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A proper calculation of the complex band structure is essential for accurately obtaining the energy levels of
guantum wells, or the resonances of resonant tunneling diodes. Most present empirical tight-binding calcula-
tions are based upon the nearest-neighbpls* model, and determine the complex band structure via a
transfer-matrix-type equation. This procedure will fail at certain values of the in-plane wave kgciofor
certain parameter sets; other methods are unsuitable since they do not fully address this problem. Additionally,
the nearest-neighb@p’s* model typically does a rather poor job reproducing ¥xealley transverse effec-
tive mass. More complete calculations thus require an improved method for finding the complex bands and a
more complete underlying tight-binding model. Here we develop a method which easily handlels, thios&
parameter sets for, which other approaches fail and implement it in the second-near nsjgisbanodel to
find the complex bands of GaAs and AlAs. We also give the change of basis necessary to transform the
equations into a real system, thus allowing for a more efficient calculdtBf1.63-182806)03535-7

I. INTRODUCTION neighborsp’s* modef produces an exceedingly poor fit to
the X-valley transverse effective mass for most materials;
Complex band structures of semiconductor materials aréndeed, it is incapable of fitting the transvei$emass at the
of interest for a variety of reasons. In the first place, complexX point> More troublesome than even this is the transfer-
bands give the surface states of the bulk semiconductor. @patrix method itself. Because it requires matrix inversions,
greater import is their use in determining the energy levels oft Mmay not be usable with certain parameter sets or at certain
heterostructures such as quantum wells, and the resonand@d€-9-.K,=2m/ae,, wherea is the lattice constaitin these
of resonant tunneling diodes as calculated with models morg:;((;“m;ﬁ?]‘;eiotzg;g';‘g ?fa;dﬁzrﬁs?g: ;X;?rtx\(/?ser?;[t)rsj?{ique
;:iohmf)l'ete.than the effectwg mass gppro&erg., empirical to the nearest-neighbemp’s* model: in[001]-oriented zinc-
ght-binding models Specifically, in the latter context,

eigenvectors corresponding to the various complex banolglende crystals the transfer matrix does not exist at khis

P _ _npi 3 3ax
serve as the basis in terms of which the total state is ex@Ven in the second-near-neighbep” and sp’s™ models,

panded in some region: that is, they are used in formulatinWh'Ch can correctly reproduce th¥-valley transverse mass.

e X %or indirect semiconductors, then, the failure of this com-
the boundary conditions. Consider a planar structure such Ehsionly used procedure is quite serious, for @aanotdeter-

a quantum well, where the state is expanded in some layefine"the complex band structure in the most important re-
Here the bulk crystal per!od|C|ty is Io§t in one d|rect|o_n SO gion of k, space. Note, too, that this observation applies even
that one expresses the eigenvectors in the planar-orbital bgs |y coherent calculations. Furthermore, calculations in-
sis, where the Bloch sums are eigenstates of the in-plangyrporating inelastic processes, since they mix levels of dif-
wave vectork,. (For an[001]-oriented device the layers of ferentk,, will experience similar problems; this is especially
the constituent materials lie perpendicular to thaxis, and  true of calculations for structures incorporating indirect
ki=kyet+Kkyg,.) On first inspection, determination of the semiconductor layers. Hence we require another procedure:
complex band structure appears to present no great chatne which is based upon an underlying bulk band structure
lenges: one simply chooses an underlying tight-bindingmodel providing a good approximation for all gaps and ef-
model, such as the nearest-neighbpfs* model of Vogl, fective masses in the energy range of interest, and which has
Hjalmarson, and Dow, and finds the eigenvectors and a complex band-structure calculation method applicable for
complexk, eigenvalues using the transfer-matrix metfod. all K.
While the simplicity of this procedure is well known and has  The first requirement clearly calls for a more complete
doubtless led to its wide adoptiofit is employed in the model. We note that second-near-neighbpf models can
majority of empirical tight-binding calculations for aperiodic be parametrized to give a good fit of tevalley transverse
heterostructurgs what is not generally recognized is that mass, but still do not well approximate ligHt-valley
there are circumstances in which it will fail. conduction-band masses; the parameters of Talwar and
This difficulty is most immediately recognizable when Ting,* although generally superior to others, are still insuffi-
one attempts to apply the foregoing procedure to the case afent. A third-near-neighbor model similar to that of Tser-
indirect semiconductors, for example, those in which ¥he bak, Polatoglu, and Theodordis certainly an option; how-
valleys are of greatest interest. In the first place, the nearesever, its longer-range interactions make calculations for
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planar structures like quantum wells more computationally TABLE I. Tight-binding parameteréin eV) for GaAs and AlAs
intensive. Instead, we note the improved conduction-band fih the notation of Ref. 9; only nonzero parameters are listed. The
afforded by the nearest—neighbsrp3s* model over the AlAs same-site diagonal parameters have been adjusted to reflect
nearest-neighbosp3 model} and accordingly employ an the measured GaAs-AlAs conduction-band offset.
sp®s* model having interactions up to second-near neighbot
as well as spin-orbit coupling. Parameter GaAs AlAs
The second requirement poses a greater challenge, for ngg,

