. We specialize on a geometry displaying an Aharonov-
Bohm effect only at nonzero frequencies. For a double barrier with a well coupled capacitively to a gate the
low-frequency admittance terms may have either sign, reflecting either a capacitive or a kinetic-inductive
behavior. The validity of a second-quantization-current-operator expression which neglects spatial information
is examined for perfect leads in both the frequency and the magnetic-field domain.@S0163-1829~96!06332-1#

I. INTRODUCTION

Investigation of the ac properties of electrical conductors
provides important information on the internal charge and
potential distribution of the sample. Pieper and Price1 have
measured the complex dynamic magnetoconductance of dis-
ordered mesoscopic rings, Chenet al.2 have measured the
magnetic-field symmetry of a capacitance tensor, and Kou-
venhovenet al.3 have observed the dependence of photon-
assisted tunneling on the interaction with a microwave field.
Theoretical studies of the frequency dependence of current-
current correlation spectra4–8 and of the current response to
oscillating fields9–26 have been carried out. In contrast to dc
transport, which is fully characterized if the transmission
probabilities are known, the ac-transport properties are sen-
sitive to thephasesof the scattering matrix elements. Deriva-
tives of the scattering-matrix elements with respect to the
energy are related to the charge injected into the conductor.
In nonstationary conditions charge accumulation occurs and
causes induced fields. Consequently a self-consistent treat-
ment of the electron-electron interactions plays an important
role. What is needed is an ac conductance which is charge
and current conserving.20,21 It is the purpose of this work to
extend our earlier discussions,19–21 and to provide some of
the technical details omitted.

Our approach to the ac conductance of mesoscopic con-
ductors is in a close conceptual analogy with the scattering
approach to dc conduction, especially to the version which

emphasizes coherent transmission from one electron reser-
voir to another.27–29To be definite we envisage a system of
capacitively coupled mesoscopic conductors which may be
defined with the help of gates~see Fig. 1!. The conductors
and gates are connected via electron reservoirs~contacts! to a

FIG. 1. A mesoscopic conductor with a nearby gate. The long-
range Coulomb forces acting among different conductors ensure
that the total charge in the volumeV vanishes.

PHYSICAL REVIEW B 15 SEPTEMBER 1996-IVOLUME 54, NUMBER 11

540163-1829/96/54~11!/8130~14!/$10.00 8130 © 1996 The American Physical Society



macroscopic circuit which contains ac-current and ac-voltage
sources. Since in ac transport we can induce current from the
conductor into the gates, and vice versa, it is necessary to
treat all metallic constituents of the sample on equal footing.
Consequently in the treatment given here, there is no distinc-
tion between conductors and gates. All constituents are con-
sidered as conductors. Each conductor may have an arbitrary
number of contacts. We want to determine the current
^dI a

(m)(v)& at contacta of conductorm in linear response to
an oscillating voltagedVb

(n)(v) at contactb of conductor
n,

^dI a
~m!~v!&5(

nb
gab

~mn!~v!dVb
~n!~v!. ~1!

The theoretical task is to find an expression for the dynami-
cal conductance coefficients~admittances! gab

(mn)(v). Every-
where in the system a stationary magnetic field is allowed: it
is arbitrary inside the sample, and in each lead it is required
to be constant and perpendicular to the lead.

In order to start from a conceptually clear situation we
assume that all electric-field lines emanating from one of the
conductors terminate at nearby conductors. Then a suffi-
ciently large Gauss volumeV ~see Fig. 1! can be chosen30

through which there is no electric flux. Consequently the
total charge is conserved. Conservation of the overall charge
on all conductors implies that the currents are conserved.
Thus the columns of the admittance matrix must add up to
zero. If the circuit is in an electrically insulating environ-
ment, then applying a uniform ac potential on the whole
externalcircuit leads to an overall spatially uniform effective
potential. This only affects the phases of the wave functions
but has no observable effect. Hence the ac-current response
can depend only on voltage differences. This implies that the
rows of the conductance matrix must also add up to zero.

To achieve these sum rules of the columns and rows of
the admittance matrix, the presence of interactions is crucial.
Only because of the interactions does a simultaneous and
equal potential shift at all contacts cause the same potential
shift everywhere in the sample. Were the electrons un-
charged particles, instead, then a simultaneous and equal po-
tential shift at the contacts would lead to an oscillatory ac-
cumulation and depletion of particles inside the conductors.
For ‘‘neutral electrons’’ this particle distribution would cost
no electrostatic energy, or, in other words, it would bear no
induced potential. According to the continuity equation the
sum of all particle currents at the contacts of the samples is
equal to the time derivative of the total particle number in-
side the samples. Consequently, for neutral~i.e., noninteract-
ing! electrons the sum of all currents is not conserved. The
current response of noninteracting electrons does not repre-
sent an acceptable approximation of the actual system: it is
crucial to take the Coulomb interaction into account. Theo-
retically, ac transport is interesting, since it requires an ex-
plicit treatment of interactions. It is under the influence of the
mutually interacting charges distributed over the various
samples that current conservation is restored.

Our first step, however, is to consider the~non-current-
conserving! response of the electrons to an externally applied
potential. In this step the internal effective electrostatic po-
tential is kept fixed. The electrons are treated as noninteract-

ing. This external potential isa priori arbitrary except for the
boundary conditions that must be satisfied in the reservoirs.
In reality the electrons ‘‘see’’ a total potential and not only
the external potential. The total current response must be
independent of the initial choice of the external potential and
is unique. Thus in this inital step we are permitted to choose
an arbitrary ‘external-potential profile.’’ In many works an
arbitrary potential profile~for instance one corresponding to
a uniform external field! is taken with the implicit but incor-
rect understanding that the response to such a field already
represents the complete answer. The choice of the external
perturbation which we adopt is motivated by the geometry of
our samples. In our structure with contacts~reservoirs! it is
natural to choose an external perturbation which acts only on
the carriers in the leads but not inside the sample. Thus
within the noninteracting treatment the sample can be de-
scribed by its global scattering law. In the dc limit this per-
turbation leads in a direct way to the dc conductances known
from the transmission approach. But even in the ac case this
choice of perturbation lets us find an answer which can be
expressed in terms of the scattering matrix.

The amplitudesbaw
(m)(E) of electron waves leaving the

conductorm in channelw of leada at energyE are related
to the amplitudesabu

(m)(E) of electron waves which are inci-
dent on the same conductorm in channelu of leadb by the
relation4

ba
~m!~E!5(

b
sab
~m!~E!ab

~m!~E!. ~2!

Heresab
(m)(E) is a submatrix of the unitary scattering matrix

S(m)(E) of conductorm. For aÞb it contains the transmis-
sion amplitudes of waves incident from reservoirb into res-
ervoir a, and fora5b the reflection amplitudes of waves
incident from reservoira. For the external response~super-
script ext), we obtain the admittance

gab
ext~m!~v!5

e2

h E dETr@ 1̂a
~m!~E!dab2sab

~m!†~E!

3sab
~m!~E1\v!#

f b
~m!~E!2 f b

~m!~E1\v!

\v
.

~3!

Here the unit matrix 1ˆa
(m)(E) denotes the identity operator on

the space spanned by all active channels in leada of con-
ductorm at energyE. In Eq. ~3!, f b

(m)(E)5 f (E2mb
(m)) is

the Fermi-Dirac distribution in reservoirb of conductorm.
Equation ~3! gives the particle current at contacta in re-
sponse to an external perturbation which acts on the carriers
in leadb. Note that the noninteracting response is zero be-
tween contacts belonging to different conductors.

Our second step contains the crucial point: the calculation
of the effective potential seen by interacting particles and the
determination of the internal response. For this purpose we
consider all conducting units which interact via long-range
Coulomb forces. Any charge pileup on one conductor in-
duces counterbalancing charges on the other conductors. Up
to here the approach is very general, and is actually the com-
mon starting point for a more detailed treatment which takes
the electrostatic potential landscape into account.30 Here we
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approximate the potential landscape by a single potential
U (n) which is locally induced on each conductorn. We in-
troduce the long-range Coulomb interactions via formal geo-
metrical capacitancesCmn which relate the~instantaneous!
total chargesQ(m) accumulated on the conductorsm to the
local potential parameters. In matrix notation,Q5CU. Such
an assumption is commonly used to treat Coulomb-blockade
effects.

