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A proper calculation of the complex band structure is essential for accurately obtaining the energy levels of
quantum wells, or the resonances of resonant tunneling diodes. Most present empirical tight-binding calcula-
tions are based upon the nearest-neighborsp3s* model, and determine the complex band structure via a
transfer-matrix-type equation. This procedure will fail at certain values of the in-plane wave vectorki or for
certain parameter sets; other methods are unsuitable since they do not fully address this problem. Additionally,
the nearest-neighborsp3s* model typically does a rather poor job reproducing theX-valley transverse effec-
tive mass. More complete calculations thus require an improved method for finding the complex bands and a
more complete underlying tight-binding model. Here we develop a method which easily handles thoseki at, or
parameter sets for, which other approaches fail and implement it in the second-near neighborsp3s* model to
find the complex bands of GaAs and AlAs. We also give the change of basis necessary to transform the
equations into a real system, thus allowing for a more efficient calculation.@S0163-1829~96!03535-7#

I. INTRODUCTION

Complex band structures of semiconductor materials are
of interest for a variety of reasons. In the first place, complex
bands give the surface states of the bulk semiconductor. Of
greater import is their use in determining the energy levels of
heterostructures such as quantum wells, and the resonances
of resonant tunneling diodes as calculated with models more
complete than the effective-mass approach~e.g., empirical
tight-binding models!. Specifically, in the latter context,
eigenvectors corresponding to the various complex bands
serve as the basis in terms of which the total state is ex-
panded in some region; that is, they are used in formulating
the boundary conditions. Consider a planar structure such as
a quantum well, where the state is expanded in some layer.
Here the bulk crystal periodicity is lost in one direction so
that one expresses the eigenvectors in the planar-orbital ba-
sis, where the Bloch sums are eigenstates of the in-plane
wave vectorki . ~For an@001#-oriented device the layers of
the constituent materials lie perpendicular to thez axis, and
ki5kxex1kyey .! On first inspection, determination of the
complex band structure appears to present no great chal-
lenges: one simply chooses an underlying tight-binding
model, such as the nearest-neighborsp3s* model of Vogl,
Hjalmarson, and Dow,1 and finds the eigenvectors and
complex-kz eigenvalues using the transfer-matrix method.2

While the simplicity of this procedure is well known and has
doubtless led to its wide adoption~it is employed in the
majority of empirical tight-binding calculations for aperiodic
heterostructures!, what is not generally recognized is that
there are circumstances in which it will fail.

This difficulty is most immediately recognizable when
one attempts to apply the foregoing procedure to the case of
indirect semiconductors, for example, those in which theX
valleys are of greatest interest. In the first place, the nearest-

neighborsp3s* model1 produces an exceedingly poor fit to
the X-valley transverse effective mass for most materials;
indeed, it is incapable of fitting the transverse-X mass at the
X point.3 More troublesome than even this is the transfer-
matrix method2 itself. Because it requires matrix inversions,
it may not be usable with certain parameter sets or at certain
ki ~e.g.,ki52p/aex , wherea is the lattice constant!: in these
circumstances the transfer matrixdoes not exist. We empha-
size that the nonexistence of a transfer matrix is not unique
to the nearest-neighborsp3s* model: in@001#-oriented zinc-
blende crystals the transfer matrix does not exist at thiski

even in the second-near-neighborsp3 and sp3s* models,
which cancorrectly reproduce theX-valley transverse mass.
For indirect semiconductors, then, the failure of this com-
monly used procedure is quite serious, for onecannotdeter-
mine the complex band structure in the most important re-
gion of ki space. Note, too, that this observation applies even
to fully coherent calculations. Furthermore, calculations in-
corporating inelastic processes, since they mix levels of dif-
ferentki , will experience similar problems; this is especially
true of calculations for structures incorporating indirect
semiconductor layers. Hence we require another procedure:
one which is based upon an underlying bulk band structure
model providing a good approximation for all gaps and ef-
fective masses in the energy range of interest, and which has
a complex band-structure calculation method applicable for
all ki .