currently available complex band-structure caIcuIationEfgosoa) 2'::; gg j'ggi ‘71'2
method satisfies it. Consider first the method of Ch&ag: pa.pa : :
though it does not assume the invertibility of the couplingElrasa 8.487 69 6.512 48
matrices which can become singular, it has numerical d|ff|-E§%°S°C —-2.86111 —2.48093
culties for characteristic polynomials of large ordemd, as E(OOO 3.567 69 2.119 99
we shall see below, in the case of singular coupling matnceg(goq* 6.617 69 5.035 93
it will not find all of the eigenvalues. These difficulties, S(ﬁ? Y _6.54453 716000
along with our introduction of a large underlying band- 4E¢4%é ' '
structure model, render it unsuitable. We next consider théE {;}2222) 4.680 00 5.072 00
method of Chang and Schulmaim which one partially re- 4E(111;223 4.650 00 3.280 00
formulates the problem when certain coupling matrices bez”E 111/222) 8.000 00 7500 00
come singular. Using this method one can calculate the com- (1111223 6.000 00 1.750 00
pIex bands in cases such as that of the nearest- nelghbolrzpfflfzzz) 213695 1,940 00
sp®s* model for an [001]-oriented zinc-blende crystal, in Xlxl : :
which the Hamiltonian couples to a given monolayawo  4g(:: 5.170 00 4.850 00
atomic planes only one atomic plane l;rom each of the 4E(110) —0.010 00 —0.010 00
nearest-neighbor monolayers. Bowehal’® give a related 4E(521X%) 0.050 00 0.040 00
approach for dealing with this problem, specifically discuss- 4 (OL1) 0.058 00 0.040 00
ing the case of the nearest-neightsp®s* model® Never- o ' '
theless, as valuable as these methods are, neither one &s<axa 0.020 00 0.020 00
dresses the invertibility issue at spedial(hereafter denoted 4ES.),, 0.040 00 0.100 00
singular points Indeed, this problem of invertibility at cer- 4g{11% 0.320 00 0.602 20
taink is of a rather different nature from the limited range of 4g (011) —0.050 00 —0.620 60
coupling problem, for far away from the singular points the4E 110) 1.240 00 0.660 00
coupling matrices are quite well behaved and are easily an E&%“a) —1.000 00 —1.200 00
accurately inverted. A%k, approaches one of the singular (11y0) B 3
points, the matrices gradually become more nearly singular4ES°5° 0.020 00 0.01000
and, since these calculations are usually performed numerftE Sexd 0.072.00 0.073 00
cally, with finite-precision arithmetic, the quality of the com- 4E 3¢ 0.020 00 0.040 00
puted inverses becomes progressively worse. Dealing W|tlzuzsilc°)XC 0.010 00 0.030 00
this problem therefore requires an approach validaibik, . 4E$1C1)XC 0.093 50 0.030 00
gizcgavr\]/g g:ruusétg?g another method for calculating the Com4Exlc1x0c) 0.280 00 0.495 35
11

