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Thermodynamics of a one-dimensional lattice system with long-range interelectron repulsion
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The thermodynamic characteristics of one-dimensional lattice electron systems with long-range interelectron
interactions are explicated and studied at arbitrary temperatuned pressur®. Only interactions between
neighboring particles are taken into account. Electron-electron correlations are found to be controlled only by
the ratioP/T, increases in which produce a continuous transition from a weakly nonideal gas to an electron
“crystal” with filling factor 1/q,9=1,2,.... This is a remnant of the devil's staircase which obtains at
T=0. It is shown that with a decrease I the crystal periodsg, increase, the transitions occurring via
narrow regions of a liquidlike state. Charge carriers in the “crystals” are discrete solitons iidtteonal
chargee* = +e/q. [S0163-182(6)05631-7

[. INTRODUCTION glass” state over all of parameter spa@. The electron
glass state results from the fact that the ground state of an
Narrow-band conductors with long-range interelectron reLRIR system witht=0 generally has a highlgisordered
pulsions(LRIR’s) have peculiar and very interesting proper- (incommensurab)espace structure & given electron den-
ties that not only differentiate them qualitatively from metalssity. This incommensurability was discovered by HubBard
(including the transition metglsand semiconductors but in the one-dimensiongllD) case. In Ref. 5 it was pointed
from the conductors of the Hubbard type, which are characeut that there is strong reason to believe that the disorder
terized by thelocality of their electron-electron interac- exists irrespective of the dimensionality. In the general case
tion.x~ The study of LRIR conductors seems to be particu-(t#0) the electron glass is similar to a spin glass in many
larly important and timely because layered structure highrespectgnonergodic behavior, an infinite spectrum of relax-
temperature superconductive metal oxidegen at “metal- ation times caused by infinite degeneration of the ground
lic” electron densities and a number of metal oxides of state, etg?
other types are governed by LRIR. In addition, some change- Because of the above properties the FEP seems a very
transfer salts and artificial conductive systesigperlattices  interesting subject for investigation. This is especially true at
belong to this class of materials. a finite temperatur@, or in situations where the rattéU of
As was recently shown by one of the auth@hsA.S.), the  criterion (1), is not too small. For example, as was shown in
remarkable feature of narrow-band conductors withRef. 5, a layereds-d system(which one can consider as a
LRIR’s is that inherent to them is a specific localized elec-cuprate modelinevitably exhibits high-temperature super-
tron macroscopic state that is different from a Wigner crystakonductivity (with T.~t) if the narrow-band subsyste(the
the current theory of the FEP is given in Ref. 4. This state wal electron$ is in the FEP electron glasstate. In spite of
call the “frozen” electron phasdFEP. This arises from some advances in our understanding the nature of the FEP
LRIR’s in combination with thediscretenessf the narrow- (see Ref. #there is still a great deal to learn to develop a
band electron dynamicsi.e., the narrow-band electrons consistent theory of its thermodynamics and kinetics. It
move over the conductor by hopping between nearestseems appropriate to advance these studies by considering
neighbor conductor-lattice sites with equivalent atomic orbit-the thermodynamicef the LRIR systems, neglecting all dy-
als) and exists over a wide parameter range determined byamical effects produced by the finiteness of the bandwidth
the following criterion: (i.e., t=0). Such an approach is applicable not only to
narrow-band electron conductors but also to adatoms sys-
t/lU<sC~1. (1) tems(if the adatom interaction with a substrate is sufficiently
strond) and other physical systems which exhibit similar
Heret is the bandwidth, antd ~ (a/R)E (a is the crystal ~behavior [for example, charge-transfer salts of a
spacing R is the average distance between electrons,Eand tetrathioflualene-tetracyanoquinodimethane(TTF-TCNQ)
is the Coulomb energy per electiois typical of the LRIR  type]l. The general thermodynamic problem appears to be
energy variation on electron hopping. In such a situation théather complicated. Furthermore, as far as we know, the ther-
complete destruction of the narrow-band Bloch states occurgnodynamics of 1D LRIR models has not yet been fully ex-
and electrons become localized within quantum traps of aplicated, despite its appeal and relative simplicity. The main
atomic size. Due to the dynamic origin of this localization, objective of our present study is to fill this gap in part.
heating of the system cannot release the electrons from their
traps, and hence the FEP, unlike a Wigner cnystalan not . APPROXIMATION
turn into Fermi liquid at any temperature. Another funda-
mental difference between the FEP and a Wigner crystal is In accord with the above, we assume the Hamiltonian of
that even at zero temperature a FEP can be in an “electrothe system under consideration to be of the form
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N AP=pAulq=pAs(q), (6)
H=H(1,l5, ... I\)=3 2_1 e(lm=1p), (2)
" as shown in the Appendix.
where the discrete independent variablé,, (m One should stress a remarkable feature of expres$&bns
=1, ... N) is anmth electron coordinate measured in lattice 2d (6), namely, that the devil's staircase intervalg. and