The first requirement clearly calls for a more complete
model. We note that second-near-neighborsp3 models can
be parametrized to give a good fit of theX-valley transverse
mass, but still do not well approximate lightG-valley
conduction-band masses; the parameters of Talwar and
Ting,4 although generally superior to others, are still insuffi-
cient. A third-near-neighbor model similar to that of Tser-
bak, Polatoglu, and Theodorou5 is certainly an option; how-
ever, its longer-range interactions make calculations for
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planar structures like quantum wells more computationally
intensive. Instead, we note the improved conduction-band fit
afforded by the nearest-neighborsp3s* model over the
nearest-neighborsp3 model,1 and accordingly employ an
sp3s* model having interactions up to second-near neighbor
as well as spin-orbit coupling.

The second requirement poses a greater challenge, for no
currently available complex band-structure calculation
method satisfies it. Consider first the method of Chang:6 al-
though it does not assume the invertibility of the coupling
matrices which can become singular, it has numerical diffi-
culties for characteristic polynomials of large order,7 and, as
we shall see below, in the case of singular coupling matrices
it will not find all of the eigenvalues. These difficulties,
along with our introduction of a large underlying band-
structure model, render it unsuitable. We next consider the
method of Chang and Schulman,7 in which one partially re-
formulates the problem when certain coupling matrices be-
come singular. Using this method one can calculate the com-
plex bands in cases such as that of the nearest-neighbor
sp3s* model1 for an @001#-oriented zinc-blende crystal, in
which the Hamiltonian couples to a given monolayer~two
atomic planes! only one atomic plane from each of the
nearest-neighbor monolayers. Bowenet al.8 give a related
approach for dealing with this problem, specifically discuss-
ing the case of the nearest-neighborsp3s* model.1 Never-
theless, as valuable as these methods are, neither one ad-
dresses the invertibility issue at specialki ~hereafter denoted
singular points!. Indeed, this problem of invertibility at cer-
tainki is of a rather different nature from the limited range of
coupling problem, for far away from the singular points the
coupling matrices are quite well behaved and are easily and
accurately inverted. Aski approaches one of the singular
points, the matrices gradually become more nearly singular,
and, since these calculations are usually performed numeri-
cally, with finite-precision arithmetic, the quality of the com-
puted inverses becomes progressively worse. Dealing with
this problem therefore requires an approach valid forall ki .
Hence we must find another method for calculating the com-
plex band structure.

In this paper we calculate the complex bands of GaAs and
AlAs for the @001# face using the second-near-neighbor
sp3s* model, carrying out the computation as a generalized
eigenproblem. We study the properties of this method, dem-
onstrating that even in the case of singular coupling matrices
the eigenvalues still have the required properties. Further-
more, in the process of demonstrating that the complex ei-
genvalues of this system come in conjugate pairs, we obtain
the transformations necessary to turn the nominally complex
problem into a real onewithoutan increase in matrix dimen-
sion, which may be exploited to increase computational ef-
ficiency. Finally, we find that this method produces the cor-
rect complex bands even at thoseki for which the transfer
matrix does not exist~case of singular coupling matrices!.

II. METHOD

A. Derivation of the eigenproblem

The tight-binding parameters with which we describe
GaAs and AlAs in the second-near-neighborsp3s* model,
using the notation of Slater and Koster,9 appear in Table I. In

our calculations we place the anions on the Bravais lattice
sites, with the cations displaced byv5~a/4!~ex1ey1ez!,
wherea is the conventional unit cell cube edge. Since the
bulk Hamiltonian in the second-near-neighborsp3 model is
given elsewhere,4,10 and, owing to the identical symmetries
of the s and s* orbitals, thesp3s* second-near-neighbor
Hamiltonian is easily derived from the former, we do not
present the latter Hamiltonian. Instead we focus on interface
systems, those having a disruption in translational symmetry
along thez direction only.

In our calculation of the complex bands for the@001#-
oriented face of GaAs and AlAs, we work in the planar or-
bital basis; in what follows the subscripti denotes a vector
lying entirely in the x2y plane ~e.g., ki5kxex1kyey!. A
layer is taken to be a plane of anions and the plane of cations

TABLE I. Tight-binding parameters~in eV! for GaAs and AlAs
in the notation of Ref. 9; only nonzero parameters are listed. The
AlAs same-site diagonal parameters have been adjusted to reflect
the measured GaAs-AlAs conduction-band offset.

