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In the present work, we compare the efficiency, accuracy, and robustness of four basic iteration methods for
implementing self-consistency in Wigner function-based quantum device simulation. These methods include
steady-state Gummel, transient Gummel, steady-state Newton, and transient Newton. In a single mathematical
framework and notation, we present the numerical implementation of each of these self-consistency iteration
methods. As a test case to compare the iteration methods, we simulate the current-voltage (I -V) curve of a
resonant tunneling diode. Standard practice for this task has been to rely solely on either a steady-state or a
transient iteration method. We illustrate the dangers of this practice, and show how to take advantage of the
complimentary strengths of both steady-state and transient iteration methods where appropriate. Thus, because
the steady-state methods are vastly more efficient~i.e., have a much lower computational cost!, and are usually
equal in accuracy to the transient methods, the former are preferable for wide-ranging initial device investi-
gations such as tracing theI -V curve. Implementation difficulties which we address here may have reduced the
use of the steady-state methods in practice. On the other hand, the transient methods are inherently more robust
and accurate~i.e., they reliably and correctly reproduce device physics!. However, the high computational cost
of the transient methods makes them more appropriate for a narrower range of directed investigations where
transient effects are inherent or suspected, rather than for fullI -V curve traces. Finally, we found the two
Gummel methods to be generally preferable to their~theoretically more accurate! Newton counterparts, since
the Gummel methods are equally accurate in practice, while having a lower computational cost.
@S0163-1829~96!00135-X#

I. INTRODUCTION

The Wigner function formulation of quantum
mechanics1–3 has many useful characteristics for the simula-
tion of quantum-effect electronic devices, including the natu-
ral ability to handle small-signal or transient conditions in
self-consistent, dissipative, and open-boundary systems.4–9

However, solving the Wigner function transport equation is a
relatively computer-intensive proposition. Further, the inclu-
sion of self-consistency7–11 requires an iterative solution of
the Wigner function transport equation and Poisson’s equa-
tion, making the computational efficiency of the iteration
method critically important. In the present work, we consider
four basic iteration methods for implementing self-
consistency in the Wigner function approach to quantum de-
vice simulation, including steady-state Gummel, transient
Gummel, steady-state Newton, and transient Newton. In the
first half of this paper~Secs. II–V!, we present, in a single
mathematical framework and notation, the analytical formu-
lation and numerical implementation of each of these self-
consistency iteration methods. In the second half~Sec. VI!,
we use simulation examples to compare the efficiency~com-
putational cost!, accuracy~ability to correctly reproduce de-
vice physics!, and robustness~reliability! of these iteration
methods.

Due to the difficulty of implementing and maintaining
multiple self-consistency iteration approaches in a numerical
simulator, most researchers using Wigner function simula-
tion rely on a single implementation, usually the steady-state
or transient Gummel approach, in their quantum device re-

search. The simulation tool used in this work, SQUADS
~Stanford quantum device simulator!, has been designed for
the investigation of quantum devicesimulationas much as
for the investigation of quantum deviceoperation. Its modu-
lar structure makes it ideally suited to the analysis of alter-
native simulation approaches, such as the comparison of self-
consistency iteration methods in this work. Only by
presenting the theory, numerical implementation, and simu-
lation examples for all of these simulation alternatives in a
cohesive framework is this comparison possible.

In selecting specific simulation examples for this com-
parison, we note that only transient iteration methods are
suitable for time-dependent investigations, such as switch-
ing, small-signal, or large-signal simulations. However, for
the very basic electronic device simulation task of tracing the
current-voltage (I -V) curve, steady-state methods are also
suitable. Therefore, we used the accurate generation of the
I -V curve for the ‘‘prototypical’’ quantum device, the reso-
nant tunneling diode~RTD!,12–14 as the test case for evalu-
ating the four self-consistency iteration methods. In fact, this
device and simulation task have been the most common in
the Wigner function simulation literature. Figure 1 shows a
‘‘typical’’ measured RTDI -V curve.15 Some features of note
in this I -V curve are a negative differential resistance region
and a bistable region. The ‘‘plateau’’ shape in the negative
differential resistance region is actually the time average of a
very fast oscillating current. The ability of the various self-
consistency iteration methods to efficiently and reliably re-
produce these features will be the basis for their comparison.
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II. WIGNER FUNCTION FORMULATION

The Wigner function approach models a quantum system
by computing the evolution of the Wigner functionf (x,k,t),
a phase-space state function, according to the Wigner func-
tion transport equation~WFTE!. In one dimension and for a
constant effective mass, the WFTE is
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whereh is Planck’s constant,m* is the electron effective
mass, andU is the conduction-band minimum.~We use an
n-type device for all derivations and simulations in this
work.! Scattering has been implemented in the Wigner func-
tion method using the relaxation time approximation, based
on the analogy of the WFTE to the~classical! Boltzmann
transport equation.5,6 The resulting scattering term is
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wheret is the relaxation time andf eq is the equilibrium~zero
bias, no scattering! Wigner function. In this work, we use the
upwind ~i.e., incoming-carrier!, equilibrium, Fermi-Dirac
distribution boundary conditions given by Frensley:4
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Enforcing self-consistency in an electronic device simula-

tor means requiring that the energy-band profileU(x) of the
device be consistent with the charge-density profiler(x) in
the device. To ensure this, Poisson’s equation~PE! must be
satisfied simultaneously with the WFTE. The PE uses the
charge density to determine the energy-band profile of the
device, and the WFTE uses the energy-band profile to deter-
mine ~among other things! the charge density. In one dimen-
sion, Poisson’s equation can be written

d
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wheree is permittivity, u is the ~Hartree, or mean-field! po-
tential,q is the electronic charge,c is the free-electron den-
sity, andC is the fixed charge density~e.g., ionized dopants!.
The conduction-band minimum is calculated from the poten-
tial

U~x!5u~x!1dU~x!, ~5!

where dU is the ~fixed! heterostructure band offset. The
boundary conditions on the PE as enforced in SQUADS are
very simple: the applied bias strictly determines the potential
at the contacts. We chose thex50 Fermi level as the refer-
ence energy, so thatdU~0!52m0. Thus the PE boundary
conditions are:

u~0!50, ~6a!

u~L !5~m02mL!1@dU~0!2dU~L !#2qVa . ~6b!

