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The thermodynamic characteristics of one-dimensional lattice electron systems with long-range interelectron
interactions are explicated and studied at arbitrary temperatureT and pressureP. Only interactions between
neighboring particles are taken into account. Electron-electron correlations are found to be controlled only by
the ratioP/T, increases in which produce a continuous transition from a weakly nonideal gas to an electron
‘‘crystal’’ with filling factor 1/q,q51,2, . . . . This is a remnant of the devil’s staircase which obtains at
T5O. It is shown that with a decrease inP the crystal periods,q, increase, the transitions occurring via
narrow regions of a liquidlike state. Charge carriers in the ‘‘crystals’’ are discrete solitons with afractional
chargee*56e/q. @S0163-1829~96!05631-7#

I. INTRODUCTION

Narrow-band conductors with long-range interelectron re-
pulsions~LRIR’s! have peculiar and very interesting proper-
ties that not only differentiate them qualitatively from metals
~including the transition metals! and semiconductors but
from the conductors of the Hubbard type, which are charac-
terized by the locality of their electron-electron interac-
tion.1–3 The study of LRIR conductors seems to be particu-
larly important and timely because layered structure high
temperature superconductive metal oxides~even at ‘‘metal-
lic’’ electron densities! and a number of metal oxides of
other types are governed by LRIR. In addition, some change-
transfer salts and artificial conductive systems~superlattices!
belong to this class of materials.

As was recently shown by one of the authors~A.A.S.!, the
remarkable feature of narrow-band conductors with
LRIR’s is that inherent to them is a specific localized elec-
tron macroscopic state that is different from a Wigner crystal
the current theory of the FEP is given in Ref. 4. This state we
call the ‘‘frozen’’ electron phase~FEP!. This arises from
LRIR’s in combination with thediscretenessof the narrow-
band electron dynamics~i.e., the narrow-band electrons
move over the conductor by hopping between nearest-
neighbor conductor-lattice sites with equivalent atomic orbit-
als! and exists over a wide parameter range determined by
the following criterion:

t/U<C;1. ~1!

Heret is the bandwidth, andU;(a/R)E (a is the crystal
spacing,R is the average distance between electrons, andE
is the Coulomb energy per electron! is typical of the LRIR
energy variation on electron hopping. In such a situation the
complete destruction of the narrow-band Bloch states occurs,
and electrons become localized within quantum traps of an
atomic size. Due to the dynamic origin of this localization,
heating of the system cannot release the electrons from their
traps, and hence the FEP, unlike a Wigner crystal,6,7 can not
turn into Fermi liquid at any temperature. Another funda-
mental difference between the FEP and a Wigner crystal is
that even at zero temperature a FEP can be in an ‘‘electron

glass’’ state over all of parameter space~1!. The electron
glass state results from the fact that the ground state of an
LRIR system witht50 generally has a highlydisordered
~incommensurable! space structure ata given electron den-
sity. This incommensurability was discovered by Hubbard1

in the one-dimensional~1D! case. In Ref. 5 it was pointed
out that there is strong reason to believe that the disorder
exists irrespective of the dimensionality. In the general case
(tÞ0) the electron glass is similar to a spin glass in many
respects~nonergodic behavior, an infinite spectrum of relax-
ation times caused by infinite degeneration of the ground
state, etc!.4

Because of the above properties the FEP seems a very
interesting subject for investigation. This is especially true at
a finite temperatureT, or in situations where the ratiot/U of
criterion ~1!, is not too small. For example, as was shown in
Ref. 5, a layereds-d system~which one can consider as a
cuprate model! inevitably exhibits high-temperature super-
conductivity~with Tc;t) if the narrow-band subsystem~the
d electrons! is in the FEP electron glassstate. In spite of
some advances in our understanding the nature of the FEP
~see Ref. 4! there is still a great deal to learn to develop a
consistent theory of its thermodynamics and kinetics. It
seems appropriate to advance these studies by considering
the thermodynamicsof the LRIR systems, neglecting all dy-
namical effects produced by the finiteness of the bandwidth
~i.e., t50). Such an approach is applicable not only to
narrow-band electron conductors but also to adatoms sys-
tems~if the adatom interaction with a substrate is sufficiently
strong8! and other physical systems which exhibit similar
behavior @for example, charge-transfer salts of a
tetrathioflualene-tetracyanoquinodimethane~TTF-TCNQ!
type#. The general thermodynamic problem appears to be
rather complicated. Furthermore, as far as we know, the ther-
modynamics of 1D LRIR models has not yet been fully ex-
plicated, despite its appeal and relative simplicity. The main
objective of our present study is to fill this gap in part.