Parameter GaAs AlAs

Esa,sa
(000) 28.487 06 28.203 43

Epa,pa
(000) 0.387 69 20.341 76

Es* a,s* a
(000) 8.487 69 6.512 48

Esc,sc
(000) 22.861 11 22.480 93

Epc,pc
(000) 3.567 69 2.119 99

Es* c,s* c
(000) 6.617 69 5.035 93

4Esa,sc
(
1

2

1

2

1

2) 26.544 53 27.160 00

4Esa,pc
(111/222) 4.680 00 5.072 00

4Es* a,pc
(111/222) 4.650 00 3.280 00

4Epa,sc
(111/222) 8.000 00 7.500 00

4Epa,s* c
(111/222) 6.000 00 1.750 00

4Ex,x
(111/222) 2.136 95 1.940 00

4Ex,y
(
1

2

1

2

1

2) 5.170 00 4.850 00

4Esa,sa
(110) 20.010 00 20.010 00

4Esa,xa
(110) 0.050 00 0.040 00

4Esa,xa
(011) 0.058 00 0.040 00

4Es* a,xa
(110) 0.020 00 0.020 00

4Es* a,xa
(011) 0.040 00 0.100 00

4Exa,xa
(110) 0.320 00 0.602 20

4Exa,xa
(011) 20.050 00 20.620 60

4Exa,ya
(110) 1.240 00 0.660 00

4Exa,ya
(011) 21.000 00 21.200 00

4Esc,sc
(110) 20.020 00 20.010 00

4Esc,xc
(110) 0.072 00 0.073 00

4Esc,xc
(011) 0.020 00 0.040 00

4Es* c,xc
(110) 0.010 00 0.030 00

4Es* c,xc
(011) 0.093 50 0.030 00

4Exc,xc
(110) 0.280 00 0.495 35

4Exc,xc
(011) 20.100 00 20.166 95

4Exc,yc
(110) 0.600 00 0.870 00

4Exc,yc
(011) 21.300 00 21.700 00

la 0.140 00 0.140 00

lc 0.058 00 0.008 00
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located1~a/4!ez away, so that a layer occupies a space of
a/2 along thez direction, while a sublayer is a plane of either
anions or cations. The near-neighbor interactions then lead to
couplings of adjacent sublayers, while the second-near-
neighbor interactions result in both intralayer and adjacent
layer couplings; the spin-orbit interaction gives rise to same-
site couplings only. In this system, in the absence of other
interactions or crystal imperfections,ki is a conserved quan-
tity, as is the energyE. Thus the planar orbital basis states
may be expressed in terms of the localized, orthogonal,
atomiclike orbitals as

unms;L;ki&5
1

ANi

(
j51

Ni

exp$ iki•@Rj i~L !

1dm,cvi#%unms;L;Rj i~L !1dm,cvi&. ~1!

In ~1!, Ni is the number of atoms in the plane,n is the orbital
type ~one ofs, x, y, z, or s* !, L indexes the layers, the atom
typem is eithera ~anion! or c ~cation!, the atom is located in
the plane atRj i(L)1dm,cvi , andsP$1,2% indexes the spin
states. As we shall see below, with the spin quantized in the
x2y plane a simple change of basis will transform the nomi-
nally complex generalized eigenproblem into a real general-
ized eigenproblem. For convenience, as the spin-1

2 basis we
choose the eigenstates ofSy , expressed in terms of theSz
states,u↑& and u↓& as

u1&[
1

&
@ u↑&1 i u↓&], u2&[

1

&
@ u↑&2 i u↓&]. ~2!

In the planar orbital basis, then, the total state is

uCki
&5 (

L8,n8,m8,s8
CL8
n8m8s8un8m8s8;L8;ki&, ~3!

where the expansion coefficientsCL8
n8m8s8 are determined by

solving the Schro¨dinger equation. Finally, we write the
Hamiltonian as the sum of two terms,H5H01Hso, where
Hso is the spin-orbit interaction andH05p2/2m1V~r !, with
V~r !5V~r1Ri! for some direct lattice vectorRi .

In the second-near-neighborsp3s* model, the notation is

simplified by employing 10310 matricesH (L8,L)
(m8,m) defined as

~see the Appendix for explicit listings!

@H ~L8,L !