In this paper we calculate the complex bands of GaAs anéEX(é XOC) ~0.10000 ~0.166 95
AlAs for the [001] face using the second-near-neighbor E(xcyc) 0.600 00 0.870 00
sp®s* model, carrying out the computation as a generalizedE2ye —1.300 00 —1.700 00
eigenproblem. We study the properties of this method, demi, 0.140 00 0.140 00
onstrating that even in the case of singular coupling matrices, 0.058 00 0.008 00

the eigenvalues still have the required properties. Further

more, in the process of demonstrating that the complex efg - .y jations we place the anions on the Bravais lattice
genvalues of this system come in conjugate pairs, we obtai IDites. with the cations displaced by=(a/4)(e, +€,+e),

the transformations necessary to turn the nominally comple%herea is the conventional unit cell cube edge. Since the
problem into a real onwithoutan increase in matrix dimen- 1o iitonian in the second-near- neightsp® model is
sion, which may be exploited to increase computational efglven elsewher&1° and, owing to the identical symmetries
ficiency. Finally, we find that this method produces the cor-j¢ 1o < and s* orbitals, thesp®s* second-near-neighbor

rect complex bands even at thdsgfor which the transfer . o nian is easily derived from the former, we do not

matrix does not existcase of singular coupling matriges present the latter Hamiltonian. Instead we focus on interface
systems, those having a disruption in translational symmetry
Il. METHOD along thez direction only.
In our calculation of the complex bands for the01]-
oriented face of GaAs and AlAs, we work in the planar or-
The tight-binding parameters with which we describebital basis; in what follows the subscrifptdenotes a vector
GaAs and AlAs in the second-near-neightspp®s* model, lying entirely in thex—y plane (e.g., ki=k.extkyey). A
using the notation of Slater and Kosfeappear in Table I. In layer is taken to be a plane of anions and the plane of cations

A. Derivation of the eigenproblem
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located +(a/4)e, away, so that a layer occupies a space of [H E{Ef)lL)]TCE—ﬁ[H Ef'f)l L)]chflJr[H E‘E’f))—lE]Cf

a/2 along thez direction, while a sublayer is a plane of either ' - ' -

anions or cations. The near-neighbor interactions then lead to +HPYCH+H (Y, ChL =0, (6)

couplings of adjacent sublayers, while the second-near-

neighbor interactions result in both intralayer and adjacent  [H (79 17CS_,+[H (¢ 1C2+[H (Pf) - 1E]C]

layer couplings; the spin-orbit interaction gives rise to same- ©.a) a o) .

site couplings only. In this system, in the absence of other +H Gl tH (001Gl 1=0. (7

interactions or crystal imperfectionis, is a conserved quan- (') (') ,

tity, as is the energf. Thus the planar orbital basis states N BUK, H {1 =H /%), (v’ \we{(a,a).(c,c),(c,a)}

may be expressed in terms of the localized, orthogona@nd we find the complex band structure by solving either the

atomiclike orbitals as forward, C{,;=\,C{, or reverse,C{*=\_C{,,, eigen-

problems; fora.#0, we obviously have\_=1/\,. Equa-

tions (6) and (7) thus constitute a 2020, second-order

) eigensystem, which, however, is readily converted into a

Inuo;L;k)= N 21 explik-[Ry (L) 40x40 first-order eigensystem by introducing either
I C{=N,Cl_jorC{_;=r_C{

Ny

+6, VilHnuo; LR (L) +68,.cvp). (D)