The central result of this paper is the following expression
for the true admittance of the system including interactions
~superscriptI ):

gab
I ~mn!~v!5dmngab

ext~m!~v!2F(
g

gag
ext~m!~v!G~M21!mn~v!

3F(
d

gdb
ext~n!~v!G . ~4!

The matrix

Mmn~v!5dmn(
ab

gab
ext~m!~v!2 ivCmn ~5!

mediates the interaction and insures charge conservation.
The interacting admittance Eq.~4! fulfills current conserva-
tion

(
ma

gab
I ~mn!~v!50, ~6!

and invariance under an overall potential shift,

(
nb

gab
I ~mn!~v!50, ~7!

as required, and the reality condition

gab
I ~mn!~v!5gab

I ~mn!* ~2v!. ~8!

The discreteness of this theory makes it suitable to struc-
tures where the effective potential can reasonably be ap-
proximated by a single parameter~for example, for a ballistic
wire!. A more sophisticated analysis30,31 has refined this ap-
proach, and relates an effective potential landscape to a local
density of states. However, this local theory has only been
developed to leading order in frequency, in contrast to the
closed result of the discrete-potential model. Our theory can
even be applied to tunneling systems~single- or double-
barrier problems! for which it is reasonable to include only
the voltage in the well. It cannot be applied to a single junc-
tion, where the dipole across the junction matters. To treat

this case, the theory presented here has been extended by
Christen and Bu¨ttiker.32 Finally we stress that our theory
does not treat charge quantization,33–35,23and strictly speak-
ing cannot be applied to a system where such effects are
important.

We note here that the external ac-responsegab
ext(m)(v) of

Eq. ~3! is also valid in the presence of dctransport. From
gab
ext(m)(v) the mixed~dc,ac! coefficients of the second-order
external response to simultaneous dc and ac-voltage pertur-
bations in a transport state can be obtained. At zero fre-
quency, these nonlinear coefficients coincide with the~dc,dc!
coefficients of the external quadratic dc response derived in
Ref. 30. On the other hand, the interacting ac response
gab
I(mn)(v) of Eq. ~4! is only valid for an equilibrium refer-
ence state. If the reference state carries a steady current, the
effective dc potential inside the conductors is in general not
the same as at equilibrium. This dc-potential difference in-
fluences the ac admittance. For small dc voltages this field
effect can be treated with a self-consistent scheme which is
analogous to that used here for the internal ac response.30

II. GENERAL ASPECTS OF THE ac RESPONSE

We consider a conductor36 with time-oscillating voltages
applied to the contacts. First we calculate the response to an
external perturbationwhich treats the carriers as noninteract-
ing particles. The internal potential is kept fixed. Only the
total interacting response has physical significance and is
unique: the external perturbation itself is arbitrary up to
boundary conditions. Therefore, we choose a simple form of
the external perturbation. We assume that the external per-
turbation acts on the carriers only in the leads and reservoirs.

We give two alternative but equivalent ways of experi-
mental configurations which achieve this situation: we can
accelerate the carriers either electrically or magnetically.

For an external circuit with zero impedance, we can ac-
celerate the carriers with time-oscillating magnetic fluxes
~see Fig. 2!. Two requirements should be fulfilled: the exter-
nal perturbation is restricted to the contacts, and it preserves
the equilibrium state in each reservoir. Then only the leads
are left for the acceleration. We imagine bending each lead
to form a wire loop over a length 2pRb , as in Fig. 2. Each
lead loop is threaded by a magnetic Aharonov-Bohm flux
dfb(t) which does not penetrate into the multiprobe struc-
ture. The influence of this flux on the carriers in the corre-
sponding loop is easily visualized. In order to avoid the per-
turbation to act anywhere else on the structure, just outside
the loop the flux is counterbalanced by an opposite flux of
equal magnitude. Thus the total flux beyond the loop is zero.

FIG. 2. Magnetic external per-
turbation: the lead is formed into a
loop which is threaded by an
Aharonov-Bohm flux. To screen
the electric fields generated by the
oscillating flux, a compensating
flux is applied through a thin ring
area outside the loop.
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If the typical cross-section diameter of the lead is much
smaller than the loop radius, then a tangential vector poten-
tial of nearly constant magnitude acts on the carriers in the
loop. For the microscopic HamiltonianĤ5(h(ph2eA)2/
2m1V(r ), with A(r ,t)5A0(r )1dA(r ,t), the perturbation

Ĥ15Ĥ2Ĥ052E dr3j ~r ,t !•dA~r ,t !, ~9!

where Ĥ05(h(ph2eA0)
2/2m1V(r ), can be expressed in

terms of macroscopic variables,

Ĥ15(
b

Î bdfb . ~10!

Here Î b denotes the current at contactb, anddfb denotes
the magnetic flux threading the lead loopb.

Alternatively, we can imagine an external circuit with an
infinite impedance. The electrochemical potentialmb of res-
ervoir b is the sum of its electric and its chemical potential.
We can shiftmb by edVb(t) by embedding reservoirb in a
capacitor whose outer plate is put to ground and whose inner
plate is at a voltagedVb(t), as shown in Fig. 3. Then the
accelerating fields due to the external perturbation act on the
carriers only in the portion of the lead between one capacitor
plate and the other. Under these assumptions the usual mi-
croscopic electric perturbation*dr3%(r ,t)V(r ,t) can be ex-
pressed again in terms of macroscopic variables,

Ĥ15(
b

Q̂bdVb . ~11!

HereQ̂b denotes the total charge in reservoirb, which is a
well-defined quantity because the impedance of the external
circuit is infinite. We are interested in the averaged variation
of the current Î a , which is related to Q̂a by Î a5

2dQ̂a /dt.
When these two perturbations generate the same voltage,

dVb(t)5ddfb /dt, then the linear response generated by an
oscillating flux,

^d Î a~v!&f5(
b

kab
f ~v!dfb~v!, ~12!

and the linear response generated by an oscillating voltage,

^d Î a~v!&V5(
b

kab
V ~v!dVb~v!, ~13!

are the same. This is ensured by the equality
dkab

V (t)/dt5kab
f (t) demonstrated in Appendix A. Thus

the electric and magnetic perturbations are equivalent.
Equations~12! and ~13! are the starting point for a con-

ventional linear-response calculation19,20 as reviewed in Ap-
pendix A. In contrast to this standard method, in Sec. III we
obtain the ac admittance with an elementary approach which
is closer to physical intuition. Moreover, this approach also
applies to a situation where a time-dependent perturbation is
superimposed on a reference state carrying a steady current.

III. CURRENTS INDUCED BY EXTERNAL
PERTURBATIONS

The response we are looking for is the time-dependent
current variation̂ d Î a& away from the reference state. This
response is defined as the difference of the expectation val-
ues of the current operatorÎ a in the perturbed (p) and in the
reference (0) ensemble, respectively,

^d Î a&5^ Î a&p2^ Î a&0 . ~14!

While standard linear-response theory would extract such an
expectation value from correlations averaged over the refer-
ence ensemble, we calculate^d Î a&p directly for the perturbed
ensemble. For independent electrons it is sufficient to specify
the population of a complete set of one-particle states in the
presence of the perturbation.