~m8,m!
#~n8s8,ns![^n8m8s8;L8;kiuHunms;L;ki& ~4!

and ten-element vectorsC L
m defined as

CL
m[@CL

sm1,CL
xm1,CL

ym1,CL
zm1,

CL
s* m1,CL

sm2,CL
xm2,CL

ym2,CL
zm2,CL

s* m2#T, ~5!

where in~5! the superscriptT denotes the transpose. Using
this notation, the Schro¨dinger equation@H21E#uCki

&50
appears as pairs of equations of the form

@H ~L21,L !
~a,a! #†CL21

a 1@H ~L21,L !
~c,a! #†CL21

c 1@H ~L,L !
~a,a! 21IE#CL

a

1H ~L,L !
~a,c!CL

c1H ~L,L11!
~a,a! CL11

a 50, ~6!

@H ~L21,L !
~c,c! #†CL21

c 1@H ~L,L !
~a,c! #†CL

a1@H ~L,L !
~c,c! 21IE#CL

c

1H ~L,L11!
~c,a! CL11

a 1H ~L,L11!
~c,c! CL11

c 50. ~7!

In bulk, H (L21,L)
(m8,m) 5H (L,L11)

(m8,m) , ~m8,m!P$(a,a),(c,c),(c,a)%
and we find the complex band structure by solving either the
forward, C L11

m 5l1C L
m, or reverse,C L

m5l2C L11
m , eigen-

problems; forl6Þ0, we obviously havel251/l1 . Equa-
tions ~6! and ~7! thus constitute a 20320, second-order
eigensystem, which, however, is readily converted into a
40340 first-order eigensystem by introducing either
C L

m5l1C L21
m or C L21

m 5l2C L
m:

l1FH ~L,L11!

0I
0I
1I GF CL

CL21
G5F2H ~L,L !

1I
2H ~L,L11!

†

0I G
3F CL

CL21
G , ~8!

FH ~L,L11!

0I
0I
1I GF CL

CL21
G5l2F2H ~L,L !

1I
2H ~L,L11!

†

0I G
3F CL

CL21
G , ~9!

where

H ~L,L11![FH ~L,L11!
~c,c!

0I

H ~L,L11!
~c,a!

H ~L,L11!
~a,a! G ,

H ~L,L ![F @H ~L,L !
~c,c! 21IE#

H ~L,L !
~a,c!

@H ~L,L !
~a,c! #†

@H ~L,L !
~a,a! 21IE#G , ~10!

CL[FCL
c

CL
aG . ~11!

Note in particular from~4! and the Appendix that the matrix
H (L,L) is Hermitian.

The usual approach involves left-multiplying both matri-
ces in~8! by the inverse of the matrix on the left-hand side to
generate a transfer matrix, which is then diagonalized to
yield eigenvaluesl1 ;

2,3,11 these eigenvalues are typically
written in the form exp@ikza/2#, sincea/2 is the monolayer
spacing. Those with realkz represent propagating~Bloch!
states while those with imaginary or complexkz represent
growing or decaying surface states. The difficulty with this
method arises when the matrices in~8! and ~9! are singular
~or near-singular, as the inversions and diagonalizations are
typically performed numerically!, as can happen for certain
ki or parameter sets. Now consider the case of singular ma-
trices in ~8! and ~9! for someki . Nothing in the physics of
the problem indicates that the complex bands should not be
obtainable in these situations; certainly the bulk Hamiltonian
is readily diagonalizable, yielding the real bands. This obser-
vation is further reinforced when we realize that the second-
near-neighborsp3s* model can correctly fit both X-valley
masses; it does not exhibit the pathological, flat, transverse
bands of the nearest-neighborsp3s* model at theX points.
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The inadequacy, therefore, lies entirely in our approach to
the problem. In Sec. II C below we discuss the practical
implementation of the eigenproblem, after first discussing
some important properties of~8! and ~9!.

B. Properties of the eigensolutions

Because we introduce a method for determining the com-
plex band structure, we must first demonstrate that the eigen-
values one finds with this method have all of the required
properties. Furthermore, since we are particularly concerned
with the case of singular coupling matrices, we must demon-
strate these propertieswithout inverting any of the matrices
in question. It is not sufficient to simplyassumethese prop-
erties, especially when previous proofs of many of them
~such as those given in conjunction with the transfer-matrix
method2! involve exactly the matrix inversions we must
avoid. The resulting development is therefore quite general,
if slightly cumbersome.