II. APPROXIMATION

In accord with the above, we assume the Hamiltonian of
the system under consideration to be of the form
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H5H~ l 1 ,l 2 , . . . ,l N!5 1
2 (
m,n51
mÞn

N

«~ l m2 l n!, ~2!

where the discrete independent variablel m , (m
51, . . . ,N) is anmth electron coordinate measured in lattice
units, N is the total number of electrons, and«(x) is the
LRIR pair potential. This potential is a convex function of
the continuous argumentx which diminishes faster than
x21 but is otherwise arbitrary. To begin, it is necessary to
investigate the properties of the ground state of the Hamil-
tonian ~2!. These were first considered by Hubbard,1 who
offered a rigorous procedure for constructing the ground-
state configuration, which he aptly called the generalized
Wigner lattice ~GWL!. As was later shown in Ref. 2, the
Hubbard algorithm can be expressed by the simple formula

l i5F i 1n 1f G . ~3!

Here n5N/N0 is the electron density~filling factor!, N0 is
the total number of the lattice sites (N0 is the lengthL of the
1D system measured in lattice units!, 1/n is the average in-
terelectron distance;@ # denotes an integer part, andf is an
arbitrary number. In what follows we study the usual ther-
modynamic limit ~i.e., N,N0→` in such a way thatn re-
mains finite!.

The distinctive feature of the GWL is that at given chemi-
cal potential,m, only rational values ofn5p/q (p andq are
integers! survive. That is, the GWL has a periodic electron
lattice structure withp particles per cell and a period length
q. This fact leads to a rather peculiar dependence ofn on
m, the so-called ‘‘devil’s staircase.’’ This is a well-
developed fractal structure1,3,2 in which for each rational
value ofn5p/q there is a finite intervalD of the chemical
potentialm within which n is not changed. Following the
reasoning of Bak and Bruinsma,3 we find that

Dm5qD«~q!, ~4!

where

D«~q!5 (
k51

`

k@«~qk11!22«~qk!1«~qk21!#. ~5!

The left @md(p/q)# and right@m i(p/q)# endpoints of the
n(m) devil’s staircase intervals are the changes of the
ground-state energy resulting from decreasing and increasing
N by one particle, respectively. The ground state and its
space structure here described are of a universal nature, since
they occur for all physically reasonable pair potentials
«(x).0.

As will be seen from the following, the most convenient
thermodynamic variables for our study are notT andm, but
insteadT and the pressureP. The dependence ofn on P at
T50 is also a devil’s staircase which differs fromn(m) only
in the width of the step,DP. The endpoints of this devil’s
staircase,Pd(p/q) andPi(p/q), are changes of the ground-
state energy resulting from decreasing or increasingL, re-
spectively, byone spacingat fixed N. (P is measured in
energetic units,Pi,Pd.) Taking into account this fact, one
can obtain the simple formula

DP5pDm/q5pD«~q!, ~6!

as shown in the Appendix.
One should stress a remarkable feature of expressions~4!

and ~6!, namely, that the devil’s staircase intervalsDm and
DP are proportional to the valueD« ~5!, which is itself
determined by the electron-electron interaction at distances
*q irrespective of the number of electrons, p, per unit cell.
Thus, Dm and DP tend to zero asq→` according to
]2«(x)/]x2ux5q . Hence the more ‘‘irrational’’ is the ratio
p/q, the less is the lengths of the intervals~4! and ~6!. This
suggests that at finite temperaturesall GWL space structures
of period q, fulfilling the condition «(q)@T, are slightly
perturbed by thermal fluctuations. Conversely, ifq satisfies
the condition«(q)&T the corresponding GWL structure will
be essentially transformed or completely destroyed, smooth-
ing out the devil’s staircase intervalsDP(q) andDm(q).

We will study the most realistic case, that of a rapidly
declining pair potential such as, for example, a screened
Coulomb potential~electrons! or a lateral Ruderman-Kittel-
Kasuya-Yosida~RKKY ! interaction potentials~adatoms!.8

The rapid fall off of the parameter region suggested by the
inequalities

«~1/n!@«~2/n!,

T@«~2/n! ~7!

is of greatest importance. These inequalities imply that one
can neglect the next-nearest-electron interactions, and that
~as is suggested by our previous discussion! in region ~7!
only the devil’s staircase steps corresponding to the Hubbard
structures withp51 can survive at rather large values of the
parameterP/T. Thus we will consider just the parameter
region ~7!, taking into account only the interaction between
the nearest-neighboring particles. This simplification~NN
approximation for short! allows us to construct a self-
consistent theory which preserves the most important ther-
modynamic properties of the 1D system under consideration.
Qualitatively the results are insensitive to the concrete form
of the repulsion pair potential as is the GWL itself.