When an oscillating magnetic flux threads loopb, the
carriers ‘‘feel’’ the perturbing fields along the loop of
length 2pRb . The magnetic perturbation takes the form
of an electric dipolar energy on this loop,2(ep̂i /
m)@dfbexp(2ivt)1dfb*exp(ivt)#/(2pRb). Here p̂i stands
for the longitudinal component of the momentum operator.
Carriers coming from the reservoir and traversing the loop
either absorb or emit an energyn\v, n51,2, . . . , or are
transmitted at their incident energy. To first order in the per-
turbation, only one energy quantum\v is absorbed or emit-
ted. On both sides of the loop the wave function can be
expressed as a linear combination of incident (1) and out-
going (2) unperturbed eigenstatesuwbu,E

(1) &exp(2iEt/\) and
uwbu,E

(2) &exp(2iEt/\), where u is the channel index. These
states form a complete orthonormal set. This is known as the

FIG. 3. Electric external perturbation: the reservoir is surrounded by a capacitor shifting its electric potential: the fields of the inner plate
and the wire connecting it to an ac source are fully screened by the outer plate everywhere beyond the reservoir. Fringing fields accelerate
the carriers in the portion of the lead passing through the opening of the capacitor.
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completeness theorem in scattering theory.37 Explicit expres-
sions for these states are given in Appendix B. Independent
of the perturbation, the reservoir injects carriers with a popu-
lation according to f b(E) into incident eigenstates
uwbu,E

(1) &exp(2iEt/\) in the portion between reservoir and
loop. These Fermi-Dirac distributed states emerge from the
loop into the portion between the loop and the sample in a
time-dependent state

uC̃bu,E8 ~ t !&5uwbu,E
~1 ! &e2 iEt/\1cbuwbu,E1

~1 ! &e2 iE1t/\

2cbuwbu,E2

~1 ! &e2 iE2t/\ ~15!

with cb5edVb /\v andE65E6\v. Equation~15! is ob-
tained by matching the wave functions at the two loop ends,
and is valid up to corrections of the order of (k62k)/uku,
where k and k6 are the longitudinal wave vectors in lead
b and channelu associated with the energiesE and E6 ,
respectively. Equation~15! is, therefore, valid for high-
velocity states along the lead. Only these states couple effec-
tively to the sample. As we discuss in Appendix B, the low-
velocity states can be neglected.

Similar considerations can be carried out for an electric
perturbation. We suppose the junction to be adiabatic be-
tween reservoir and leadb. In the absence of a perturbation,
there is a reservoir stateuwbu,E

(res) &exp(2iEt/\) which is trans-
mitted into the incident stateuwbu,E

(1) &exp(2iEt/\) in the lead,
and uCbu,E(t)& designates the corresponding unperturbed
~reservoir plus lead! state. Let us adiabatically switch on the
electric time-dependent perturbatione@dVbexp(2ivt)
1dVb*exp(ivt)#, which is uniform in the reservoir and van-
ishes in the lead. The stateuCbu,E(t)& evolves into
uCbu,E8 (t)&. This state gains additional time-dependence,
exp(2iEt/\) exp(2i@Et1jb(t)#/\), in the reservoir, and
consists of a superposition of unperturbed eigenstates in the
lead. The extra phase obeysjb(t)5*dt@edVbexp(2ivt)
1edVb*exp(ivt)#. For the wave function in the reservoir we
find

uCbu,E8 ~ t !&5uwbu,E
~res! &e2 iEt/\1cbuwbu,E

~res! &e2 iE1t/\

2cbuwbu,E
~res! &e2 iE2t/\. ~16!

In the lead we find the same result@Eq. ~15!# as for the
magnetic perturbation. The range of validity is again re-
stricted to high-velocity states. The statesuCbu,E8 (t)& which
evolve adiabatically fromuCbu,E(t)&, have the same occupa-
tion probability f b(E) in the presence of the perturbation as
the uCbu,E(t)& in the unperturbed case.

Let us introduce operatorsâau which annihilate an incom-
ing carrier in channelu in leada and operatorsb̂au which
annihilate an outgoing carrier in channelu in leada. Let us
denote byâa andb̂a the vector of these operators. The num-
ber of components of these vectors is equal to the number of
open channels in the leada. At moderate frequencies the
current operator is given by

Î a~ t !5
e

hE dE dE8@ âa
†~E!âa~E8!

2b̂a
†~E!b̂a~E8!#ei ~E2E8!t/\. ~17!

Equation~17! has been derived in Refs. 4 and 38. In Appen-
dix B this derivation is discussed for the case of a nonzero
magnetic field. In the presence of the time-dependent electric
or magnetic perturbation acting in the contacts, the incident
wave in leadb has the form(u*dEabu8 (E)uC̃bu,E8 (t)&. Here
the amplitudesabu8 (E) obey Fermi-Dirac statistics, and
uC̃bu,E8 (t)& is expression~15!. The most general incident
wave is formed by a superposition of the incident waves at
all leads(b*dEab8 (E)uC̃b,E8 (t)&.

In Fourier space the relation for the incident amplitudes
~or for the corresponding annihilation operators! is

âa~E!5$âa8 ~E!2caâa8 ~E1!1caâa8 ~E2!%. ~18!

The outgoing amplitudes are found with the help of Eq.~2!,

b̂a~E!5(
b

sab~E!$âb8 ~E!2cbâb8 ~E1!1cbâb8 ~E2!%. ~19!

In Eqs.~18! and~19! the amplitudesaa(E) andba(E) of the
unperturbed eigenstates in leada consist of contributions of
particles incident in leadb at energyE which are unaffected
by the time-modulated perturbation, and at energiesE6

which have emitted or absorbed a modulation quantum.
We use Eqs.~18! and ~19! in Eq. ~17! to replaceâ and

b̂ with â8 and b̂8. Now ^ Î a&p can be calculated as an expec-
tation value of a single-particle operator obeying
^âbu8†(E)âbu8 (E)&p5 f b(E). This yields the current response

^d Î a&p according to Eq.~14!. The resulting admittance is
given by Eq.~3!.

The external admittance Eq.~3! fulfills the following ba-
sic properties. For a general reference state, the reality con-
dition Eq. ~8! is satisfied. Further, the ac admittance for a
vanishing frequency reduces to the differential dc conduc-
tance. If the reference state is an equilibrium state, the reci-
procity relation gab

ext(v,2B)5gba
ext(v,B), and the

fluctuation-dissipation theoremSab(v)5e(v,kT)@gab(v)
1gba* (v)# is obeyed, where the current-current correlations
Sab(v) are provided by Ref. 38. If, on the other hand, the
reference state is a transport state, the real parts of the ad-
mittances do not show much similarity to the corresponding
current-current correlations, which contain fourfold products
of scattering-matrix elements. For a steady state, the admit-
tance depends on the Fermi distributions of the various res-
ervoirs, f b(E)5 f (E2mb).

An expansion of the admittance to the lowest orders in
frequency is instructive. To second order we find, from Eq.
~3!,
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gab
ext~v!5gab~0!2 ive2

dNab

dE
1v2e4S dNab

dE D 2Dab

1O~v3!. ~20!

Here

dNab

dE
5

1

4p i E dETrFsab
† ~E!

]sab~E!

]E
2

]sab
† ~E!

]E
sab~E!G

3S 2d fb~E!

dE D ~21!

is a partial density of states, and

Dab5
h

2e2

*dETrF4S ]sab
† ~E!

]E

]sab~E!

]E D 2
]2

]E2 „sab
† ~E!sab~E!…G S 2d fb~E!

dE D
~4p!2S dNab

dE D 2 ~22!

has the dimension of a resistance.
Let us first concentrate on the first-order term. Under the

action of the external oscillating potentialdVb , the total
chargeQV accumulated within a volumeV which encloses
the sample satisfiesQ̇V(v)52 ivQV(v)5(a^dI a(v)&. A
simultaneous and equal variation of all chemical potentials
gives an excess charge in the sample determined by the total
density of states(abdNab /dE. Comparing with Eq.~20!,
we see that we can interpretdNab /dE as thepartial density
of states ofV, associated with carriers coming from probe
b and leaving through probea. Note that, as apartial den-
sity of states,dNab /dE does not need to be positive.

Like the first-order admittance term, the second-order
term does in general not have a definite sign either. Expres-
sion ~22! is positive in the simplest case of a one-terminal
structure. In that caseSaa

† Saa[const, and the second term in
the square bracket ofDaa vanishes. ThenDaa can be inter-
preted as a charge-relaxation resistance.21 The expression for
this particular case is given below@Eq. ~32!# in terms of the
eigenfunctions. We notice that in the general case only the
first term in the numerator ofDab is always positive.

IV. CURRENTS INDUCED BY INTERNAL
PERTURBATIONS

The admittance of noninteracting electrons derived above
is neither charge nor current conserving. The lack of charge
and current conservation is typical for any time-dependent
external response, and is not a feature of the particular ap-
proach discussed here. We now introduce a simple self-
consistent scheme to achieve overall charge and current con-
servation. We consider an assembly ofN conductors
representing both the proper conductors and the gates used to
form it, and restrict ourselves from now on to anequilibrium
reference state: all reservoirs connected to the same conduc-
tor have the same electrochemical potential,mb

(m)5m (m).
Within a discrete-potential approach, we derive the interact-
ing admittance matrixgI , which relates the current variation
^dI a

(m)(v)& to the voltage variationdVb
(n)(v) as in Eq.~1!.