To complete the WFTE-PE interdependence, the carrier
density is calculated from the Wigner function using
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1
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III. DISCRETIZATION

To solve the WFTE-PE system, we must discretize the
simulation domain and, accordingly, these two equations.
The details of this process are well described elsewhere,4,16

so only a summary is reported here, as implemented in
SQUADS. In this section, we complete most of this discreti-
zation process, leaving only those details which differ be-
tween the self-consistency iteration methods for the follow-
ing sections. The simulation domain is discretized as
follows:
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whereL is the width of the simulation region.
In the present work, we compare to and extend the results

of Jensen and Buot,16 and, therefore, we use their device
structure and WFTE discretization scheme. In particular, we

FIG. 1. Experimental RTDI -V curve ~Ref. 15! showing the
characteristic negative differential resistance region and plateau
structure between 0.8 and 1.3 V. The plateau current is actually the
time average of a high-frequency oscillating current.~Permission to
reprint data given by T.C.L.G Sollner.!
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use a second-order upwind difference scheme to discretize
the position derivative, and Cayley discretization for the time
derivative. The discretized WFTE, a system of (Nx11)Nk
simultaneous equations~one for each phase-space grid
point!, can be abbreviated

~T1K1P1S!@Fi , j ,n#52~4/D t! f i , j ,n , ~12!

where, in the transient mode,
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@Note that, for a transient simulation with the Cayley time
derivative~hereafter called a Cayley simulation!, solving the
system of equations yieldsFn , from which the Wigner func-
tion f n11 must be calculated.# In the steady-state mode,

T50, ~14a!

Fi , j ,n5 f i , j . ~14b!

Below, the time subscriptn is suppressed, since the other
terms in Eq.~12! are time independent. For these terms,
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whereV is called the nonlocal potential.@Note that for Cay-
ley simulations,Feq52 f eq, although the factor of 2 cancels
out in Eq.~17!. However, it is important to useFbc52 f bc for
all boundary conditions in Cayley simulations.#

Given the discrete Wigner function, the discrete carrier
density is computed as
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For completeness, the expression for the discrete current
density will be given. It is determined from the continuity
equation, using the fact that the current density must be po-
sition independent at steady state.4 The resulting expression
depends on the form used for the discrete position derivative.
For the second-order upwind derivative, the discrete current
density is6
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We will discuss in somewhat more detail the discretiza-
tion of the Poisson equation, since the implementation of
self-consistency using the PE is the focus of this work. The
PE has been discretized in two ways by researchers investi-
gating the WFTE-PE system: the direct form16 and the dif-
ferential~or Newton! form.9 The appropriate form of the PE
depends on the self-consistency iteration method, as dis-
cussed in Secs. IV and V. Both forms are described here.

The direct Poisson equation can be written, for a position-
dependent permittivity,

~11a!ui1122ui1~12a!ui215~q2Dx
2/« i !@Ci2ci #,

~20a!

a[~« i112« i21!/~4« i !. ~20b!

@Note that for the position-independent permittivity assumed
in the simulations of Sec. VI,a50, and that the discrete PE
~in both forms! is even simpler.#

The Newton form of the PE is more complicated but more
flexible. Newton equations are inherently iterative, seeking
to find the solution to a nonlinear system by successively
better approximations. To derive the Newton PE, we first
define the ‘‘Poisson function’’P(u), which is based on the
PE and must evaluate to 0 when the self-consistent potential
and carrier density are supplied as input. From Eq.~4!,
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d
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d
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~21!

In Eq. ~21!, n is the iteration index~which for transient simu-
lations is also the time step!. A Newton iteration is a two-
step process. First, the Newton PE system of equations is
solved fordu, thechangein the potential,

F]P~n!~u!

]u~n! G @du~n11!~x!#52@P~n!~u!#. ~22!

Then the potential is updated,

u~n11!~x!5u~n!~x!1du~n11!~x!. ~23!

If the Newton iteration converges to the self-consistent solu-
tion, P(n)(u) converges to 0, and therefore so will the up-
dates,du. We denote the converged self-consistent potential
asu* (x).

In discrete form, the Newton PE becomes
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anddi ,i 8 is the Kronecker delta function. Note that]c/]u is
left unspecified for now, since its value depends on which
self-consistency iteration method is used. It is not difficult to
show that the direct PE, Eq.~20a!, is actually a special case
of the Newton PE, where we take]c/]u50. This is how
SQUADS implements the direct PE when needed.

Solving the direct PE yields the exact potential profile
u(x) for the given carrier density profilec(x). The Newton
PE, in contrast, uses the]c/]u term to account for changes
in c(x) that will result from theu(x) solution, and thereby
attempts to predict au(x) which is closer tou* (x). In other
words, the]c/]u term ~which should be based on a distilla-
tion of the WFTE! in the Newton PE provides some correc-
tive feedback to achieve faster convergence to the self-
consistent operating point.