III. THERMODYNAMIC POTENTIAL

In the NN approximation the 1D electron system may be
considered as an ensemble of independent, noninteracting
nearest-neighbor-electron pairs~dimers! which are character-
ized by interelectron distancesl51,2, . . . and energies
«( l ). ~We will call thesel pairs, for short.! The total energy
of the system is the sum over alll -pair energies:

E5E$nl%5(
l51

`

nl«~ l !, ~8!

Here $nl% symbolizes a given set ofl -pair numbers
n1 ,n2 ,. . . . It must be emphasized that thel -pair ensemble
cannot be considered to be an ideal gas of ‘‘particles’’ with
internal ‘‘quantum numbers’’l and internal energies«( l ).
The reason is that there arestrong space correlationsbe-
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tween l -pair positions. That is transferring a givenl pair
~typical l;n21) by a distanceDL@n21 in any direction
inevitably results in the order ofnDL shifts in the opposite
direction of otherl pairs ~by distances;n21) . It is the
combination of these correlations with the additive structure
of the energyE$nl% that causes a rather peculiar thermody-
namic behavior in the NN approximation. On one hand, the
distribution of l pairs overl turns out to be Boltzmann-like
~see below!, but on the other, the dependenciesn(P) and
n(m) have nothing in common with those for ideal gases.

To construct the thermodynamics of the system under
consideration one must take into account the condition im-
posed onl -pair numbers to a given system lengthL, namely,

L5(
l51

`

lnl . ~9!

The simplest way to proceed is to change thermodynamic
variables fromN, L, andT to N, P, andT, by introducing
the isothermal-isobaric partition function

Z5Z~N,P,T!5(
$nl %

expS 2
E$nl%1PL$nl%

T DW$nl%. ~10!

Here the summation is taken over all possible$nl% ’s sat-
isfying the condition

N5(
l51

`

nl ,

whereL is the total length given by~9!, and

W$nl%5N!Y )
l51

`

nl ! ~11!

is the statistical weight of the states with a given set of
l -pair numbers. Introducing the effective energy

«̃ ~ l ,P!5«~ l !1Pl ~12!

and using formula~11!, we can transform expression~10! to
the form

Z~N,P,T!5F(
l51

`

expS 2
«̃~ l ,P!

T D GN, ~13!

from which we find that the thermodynamic potential~Gibbs
free energy! F5Nm(P,T) is given by

F~N,P,T!52TN lnF(
l51

`

expS 2
«̃~ l ,P!

T D G . ~14!

As is to be expected, the thermodynamic potential~14!
has quite a different structure from that for ideal gases. It is
this which leads to unconventional thermodynamic behavior.

IV. EQUATION OF STATE

First let us find the dependence of the electron densityn
on P andT. Using the well-known thermodynamic relation
L5@]F(N,P,T)#/]P, from ~14! we obtain

n5
N

L
5

(
l51

`

expS 2
«̃~ l ,P!

T D
(
l51

`

l expS 2
«̃~ l ,P!

T D . ~15!

A similar expression form(P,T) has the form

m52T lnS (
l51

`

exp@2 «̃~ l ,P!/T# D , ~16!

as follows from~14!. Equations of state~15! and~16! estab-
lish the links betweenn, m, P, andT. The most convenient
choice for the two independent thermodynamic variables is
determined by the concrete physical situation under consid-
eration.

A full description of the thermodynamics of the 1D lattice
system requires us to amplify the equations of state by de-
termining the average number ofl pairs,Nl . According to
~13! this quantity is determined by the formula

Nl5N~ l ,P,T!5
]F~N,P,T!

]«~ l !
.

Substituting relation~14! into this expression, we find that
the distribution ofl pairs is of a Boltzmann type; that is,

Nl5
N exp@2 «̃~ l ,P!/T#

(
k51

`

exp@2 «̃~k,P!/T#

. ~17!

According to~17! the distribution ofl pairs is determined
by the behavior of the function«̃( l ,P), which has an integer-
valued argumentl . At P.PC[«(1)2«(2) this function in-
creases monotonically, while atP,PC it has a minimum.
Due to the properties of the pair potential«(x) ~see Sec. II!
there is only one minimum at integerl 05 l 0(P).1, which is
located at a distance,1 from the~single! root of the equa-
tion,

d«~x!

dx
52P. ~18!