Here each conductorl is connected to one or several reser-
voirs (l ,g), and is characterized by a noninteracting admit-
tance matrixggg8

ext(l ) as in Sec. III. It is assumed that no tun-

neling occurs between different conductors, and that the
Coulomb interaction enters solely via the long-range part
between conductor pairs. We introduce a discrete set of in-
duced internal potentialsdU (n) which are related to the
piled-up chargesdQ(m) with the help of electrostatic-
capacitance elementsCmn ,

dQ~m!~v!5(
n

CmndU
~n!~v!, ~23!

with Cmn5Cnm and(nCmn50. To proceed we must find the
relationship between the internal potentials and the electro-
chemical potentials.

The current at contacta in conductorm is the sum of the
responses of noninteracting carriers to the oscillating exter-
nal potentialsdmb

(m)(v)[edVb
(m)(v), and to the oscillating

internal potentialdU (m)(v),

^dI a
~m!~v!&5(

b
gab
ext~m!~v!dVb

~m!~v!1ga
int~m!~v!dU ~m!~v!,

~24!

wherega
int(m)(v) describes the current response of noninter-

acting carriers at contacta in conductorm to the oscillating
internal potential dU (m)(v). Below we determine
dU (m)(v) self-consistently. Note that at this stage the cur-
rent^dI a

(m)& depends only on the potentials applied to its own
conductorm. The wave functions of carriers of one conduc-
tor vanish in all other conductors and, do not feel any effect
of the potential beyond their conductor. Here the absence of
tunneling is crucial. Now we make use of the fact that the
current response of the interacting system is invariant under
an overall potential shift. Fixing attention on conductorm
and shifting the overall potential by2dU (m) yields

^dI a
~m!~v!&5(

b
gab
ext~m!~v!@dVb

~m!~v!2dU ~m!~v!#. ~25!

Comparision with Eq.~24! implies that the internal response
is given byga

int(m)(v)52(bgab
ext(m)(v). The internal poten-

tials dU (m) depend via long-range Coulomb forces on the
external potentials at the other conductors.39 The charge on
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each conductorm is that permitted by the long-range Cou-
lomb interaction Eq.~23!. This yields a self-consistent con-
dition for each conductor,

(
a

^dI a
~m!~v!&52 iv(

n
CmndU

~n!~v!. ~26!

Combining~25! and ~26! and solving the resulting inhomo-
geneous linear system, we obtain

dU ~m!~v!5(
n

~M21!mn~v!(
ab

gab
ext~n!~v!dVb

~n!~v!,

~27!

where the matrixM has been defined in Eq.~5!. Thus we
recover the individual currents from Eq.~25! and obtain Eq.
~4! for the admittance matrix of the interacting system.

The interacting admittance~4! fulfills the key properties
~6!, ~7! and~8! stated in Sec. I, and reduces to the noninter-
acting admittance at zero frequency where no charge accu-
mulation occurs. In particular, property~7! follows from Eqs.
~4! and ~23! and the sum rules of the electrostatic-
capacitance elements. It also fulfills the fluctuation-
dissipation theorem40 and the reciprocity relations.28,2For the
admittance elements relating different (mÞn) conductors
with a purely capacitive response, i.e.,gab

I (mn)(v)
52 ivcm,ab

(mn) 1O(v2), microreversibility impliescm,ab
(mn) (B)

5cm,ba
(nm) (2B). On the other hand,cm,ab

(mn) (B) is in general
different from cm,ab

(mn) (2B).2 Only their sums
cm
tot(mn)5(abcm,ab

(mn) are even functions of the magnetic field,
cm
tot(mn)(B)5cm

tot(nm)(B), since they are the second deriva-
tives of a thermodynamic potential.2

In the limit of a large capacitance elementCjk between
the two conductorsj and k, the two internal potentialsUj
andUk become locked:Uj>Uk . On the other hand, if one
has a partition of the total assembly of conductors into sub-
sets with vanishing mutual capacitance, then the charge van-
ishes separately in each subset.

The situation considered in Ref. 20 is a special limit of the
model considered here. There, a mesoscopic conductor was
capacitively coupled to a macroscopic environment charac-
terized by an infinite density of statesdN/dE. With
dN/dE..uCu/e2, the interacting admittance provided by
Ref. 20 follows directly from Eqs.~4! and ~5!.

V. DISCRETE-POTENTIAL MODEL: EXAMPLES

Coherent two-plate capacitor

In this section, we compare the standard macroscopic pic-
ture with the mesoscopic description of a capacitor consist-
ing of two plates connected via leads to electron reservoirs,
as sketched in Fig. 4~a!. Here the dc part ofgext(m), m51
and 2, vanishes. A conventional macroscopic capacitor, de-
picted in Fig. 4~b!, is described by an electrostatic geometri-
cal capacitanceC in series with dc-resistancesR1 andR2 .
The current response of this system has the form
dI5$2 iCv1RC2v21O(v3)%dV, with R5R11R2 . The
parametersC, R1, andR2 express features which are specific
to the separate constituents of the macroscopic system. In
this respect, the situation is very different for a coherent
capacitor. The mesoscopic capacitor consists of two conduct-

ing units whose capacitive coupling is determined by a single
parameterC playing the role of an electrostatic geometry-
dependent capacitance. Because of the current conservation,
Eq. ~6!, and the invariance under an overall potential shift,
Eq. ~7!, the four admittance elements are all identical up to
the sign,^dI (1)&52^dI (2)&5gI(dV(1)2dV(2)). From Eqs.
~4! and ~5! we obtain

1

gI~v!
5

1

2 iCv
1

1

gext~1!~v!
1

1

gext~2!~v!
. ~28!

Up to second order inv, gext(m) is given in terms of the
corresponding scattering matricesS(m) and Fermi functions
f (m)(E)5 f (E2m (m)) of the reservoirs on each side, accord-
ing to Eqs.~20!–~22! specialized to one-lead conductors.21

For eachm, gext(m)(v), anddN(m)/dE, andD (m) are scalars.
Expansion in powers of frequency in a form analogous to the
macroscopic picture determines the electrochemical capaci-
tance and the charge-relaxation resistance,

gI~v!52 iCmv1RqCm
2v21O~v3!, ~29!

1

Cm
5
1

C
1

1

e2 S 1

dN~1!/dE
1

1

dN~2!/dED , ~30!

Rq5Rq
~1!1Rq

~2!5D ~1!1D ~2! . ~31!

In contrast to the macroscopic case, the capacitanceCm and
resistanceRq governing the ac admittance of a coherent ca-
pacitor are thermodynamic quantities which reflect the be-
havior of the system as a whole. In fact, the charge-
relaxation resistanceRq

(m) on each side and the corrections to
the standard classical capacitance are determined by the scat-
tering properties of the whole reservoir-to-plate arm, statisti-
cally averaged at the corresponding reservoir.

To leading order in frequency, the purely capacitive re-
sponse of the system is governed by the electrochemical ca-
pacitanceCm5edQ(m)/dm (m): the deviation of this mesos-
copic capacitanceCm from the conventional capacitance
C5dQ(m)/dU (m) relating charges and on-plate voltages can
be appreciated from Eq.~30!: Cm formally looks like a series
connection ofC and of two quantum capacitances. In meso-
scopic systems all three may be of the same order of magni-
tude. For a mesoscopic sample, it has to be taken into ac-
count that the two capacitor plates do not accomodate the
capacitively induced charges directly at the surface. As dis-
cussed by Luryi41 in the context of a spatially confined two-
dimensional electron gas, the quantum capacitance is a con-
sequence of the Pauli principle, which requires an extra
energy for filling a limited space with electrons. As a result,
such limited space does not completely screen an applied
~transverse! electric field. In our case, the screening length
over which the fields penetrate into the conductor may be
comparable to the plate dimension. The injected charge
edN(m)/dE is stored inside platem over this screening
length. ThusdU (m) represents an average of the change in
the effective potential landscape over the plate. The key
point is thatedU (m) cannot be identified with the experimen-
tally controlled electrochemical potential change at the con-
tact,dm (m)5edV(m). The distinction of electrostatic capaci-
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tance and electrochemical capacitance becomes irrelevant if
both densities of states to the left and to the right are large
compared toC.