Examining the matricesH (L8,L)
(m8,m) given in the Appendix,

we see that the matricesSI 1
†H (L8,L)

(m8,m)SI 1 are real, where the
unitary matrixSI 1 is defined by

SI 1[FSI0I 0I
SI †G , SI [diag@e2 ip/4,eip/4,eip/4,e2 ip/4,e2 ip/4#,

~12!

where diag[d1 ,d2 ,...,dn] denotes ann3n diagonal matrix
with given ~diagonal! elements.~The transformationSI ren-
ders the 535 blocks of the nearest-neighbor, no-spin-orbit
sp3s* Hamiltonian real.12! Defining a 20320 matrixSI 2,

SI 2[FSI 10I 0I
SI 1

G , ~13!

then the matrices

FSI 2†0I 0I
SI 2
†GFH ~L,L11!

0I
0I
1I GFSI 20I 0I

SI 2
G

and

FSI 2†0I 0I
SI 2
†GF2H ~L,L !

1I
2H ~L,L11!

†

0I GFSI 20I 0I
SI 2

G ~14!

are likewise real. Since the resulting generalized eigenprob-
lems now involve only real matrices, it follows that either~i!
the eigenvaluesl6 are real, or~ii ! they come in complex-
conjugate pairs: (l6 ,l6* ). Note that this transformationdoes
not double the dimension of the eigenproblem.

Another important property of~8! and ~9! involves the
relationship between the spectra$l1% and$l2%. The forward
eigenproblem~8! has nontrivial solutions, provided that

detFl1H ~L,L11!1H ~L,L !

21I
H ~L,L11!

†

l11I
G50. ~15!

This determinant is easily written using the Schur
complement13 of the lower-left-hand block,21I :

detFl1H ~L,L11!1H ~L,L !

21I
H ~L,L11!

†

l11I
G

5det@H ~L,L11!
† 1l1H ~L,L !1l1

2 H ~L,L11!#50. ~16!

In addition, for an arbitrary matrixAI , det~AI †!5„det(AI )…* , so
~16! implies

det@H ~L,L11!1l1* H ~L,L !1~l1* !2H ~L,L11!
† #50. ~17!

Examining the reverse eigenproblem~9!, we see that it has
nontrivial solutions provided that

detFH ~L,L11!1l2H ~L,L !

2l21I
l2H ~L,L11!

†

1I G50, ~18!

which, expressed using the Schur complement13 of the
lower-right-hand block, 1I , is

detFH ~L,L11!1l2H ~L,L !

2l21I
l2H ~L,L11!

†

1I G
5det@H ~L,L11!1l2H ~L,L !1l2

2 H ~L,L11!
† #50, ~19!

Comparing~17! and ~19! we see thatl1* andl2 satisfy the
samepolynomial equation. Now since we have already seen
that forl6Þ0 andl251/l1 , ~17! and~19! imply that eigen-
values l6Þ0 come in pairs (l6,1/l6* ). Moreover, these
equations show that ifl150 is a root of multiplicitym of
~8!, l250 is likewise a root of multiplicitym of ~9!. Hence,
even in the case of singular matrices, there are equal num-
bers of states which in the forward direction decay infinitely
quickly ~l150! and grow infinitely quickly~l250!.

The case of singular matrices in~8! and~9! deserves fur-
ther attention. In particular, we intuitively expect that the
characteristic polynomials~16! and ~19! will not be of full
degree~40 for the second-near-neighborsp3s* model! in l1

andl2 , respectively. Suppose now thatl250 is a root of
multiplicity m of ~19!; from the foregoing discussion of~17!
and~19!, we know that the characteristic polynomials of the
forward and reverse eigenproblems,~16! and ~19! take the
forms

det@H ~L,L11!
† 1l1H ~L,L !1l1

2 H ~L,L11!#5l1
mp1~l1!50,

~20!

det@H ~L,L11!1l2H ~L,L !1l2
2 H ~L,L11!