If P.PC , the most probablel -pair length isl51; while in
the opposite case,P,PC , the length isl 0(P).

To analyze~15!, ~16!, and ~17! it is convenient to intro-
duce independent variablesg5P/T andP, and thus to rep-
resent the ratio«̃( l ,P)/T in the form «̃( l ,P)/T5gF( l ,P),
by introducing the dimensionless function

F~ l ,P!5«~ l !/P1 l .

We now study the limitg!1. In this case the main contri-
bution to the sums overl in ~15! comes from large values,
l;1/g, and hence we can replaceF( l ,P) by simply l . In the
g→0 limit this leads to the classical ideal gas equation of
state

PL5NT.

The result is quite reasonable because in the limit asg ap-
proaches zero the electron-electron interactions is entirely
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neglected, and the electrons themselves can be considered
independent particles. Expanding the sums of~15! in powers
of the parameterg, we obtain the analog of the well-known
thermodynamic virial expansion. The first term of it gives
the van der Waals–like equation of state,

P~L2B~T!N!5TN, ~19!

where the quantity

B~T!5(
l51

` F12expS 2
«~ l !

T D G.0

~essentially, the second virial coefficient! is the effective de-
crease of the system volume due to the electron-electron re-
pulsion.

In the opposite limiting case,g@1, the thermodynamic
behavior of the system depends essentially on whether the
function «̃( l ,P) has a minimum or not~see above!. In the
first case (P,PC) only one term, that withl5 l 0(P), gen-
erally makes the major contribution to sums~15! and ~16!.
More exactly, it takes place for all pressuresP which are not
too close to the degeneration pointsPq determined by the
expression

Pq115«~q!2«~q11!, q51,2, . . . . ~20!

At these values ofP the contributions oftwo terms, with
l5@x0(Pq)#5q and l5@x0(Pq)11#5q11, coincide
@x0(P) is the root of Eq.~18!#. The set of points$Pq% divide
the P axis into a set of intervals$Pq11 ,Pq%, which are~in
the framework of the NN approximation! nothing but the
devil’s staircase intervals corresponding top51 @see~6!#.
The width of theqth interval is

DPq[Pq2Pq115«~q21!22«~q!1«~q11!.

Within these intervalsn is independent ofP, with an expo-
nential accuracy by the parameterg, and equals

n5const51/q. ~21!

Hence the 1D system has a periodic structure with a period
q. This result confirms the suggestion made in Sec. II. Thus,
just as in the parameter regiong@1, for P,PC the ground-
state devil’s staircase manifests itself to its full extent~see
Fig. 1!.

Within the intervals$Pq11 ,Pq% the translational symme-
try is broken due to thermal creation ofl pairs with
l5q61. According to~17! the total number ofq61 pairs
has the exponential dependence

Nq215N expS P2Pq

T D ,
~22!

Nq115N expS Pq112P

T D .
As follows from ~15! and~17!, the presence ofq61 pairs

changes the densityn by a small value,

dnq5
1

q2N
~Nq212Nq11!. ~23!

The physical meaning of the last expression is clear. It shows
that eachq11-pair increasesthe length of the systemL by
onespacing and, conversely, aq21 pairdecreases Lby the
same value. These excitations which are elementary
‘‘quanta’’ of rarefaction (q11 pairs! or compression
(q21 pairs! may be considered as particular kinds of dis-
crete solitons.

From ~15! and ~16! one easily concludes that the depen-
dence ofn on the chemical potentialm has a similar behav-
ior, the widths of devil’s staircase intervalsDmq being ex-
pressed in termsDPq according to~6!. At a givenm the
deviation ofdn ~23! arises due to a change in the particle
numberN at a fixed lengthL. This means that creation on
annihilation of single electrons in the system increases or
decreases, respectively, the total number of the above men-
tioned rarefaction and compression solitons byq. Hence, in
the limit g!1, these solitons are effectively free charge car-
riers with thefractional charge

e*56e/q, ~24!

where e is the electron charge and the signs ‘‘1 ’’ and
‘‘ 2 ’’ correspond to rarefaction and compression solitons,
respectively. Formula~24! generalizes Hubbard’s result,1

which holds for the special caseq52. The study of the con-
ductivity of 1D electron systems with LRIR will be the sub-
ject of a separate paper.