+

:
Howsn O G| _|["Hew —Hin
0 1)|C 1 0

In (1), N, is the number of atoms in the plarreis the orbital
type (one ofs, x, y, z, or s*), L indexes the layers, the atom

type u is eithera (anion or ¢ (cation), the atom is located in > CL } (8)
the plane aR;(L)+ 4, v, andoe{l,2 indexes the spin Cia
states. As we shall see below, with the spin quantized in the "
x—y plane a simple change of basis will transform the nomi-  |Hw.+1) 9] CL _\ “Heuy —Hewey
nally complex generalized eigenproblem into a real general- 0 1]|CLs N 1 0
ized eigenproblem. For convenience, as the gpirasis we
choose the eigenstates 8f, expressed in terms of thg, % Co } (9)
states/]) and||) as Ca)
where
1 _ 1 _ (c,0) H (c.a)
Ly=—T[ID+ilD],  [2y=—=T[I1-il)]. @ _Hy Bl
H=0D+iL R=20D-in. @ H(L,m):{ Do HilTos)
Y AL+
In the planar orbital basis, then, the total state is , ,
P Lo _|HED-1E] HED) 10
COTLOHERY HED-1ED
|\I’k”>: 2 CErM 7 |n,,U«,0',;|—';kH>, 3 CE
L' n" u' o' CL=| ~a (11
L

where the expansion coefficier@j,“ " are determined by Note in particular from(4) and the Appendix that the matrix
solving the Schrdinger equation. Finally, we write the (L. is Hermitian.

Hamiltonian as the sum of two termisl,=Ho+ Hso, where The usual approach involves left-multiplying both matri-
Hs, is the spin-orbit interaction and,=p72m+V(r), with  ¢es in(8) by the inverse of the matrix on the left-hand side to
V(r)=V(r+R,) for some direct lattice vectdr;. generate a transfer matrix, which is then diagonalized to

In the second-near-neighbsp®s* model, the notation is yield eigenvaluesk, ;231! these eigenvalues are typically

simplified by employing 1&10 matriceSiE’L‘,"'lf‘)) defined as  written in the form exfik,a/2], sincea/2 is the monolayer

(see the Appendix for explicit listings spacing. Those with redt, represent propagatingBloch)
states while those with imaginary or complkx represent
growing or decaying surface states. The difficulty with this

[H Ef’f;](nrar,na)E(n'ﬂ'U';L'§kn|H|”MU;|—;ku> (4 method arises when the matrices(8) and (9) are singular
I (or near-singular, as the inversions and diagonalizations are
and ten-element vectoG{* defined as typically performed numerically as can happen for certain
k, or parameter sets. Now consider the case of singular ma-
trices in(8) and(9) for somek;. Nothingin the physics of

cr=[cit crut cyrt cort the problem indicates that the complex bands should not be
il 2 XD YD ~Zn2 s u2aT obtainable in these situations; certainly the bulk Hamiltonian
Cp 5, Ccpees,cire,cyme,cires, e A1, (5 s readily diagonalizable, yielding the real bands. This obser-

vation is further reinforced when we realize that the second-
where in(5) the superscripT denotes the transpose. Using near-neighbois p®s* model can correctly fit both X-valley
this notation, the Schrbnger equatioffH—1E]|W)=0  masses; it does not exhibit the pathological, flat, transverse
appears as pairs of equations of the form bands of the nearest-neight®p’s* model at theX points.
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;
MHenptHeH Hieny

the problem. In Sec. Il C below we discuss the practical -1 N, 1

implementation of the eigenproblem, after first discussing
some important properties ¢8) and (9). =defH{ | 1)+ A H )+ AGH (L Le1)]=0. (16)