An unresolved issue is what to use for the initial potential
profile u0 in the first solution of the Newton PE and the
WFTE at each bias point. For steady-stateI -V curve simu-
lations SQUADS uses linear extrapolation fromu* (x) at the
previous two bias points.@At the first bias point, linear band
bending is used, and at the second, a linear potential is added
to u* (x) from the first bias point.# TransientI -V curve trac-
ing is one continuous simulation, so the final potential profile
u* (x) at one bias point is used to computeu0 at the next. In
particular, when the bias is incremented in a transient simu-
lation, the potential profile is incremented linearly across the
entire device.17 @Again, linear band bending is used to ini-
tialize the potential profile at the first bias point.#

The combination of the WFTE and PE, when discretized
for numerical solution, constitutes a nonlinear system of
equations. The self-consistency iteration methods offer a
means of solving this nonlinear system~which we cannot
solve directly! by iteratively solving a set of linear equations
~which wecan solve directly!. Sections IV and V detail the
remainder of the numerical implementation of four self-
consistency iteration methods for the WFTE-PE system. Be-
cause the mathematics of the steady-state and transient ap-
proaches of each method~Gummel or Newton! are similar,
the two Gummel approaches are described together in Sec.
IV, and the two Newton approaches in Sec. V. However, the
task of tracing the self-consistent operating points along the
I -V curve, which has been chosen for our iteration method
comparison, is very different for the transient and steady-
state approaches. The steady-state approaches try to locate
the self-consistent operating point in as few iterations as pos-
sible, while the transient approaches seek to follow the actual
time-dependent operation of the device until it evolves to the
steady state. Therefore, when running simulations, the con-
verse pairing is more appropriate, so in Sec. VI we consider
the two steady-state methods together followed by the two
transient methods.

IV. GUMMEL „PLUG-IN … APPROACH

The Gummel~a.k.a. plug-in! approach18 to solving the
WFTE-PE system is almost universally used to add self-

consistency to the WFTE. This is due to the simplicity of the
Gummel approach, since the two equations are solved
independently,19 and the PE is numerically much simpler to
implement and solve than the WFTE. For the steady-state
Gummel method,8,9 the steady-state WFTE and the PE are
iteratively and alternately solved, plugging in one equation’s
solution as input for the other. When the Wigner function
and potential stop changing~within specified convergence
criteria!, the self-consistent operating point has been reached.
For the transient Gummel method,6,7 the only mathematical
difference is that the transient WFTE is used, so that each
iteration is a time step. That is, we alternately time step the
WFTE and update the potential using the PE until steady-
state operation is reached~again, within specified conver-
gence criteria!. The transient Gummel iteration is initiated by
solving the WFTE once in steady-state mode.

We now consider whether the direct or Newton form of
the PE@i.e., zero or nonzero]c/]u term in Eq.~26!# should
be used for the steady-state and transient Gummel iteration
methods. We have observed that a steady-state Gummel it-
eration often diverges@consecutive Wigner function and
u(x) solutions oscillate wildly# unless some corrective feed-
back is supplied through a nonzero]c/]u. Thus we must use
the Newton PE for the steady-state Gummel method. In gen-
eral, there is no exact, closed-form expression for]c/]u for
a quantum system. This is why we solve the WFTE—it ac-
counts for quantum effects such as tunneling and reflection,
along with nonequilibrium carrier transport, to relate the en-
ergy bands to carrier concentration. So we seek an approxi-
mate form for]c/]u that is easy to compute but still pro-
duces convergence. To this end, the SQUADS uses the
classical, equilibrium expression for]c/]u. Any justification
must be based on the transport equation. In this case, we see
that the boundary conditions supply carriers to the device
according to the classical relationship, even though quantum
processes and nonequilibrium transport will distort this rela-
tionship as the distance from the contacts increases. Also,
scattering~if included! tends to produce the classical result.

The standard approach~see, e.g., Ref. 9! in deriving ]c/
]u is to assume classical Maxwell-Boltzmann statistics:

c~u!5Nc exp@~u2u0!/~kBT!#, ~27!

]c

]u
5
c~u!

kBT
. ~28!

Equation~28! results in relatively slow but reliable conver-
gence to the self-consistent operating point. Note, however,
that the boundary conditions in Eqs.~3a! and~3b! are based
on Fermi-Dirac statistics, not Maxwell-Boltzmann statistics.
We have observed that using Fermi-Dirac statistics to derive
]c/]u can significantly accelerate the convergence speed of
the steady-state Gummel method. SQUADS uses the Joyce-
Dixon approximation20 to relatec andu according to Fermi-
Dirac statistics. To determine]c/]u, we write u(c), derive
]u/]c, and invert. Thus

r[c/Nc , ~29!

u2u05kBTF ln~r !1 (
m51

amr
mG , ~30!
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We have found that using Joyce-Dixon terms abovem53
does not improve convergence speed. In fact, in cases where
r i@1 for one or more position nodesxi , including higher-
order terms, may render the steady-state Gummel method
nonconvergent. Therefore, SQUADS uses a third-order
Joyce-Dixon approximation by default. If the iteratesP i

n are
not converging toward 0, we drop back to Maxwell-
Boltzmann statistics~zeroth-order Joyce-Dixon approxima-
tion! until progress toward convergence is maintained for
several iterations. The algorithm by which the Joyce-Dixon
order is dynamically chosen to accelerate convergence of the
steady-state Gummel method in SQUADS is now rather
complicated, being based more on experience than theory.
To our knowledge, only the standard~i.e., Maxwell-
Boltzmann! form of ]c/]u has been used in previous steady-
state Gummel iterations of the WFTE-PE system. In Sec.
VI E we show that our accelerated convergence algorithm
greatly decreases the computational cost of the steady-state
Gummel iteration method.

In contrast to the steady-state Gummel method, the tran-
sient Gummel method seeks to follow the exact evolution of
the device. Since there is no closed form for]c/]u in a
general quantum system, and because the approximations
typically used~such as those used with the steady-state Gum-
mel method! are only heuristically correct, using them in the
transient Gummel method is more likely to create physics
than model it. To avoid this, we must use the direct PE
~]c/]u50!. For the transient Gummel method, then, each
iteration starts with the exact potential profile for the carrier
density at the current time point, the system is evolved one
time step with the transient WFTE, and then the potential is
adjusted for the new~but only slightly different! carrier den-
sity. We present the results of particular transient and steady-
state Gummel simulations in Sec. VI.