† #5l2
mp2~l2!50,

~21!

wherel650 is not a root of the polynomialp6~l6! and the
degree of the polynomialsp6~l6! is certainly no greater than
402m. The degree of these polynomials is of particular im-
portance for us, since only if it is less than~402m! can
l65` be considered an ‘‘eigenvalue’’ of~8! or ~9!. We can
determine the degree ofp6~l6! in the following manner. To
simplify the notation, call the matrix on the left-hand side of
~8! and ~9! MI 1 , and call that on the rightMI 2 . The gener-
alized Schur decomposition theorem14 guarantees that there
exist unitary matricesQ andZI such thatQ†MI 1ZI 5TI 1 and
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Q†MI 2ZI 5TI 2 are upper triangular. Then, due to the unitarity
of Q andZI , for the forward and reverse eigenproblems we
have

det@MI 22l1MI 1#50⇒det@TI 22l1TI 1#

5)
k51

40

~@TI 2#k,k2l1@TI 1#k,k!50,

~22!

det@MI 12l2MI 2#50⇒det@TI 12l2TI 2#

5)
k51

40

~@TI 1#k,k2l2@TI 2#k,k!50.

~23!

Equations~22! and~23! then demonstrate thatm each of the
diagonal elements [TI 2] k,k and [TI 1] k,k are zero. Provided
that there are no corresponding zero diagonal elements, i.e.,
[TI 7] k,k50⇒[T6] k,kÞ0, the degree ofp6~l6! is ~4022m!,
not ~402m!.

Fortunately, it easy to see with the aid of this counterex-
ample that coincident zero diagonal elements usually do not
occur~we do not consider the case of trivial parameter sets!.
Suppose now that there is at least one pair of corresponding
zero elements, say thej th, [TI 2] j , j5[TI 1] j , j50. Obviously,
in this instance,anycomplex numberl6 is a root of~22! and
~23!, since the determinants are zero regardless ofl6 . In-
deed, the generalized Schur decomposition theorem14 guar-
antees it. If, on the other hand, we can findsomefinite l6

such that det[MI 72l6MI 6]Þ0, it follows that there areno
coincident zero-diagonal elements of the upper triangular
matricesTI 6 . Examining the blocks listed in the Appendix,
we see that this is typically true, even at points such as
ki52p/aex .

We comment further thatp6~l6! being of degree~40
22m! as opposed to~402m!, is quite reasonable: the for-
ward eigenproblem, being a polynomial equation inl1 with
finite coefficients, can tell us nothing about those states
which grow infinitely quickly~and are in the kernel ofMI 1!,
while the reverse eigenproblem can likewise tell us nothing
of the states in the kernel ofMI 2 . Assuming that the geomet-
ric and algebraic multiplicities of all eigenvalues coincide
~even forl650!, we have a 40-state basis by taking them
states in ker~MI 1!, them states in ker~MI 2!, and the~4022m!
states for whichl6Þ0 ~so thatl251/l1!, half of which
decay or propagate forward, and half of which decay or
propagate backward, the last assertion being guaranteed by
the properties of thel6 derived above.~The assumption that
these states form a basis is also made when the states come
from diagonalizing a transfer matrix.! This discussion fur-
thermore demonstrates the difficulties of a method~such as
that of Chang6! which seeks the roots of onlyone of the
equations~20! and~21!: in the singular case here considered
only ~402m! roots can be found. It is therefore imperative to
be careful in the implementation of such a model for singular
and near-singular cases. We shall use the foregoing analysis
as a guide in selecting an implementation scheme.

C. Practical implementation

On first inspection it appears necessary to solve both the
forward and reverse eigenproblems,~8! and~9!, owing to the

possibility of infinite ‘‘eigenvalues,’’ which occur whenMI 1

andMI 2 are singular. Fortunately, it turns out that all eigen-
values l6 and corresponding eigenvectors may be deter-
mined in a single diagonalization usingEISPACK routines to
solve a real, generalized, eigensystem.15 Because the
EISPACK routines are written for real matrices, we first apply
the straightforward transformation discussed at the beginning
of Sec. II B above to make the problem real; we previously
used this transformation to show that complex eigenvalues
l6 come in complex-conjugate pairs: (l6 ,l6* ). A single
diagonalization step suffices since, for the real generalized
eigensystemAI x5lBI x, theEISPACK routines determine pairs
of scalarsa andb such that

bAI x5aBI x, ~24!

where, forbÞ0, l5a/b. Eigenvectorsx corresponding to
infinite ‘‘eigenvalues’’ thus haveubu'0, while those withx
corresponding tol50 haveuau'0. Hence in a single calcu-
lation we determine not only the eigenvectorsx, for which
a,bÞ0, but as well thosex lying in ker(AI ) ~i.e., uau'0! and
in ker(BI ) ~i.e., ubu'0!.