The inadequacy, therefore, lies entirely in our approach to {
de

In addition, for an arbitrary matrid, detA")=(det(A))*, so

) o (16) implies
Because we introduce a method for determining the com-

plex band structure, we must first demonstrate that the eigen-

values one finds with this method have all of the required defH s+ NSH L+ (VDPHT L )1=0. (17)
properties. Furthermore, since we are particularly concerned . i ,

with the case of singular coupling matrices, we must demonEXamining the reverse eigenproblée), we see that it has
strate these propertiesithout inverting any of the matrices Nontrivial solutions provided that

in question. It is not sufficient to simplgssumehese prop-

erties, especially when previous proofs of many of them Hointh Hoy MNHT
(such as those given in conjunction with the transfer-matrix de{ N1 *(1' 1)
method) involve exactly the matrix inversions we must T -
avoid. The resulting development is therefore quite generalynich, expressed using the Schur complertiemf the
if slightly cumbersome. lower-right-hand block, lis

Examining the matriceggf:,’lf‘)) given in the Appendix,

B. Properties of the eigensolutions

=0, (19

we see that the matrice_SlTﬂEf_‘,,f))_Sl are real, where the g Huen+tAHeo MH{
unitary matrixS; is defined by € —A21 1
s 0 :de[ﬂ(L,L-%—l)"_)\—E(L,L)+)\2—EIL,L+1)]:O' (19
—| = = =di —imwld Niwld Niwld o—iwld o—iwld
-Sl_[ 0 ZT}’ T=diage "™e ™ e e 1T e I, Comparing(17) and (19) we see thah* and\_ satisfy the

(12 samepolynomial equation. Now since we have already seen
that forhn.#0 and\_=1/\_, (17) and(19) imply that eigen-
values \.#0 come in pairs X.,1/\%). Moreover, these

tequations show that ik, =0 is a root of multiplicitym of
(8), A\_=0is likewise a root of multiplicitym of (9). Hence,
even in the case of singular matrices, there are equal num-
bers of states which in the forward direction decay infinitely

SZE[ } (13) quickly (\.=0) and grow infinitely quickly(A_=0).

= 0 S The case of singular matrices (8) and(9) deserves fur-

ther attention. In particular, we intuitively expect that the

characteristic polynomial§l6) and (19) will not be of full

degree(40 for the second-near-neightep®s* mode) in A,

where diagfl;,d,,...,d,] denotes amXxn diagonal matrix
with given (diagona) elements(The transformatior® ren-
ders the X5 blocks of the nearest-neighbor, no-spin-orbi
sp°s* Hamiltonian reat?) Defining a 20<20 matrixS,,

then the matrices

S 0 Hoisy O[S, O and \_, respectively. Suppose now that =0 is a root of
0 S‘Zr 0 10 s, multiplicity m of (19); from the foregoing discussion ¢17)
o B D and(19), we know that the characteristic polynomials of the
and forward and reverse eigenproblent$f) and (19) take the
forms
S O|[-Huwy _ﬂgl_,l_ﬂ) S 0 14
0 S 1 0 0 S (14 de[ﬂ(TL,L+1)+)\+ﬂ(L,L)+)\iﬂ(L,L+1)]:)\Tp+()\+):0,

20

are likewise real. Since the resulting generalized eigenprob- (20
lems now involve only real matrices, it follows that eith@r 2.1 "
the eigenvalues... are real, or(ii) they come in complex- defH i n+tA_H A H | )]=A"p-(A-)=0,
conjugate pairs:X - ,\%). Note that this transformatictoes (21)
not double the dimension of the eigenproblem.

Another important property of8) and (9) involves the
relationship between the specfpa, } and{\_}. The forward
eigenproblem8) has nontrivial solutions, provided that

where\. =0 is not a root of the polynomiap.(\.) and the
degree of the polynomials..(\.) is certainly no greater than
40—m. The degree of these polynomials is of particular im-
portance for us, since only if it is less thad0—m) can
\.=c0 be considered an “eigenvalue” @8) or (9). We can
MHe vy tH W EIL’LH) determine the degree pf.(\..) in the following manner. To
de 1 A1 =0. (19  simplify the notation, call the matrix on the left-hand side of
- - (8) and(9) M., and call that on the righl _. The gener-
This determinant is easily written using the Schuralized Schur decomposition theor¥hguarantees that there
complemertf of the lower-left-hand block:1: exist unitary matrice®) andZ such thatQ™™ ,Z=T, and
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Q™M _Z=T_ are upper triangular. Then, due to the unitarity ~ TABLE II. Energy gaps and effective masses reproduced by the
of Q andZ, for the forward and reverse eigenproblems Wetlght-blndlng parameters of Table iy, is the free-electron mass.