V. FULL NEWTON APPROACH

With the Gummel approach to solving the WFTE-PE sys-
tem, two independent~i.e., uncoupled! sets of linear equa-
tions are alternately solved, one derived from the WFTE and
resulting in an updated Wigner function, and the second de-
rived from the PE and producing an updated potential. With
the full Newton formulation,21 we instead solve acombined
~i.e., coupled! WFTE-PE linear system to produce simulta-
neous updates of both the Wigner function and potential. The
advantage of the full Newton approach is that changes in one
solution directly affect the outcome of the other, so the cor-
rective feedback that we had to approximate in the steady-
state Gummel method is inherent in the Newton formulation.
This tends to produce much faster convergence with a
steady-state Newton method than with the steady-state Gum-
mel method. Like the transient Gummel method, the tran-
sient Newton method seeks to follow the exact evolution of
the quantum system, so it evolves to the steady-state operat-
ing point only as quickly as a real device would. However,

the transient Newton method should be more accurate than
the transient Gummel method, but by how much is not yet
clear.

Use of the Newton formulation for quantum
self-consistency5 requires us to define a WFTE function
W(F), just as we defined the PE function in Eq.~21!. For
this purpose, we simply use Eq.~12!,

W~F ![~T1K1P1S!@F#1~4/D t! f i , j ,n . ~33!

The Newton formulation for the WFTE-PE system solves the
following system:

F ]W

]F
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]u
]P

]F

]P

]u

G ~n!

FdFdu G ~n11!

52FW~F !

P~u! G ~n!

, ~34!

where the leftmost matrix is the Jacobian, andP is the Pois-
son function defined in Eq.~21!. After each solution of Eq.
~34!, the unknowns are updated as

F ~n11!5F ~n!1b~dF !~n11!, ~35a!

u~n11!5u~n!1a~du!~n11!. ~35b!

As with the Gummel iteration methods, convergence toward
the steady-state, self-consistent operating point with the
Newton iteration methods is determined by monitoring the
progress of the Poisson functionP(n)(u), and updatedu(n)

iterates towards 0.
The update scaling factorsa and b in Eqs. ~35a! and

~35b! are used only for the steady-state Newton method. Be-
cause the transient Newton method attempts to follow the
transient operation of the device exactly, one must not
modify the updates that are computed. Even for the steady-
state Newton method, these update factors are ideally unity,
though they can be reduced to some fraction when the iter-
ates are not converging. Frensley10 useda50.5 andb50.1.
However, for the simulations reported herein, in the few
cases when the steady-state Newton method could not locate
the self-consistent operating point, reducinga andb did not
help, and in fact usually made convergence less likely. Thus
the simulations in this work always useda5b51. Instead,
where convergence was not occurring with the steady-state
Newton method, SQUADS uses the steady-state Gummel
method until the iteration begins converging again. Finally,
since the Newton update in Eq.~35a! requires a Wigner
function to updatefrom, both steady-state and transient New-
ton simulations begin with a single steady-state Gummel so-
lution of the WFTE. Initialization of the potential profile was
discussed in Sec. III.

The full Newton equation~34! must be discretized for
numerical solution. In discrete form Eq.~34! is

F ]Wi , j

]Fi 8, j 8
]Pi

]Fi 8, j 8

]Wi , j

]ui 8
]Pi

]ui 8

G ~n!

FdFi , j

dui
G ~n11!
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~36!
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Expressions forWi , j andPi , j were given in Sec. III. The
Jacobian blocks have yet to be determined. Actually, the
Jacobian block for]W/]F is identical to the coefficient ma-
trix used for the WFTE solution of a Gummel iteration, al-
though the unknowns that we solve for in the Newton for-
mulation aredFi , j ,n instead ofFi , j ,n . The only difference
between the Gummel WFTE coefficient matrix and the New-
ton ]W/]F Jacobian block is that terms which become
boundary conditions with the Gummel formulation are zero
with the Newton formulation, sincedFbc is zero. Thus these
terms do not appear in the right-hand-side vector as in the
Gummel methods.

The ]P/]u Jacobian block is also slightly different from
the PE coefficients used in the Gummel formulation. In par-
ticular, with the Newton formulation, we do not have to at-
tempt to approximate the effect of the change in potential on
the carrier concentration through]c/]u. This relationship is
taken care of exactly through the off-diagonal Jacobian
blocks. The]P/]u block is therefore the same as that used
for the direct PE:

]Pi

]ui 8
5~11a!d i11,i 822d i ,i 81~12a!d i21,i 8 . ~37!

The more interesting Jacobian blocks in this case are the
off-diagonal ones, if only because expressions for them have
~to our knowledge! never been published, although Frensley
has used the steady-state Newton method to solve the
WFTE-PE system.10 The ]W/]u block is somewhat compli-
cated, due to the convoluted way in which theui values enter
into the computation of the nonlocal potential. Note from the
relationship between the band edgeU and the potential en-
ergyu in Eq. ~5! that

]Wi , j

]ui 8
5

]Wi , j

]Ui 8
. ~38!

After some effort, the]W/]u Jacobian block is

]Wi , j

]ui 8
5

24p

Nkh
(
j 951

Nk

f i , j 9 sinF2~ i2 i 8!~ j2 j 9!p

Nk
G ,

~39a!

~1<u i 82 i u<Nk/2!. ~39b!

The Jacobian block for]P/] f is much simpler. Recalling
from Eq. ~7! how carrier concentrationc is calculated, we
find from the definition of the discrete Poisson function in
Eq. ~25! that

]Pi

] f i 8, j 8
5
q2Dx

2«Nk
d i ,i 8 . ~40!

Combining all of these results, Fig. 2 gives an example of
the structure and size of the discrete full Newton equation for
Nx57 andNk56. Since the]W/] f Jacobian block is identi-
cal in the Gummel and Newton formulations, and because
this block is by far the largest in the Jacobian matrix, one
might expect that solving the WFTE-PE system by the two
approaches should require roughly the same storage and
CPU time. This is not at all the case, especially in SQUADS,
where the storage and solution of the discrete WFTE~and

thus the]W/] f Jacobian block! have been highly optimized.
The result is that the Newton formulation requires typically
twice the storage five times as much CPU time per loop as
the Gummel formulation. We present performance data for
all self-consistency iteration methods along with simulation
results in Sec. VI.