Let us give an interpretation of the charge-relaxation re-
sistanceRq . The first factor inRq

(m) is half the resistance
quantum, the lead-reservoir interface resistance of a single
quantum channel discussed by Sharvin and Imry.42 This re-
sistance is multiplied by the ratio21 ^tf

(m)2&/^tf
(m)&2, where

tf
(m) is the time carriers incident from the leads dwell39 on
themth capacitor plate,43

Rq
~m!5

h

2e2
^tf

~m!2&

^tf
~m!&2

5
h

2e2
^(n~dfn

~m!/dE!2&m
$^(n~dfn

~m!/dE!&m%2
. ~32!

The bracketŝ & denote both a quantum-mechanical and a
statistical average.Rq

(m) can be directly expressed in terms of
energy derivatives of the eigenvaluessnn

(m)5exp(ifn
(m)). The

presence of such a ratio in the current response suggests a
non-self-averaging system. For a small number of channels
Mm the resistanceRq

(m) usually scales as 1/Mm . For large
Mm , on the other hand, Pendry and co-workers44 have
shown that in the diffusive regime the probability distribu-
tion of the conductance makes extreme excursions, or
‘‘maximal fluctuations.’’ We may expect this non-self-
averaging system to react to an energy change with maximal
changes of the phasesf for a minimum number of eigen-
channels, whereas in the other eigenchannels no phase
changes take place. Thus a non-self-averaging system is
likely to exhibit a larger charge-relaxation resistance than a
usual system. In addition, the charge distribution of localized
states in the insulator between the capacitor plates is likely to
be another important source of mesoscopic fluctuations.45 To
study this effect an approach is required which treats the
microscopic potential landscape.

Next we consider a very asymmetric capacitor. One ca-
pacitor arm is macroscopic with an infinite density of states,
the other capacitor arm is a one-contact quantum well: the
‘‘plate’’ contains a long-lived state which is separated from
the wire by a tunneling barrier. We treat this example only to
illustrate our theory. A more realistic discussion has to take

charge quantization into account. We introduce the widthG
of the resonance and use the abbreviationuDu2
5(EF2Er)

21G2/4. Here,EF is the Fermi energy andEr is
the energy of the resonant state of the quantum well. For the
external admittance of the quantum-well arm we find

gext~v!52 ive2
dN

dE
1v2e4S h

2e2D S dNdED 2, ~33!

dN

dE
5

G

2puDu2
, ~34!

and for the interacting admittance,

gI~v!52 ivCm1v2Cm
2 S h

2e2D , ~35!

1

Cm
5
1

C
1

1

e2~dN/dE!
. ~36!

The charge-relaxation resistance is just equal toh/2e2 ~half a
resistance quantum!. The lack of an energy dependence in
the charge-relaxation resistance is implied by the fact that
^tf

2 &5^tf&2, due to the effectivesingle-channelnature of
the scattering matrix.

If the quantum well is threaded by a magnetic fluxf as in
Fig. 5, then the resonating energyEr depends periodically on
f with periodh/e, implying af dependence of the scatter-
ing amplitudes but not of the scattering probabilities. Conse-
quently the electrochemical capacitance exhibits an
Aharonov-Bohm effect.46,35 This implies that an Aharonov-
Bohm effect shows up in the admittance at nonzero frequen-
cies only. This is a striking example for the observability of
the scattering phases in the ac response.

Capacitively coupled quantum well with long-lived state

As a next example we consider a quantum well which
contains a long-lived state connected to two ‘‘probes’’ via
tunneling barriers and capacitively coupled to a nearby gate
~see the inset of Fig. 6!. The scattering matrix amplitudes are

Sav,bu~E!5@dabdvu2 i ~GavGbu!
1/2/D#exp~ idav1 idbu!,

whereD5E2Er1 iG/2, a,b51 and 2, andu and v are
channel indices. HereGav is the width of the resonance due
to decay into channelv in leada, Ga5(vGav is the total
decay width into leada, andG5(aGa is the total width of
the resonance. The phasesdav and dbu are taken to be en-
ergy independent. For simplicity we assign to the gate an
infinite density of states as in Ref. 20. At zero temperature
for the admittance at the contacts of the two-barrier quantum
well we find

gab
I ~v!5gab~0!2 ivEab1v2Dab . ~37!

Here

FIG. 4. ~a! Mesoscopic coherent two-plate capacitor.~b! Mac-
roscopic two-plate capacitor.
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g11~0!52g12~0!52g21~0!5g22~0!5
e2

h
T

5
e2

h

4G1G2

G2~x211!
~38!

are the dc conductances,x52(EF2Er)/G, and EF is the
Fermi energy of the reference state. The terms multiplying
v are called emittances and are given by

Eab5e2
dN

dE

Ga

G~x211! H dab~x221!

2
Gb

G S x22124g~x211!

112g~x211! D J . ~39!

The density of statesdN/dE52/@pG(x211)# is evaluated
at EF . Note that the total density of states(abdNab /dE
defined in Eq.~20! is identical with the one-contact density
of states Eq.~34!. The degree of screening present in the
system is determined by the parameterg, whose inverse is
proportional to the ratio of the geometrical charging energy
and the quantum charging energyg2154(dN/
dE)res(e

2/2C). Here (dN/dE)res52/(pG) is the total den-
sity of states at resonance. The term multiplyingv2 is al-
ready a complicated expression given by

Dab5e4S dNdED 2S h

2e2D Ga

2G~x211! H dab~3x221!2
Gb

G

3S ~3x221!2
8g2~x211!3

@112g~x211!#2D J . ~40!

The dependence of the diagonal emittance elementE11(EF)
on the Fermi energy is depicted in Fig. 6 for various values
of g21 and a ratioG1 /G50.75. Similarly,D11(EF) is de-
picted in Fig. 7 as a function of the Fermi energy for various
values ofg21. In the absence of screening (g2150), the
Coulomb effects vanish and the admittancegI reduces to the
external admittance. In this case(abEab5e2(dN/dE),
wheredN/dE is given by Eq.~34! with G5G11G2 . On the
other hand, for perfect screening (g50) the induced Cou-
lomb effects are most effective and enforce charge neutrality
in the quantum well.

The diagonal elementsEaa and Daa are negative for
Fermi energiesEa close to the resonance energy~kinetic-
inductive behavior!, except for sufficiently largeg and for
Ga larger thanGcrit

E 5G/2 andGcrit
D 5G/3. The diagonal ele-

ments are always positive far from resonance~resistive-
capacitive behavior!. ForGa,Gcrit

E,D , Eaa andDaa are posi-
tive functions ofEF for any value ofg.

Positive off-diagonal elementsEab and Dab indicate
kinetic-inductive behavior, whereas negativeEab andDab
indicate resistive-capacitive behavior. We always find
kinetic-inductive behavior sufficiently near to the resonance,
whereas far from resonance, usually resistive-capacitive be-
havior occurs. However, ifg.1/4 then Eab is kinetic-
inductive for any Fermi energy.

For a two-terminal sample, a macroscopic analog exhib-
iting a negative linear term and a negative second-order term
in the admittance can be thought of as a self-inductance in
series with a parallel connection of a capacitor and a resistor.

The admittanceG(v)5dI (v)/dV(v) of this electric circuit
up to second order in the frequency isG(v)5(1/R)
2 iv@C2L/R2#1v2(L/R)@2C2L/R2#. Neither the first
nor second order have a definite sign. The first-order term
switches from capacitive behavior to inductive behavior if
L5CR2. The second-order term becomes negative if
L.2CR2.

At low frequencies a correction2 ivE to the dc conduc-
tance may be difficult to measure. The emittance elements
E015C01 andE025C02, which give the capacitively induced
current into the gate in response to voltage oscillations at
contacts 1 and 2, are easier to measure.2 For our system it
turns out that these capacitance coefficients are
C0152(G1 /G)Cm andC0252(G2 /G)Cm with Cm given by
Eq. ~30!.