have _ i
Quantity GaAs AlAs Units
defM_—\ M. ]=0=defT_—r.T.] Ey(0) 1.398 2.998 eV
40 Eq(X) 1.803 2.142 ev
=k1:[1 ([T-Jek=A+[T+ 1w =0, Eq(L) 1.642 2.313 eV
Ag 0.369 0.337 eV
(22 m¥ 0.067 0.18 mo
_ _ _ my | 1.42 1.44 mo
defM.,—X_M_]=0=defT.—\_T_] . 051 095 e
40 my 1.43 1.18 Mo
:kljl ([I+]k,k_)\7[-_rf]k,k):0- mt't 0.13 0.16 Mo
mi;, 0.069 0.15 Mg
_ 23 m, 0.39 0.43 Mg
Equationg(22) and(23) then demonstrate that each of the me, 0.14 0.24 My

diagonal elementsT_],, and [T.]y are zero. Provided
that there are no corresponding zero diagonal elements, i.e.,
[Tzlkx=0=[T+]kx#0, the degree op.(\.) is (40—2m), - o . .
not (40—m). ’ possibility of infinite “eigenvalues,” which occur wheM
Fortunately, it easy to see with the aid of this counterex@ndM _ are singular. Fortunately, it turns out that all eigen-
ample that coincident zero diagonal elements usually do notalues \.. and corresponding eigenvectors may be deter-
occur(we do not consider the case of trivial parameter)sets mined in a single diagonalization usimSPACK routines to
Suppose now that there is at least one pair of correspondirgplve a real, generalized, eigensystémBecause the
zero elements, say theh, [T_]; ;=[T.];;=0. Obviously, EISPACKroutines are written for real matrices, we first apply
in this instanceany complex numbek.. is a root of(22) and  the straightforward transformation discussed at the beginning
(23), since the determinants are zero regardless.of In-  of Sec. Il B above to make the problem real; we previously
deed, the generalized Schur decomposition thettgmar-  used this transformation to show that complex eigenvalues
antees it. If, on the other hand, we can fisomefinite A.. )\ . come in complex-conjugate pairsx{,\%). A single
such that deffl - —A.M.]+0, it follows that there ar@0  gjagonalization step suffices since, for the real generalized

coincident zero-diagonal elements of the upper triangulagjgensysterx=ABx, the EISPACK routines determine pairs
matricesT ... Examining the blocks listed in the Appendix, of scalarsa énd,B such that