III. RESULTS AND DISCUSSION

The tight-binding parameters for the second-near-
neighbor sp3s* Hamiltonian, including spin-orbit interac-
tions, are listed in Table I; note that wedo notmake the
two-center approximation. Table II gives the effective
masses and band gaps they reproduce, and the band struc-
tures are shown in Figs. 1 and 2. The parameters have been
chosen to fit the gaps atT5300 K. In general, we find it
possible to closely fit the direct and indirect gaps, as well as
theG- andX-valley masses, although theX-valley transverse
masses are about 25% too large. TheL-valley effective
masses are not as well reproduced—the longitudinal masses
are too small and the transverse masses are too large; they
are, however, not unreasonable in view of the number of

TABLE II. Energy gaps and effective masses reproduced by the
tight-binding parameters of Table I;m0 is the free-electron mass.

Quantity GaAs AlAs Units

Eg~G! 1.398 2.998 eV

Eg(X) 1.803 2.142 eV

Eg(L) 1.642 2.313 eV

D0 0.369 0.337 eV

mG* 0.067 0.18 m0

mX,l* 1.42 1.44 m0

mX,t* 0.31 0.25 m0

mL,l* 1.43 1.18 m0

mL,t* 0.13 0.16 m0

mlh* 0.069 0.15 m0

mhh* 0.39 0.43 m0

mso* 0.14 0.24 m0
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quantities we attempted to fit. In the valence bands, we con-
centrated on fitting the light-hole mass, since the imaginary
band linking the light-hole valence-band maximum to the
conduction-band minimum atG is important in tunneling cal-
culations. Overall, the fit of the bands, particularly the con-
duction band, is superior to that achieved by Talwar and
Ting4 using the second-near-neighborsp3 model; with the
addition of the exciteds-like s* orbital, it has become pos-
sible to achieve the deep curvature necessary to fit the GaAs
G-valley conduction-band mass.

The complex bands for the@001# face of GaAs and AlAs
are shown in Figs. 3 and 4, respectively. In the figures solid
lines represent purely real or imaginary bands, while pairs of
broken lines graph the real and imaginary parts of complex

FIG. 1. Real bands of GaAs as reproduced by the parameters of
Table I.

FIG. 2. Real bands of AlAs as reproduced by the parameters of
Table I.

FIG. 3. Complex bands of GaAs as reproduced by the param-
eters of Table I. Solid lines represent purely real or imaginary
bands, while pairs of broken lines graph the real and imaginary
parts of complex bands; real bands and parts appear in the right
panel, imaginary bands and parts in the left. Real parts which ap-
pear to be missing actually lie at the zone boundary, and thus are
obscured by the border. To enhance readability we omit highly
evanescent complex and imaginary bands~those with large Im$kz%!.

FIG. 4. Complex bands of AlAs as reproduced by the param-
eters of Table I. Solid lines represent purely real or imaginary
bands, while pairs of broken lines graph the real and imaginary
parts of complex bands; real bands and parts appear in the right
panel, imaginary bands and parts in the left. Real parts which ap-
pear to be missing actually lie at the zone boundary, and thus are
obscured by the border. To enhance readability we omit highly
evanescent complex and imaginary bands~those with large Im$kz%!.
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bands; real bands and parts appear in the right panels, imagi-
nary bands and parts in the left. To enhance readability we
omit from both figures highly evanescent complex and
imaginary bands~those with large Im$kz%!. The complex
bands were calculated with the method of Sec. II above. The
value of this method is further underscored by using it to
evaluate the effective mass of the conduction band numeri-
cally for a value ofki , say,ki52p/aex , at which a transfer
matrix does not exist. Consider theX-valley transverse mass
at this point. The value listed in Table II is computed from
the bulk Hamiltonian,H~k!, and its derivatives,“kH~k!, and
]2H~k!/]k(a)]k(b), using the eigenvectors ofH~k! at
k52p/aex .