VI. RESULTS AND DISCUSSION

A. Simulated device and parameters

As stated previously, simulations in this work used the
RTD device structure and simulation parameters of Jensen
and Buot.16 The simulated RTD, depicted in Fig. 3 at equi-
librium, was composed of a 5-nm undoped GaAs quantum
well between 3-nm undoped Al0.3Ga0.7As tunnel barriers and
3-nm undoped GaAs spacer layers. The GaAs contact layers
were 19 nm each, giving a total device width ofL555 nm.
The electron effective mass was assumed constant at
0.0667m0, and the permittivity was also taken as constant at
12.9«0. We usedNx586, Nk572, Dt51 fs, andt5525 fs
~Ref. 22! at T577 K.

FIG. 2. Newton matrix equation for Wigner function method
self-consistency: Jacobian matrix block sizes and nonzero coeffi-
cient structure forNx57 andNk56.

FIG. 3. Simulated GaAs RTD structure: equilibrium self-
consistent conduction band, Fermi levels, and doping. The 0.3-eV
Al0.3Ga0.7As tunnel barriers are 3 nm thick, and the GaAs quantum-
well width is 5 nm. The center 17 nm of the device~including 3 nm
outside each tunnel barrier! are undoped.
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B. Convergence criteria

The choice of convergence criteria for the WFTE-PE it-
eration presents a dilemma: too loose of criteria and the pre-
dicted self-consistent operating point is not trustworthy; too
tight and the number of iterations required for convergence
may rise dramatically. In this work, we chose to err on the
side of too much computation rather than too little: our con-
vergence criteria were relatively strict.

For steady-state simulations the proper convergence crite-
rion is simply to verify that the~direct! Poisson equation is
satisfied to a high degree. Thus we required that

Pi~u!,1028 eV ~0, i,Nx!. ~41!

This convergence criteria, although necessary, was not suffi-
cient in all cases. To assure that consecutive solutions were
not oscillatory, and for steady-state Newton simulations
whereP(u) is always very small~if update constanta is
unity!, we also required that the potential update at any point
be very small:

dui,1026 eV ~0, i,Nx!. ~42!

These relatively strict convergence criteria were feasible for
the steady-state iteration methods because convergence
tended to be very fast. Some researchers9 have used criteria
like Eq. ~42! as their only indication of self-consistency, but
this is not sufficient. It is possible, especially with an ap-
proximate iteration method such as the steady-state Gummel
approach, for the potential updates to be small without actu-
ally having reached the self-consistent solution.

The convergence criteria in Eqs.~41! and ~42! were also
enforced for the transient iteration simulations in this work,
but they are inadequate to guarantee that the steady-state,
self-consistent operating point has been reached. Thedu cri-
terion is not especially revealing in a transient simulation
because of the approximate proportionality ofdu to the time
stepDt. ~A small time step gives little time for carriers to
move, resulting in a correspondingly small change in the
potential.! Also, because transient simulations tend to oscil-
late around the steady-state operating point as they relax to-
ward it, satisfying theP(u) criterion does not guarantee that
a simulation has reached the steady state. A more definitive
convergence criterion for transient simulations, also used by
Jensen and Buot,11 is based on the fact that the discrete cur-
rent density for the WFTE is defined such that it is position
independent at the steady state, as discussed in Sec. III. Thus
a WFTE transient simulation can be said to have reached the
steady state when the variation in current densitydJ over the
width of the device drops below some relatively small value.
In this work, current densities were on the order of 105

A/cm2, so our final transient simulation convergence crite-
rion was

dJ[~Jmax2Jmin!,1000 A/cm2. ~43!

This criterion was less strict than we would have liked, but
tightening it would have led to much longer simulation
times. Actually, when Eq.~43! was satisfied in a transient
simulation, a steady-state simulation using the final potential
profile usually differed from the actual steady-state result by
less than 10 A/cm2. Further, when it was necessary to verify

controversial transient simulation results, we ran transient
simulations in which all three convergence criteria were four
orders of magnitude tighter.

C. Steady-state iteration method simulations

One purpose of this work was to examine when the
~physically based! transient iteration methods are required to
accurately reproduce the operation of an RTD, and when the
computationally more efficient steady-state iteration methods
may be used. The test device for this work was selected
because of the very interestingI -V curve simulated by
Jensen and Buot,11 who used the transient Gummel method
to implement self-consistency. Their simulations produced
an I -V curve similar in shape to the experimental curve in
Fig. 1 ~although for a different RTD!. In fact, they even
observed persistent current oscillations for all biases in the
plateau region of theI -V curve, concluding that ‘‘intrinsic
oscillations have a dominant influence on the plateaulike
structure and hysteresis in theI -V characteristics.’’11 Sub-
sequent work by Buot and Rajagopal23,24described the phys-
ics behind this behavior.

Based on the results obtained by Jensen and Buot, it was
not clear that the steady-state Gummel and Newton iteration
method simulations would converge in the plateau region,
since persistent oscillations indicate that no stable, self-
consistent operating point exists. Although unstable equilib-
rium points should exist in this region, our otherwise conver-
gent iteration methods could be rendered nonconvergent. In
fact, both the accelerated Gummel and Newton simulations
were unable to converge at some challenging points in the
plateau. However, by automatically using the standard Gum-
mel iteration method in these cases, the steady-state iteration
methods did find self-consistent operating points over the
entire simulated bias range. The resultingI -V curve~Fig. 4!
was very similar to that of Jensen and Buot~also shown!,
and identical for the two steady-state iteration methods. The
hysteresis loop in theI -V curve required the simulation of
both the up-trace~0.0–0.4 V! and the down-trace~0.4–0.0
V!.