we see that this is typically true, even at points such as
k,=2mlae, .
We comment further thap.(\.) being of degreg(40
—2m) as opposed t¢40—m), is quite reasonable: the for- BAX=aBX, (24)
ward eigenproblem, being a polynomial equatior\inwith
finite coefficients, can tell us nothing about those states
which grow infinitely quickly(and are in the kernel df1,),  where, for 8#0, A=a/B. Eigenvectorsx corresponding to
while the reverse eigenproblem can likewise tell us nothingnfinite “eigenvalues” thus havég|~0, while those withx
of the states in the kernel & _ . Assuming that the geomet- corresponding ta.=0 have|a|~0. Hence in a single calcu-
ric and algebraic multiplicities of all eigenvalues coincide lation we determine not only the eigenvectorsfor which
(even for\.=0), we have a 40-state basis by taking the  «,8+0, but as well thos& lying in ker(A) (i.e., |a|~0) and
states in kefM ), them states in kefVl ), and the(40—-2m)  in ker(B) (i.e., |3~0).
states for which\. #0 (so thatA_=1/\,), half of which
decay or propagate forward, and half of which decay or
propagate backward, the last assertion being guaranteed by Ill. RESULTS AND DISCUSSION
the properties of tha.. derived above(The assumption that '
these states form a basis is also made when the states comeThe tight-binding parameters for the second-near-
from diagonalizing a transfer matrjxThis discussion fur- neighbor sp®s* Hamiltonian, including spin-orbit interac-
thermore demonstrates the difficulties of a metlisach as tions, are listed in Table I; note that wip not make the
that of Chan§) which seeks the roots of onlgne of the  two-center approximation. Table Il gives the effective
equationg20) and(21): in the singular case here considered masses and band gaps they reproduce, and the band struc-
only (40—m) roots can be found. It is therefore imperative 0 yres are shown in Figs. 1 and 2. The parameters have been
be careful in the implementation of such a model for singulaichosen to fit the gaps a&=300 K. In general, we find it
and near-singular cases. We shall use the foregoing analysigssible to closely fit the direct and indirect gaps, as well as
as a guide in selecting an implementation scheme. theT- andX-valley masses, although tbevalley transverse
masses are about 25% too large. Thevalley effective
masses are not as well reproduced—the longitudinal masses
On first inspection it appears necessary to solve both thare too small and the transverse masses are too large; they
forward and reverse eigenprobleni®), and(9), owing to the  are, however, not unreasonable in view of the number of

C. Practical implementation
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FIG. 3. Complex bands of GaAs as reproduced by the param-
eters of Table I. Solid lines represent purely real or imaginary
bands, while pairs of broken lines graph the real and imaginary
parts of complex bands; real bands and parts appear in the right
panel, imaginary bands and parts in the left. Real parts which ap-
pear to be missing actually lie at the zone boundary, and thus are
obscured by the border. To enhance readability we omit highly
evanescent complex and imaginary bafttisse with large Ifk,}).

gquantities we attempted to fit. In the valence bands, we con-
centrated on fitting the light-hole mass, since the imaginary
band linking the light-hole valence-band maximum to the

FIG. 1. Real bands of GaAs as reproduced by the parameters @onduction-band minimum dtis important in tunneling cal-

Table I.

15

Energy [eV]
o

9

-12

-15

culations. Overall, the fit of the bands, particularly the con-
duction band, is superior to that achieved by Talwar and
Ting* using the second-near-neighbep® model; with the
addition of the excited-like s* orbital, it has become pos-
sible to achieve the deep curvature necessary to fit the GaAs
I'-valley conduction-band mass.

The complex bands for tH&®01] face of GaAs and AlAs
are shown in Figs. 3 and 4, respectively. In the figures solid
lines represent purely real or imaginary bands, while pairs of
broken lines graph the real and imaginary parts of complex

3.75 T
325 | /
275 t /
225t /

175
125 +
075 t
025 |
025
075 | /
-1.25 RN N
20 -15 -10 05 00 05 10 15 20

Wave Vector along [001] [7/a]
< Im{k,} Re{k]}—

Energy [eV]

FIG. 4. Complex bands of AlAs as reproduced by the param-
eters of Table I. Solid lines represent purely real or imaginary
bands, while pairs of broken lines graph the real and imaginary
parts of complex bands; real bands and parts appear in the right
panel, imaginary bands and parts in the left. Real parts which ap-
pear to be missing actually lie at the zone boundary, and thus are

FIG. 2. Real bands of AlAs as reproduced by the parameters obbscured by the border. To enhance readability we omit highly

Table I.