As one can see from~22! and ~23!, as P tends to the
endpointsPq , the solitons numbersNq21 andNq11 rapidly
increase by an order of magnitude compared withN. This
means that the electron density drastically changes between
the asymptotic valuesn51/(q21) andn51/q upon chang-
ing the pressureP by a value;T. For a description of this

FIG. 1. The dependence of electron densityn against pressure
P obtained using~ 15!, Dn51/(q21)21/q.
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intermediate regions one should take into account the two
terms withl5q21 andl5q in the sums overl of ~15!. This
leads to the simple formula

1/n5q2
1

11expS Pq2P

T D , ~25!

which holds over the whole regionuP2Pqu!Pq . When
Pq2P@T then it reduces toq2(Nq21 /N), whereNq21 is
given by ~22!. Similarly, in the limitP2Pq@T, expression
~25! turns intoq211(Nq /N). Within the intermediate do-
main, uPq2Pu;T, the system is a highly disordered liquid,
since the numbersNq andNq21 are of the same order of
magnitude.

In the caseP.PC andg@1 an ‘‘electron crystal’’ with
period q51 is formed. The number of translational
symmetry-breaking elementary excitations is

N15N expS PC2P

T D .
These solitonlike excitations are simply electron vacan-

cies with charge

e*5e.

SincePC is also the endpointP2 @see~20!#, the intermediate
region between crystals withq51 and 2 is described by
expression~25! at q51.

Thus a change in the pressureP at a given parameter
value ofg@1 produces a succession of electron crystals with
periodsq51,2, . . . . Theperiodq increases asP decreases.
It should be noted that at fixedg@1 these crystals exist even

asP tends to zero. In the low-pressure limit the typical value
of q is determined by the equationd«(x)/dxux5q52P. The
thermodynamic behavior of the system as a whole is sche-
matically represented in Fig. 2.

V. CONCLUSIONS

We have shown that the NN approximation leads to a rich
thermodynamics. In spite of the seeming simplicity of the
model, it contains the most essential features of discrete 1D
systems with LRIR, i.e., strong long-range electron-electron
correlations established within the framework of the systems
discreteness. It is this that results in the continuous transfor-
mation of the 1D electron ensemble from a ‘‘gas’’ state to a
‘‘solid,’’ the latter of which is characterized by a set of elec-
tron crystals. The parameterg5P/T, which controls this
transformation, plays the role of a correlation measure. As
the temperature decreases, restriction~7! is violated and
more and more of the fine structure of the GWL ground state
necessarily reveals itself. These tiny steps should appear in
the intermediate regionsuP2Pqu;T located between the
large steps of the NN-approximation stair structure. We in-
tend to study this low-temperature problem, which is beyond
the scope of the NN approximation, using a general thermo-
dynamic approach. In this context we will study space cor-
relations in 1D LRIR systems~with t50). We hope that the
development of our theory will allow us to calculate a num-
ber of physical characteristics of the system under consider-
ation, in particular the optical-absorption spectra at finite
temperatures~a problem first considered by Hubbard1!.
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APPENDIX

To derive~6! it is appropriate to consider the changes of
the GWL energyE(N,L) (n5N/L5p/q) whenN andL are
decreased or increased by altering the number of electrons
per cell,p, or the GWL period,q, respectively. Taking into
account the definitions of the devil’s staircase endpoints
Pi(n) andPd(n), we have

E~N,L2q!5E~N,L !1qPd ,

E~N,L1q!5E~N,L !2qPi . ~A1!

On the other hand, the energiesE(N,L6q) can be expressed
in terms of then(m) devil’s staircase endpointsm i(n), and
md(n) by

E~N,L2q!5E~N2p,L2q!1pm i ,

E~N,L1q!5E~N1p,L1q!2pmd . ~A2!

IncreasingN by p and simultaneously increasingL by q is
equivalent to inserting one elementary cell into the GWL.

FIG. 2. The schematic distribution of gas (g!1), liquid
(g;1) and ‘‘solid’’ (g@1) states in the (P,T) plane.V-shaped
curves are conditional boundaries,dnq(P,T)51/q and
dnq11(P,T)51/q, between the electron liquid and electron ‘‘crys-
tal.’’
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Correspondingly, one can decrease byp and q, which is
equivalent to removing one elementary cell. Hence

E~N6p,L6q!5E~N,L !6u~n!, ~A3!

whereu(n) is the energy per GWL cell. Combining~A1!
and ~A2! with ~A3!, it is easy to show that

~m i2md!p5~Pd2Pi !q.

This equality is the same as formula~6! because
Dm5m i2md andDP5Pd2Pi .
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