16 On the other hand, we may also choose closely
spaced values ofE for ki52p/aex , solve the forward eigen-
problem ~8!, and select the eigenvalues exp@ikza/2# corre-
sponding to theX valley ~thus yielding three closely spaced,
z wave vectors,kzPRe!. Doing so and fitting the resulting
three points to a parabola, we findmX,t* '0.31m0 for GaAs,
in excellent agreement with the other calculation.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have presented a method for calculating
surface and interface states; that is, the eigenvalues~propa-
gation factors! and eigenvectors of a bulk crystal in the
planar-orbital basis. This method is applicable even in those
situations in which a transfer matrix does not exist~for ex-
ample, at certain values of the in-plane wave vectorki!. We
have also provided parametrizations for GaAs and AlAs in
the second-near-neighborsp3s* model, achieving a superior
fit of the conduction bands to that afforded by the either the
nearest-neighborsp3s* or second-near-neighborsp3 models.
We have applied the method to the first of these models and
analyzed it, showing that even in cases in which a transfer
matrix does not exist the complex bands still have all the
required properties. In addition, we have provided transfor-
mations necessary to turn the nominally complex problem
into a real one, thus allowing a more efficient implementa-
tion. Furthermore, we have shown how and why this method
succeeds in those situations where previous methods for cal-
culating the complex band structure fail. The generality of
this method, together with the superior fit achieved in the
second-near-neighborsp3s* model, makes their combination
a good choice for the underlying tight-binding model in tun-
neling calculations involving indirect semiconductors and/or
inelastic processes.
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APPENDIX

Here we present the blocks of the second-near-neighbor
sp3s* Hamiltonian in the planar-orbital basis. The 10310
blocks appearing in~6!, ~7!, and~10! are the intralayer cou-
pling matrices

H ~L,L !
~m,m!5FH 0~L,L !

~m,m! 1h so
~m!~1,1!

h so
~m!†~1,2!

h so
~m!~1,2!

H 0~L,L !
~m,m! 1hso

~m!* ~1,1!G ,
~A1!

and the interlayer and intersublayer coupling matrices

H
~L,L8!

~m,m8!
5FH 0~L,L8!

~m,m!

0

0

H 0~L,L8!

~m,m! G ~A2!

where in ~A1!, m5a or c and in ~A2!
$~m,m8!,~L,L8!%5$(a,a),(L,L11)%, $(c,c),(L,L11)%,
$(a,c),(L,L)%, or $(c,a),(L,L11)%.

Below we list the explicit forms of the 535 matrices ap-
pearing in~A1! and ~A2!; as above,m5a or c. To enhance
readability we introduce the following notations for nearest-
neighbor geometric factors and parameters:

c6[cos@~kx6ky!a/4#, s6[sin@~kx6ky!a/4#, ~A3!

v~am,bn![2Eam,bn
~
1

2

1

2

1

2! , ~A4!

and for second-near-neighbor geometric factors and param-
eters,

Cn[cos~kna/2!, Sn[sin~kna/2!, nP$x,y%, ~A5!

Ẽam,bm
~011! [HEaa,ba

~011! , m5a

2Eac,bc
~011! , m5c,

~A6!

where~a,b!P$(s,x),(s* ,x),(x,y)%.
The 535 matrices appearing in~A1! appear below. Note

that the spin-orbit matrices appear different due to our use of
the eigenstates ofSy for the spin-12 basis states:

hI so
~m!~1,1!5F 0 0 0 0 0

0 0 0 ilm 0

0 0 0 0 0

0 2 ilm 0 0 0

0 0 0 0 0

G , ~A7!

hI so
~m!~1,2!5F 0 0 0 0 0

0 0 2 ilm 0 0

0 ilm 0 2lm 0

0 0 lm 0 0

0 0 0 0 0

G . ~A8!

The other matrices are
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Ẽ
xm

,y
m

~0
11

!
S
xC

y
2
i4
E
s *

m
,x

m
~1
10

!
C
xS

y

2
4
Ẽ
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Ẽ
xm

,y
m

~0
11

!
S
x
!

i2
~Ẽ
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