units, N is the total number of electrons, anqx) is the AP are proportional to the valuae (5), which is itself
LRIR pair potential. This potential is a convex function of dete.rmmed b_y the electron-electron interaction at- distances
the continuous argument which diminishes faster than =0 irrespective of the number of electrons, ger unit cell

x~! but is otherwise arbitrary. To begin, it is necessary toThus, Ax_and AP tend to zero asy—c according to
investigate the properties of the ground state of the Hamild°&(X)/9x?|x—q. Hence the more “irrational” is the ratio
tonian (2). These were first considered by Hubbargho  P/d, the less is the lengths of the interva#s and(6). This
offered a rigorous procedure for constructing the groundsuggests that at finite temperatuedsGWL space structures
state configuration, which he aptly called the generalizecf period g, fuffilling the condition &(q)>T, are slightly
Wigner lattice(GWL). As was later shown in Ref. 2, the perturbed by thermal fluctuations. Converselygqifatisfies

Hubbard algorithm can be expressed by the simple formulghe conditione(q) <T the corresponding GWL structure will
be essentially transformed or completely destroyed, smooth-

ing out the devil's staircase intervadsP(q) and A w(q).
. ©) We will study the most realistic case, that of a rapidly
declining pair potential such as, for example, a screened
Here v=N/N, is the electron densityfilling factor), Ny is ~ Coulomb potentialelectron$ or a lateral Ruderman-Kittel-
the total number of the lattice sitedl{ is the lengttL of the ~ Kasuya-Yosida(RKKY) interaction potentialgadatoms®
1D system measured in lattice unjtd/v is the average in- The rapid fall off of the parameter region suggested by the
terelectron distancd;] denotes an integer part, agglis an  inequalities
arbitrary number. In what follows we study the usual ther-
modynamic limit(i.e., N,Ng—o in such a way that re- e(1v)>e(2Mv),
mains finite.
The distinctive feature of the GWL is that at given chemi- T>e(2lv) ™
cal potentialu, only rational values ofv=p/q (p andq are
integers survive. That is, the GWL has a periodic electronis of greatest importance. These inequalities imply that one
lattice structure withp particles per cell and a period length can neglect the next-nearest-electron interactions, and that
g. This fact leads to a rather peculiar dependence oh  (as is suggested by our previous discuskionregion (7)
u, the so-called “devil's staircase.” This is a well- only the devil's staircase steps corresponding to the Hubbard
developed fractal structuté? in which for each rational Structures wittp=1 can survive at rather large values of the
value of v=p/q there is a finite interval of the chemical parameterP/T. Thus we will consider just the parameter
potential x within which » is not changed. Following the region(7), taking into account only the interaction between

1,
|; (]5

reasoning of Bak and Bruinsniaye find that the nearest-neighboring particles. This simplificatittiN
approximation for shojt allows us to construct a self-
Au=qAe(q), (40 consistent theory which preserves the most important ther-

modynamic properties of the 1D system under consideration.
Qualitatively the results are insensitive to the concrete form
of the repulsion pair potential as is the GWL itself.

where

Ae(q)= 2, kle(gk+1)—2s(qk)+e(gk—1)]. (5
k=1

I1l. THERMODYNAMIC POTENTIAL
The left[ ug(p/q)] and right[ x;(p/q)] endpoints of the o
v() devil's staircase intervals are the changes of the [N the NN approximation the 1D electron system may be
ground-state energy resulting from decreasing and increasirgPnsidered as an ensemble of independent, noninteracting
N by one particle respectively. The ground state and its Nearest-neighbor-electron paicimers which are character-

space structure here described are of a universal nature, sing€d by interelectron distanceb=1,2, ... and energies
they occur for all physically reasonable pair potentialse(l). (We will call thesel pairs, for shor). The total energy
e(x)>0. of the system is the sum over &pair energies:

As will be seen from the following, the most convenient
thermodynamic variables for our study are fioand ., but o
insteadT and the pressurB. The dependence af on P at E= E{n|}=2 ne(l), (8)
T=0 is also a devil's staircase which differs framu) only I=1
in the width of the stepAP. The endpoints of this devil's
staircasePy(p/q) andP;(p/q), are changes of the ground- Here {n;} symbolizes a given set of-pair numbers
state energy resulting from decreasing or increasinge- ni,n,,. .. . It must be emphasized that theair ensemble
spectively, byone spacingat fixed N. (P is measured in cannot be considered to be an ideal gas of “particles” with
energetic unitsP;<P4.) Taking into account this fact, one internal “quantum numbers’l and internal energies(l).
can obtain the simple formula The reason is that there astrong space correlationbe-



54 THERMODYNAMICS OF A ONE-DIMENSIONAL LATTICE ... 8097

tween |-pair positions. That is transferring a givénpair
(typical I~v~1) by a distanceAL>»"1 in any direction p{
inevitably results in the order ofAL shifts in the opposite
direction of otherl pairs (by distances~v~1) . It is the
combination of these correlations with the additive structure F{
of the energyE{n,} that causes a rather peculiar thermody-
namic behavior in the NN approximation. On one hand, the A similar expression fop(P,T) has the form
distribution ofl pairs overl turns out to be Boltzmann-like
(see below, but on the other, the dependencied) and
v(u«) have nothing in common with those for ideal gases. u==TIn
To construct the thermodynamics of the system under
consideration one must take into account the condition imas follows from(14). Equations of staté€l5) and(16) estab-
posed ori-pair numbers to a given system lengthnamely, lish the links betweemw, u, P, andT. The most convenient
. choice for the two independent thermodynamic variables is
E determined by the concrete physical situation under consid-

(15

||M 8 ”M g

[

> exd —=(1,P)/T]],

(16)

© eration.
A full description of the thermodynamics of the 1D lattice
The simplest way to proceed is to change thermodynamigystem requires us to amplify the equations of state by de-
variables fromN, L, andT to N, P, andT, by introducing ~ termining the average number bfpairs, N;. According to
the isothermal-isobaric partition function (13) this quantity is determined by the formula

_ E{n}+PL{n} dP(N,P,T)

z=z(NPT)=3 e win}. (10 Ni=NCLP T = —220

{m) T
Substituting relatior{14) into this expression, we find that

Here the summation is taken over all possipig}’s sat- o A .
possifie} the distribution ofl pairs is of a Boltzmann type; that is,

isfying the condition

. _ Nex—3(1,P)/T]
“Sn, N == an

Z exd —z(k, P)/T]

wherel is the total length given by9), and
. According to(17) the distribution ofl pairs is determined
by the behavior of the functioa(l,P), which has an integer-
Win;}=N! / I n! 1D yalued argumerit. At P>Po=s(1)—&(2) this function in-
creases monotonically, while &<P. it has a minimum.
is the statistical weight of the states with a given set ofDue to the properties of the pair potentig(x) (see Sec. )

[-pair numbers. Introducing the effective energy there is only one minimum at integky=1,(P)>1, which is
located at a distance 1 from the(single root of the equa-
Z(I,P)=¢(1)+PI (12 tion,
and using formuld11), we can transform expressi¢hO) to de(X)
the form i P. (18
X

N

(13) If P>P¢, the most probablé-pair length isl=1; while in

the opposite casd&? <P, the length ido(P).
. ] ] To analyze(15), (16), and(17) it is convenient to intro-
from which we find that the thermodynamic potenti@libbs  q4,ce independent variables= P/T andP, and thus to rep-

2 GX% _ S(I-;—P)

I=1

Z(N,P,T)=

free energy ®=Nu(P,T) is given by resent the ratiG(l,P)/T in the forme(l,P)/T=yF(I,P),
oc 3(1.P) by introducing the dimensionless function
e(l,
(NP.T)==TNIn| 2 exp(_ T ” 19 F(1I,P)=(1)/P+1.