evanescent complex and imaginary batttiese with large 1fk,}).
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bands; real bands and parts appear in the right panels, imagi- H guLug +h<u>(1,l) h(u)(l 2
nary bands and parts in the left. To enhance readability we HE )) h(i‘” 12 (s) o+ m()* }
omit from both figures highly evanescent complex and N (1.2 Hod'thse (1,1
imaginary bandsthose with large Ifk,}). The complex (A1)
bands were calculated with the method of Sec. Il above. The

value of this method is further underscored by using it toand the interlayer and intersublayer coupling matrices
evaluate the effective mass of the conduction band numeri-

cally for a value ofk,, say,k,=2n/ag,, at which a transfer

matrix does not exist. Consider tievalley transverse mass , H 0
. - . . . H (") _ | Z20(A,A") (A2)
at this point. The value listed in Table Il is computed from LAWY 0 H E)/(L}\Miw

the bulk HamiltonianH (k), and its derivativesy,H (k), and -
PHK)Ik@Dok® | using the eigenvectors oH(k) at _ .
k=2m/ae, .X® On the other hand, we may also choose closel))"’here in (A1), p=a or ¢ and in (A2)
spaced values & for k,=2m/ae, , solve the forward eigen- (4 ) (AA)I={(a,a),(L.L+1)},  {(c.0),(L,L+1)},
problem (8), and select the eigenvalues fika/2] corre- {(a,c),(L,L)}, ori(c,a),(L,L+1)}. ,

sponding to theX valley (thus yielding three closely spaced, B_e'OW_ we list the explicit forms of the %5 matrices ap-

z wave vectorsk,eRe). Doing so and fitting the resulting P€aring in(Al) and(A2); as aboveu=a or c. To enhance
three points to a parabola, we f”mf(t 0.31m, for GaAs, readability we introduce the following notations for nearest-

in excellent agreement with the other calculation. neighbor geometric factors and parameters:

IV. SUMMARY AND CONCLUSIONS c.=cog (kyxky)a/d], s.=sin(k,*kj)a/4], (A3)

In conclusion, we have presented a method for calculating
surface and interface states; that is, the eigenvajoepa- *
gation factors and eigenvectors of a bulk crystal in the v(aw,Br)= 2Ea2;fﬁ2w (A4)
planar-orbital basis. This method is applicable even in those
situations in which a transfer matrix does not exfsr ex-  and for second-near-neighbor geometric factors and param-
ample, at certain values of the in-plane wave ve&iprWe  eters,
have also provided parametrizations for GaAs and AlAs in
the second-near-neighbsp®s* model, achieving a superior
fit of the conduction bands to that afforded by the either the C,=cogk,a/2), S,=sink,a/2), ve{x,y}, (A5)
nearest-neighb@p’s* or second-near-neighbep® models.
We have applied the method to the first of these models and

analyzed it, showing that even in cases in which a transfer (011 .
matrix does not exist the complex bands still have all the an,}%u_ “a(gi‘l’) H - (AB)
required properties. In addition, we have provided transfor- Eocper  K=C,

mations necessary to turn the nominally complex problem

into a real one, thus allowing a more efficient implementa-where(a,8) €{(s,x),(s*,x),(X,y)}.

tion. Furthermore, we have shown how and why this method The 5x5 matrices appearing i(Al) appear below. Note
succeeds in those situations where previous methods for cahat the spin-orbit matrices appear different due to our use of
culating the complex band structure fail. The generality ofthe eigenstates @, for the spin3 basis states:

this method, together with the superior fit achieved in the

second-near-neighbsp’s* model, makes their combination

a good choice for the underlying tight-binding model in tun- ro 0 0O 0 O
neling calculations involving indirect semiconductors and/or 0 0 0 in. 0
inelastic processes. #
h#(1y={0 0 0 0 0, (A7)
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APPENDIX h#(1,2={0 i\, 0 -\, O|. (A8
) 0 O N, 0
Here we present the blocks of the second-near-neighbor
sp’s* Hamiltonian in the planar-orbital basis. The 300 L0 0 0 0 0]

blocks appearing iti6), (7), and(10) are the intralayer cou-
pling matrices The other matrices are
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