VI. DISCUSSION

In this work we have discussed the currents at the contacts
of a system of conductors in response to small time-
oscillating changes in the electrochemical potentials at these
contacts. Our result for the admittances@Eqs. ~4! and ~5!#
describes the transition from a regime where the samples can
be charged at negligible electrostatic-energy expense to a
regime where the electrostatic energy completely prevents
charge from piling up in the samples. This transition is char-
acterized by an increasing strength of the response of the
system to the internal potentials. The internal response is
peculiar to interacting carriers, and allows us to restore the
invariance under an overall shift of the electrochemical po-
tentials. This invariance is intimately related to total charge
conservation. In this description, any gates are included in
the system and are treated on equal footing with the conduc-
tors.

We have illustrated our results by treating a mesoscopic
capacitor as well as a quantum well with capacitive coupling
to a gate. If one capacitor plate has the form of a ring,46 an
Aharonov-Bohm effect results, which is peculiar to ac rather
than to dc transport.

FIG. 5. One-contact quantum well with a long-lived state
threaded by an Aharonov-Bohm fluxF, with capacitive coupling to
a macroscopic gate. Edge states (→) follow the contours of the
conducting tip and the quantum well, and there is a transmission
probability ~--! for hopping between the edge state and the resonat-
ing state.
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APPENDIX A: LINEAR RESPONSE VIA RESPONSE
KERNEL

In this appendix we find the external linear-current re-
sponse, Eq.~3!, using standard linear response theory.19,20

The derivation is restricted to the case of a perturbation away
from an equilibrium state; i.e. the reference state is an equi-
librium state with zero average currents in the leads. A mag-
netic field is allowed which is constant in the leads and per-
pendicular to them.

The generalized susceptibilities given in Eqs.~12! and
~13! in response to a magnetic perturbation@Eq. ~10!# or to
an electric perturbation@Eq. ~11!#, respectively, are given in
terms of commutator expectations by the following
expressions:47,20

kab
V ~t!52

i

\
^@ Î a~t!,Q̂b~0!#&0Q~t!, ~A1!

kab
f ~t!52

i

\
^@ Î a~t!, Î b~0!#&0Q~t!. ~A2!

dkab
V (t)/dt5kab

f (t) follows from Eqs.~41! and ~42!, and
from ^ Î a&052^dQ̂a /dt&0 by making use of the property
^@Â(t),B̂(0)#&05^@Â(0),B̂(2t)#&0 . Both perturbations
thus give rise to the same ac conductance if
dVb5ddfb /dt.

In the following we calculate the magnetic response func-
tion. From Eqs. ~1!, ~12!, and ~42!, and from
dVb(v)52 ivdfb(v) the ac conductance in frequency
space is determined by

gab~v!5
1

\vE0
`

dtei ~v1 i01!t^@ Î a~t!, Î b~0!#&0 . ~A3!

We recall that at moderate frequencies the asymptotic cur-
rent operator is expressed in terms of incoming and outgoing
amplitudes according to Eq.~17!. Since no perturbation acts
on the sample, the outgoing-amplitude operators are related
to the incoming ones according to relation~2!. This gives
rise to a lead-current operator expressed with the help of a
new matrixA in the form4,38

Î a~ t !5
e

h(gd
E dE8dE9âg

†~E8!Agd~a,E8,E9!

3âd~E9!ei ~E82E9!t/\,

Agd~a,E8,E9!51̂adagdad2sag
† ~E8!sad~E9!. ~A4!

FIG. 6. Dependence of the diagonal admit-
tance elementE11 on the Fermi energyEF , for
an asymmetrically coupled quantum well~see the
inset! with G1 /G50.75. E11 is in units of
e2(dN/dE)res(G1 /G) and is shown as a function
of 2(EF2Er)/G for g50, 0.25, 0.35, 1, and 10
~from bottom to top!. At g50 ~double line! the
quantum well is charge neutral. Atg50.25 ~full
line! the crossover takes place between kinetic-
inductive and capacitive behaviors ofE11(EF)
near resonance.

FIG. 7. Dependence of the diagonal admittance elementD11 on
the Fermi energyEF , for an asymmetrically coupled quantum well
with G1 /G50.75. D11 is in units of e4(dN/dE)res

2 (h/
2e2)(G1 /2G) and is shown as a function of 2(EF2Er)/G for
g50, 0.25, 0.35, 1, and 10~from bottom to top!. At g50 ~double
line! the quantum well is charge neutral. Aroundg50.35 ~dash-
dotted line! the crossover takes place between kinetic-inductive and
capacitive behaviors ofD11(EF) near resonance.
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The averageŝ&0 are both quantum mechanical and statis-
tical averages in the reference equilibrium state,
^Ô&05Tr$r̂0Ô%. Within the independent-electron approxi-
mation, the density operatorr̂0 is determined by the popula-
tion at equilibrium of the incoming one-particle states, which
is just the equilibrium distributionf (E) common to all res-
ervoirs. Defining n̂bm(E)5âbm

† (E)âbm(E) we have
^n̂bm(E)&05 f (E), and for AÞB we have ^n̂An̂B&0
5^n̂A&0^n̂B&0 . In ~A4!, 1̂a is the identity operator on the
space of all active channels in leada. Strictly speaking it is
an energy-dependent operator because the number of open
channels increases with increasing energy. However, as dis-
cussed in Appendix B, the low-velocity channels with
thresholds close to the Fermi energy are weakly coupled to
the mesoscopic structure and their contribution may be ne-
glected. Thus at sufficiently low temperatures, such that the
region over whichf (E) changes is smaller than the typical
interchannel energy, it is justified to consider 1ˆ

a as well as
the scattering-matrix dimensions, as energy independent.

Since the lead currents vanish at equilibrium, instead of
Î a(t) and Î b(0) in Eqs.~A2! and~A3! one can equivalently
use the current variationsd Î a(t) andd Î b(0) defined in Eq.
~14!. Consequently, the sums and integrals in the operators
Î a(t) and Î b(0) contain only nondiagonal terms. For ex-
ample, in Eq.~44! the terms witha5g andE85E9 make no
contribution toÎ a(t).

The quantum statistical average of the commutator in Eq.
~43! is

^@ âgm
† ~E!âun~Ẽ!,âu8n8

†
~Ẽ8!âg8m8~E8!#&0

5d~E2E8!d~Ẽ2Ẽ8!dgg8duu8dmm8dnn8

3@ f ~E!2 f ~E8!#:, ~A5!

where again the diagonal terms (g,n,E)5(u,n,Ẽ) and
(g8,n8,E8)5(u8,n8,Ẽ8) do not contribute. Furthemore, we
use the identity38

TrF(
gu

Agu~a,E,Ẽ!Aug~b,Ẽ,E!G
5Tr@2dab1̂a2sab

† ~E!sab~Ẽ!2sba
† ~Ẽ!sba~E!#.

~A6!

The sum of all terms of the type Tr@S†SS†S# has given rise
to Tr@dab1̂a# due to the unitarity of the scattering matrix and
the cyclic invariance of the trace. After performing the
t-integration, we find

gab~v!52
e2

2phE dEE dẼTr@2dab1̂a2sab
† ~E!sab~Ẽ!

2sba
† ~Ẽ!sba~E!#

f ~E!2 f ~Ẽ!

\v

3
1

i ~\v1E2Ẽ1 i01!
. ~A7!

The double integral over the product of the scattering matri-
ces can be removed in a direct and elegant way owing to

causality requirements.19,20,11,12In fact, the scattering matrix
is itself a response function. It is related to the retardedT
matrixT(E).48 Correspondingly the scattering matrix is ana-
lytic in the complex upper-half plane: for each scattering
element

E
2`

1`

dE8
s~E8!

E12E86 i01 5S 22p is~E1!

0 D . ~A8!

Regarding the double integral over the first term~the term
proportional to the identity!, we argue in Appendix B that
only the high-velocity states couple effectively to the sample.
These states have thresholds much below the Fermi energy.
Thus we can extend the lower integration limits, which for
each channel are determined by their thresholds, to2`. The
principal value of this double integral vanishes. The total
integral proportional to the identity matrix is

E dEE dE8
f ~E!2 f ~E8!

\v1E2E81 i01

52 ipE dE@ f ~E!2 f ~E1\v!#. ~A9!