We now study the limity<1. In this case the main contri-
bution to the sums ovdrin (15 comes from large values,

~1/y, and hence we can replaEél,P) by simplyl. In the
y—0 limit this leads to the classical ideal gas equation of
state

As is to be expected, the thermodynamic potentiz)
has quite a different structure from that for ideal gases. It i
this which leads to unconventional thermodynamic behavior,

IV. EQUATION OF STATE

. . . PL=NT.
First let us find the dependence of the electron density

on P andT. Using the well-known thermodynamic relation The result is quite reasonable because in the limiy agp-
L=[dP(N,P,T)]/oP, from (14) we obtain proaches zero the electron-electron interactions is entirely
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FIG. 1. The dependence of electron densitagainst pressure
P obtained usind 15), Av=1/(q—1)—1/g.
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v=const 1/q. (21

Hence the 1D system has a periodic structure with a period
g. This result confirms the suggestion made in Sec. Il. Thus,
just as in the parameter regigr» 1, for P<P the ground-
state devil’'s staircase manifests itself to its full extésae
Fig. ).

Within the intervals{Pg ,P4} the translational symme-
try is broken due to thermal creation df pairs with
I=q=*1. According to(17) the total number ofj*=1 pairs
has the exponential dependence

P—P,
Nq,lzNex T ,

P +1 P
Ng+1=N ex;{qT).

(22

neglected, and the electrons themselves can be considered”S follows from(15) and(17), the presence aj+1 pairs

independent particles. Expanding the sumg§l&j in powers

of the parametety, we obtain the analog of the well-known
thermodynamic virial expansion. The first term of it gives

the van der Waals-like equation of state,
P(L=B(T)N)=TN, (19

where the quantity

1—ex;{—¥l)”>0

(essentially, the second virial coefficig¢ng the effective de-

B(T)=|§1

changes the density by a small value,

6Vq:am(Nq,1_Nq+1). (23)

The physical meaning of the last expression is clear. It shows
that eachg+ 1-pairincreaseshe length of the systerh by
onespacing and, conversely,gg- 1 pairdecreases Lby the
same value. These excitations which are elementary
“quanta” of rarefaction @+1 pair9 or compression
(g—1 pairg9 may be considered as particular kinds of dis-
crete solitons.

From (15) and (16) one easily concludes that the depen-

crease of the system volume due to the electron-electron rélence ofv on the chemical potentigk has a similar behav-

pulsion.

ior, the widths of devil's staircase intervalsu, being ex-

In the opposite limiting casey>1, the thermodynamic Pressed in terma\P, according to(6). At a given u the
behavior of the system depends essentially on whether tHéeviation of 6v (23) arises due to a change in the particle

functione(l,P) has a minimum or notsee above In the
first case P<P.) only one term, that with=1,(P), gen-
erally makes the major contribution to surtib) and (16).
More exactly, it takes place for all pressuiesvhich are not
too close to the degeneration poirlg determined by the
expression

Per1=e(q)—e(q+1), 9q=12,.... (20
At these values of the contributions oftwo terms, with
I=[xo(Pg)]=q and I=[xo(Pq)+1]=g+1, coincide
[Xo(P) is the root of Eq(18)]. The set of point¢P,} divide
the P axis into a set of interval§P,. 1,P4}, which are(in
the framework of the NN approximatipmothing but the
devil's staircase intervals corresponding fe-1 [see(6)].
The width of theqth interval is

AP=P,—Pq 1=8(q—1)—2&(q)+&(q+1).

Within these intervals’ is independent oP, with an expo-
nential accuracy by the parametgrand equals

numberN at a fixed lengthL. This means that creation on
annihilation of single electrons in the system increases or
decreases, respectively, the total number of the above men-
tioned rarefaction and compression solitonsgbyHence, in

the limit y<1, these solitons are effectively free charge car-
riers with thefractional charge

e*=xelq, (29

where e is the electron charge and the signs-" and

“ —" correspond to rarefaction and compression solitons,
respectively. Formula24) generalizes Hubbard's resdlt,
which holds for the special casg=2. The study of the con-
ductivity of 1D electron systems with LRIR will be the sub-
ject of a separate paper.

As one can see fronf22) and (23), as P tends to the
endpointsP,, the solitons numberll;_; andN, ; rapidly
increase by an order of magnitude compared WthThis
means that the electron density drastically changes between
the asymptotic values=1/(q— 1) andv=1/q upon chang-
ing the pressur® by a value~T. For a description of this
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asP tends to zero. In the low-pressure limit the typical value
of q is determined by the equatim(x)/dx|x:q= —P. The
thermodynamic behavior of the system as a whole is sche-
matically represented in Fig. 2.