It seems contradictory that the steady-state iteration meth-
ods found steady-state operating points in the plateau~0.24–

FIG. 4. Simulated RTDI -V curve using the Gummel and New-
ton steady-state self-consistency iteration methods. Jensen and
Buot’s up-trace ~Ref. 11! ~where different!, and a non-self-
consistent~linear potential! I -V curve are shown for comparison.
~Permission to reprint data given by K. L. Jensen.!
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0.31 V on the up-trace and 0.25–0.24 V on the down-trace!,
while the transient simulation of Jensen and Buot did not.
One possible explanation is that these oscillations, although
persistent, are not perpetual. Jensen and Buot’s conclusions
seem to rule this out. If the oscillations are perpetual, the
simultaneous WFTE and PE solutions found by the steady-
state iteration methods must be unstable equilibrium operat-
ing points. Thus, given any impulse or even numerical noise,
a system prepared according to the steady-state solution will
begin to oscillate in a transient simulation. Determining
whether one or both of these explanations are correct can
only be accomplished with transient iteration simulations,
which are described in Sec. VI D.

Before moving on to transient simulations, one conclusion
can already be drawn based on the RTDI -V curves in Fig. 4.
Also shown in Fig. 4 is a non-self-consistent simulatedI -V
curve for the RTD of Fig. 3. This simulation assumed a
linear potential drop across the undoped~central! region of
the RTD, and therefore did not require solution of the PE,
and only a single WFTE solution per bias point. Comparing
these simulatedI -V curves with the experimental one in Fig.
1 ~for a different RTD structure!, we see that the linear po-
tential simulation was able to predict a negative differential
resistance region, but that is about the limit of its usefulness.
On the other hand, the similarity between the simulated self-
consistentI -V curve and the experimental curve clearly
shows that enforcing self-consistency is necessary to repro-
duce some of the salient physics of real RTD’s. The open
question is whether the computationally expensive transient
iteration methods can add any further detail.

D. Transient iteration method simulations

To compare self-consistency iteration methods, and now
to investigate the nature of the plateau operating points, we
used the transient Gummel iteration method to simulate the
I -V curve of the RTD in Fig. 3 over the same bias range as
for the steady-state simulations. We set a maximum limit of
4000 iterations~4 ps! per bias point. If the transient simula-
tion did not converge in this time~e.g., due to sustained
oscillations!, the simulation moved to the next bias point
anyway. Surprisingly, although the current oscillations ob-
served by Jensen and Buot did occur in the plateau region,
the simulation converged for all bias points except the first
three in the plateau~0.24, 0.25, and 0.26 V!. Further, the
resultingI -V curve~except for those three points! was indis-
tinguishable from the steady-state curve, as one would ex-
pect ~assuming the convergence criteria are strict enough!.

We noticed that the oscillations in the plateau region were
progressively more persistent at lower biases. Whereas only
1300 iterations were required to reach convergence at 0.31
V, fully 3800 iterations were required at 0.27 V. The 0.26-V
bias point was apparently on course to convergence at 4000
iterations. Indeed, further evolution resulted in full conver-
gence after a total of 7008 iterations. To demonstrate these
oscillations, Fig. 5 shows the complete plot of collector cur-
rent versus time at 0.26 V on the up-trace. Both the oscilla-
tions and the convergence criteria decreased very regularly
over the course of the simulation, with a decay constant of
0.2/ps. For example, for the oscillation amplitude,

A~ t !'0.83105e2~0.2t/1 ps! A/cm2. ~44!

Although the ultimate fates of the remaining points, 0.24 and
0.25 V on both curve traces, were inconclusive after 4000
iterations, we expected, extrapolating from the results and
trends for the other plateau points, that their oscillations
would simply be even more persistent, but not perpetual.

Our belief that the transient RTD simulation would even-
tually reach the steady state for 0.24 and 0.25 V turned out to
be incorrect. Further evolution~in either curve-trace direc-
tion! led to oscillations of constant amplitude by about 8000
iterations at both biases. For example, Fig. 6 shows the tran-
sient current at 0.24 V on the up-trace. We allowed these
simulations to run for several thousand more iterations to
make certain that the oscillations were not slowly decreasing,
as we had expected. Data on the final oscillations at these
two points~independent of the trace direction! are given in
Table I.

We used one additional test to assure that the 0.24- and
0.25-V bias points were unstable. As suggested in Sec. VI C,
we ran transient Gummel simulations starting from the fully
converged steady-state Gummel solution at 0.24 and 0.25 V,
expecting them to diverge~oscillations to build!. This was
indeed the result. The collector current versus time for the
0.24-V simulation is shown in Fig. 7. The result for 0.25 V
was similar. Divergence was very regular, with a decay con-
stants of20.4/ps at 0.24 V and20.2/ps at 0.25 V. For the
oscillation amplitude at 0.24 V,

FIG. 5. Simulated transient collector current as RTD evolves to
the steady state after switching from 0.25 to 0.26 V, showing that
the RTD is stable at this bias.

FIG. 6. Simulated transient collector current after switching
from 0.23 to 0.24 V, showing sustained oscillations.
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A~ t !'6.31e~0.4t/1 ps! A/cm2. ~45!

Of course, the oscillation amplitude will be bounded, just as
it was in Fig. 6. These results prove that the RTD is inher-
ently unstable at these biases. To model this behavior, Buot
and Jensen describe an equivalent circuit model for the RTD
~Ref. 25! that reproduces the bounded instability depicted in
Figs. 6 and 7.

The results at 0.24 and 0.25 V called into question our
conclusion that the remainder of the plateau was stable. The
convergence criterion in Eq.~43! is admittedly not as strict
as we would like. It leaves open the possibility that the RTD
might oscillate perpetually with an amplitude of less than
1000 A/cm2. To verify that the upper portion~0.26–0.31 V!
of the plateau was stable, we ran simulations at the lower end
~0.26 V!, middle ~0.29 V!, and top~0.31 V! of this region
with four orders of magnitude stricter convergence criteria.
Most importantly, the current variation was required to be
less than 0.1 A/cm2 for convergence. Throughout these simu-
lations, the oscillations continued to decay regularly at all
three bias points, reaching convergence at 27 906, 10 424,
and 7522 iterations, respectively. To illustrate, Fig. 8 shows
a plot of the current variation versus time for the 0.26-V
simulation.