With the help of Eq.~A9!, and of Eq.~A8! and its complex
conjugate, we find Eq.~3! for the admittance.

APPENDIX B: CURRENT OPERATOR IN THE LEADS

In this appendix we justify expression~17! for the asymp-
totic current operator in leada, at moderate frequencies, in
the presence of a stationary magnetic field (0,0,B0,a) con-
stant in the lead and perpendicular to it. For simplicity, car-
rier motion in the lead is taken to be two dimensional, with
xa the longitudinal coordinate andya the transverse coordi-
nate. In the following we drop the subscriptsa and 0.

In the perfect lead which is considered to be infinite and
invariant under longitudinal translations, the Hamiltonian
can be written as

Ĥ5
1

2m
~p2eA!21V~y!, ~B1!

with A(x)5(2By,0,0). The motion is separable with a
complete set of eigenvectorsxu,k(x,y)5 f u,k(y)exp(ikx) and
energiesEu,k . We take f u,k(y) to be normalized to unity,
*dyu f u,k(u)u251. Writing k5suku (s561) andEu,k5E,
the two sets of quantum numbers (u,k) and (u,E,s) are
equivalent. The reduced Schro¨dinger equation iny space is
k dependent,

H \2

2m F2
d2

dy2
1S yl B2 1kD 2G1V~y!2Eu,kJ f u,k~y!50,

~B2!

wherel B
225ueBu/\ defines the magnetic length. Hence, un-

lessB50, f u,k fulfill orthogonality relations only for a com-
mon k. The creation and annihilation operatorsâ(E) and
b̂(E) entering the current expression~17! refer to states
yielding a nonzero current, and are normalized to carry a
constant current fluxwu,k(y)5uhvu,ku21/2f u,k(y), where
vu,k5(1/\)dEu,k /dk is the ~nonzero! velocity. We set
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âu(E):5âu
(1)(E) and b̂u(E):5âu

(2)(E). The operator
âu
(s)(E) annihilates a carrier in the stateuwu,E

(s) & and

has the anticommutation rules@ âu
(s)(E),âw

(s8)†(E8)#1

5dss8duwd(E2E8). A similar normalization is necessary
in order for relation~2! between incident and outgoing am-
plitudes to hold.

The operator of the particle current flowing through the
cross sectionCx situated atx is Î (x,t)5*Cxdy ĵx(r ,t), where

ĵ x~r ,t !5
e

2m
@Ĉ~r ,t !†Px~r !Ĉ~r ,t !1H.c.# ~B3!

is the x component of the current-density operator at point
r , with Ĉ(r ,t) designating the field operator and
Px(r )52 i\]/]x2eAx(r ) designating the kinetic longitudi-
nal momentum atr . We find

Î ~x;t !5 (
uu8ss8

E dEE dE8âu
~s!†~E!I uu8

ss8~x;E,E8!

3âu8
~s8!

~E8!ei ~E2E8!t/\, ~B4!

I uu8
ss8~x;E,E8!5

e

2mECxdy@wu,k* ~r !Px~r !wu8,k8~r !

1wu8,k8~r !Px* ~r !wu,k* ~r !#

5
e\

2m
ei ~k82k!xE dyxu,k* ~y!xu8,k8~y!

3Fk1k81
2y

l B
2 G . ~B5!

Making use of the reduced Schro¨dinger equation to calculate
the eigenvalue difference (Eu8,k82Eu,k), one finds an ex-

pression relating the current-matrix elementsI uu8
ss8(x;E,E8)

to the energy difference (E82E):

\~k82k!I uu8
ss8~x;E,E8!5

e

h

E82E

uvu,kvu8,k8u
ei ~k82k!xUuk,u8k8

~B6!

with the overlap integralUuk,u8k85*dy fu,k* (y) f u8,k8(y).
Equation~B6! yields well-known exact relations in two par-
ticular cases:

~i! If B50, then foruÞu8 the transverse functions are
orthogonal, and for u5u8 one has E82E5(k82

2k2)\2/2m; hence38

I uu8
ss8~x;E,E8!>

e

h
ei ~k82k!x

~vu,k1vu8,k8!
2uvu,kvu8,k8u

1/2duu8

for B50. ~B7!

~ii ! If BÞ0 andE5E8, then9

I uu8
ss8~x;E,E!5s

e

h
duu8dss8 for anyB. ~B8!

For a linear-response calculation, whether directly as in
Sec. III or more formally as in Appendix A, the matrix ele-

ments~B5! have to be evaluated forE82E5\v. We con-
centrate on a range of low frequencies. In particular, we re-
quire\v to be far smaller than the typical subband spacing
DE between neighboring channels, so that in Eq.~B6! k
Þk8 if uÞu8. To present specific estimates, two types of
confining potentials will be considered. We first treat the
case of a semiconductor~GaAs! with a small effective mass
m50.07me and a wire width of 700 Å. This corresponds to a
subband spacing of the order of 2 meV in the absence of a
magnetic field. Below we show that for these parameters Eq.
~17! has a range of validity for frequencies up to 1011 s21.

Furthermore, forkT!DE corresponding toT! 10K, the
matrix elements are evaluated at the Fermi surface. For a
typical Fermi energy of 20 meV, the carriers at the Fermi
surface in the lower subbands have longitudinal velocities
vF'0.33108 cm/s. In the highest occupied subband, on the
other hand, the longitudinal velocityvF of the carriers at the
Fermi surface is much smaller, and tends to zero when the
Fermi energy approaches the channel threshold. It is clear
that expression~17! of the current operator does not hold for
subbands with thresholds close to the Fermi energy. How-
ever, in reality, these subbands are susceptible to the smallest
amount of disorder and might in fact be localized. It is, there-
fore, reasonable to estimate the accuracy of Eq.~17! for sub-
bands with relatively high longitudinal velocities~here we
consider 0.73107 cm/s,vF,0.33108 cm/s! and to neglect
the contribution of the subbands with lowervF ~‘‘low-
velocity cutoff’’!. This point will be discussed in more detail
at the end of this appendix.

We now show that all off-diagonal current-matrix ele-

mentsI uu8
ss8, (u,s)Þ(u8,s8), may be neglected for frequen-

cies up to 1011 s21. We make use of the Schwartz inequality
u*dy fu,k* (y) f u8,k8(y)u,1 and of the fact that the subbands
become flatter for increasing magnetic field,\uku/m>vF ,
wherevF is an average longitudinal Fermi velocity of the
subbandsu,u8 in the presence of an arbitraryB. In the case
s852s of oppositek vectors,uk82ku'2kF>2mvF /\, for
the magnitude of the matrix elements in Eq.~B6!, we obtain

uI uu8
s,2su,

e

h

\v

2mvF
2 , ~B9!

which is less than 1–2 % ofe/h for frequencies
v5(E82E)/\ up to 1011 s21, where the low-velocity cut-
off has been used. In the cases85s, we evaluate the inte-
gral in Eq. ~B6! for a parabolic confining potential
V(y)5mvy

2y2/2, wherevy is taken to be 0.331013 s21.
This potential yields eigenfunctions and eigenvalues

f u,k~y!5 f u
~V!S y1

vc

V2

\k

m D , ~B10!

Eu,k5~u1 1
2 !\V1S vy

V D 2\2k2

2m
, ~B11!

and a velocity vu,k5(vy /V)2\k/m. Here vc5ueBu/m
5(\/mlB

2) is the cyclotron frequency andV25vc
21vy

2 .
The harmonic-oscillator eigenfunctionsf u

(V) form an ortho-
normal set ^ f u

(V)u f u8
(V)&5duu8 with spatial width

(^Dy2&u)
1/25 l (V)(u11/2)1/2, where l (V)5(\/mV)1/2 is the
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zero-point amplitude of the oscillator with frequencyV.
From the dispersion relation~B11!, one obtains the wave-
number differencek82k5s@(u2u8)V1v#/vF .

The current-matrix element fors5s8, uÞu8 may for
v!V be written as

I uu8
ss

~x;E,E1\v!'s
e

h

v

~u2u8!V
ei ~k82k!xUuu8S ak82k

l ~V! D ,
~B12!

whereUuu8(a/ l
(V))5Uuk,u8k8 is the overlap integral of the

eigenfunctions of two harmonic oscillators located at
a distance a, and ak82k5(vc /V

2)\(k82k)/m's(u
2u8)\vc /(VmvF). Since the overlap integral satisfies
uUuu8u,1, this matrix element is also less than 1–2 % of
e/h for frequenciesv up to 1011 s21.