V. CONCLUSIONS

We have shown that the NN approximation leads to a rich
thermodynamics. In spite of the seeming simplicity of the
model, it contains the most essential features of discrete 1D
systems with LRIR, i.e., strong long-range electron-electron
correlations established within the framework of the systems
discreteness. It is this that results in the continuous transfor-
mation of the 1D electron ensemble from a “gas” state to a
“solid,” the latter of which is characterized by a set of elec-

tron crystals. The parameter=P/T, which controls this
transformation, plays the role of a correlation measure. As
the temperature decreases, restricti@ is violated and
more and more of the fine structure of the GWL ground state
necessarily reveals itself. These tiny steps should appear in
the intermediate regionfP—Py|~T located between the
large steps of the NN-approximation stair structure. We in-
tend to study this low-temperature problem, which is beyond
the scope of the NN approximation, using a general thermo-
_ ) _ ) dynamic approach. In this context we will study space cor-
intermediate regions one should take into account the twog| tions in 1D LRIR system@vith t=0). We hope that the
terms withl=q—1 andl =q in the sums ovef of (15). This  yeyelopment of our theory will allow us to calculate a num-
leads to the simple formula ber of physical characteristics of the system under consider-
ation, in particular the optical-absorption spectra at finite
temperaturega problem first considered by Hubbard

Pressure

FIG. 2. The schematic distribution of gasy<1), liquid
(y~1) and “solid” (y>1) states in the R,T) plane.V-shaped
curves are conditional boundaries,sv,(P,T)=1/q and
ovq+1(P,T)=1/q, between the electron liquid and electron “crys-
tal.”
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which holds over the whole regiofP—P4|<P,. When
Pq—P>T then it reduces t@—(Nqy_1/N), whereN,_, is The authors are grateful to Professor David K. Hoffman
given by (22). Similarly, in the limitP—P,>T, expression and to Professor Robert I. Shekhter for fruitful discussions.
(25 turns intog— 1+ (Ny/N). Within the intermediate do- One of us(A.A.S.) was supported under Grant No. INTAS-
main, |P,— P|~T, the system is a highly disordered liquid, 94-3862.
since the numbersl, and N,_; are of the same order of
magnitude.

In the caseP>P. and y>1 an “electron crystal” with
period gq=1 is formed. The number of translational
symmetry-breaking elementary excitations is

N,=Nexg ~C "
1=Nexg ———|.

These solitonlike excitations are simply electron vacan-
cies with charge

llv=q— (25
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APPENDIX

To derive(6) it is appropriate to consider the changes of
the GWL energye(N,L) (v=N/L=p/q) whenN andL are
decreased or increased by altering the number of electrons
per cell,p, or the GWL periodg, respectively. Taking into
account the definitions of the devil's staircase endpoints
Pi(v) andPy4(v), we have

E(N,L—q)=E(N,L)+qPq,

E(N,L+q)=E(N,L)—qP;. (A1)

On the other hand, the energieéN,L = q) can be expressed
in terms of thev(u) devil's staircase endpoinig;(v), and

ma(v) by

e*=e.

SinceP¢ is also the endpoin®, [see(20)], the intermediate
region between crystals with=1 and 2 is described by
expression25) atq=1.

Thus a change in the pressuReat a given parameter
value of y>1 produces a succession of electron crystals with
periodsq=1,2,. . . . Theperiodq increases aR decreases. IncreasingN by p and simultaneously increasingby q is
It should be noted that at fixeg>1 these crystals exist even equivalent to inserting one elementary cell into the GWL.

E(N,L—q)=E(N—p,L—q)+pu,

E(N,L+q)=E(N+p,L+0)—pug- (A2)
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Correspondingly, one can decrease yand q, which is

equivalent to removing one elementary cell. Hence
E(N+p,L*+qg)=E(N,L)*u(»), (A3)

whereu(v) is the energy per GWL cell. CombiningAl)
and (A2) with (A3), it is easy to show that
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(mi—pmg)p=(Pyg—Pi)q.

This equality is the same as formulé6) because
AM:/Li_Md andAP:Pd_Pi.
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