Based on the above transient simulations, we can now
conclude that the plateau in the simulated RTD’sI -V curve
is composed of two parts: an unstable region~0.24–0.25 V!
in which the RTD oscillates forever, and a stable region
~0.26–0.31 V! where persistent oscillations eventually die
out. Actually, these regions are simply the result of a mono-

tonic increase in the exponential decay constant@see Eqs.
~44! and ~45!# from 20.4/ps at 0.24 V, through 0 at about
0.255 V, and up to about 0.67/ps at 0.31 V. The unstable
region agrees with Jensen and Buot’s results showing per-
petual oscillations in the plateau, while the stable region con-
tradicts their conclusion that these oscillations occur
throughout the plateau and are required for the plateau to
occur. In fact, these oscillations have only a minor effect on
the value of theI -V curve in the unstable region of the
plateau~see Table I!, and no effect at all elsewhere. We
suspect that Jensen and Buot’s incorrect conclusions resulted
either from premature termination of their transient simula-
tions, or from their use of an accelerated convergence
technique.11

In the above discussion of transient self-consistency simu-
lations, we did not mention the transient Newton iteration
method. In fact, we only ran partialI -V curve traces~5–10
points in either direction and some plateau region points!
using this iteration method. Based on these simulations, we
determined that the RTD evolved almost identically with
transient Newton method as with the transient Gummel
method. For example, Fig. 9 compares the collector current
from the I -V curve simulations at 0.06 V for the two tran-
sient iteration methods. Although the transient Newton
method sometimes converged a few iterations faster, for the
bias point shown in Fig. 9, the transient Gummel and New-
ton methods converged in exactly the same number of itera-
tions ~629!.

We concluded from these observations that performing a
full I -V curve trace with the transient Newton method would
provide no additional information. Thus, although in theory
the transient Newton approach is more accurate than the
transient Gummel approach, for the relatively small time step
used here, the improvement in accuracy was found to be
equally small. Another reason we did not complete the tran-
sient NewtonI -V curve simulation was, as we discuss in
Sec. VI E, that it would have required an unreasonable
amount of CPU time.

E. Computational efficiency

We have shown that essentially identicalI -V curves are
produced for the RTD in Fig. 3 by all four self-consistency

TABLE I. Collector current final oscillation data~after 10 ps! at
applied biases of 0.24 and 0.25 V. Current density from steady-state
simulations is appended for comparison.

Oscillation parameter 0.24 V 0.25 V

Amplitude ~105 A/cm2! 1.98 1.08
Period~ps! 0.413 0.374
Frequency~THz! 2.42 2.67
Time average~105 A/cm2! 4.18 4.06

Steady-state current~105 A/cm2! 4.50 4.10

FIG. 7. Simulated transient collector current starting from a
fully converged steady-state Gummel iteration simulation at 0.24 V,
showing that the RTD is unstable at this bias.

FIG. 8. Current variation vs time after switching from 0.25 to
0.26 V. dJ is the current variation, anddJ0 is the convergence
criterion of 0.1 A/cm2. The simulation converges regularly, show-
ing that the RTD is stable at this bias. The spikes in the curve are
due to the decaying oscillations.
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iteration methods. It is reasonable in such a case to use the
most efficient iteration method. Thus the relative efficiencies
of the iteration methods is another main point of comparison.
As one can surmise from the foregoing discussions, the com-
putational costs of the four iteration methods are vastly dis-
parate. The number of WFTE solves and total CPU time
used by each of the iteration methods for the two-traceI -V
curve is summarized in Table II. Data for the non-self-
consistent simulation shown in Fig. 4 are also given for com-
parison. We have also included data for the standard steady-
state Gummel implementation~see Sec. IV!, for comparison
to the accelerated implementation used in this work.

Some notes regarding the data in Table II are in order.
The current was simulated at 0.01-V bias increments in both
directions over the range 0.0–0.4 V, giving a total of 82 bias
points plus the equilibrium solution needed for scattering
calculations. The 140 steady-state Gummel iterations done
during the course of the steady-state Newton simulation were
a result of the Newton method’s inability in some cases to
locate the self-consistent operating point as it entered or ex-
ited the plateau region. The transient simulations used 100-fs
bias slewing~rather than changing the applied bias in a
single time step! to mitigate the ‘‘shock’’ of bias changes

and thus to minimize convergence time. The transient simu-
lations further assume that the four oscillating operating
points~0.24 and 0.25 V in both trace directions! were termi-
nated at 8000 iterations, while all other bias points were run
to full convergence. Since we did not conduct a complete
transient NewtonI -V curve simulation, the data in Table II
for this iteration method are estimates, but should be very
close, based on the arguments at the end of Sec. VI D.

We note that the simulations for this work were carried
out on several platforms. TheI -V curves for which data are
reported in Table II were produced on independent proces-
sors of an SGI Challenge XL computer and on DEC Alpha
3000/300LX workstations. These platforms were roughly
equivalent in performance, requiring about 12 CPU s per
Gummel loop and 60 s per Newton loop. A Cray C-90 su-
percomputer was used for the longer, single-bias investiga-
tions ~e.g., the detailed investigations at 0.24 and 0.25 V!.
The Cray required only 1.05 CPU s per Gummel loop.

Several factors determine the relative computational costs
of the self-consistency iteration methods. Considering just
the steady-state Gummel simulations, the importance of us-
ing our accelerated convergence implementation~see Sec.
IV ! is clear. In fact, the CPU time advantage of using Fermi-
Dirac statistics is often even more dramatic than the roughly
3:1 ratio shown in Table II. Outside the plateau region, the
average number of iterations required for convergence to the
self-consistent solution was 41 using the standard approach,
but only seven using our accelerated approach. However, for
all iteration methods, most of the iterations took place in the
challenging plateau region of theI -V curve. ~One result of
this was that the up-trace always took more CPU time than
the down-trace.! For the accelerated Gummel simulation, lo-
cating operating points in the plateau often required dropping
back to the more reliable standard approach. The result was
only a 2.2:1 advantage in CPU time over the standard ap-
proach in the plateau region. With its faster convergence, the
advantage of the accelerated Gummel implementation in-
creases as convergence criteria become more strict.