For the diagonal current matrix element,u5u8,s5s8,
one finds

I uu
ss~x;E,E1\v!5

e

h
ei ~k82k!x

~vu,k1vu,k8!
2uvu,kvu,k8u

1/2 UuuS a0l ~V!D ,
~B13!

with a052s(vvc /V
2)\/(mvF). Since f u is normalized,

Uuu(0)51. Hence Uuu(a0 / l (V))51 for B50, and
Uuu(a0 / l (V))→1 for high magnetic fields, because in this
limit the distancea0}1/B vanishes more strongly than the
width l (V)}1/B1/2. For intermediate magnetic fields, an alge-
braic evaluation of the integralUuu shows that always
uUuu(a0 / l (V))21u<0.01. This holds even in the worst case
of a minimal longitudinal Fermi velocityvF50.73107 cm/s
and a maximal band numberu510. Thus we obtain the same
result as for zero magnetic field, see Eq.~B7!. Further, the
phase factorei (k82k)x may be replaced by unity, because for
longitudinal Fermi velocities of at least 0.73107 cm/s, the
phase (k82k)x's(v/vF)x ~Ref. 4! is practically constant
over the typical dimension of a mesoscopic conductor for
frequencies up to 1011 Hz. Thus the asymptoticx depen-
dence of the phase factors can be dropped. Similarly
(vu,k1vu,k8)(2uvu,kvu8,k8u

1/2)21>s owing to the low-
velocity cutoff.

Let us next consider the case of hard-wall confining po-
tential. To be specific we take a lead width of 300 Å and use
the free-electron mass. A Fermi energy of 5 eV is used. For
simplicity we treat the wire as two dimensional. The lowest
subband has a longitudinal velocityvF'1.23108 cm/s. We
omit the current contribution of states withvF&0.73107

cm/s ~low-velocity cutoff!. In the cases852s of opposite
k vectors, we then obtain, according to~B9!,
uI uu8

s,2su,0.01e/\ for frequenciesv up to 1012 s21. In the
case s85s, uÞu8, the condition \v!DE implies
(k82k)21'(Eu,kF

2Eu8,kF)
21\vF , wherekF andvF are an

averagek vector and an average longitudinal velocity of the
two subbands at the Fermi energy. Then

I uu8
ss

~x;E,E1\v!'s
e

h
ei ~k82k!x\v

Uuk,u8k8
~Eu,kF

2Eu8,kF!

~B14!

for uÞu8, and

I uu
ss~x;E,E1\v!5

e

h
ei ~k82k!x

~vu,k1vu,k8!
2uvu,kvu,k8u

1/2 Uuk,uk8
~B15!

for the diagonal elements. The transverse eigenfunctions for
hard walls with infinite potential steps vanish beyond the
lead edgesy56w/2 and satisfy Eq.~B2! with V(y)50 for
2w/2,y,w/2. The exact solution for this confining poten-
tial are parabolic cylinder functions. However for our pur-
pose more insight is gained by working in the WKB approxi-
mation. The energy eigenvaluesEu,k are determined by
quantization conditions on the action integral
rp(y;y0 ,E)dy extended over the classical paths, where
p(y;y0 ,E)56@2mE2„mvc(y2y0)…

2#1/2 and y052klB
2

are the classical momentum and the center of the classical
orbit, respectively. In the (E,y0) plane there are three differ-
ent regions delimited byE5E6(y0)5mvc

2(y06w/2)2/2: ~i!
if E,E6(y0), the electron does not feel any wall, and from
rpdy5(u1 1

2)\ we find Eu,k5\vc(u1 1
2); ~ii ! if

E2,E,E1 or E1,E,E2 , then the electron feels one of
the walls, andEu,k has to be determined numerically from
rpdy5(u1 3

4)\; if in particular y056w/2 then
Eu,k5\vc(2u1 3

2); and ~iii ! if E.E6(y0), the electron
feels both walls, andEu,k has to be determined numerically
from rpdy5(u11)\; in this region a WKB approximation
f u,k(y)}p

21/2sin@*2w/2
y pdy8# is well defined and for

E@E6(y0) tends to the solution of a free particle in a box of
width w. The WKB energy levels are quite accurate except
around the discontinuities at the borders between regions~i!,
~ii !, and~iii !. The results show that the distance between the
subbands is minimal at the subband bottoms and increases
with increasing magnetic field and subband quantum num-
ber. Those parts of the bands corresponding to region~i!,
which are completely flat in the WKB approximation, con-
tribute a negligible amount to the current in virtue of the
low-velocity cutoff. In the higher subbands„u*(w/ l B)

2/2…
corresponding to region~iii !, the overlap integrals satisfy in
good approximationUuk,u8k85duu8. More caution is needed
for the lower subbands which are strongly influenced by the
magnetic field. Particularly critical for the evaluation of
~B14! and~B15! are those parts of the subbands correspond-
ing to the transition from region~i! to region~ii !, where the
energy starts to deviate from the band bottom at
Eu,k5(u11/2)\, because foruÞu8 they give rise to the
smallest denominatorsuEu,kF

2Eu8,kFu, and foru5u8 to the

smallest overlapUuk,uk8. A transverse eigenfunction of
subband u in region ~ii ! is typically proportional to
f 2u11
(vc) (z7w/2) if z0'6w/2 is near the wall, and is well

approximated byf u
(vc)(z2z0) when approaching region~i!.

With these trial functions and the WKB solution in~iii !, we
have estimated the overlap integrals for the worst cases. In
general we finduUuk,u8k8u/uEu,kF

2Eu8,kFu<1/(4DE) for u

Þu8, and uuUuk,uk8u21u<0.02. Here DE53(\2/2m)
3(p/w)25 1.5 meV is the minimal subband spacing. By the
same reasoning as for light carriers, the matrix element
@~B14! and ~B15!# is further reduced toI uu8

ss
5s(e/h)duu8

within 1–2 % for arbitrary magnetic field and frequencies
v up to 1011 s21.

In conclusion, one can neglect all off-diagonal matrix el-
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ementsI uu8
ss8(x;E,E8), (u,s)Þ(u8,s8), for frequencies up to

1011 s21. For any magnetic field we recover the asymptotic
current operator in Eq.~17!, with matrix elements of the
form

I uu8
ss8~E,E8!>s

e

h
duu8dss8. ~B16!

This conclusion, however, is valid only if the low-velocity
states can be considered to be weakly coupled to the meso-
scopic structure. This avoids any divergence arising for lon-
gitudinal velocities tending to zero~Fermi energies tending
to a channel threshold!. On the one hand, one can say that
the cutoff of all longitudinal velocities below avmin while
taking into account longitudinal velocities at the Fermi en-
ergy up to avmax*5vmin corresponds to neglecting in aver-

age less than 4% of the active channels relevant to the cur-
rent. This is so because the subbands are equally spaced in
the worst case, while the longitudinal energy is approxi-
mately quadratic in the longitudinal velocity. On the other
hand, according to the microscopic expression we have de
rived, the current displays considerable fluctuations as the
Fermi energy approaches a channel threshold. But we expect
the prediction of these fluctuations not to be reliable. In fact
we expect the phase of a carrier in a low-velocity state to be
more easily randomized, because the lower the velocity, the
shorter the effective dephasing/inelastic length, and the more
difficult it is to fulfill the coherence condition for such a slow
carrier inside the mesoscopic sample. In this sense we con-
sider low-velocity carriers as being weakly coupled to the
mesoscopic transport.
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46M. Büttiker, Phys. Scr.T54, 104 ~1994!; Nuovo Cimento110B,

509 ~1995!; Jpn. J. Appl. Phys.34, 4279~1995!; and inQuan-
tum Dynamics of Submicron Structures, edited by H.A. Cerdeira
et al. ~Kluwer, Dordrecht, 1995!, p. 657.

47R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics ll
~Springer, Berlin, 1985!.

48A. Messiah,Quantum Mechanics~North-Holland, Amsterdam,
1958!.

54 8143DYNAMIC ADMITTANCE OF MESOSCOPIC . . .