A more general factor influencing the relative computa-
tional costs of the self-consistency iteration methods is the
much greater CPU time required for a Newton loop than a
Gummel loop. In this work, the ratio was 5:1. In spite of this,
the full steady-state Newton simulation required only 44%
more CPU time than the accelerated steady-state Gummel
simulation, and only half the time of the standard Gummel
simulation. This recoup by the steady-state Newton method
was a result of yet another factor in the efficiency equation:
the Newton method’s more sophisticated solution update al-
gorithm ~see Sec. V!, meaning that fewer iterations were
required for convergence. In spite of the strict convergence
criteria used, aside from the plateau region, almost all bias
points required only three steady-state Newton iterations to
meet these criteria.~The relatively low number of iterations
required by both steady-state iteration methods was made
possible by the initialization algorithm foru0, as discussed in
Sec. III.! Again, the faster convergence of the steady-state
Newton approach improves its favorability in comparison to
the steady-state Gummel approach as convergence criteria
become more strict.

By far the most significant factor in the computational
cost equation is whether the iteration method uses the steady-

FIG. 9. Simulated collector current for transient Gummel and
Newton iteration method simulations after switching from 0.05 to
0.06 V. This indicates that the Gummel approach is effectively as
accurate at the Newton approach for the chosen simulation param-
eters.

TABLE II. Number of WFTE solves and total CPU time re-
quired for a two-traceI2V curve simulation for each self-
consistency iteration method. Data are given for both the standard
and accelerated steady-state Gummel approaches. The steady-state
Newton simulation required several Gummel loops in some difficult
cases. The transient Newton data are estimated. CPU times are for a
DEC Alpha 3000/300 LX.

Simulation type
~Iteration method!

WFTE solves
~i.e., iterations!

CPU time
~h!

Linear ~non-self-consistent! 84 0.28
Steady-state Gummel~std! 4300 14.3
Steady-state Gummel~acc! 1450 5.0
Steady-state Newton 410N1140G 7.2
Transient Gummel 96 500 330
Transient Newton ;96 500 ;1,650
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state or transient approach to finding the self-consistent op-
erating point. The mathematical descriptions, and thus the
CPU time per iteration, of the steady-state and transient
methods are very similar for each formulation~Gummel or
Newton!. However, Table II shows that the transient itera-
tion methods require roughly two orders of magnitude more
iterations~on average! than the steady-state methods to con-
verge to the self-consistent operating point. The reason for
the huge difference is that the transient iteration methods
attempt to follow the exact evolution of the device as it re-
laxes towards the steady state after a bias change, so they
must take as long~in simulation time! as a real device would
to reach the steady state. Because of the extreme computa-
tional cost of the transient iteration method, to complete the
transient Gummel simulation in an acceptable amount of real
time, we ran several sections of each trace concurrently, us-
ing a steady-state Gummel-converged solution for the initial
condition~except for the two points on each trace which did
not converge!.

F. Discussion

In this section, we discuss the strengths and weaknesses,
in terms of efficiency, accuracy, and robustness, of the four
self-consistency iteration methods considered in this work.
From previous sections, the obvious strength of the steady-
state methods is their relative computational efficiency. As
we have also stated, the main strength of the transient meth-
ods is their direct physical basis, and their resulting ‘‘exact’’
adherence to the time-dependent operation of the device be-
ing simulated. These are clearly complementary strengths, so
that both the steady-state and transient approaches have im-
portant uses. In particular, we recommend using a steady-
state iteration method for wide-ranging initial investigations
~e.g., to trace theI -V curve!, thereby gaining the insight
necessary to narrow the focus of a more detailed investiga-
tion where transient effects are inherent~e.g., switching! or
suspected~e.g., oscillations!. Strangely, we find the literature
roughly equally divided between use of transient and steady-
state Gummel approaches, with apparently no group simul-
taneously using the information and advantages provided by
both. Hopefully this work will help to end that unnecessary
exclusivity.

If a main strength of the steady-state methods is their
relative efficiency, their main shortcoming, at least in some
cases, is accuracy. The inability of the steady-state iteration
methods to show the transient oscillations predicted by the
transient iteration methods was to be expected: only transient
simulations can model time-dependent effects. Much more
of a concern was the fact that the steady-state methods of-
fered no concrete indication that an unstable operating con-
dition existed, and thus that a transient simulation should be
used. For the simulations in this work, if we had not known
to look for oscillations in the plateau, we would have been
perfectly satisfied that our steady-state simulations told the
entire story about the RTD’sI -V curve. Admittedly, the ac-
tual I -V curve was only slightly different at two points, but
the physics underlying those small differences was quite im-
portant.

Another shortcoming of the steady-state iteration methods
is that convergence to a simultaneous solution of the steady-
state WFTE and the PE cannot be guaranteed. There are

several potential causes of this lack of ‘‘robustness’’ or reli-
ability. First, there are almost certainly ‘‘pathologic’’ oper-
ating conditions for some quantum devices where the steady-
state methods will be unable to converge. Even if a device is
stable at a given bias, the operating point may not be found if
the previous WFTE and PE solutions are far away from it.
Incrementing the bias across a bistable operating point, of
which there are three in Fig. 4, is the usual culprit here.
Bistable operating points were, in fact, problematic for both
the steady-state Newton method and the~accelerated! steady-
state Gummel method. However, SQUADS detects noncon-
vergent behavior during steady-state self-consistent simula-
tions and automatically switches~temporarily! to the
standard~and more robust but slower! steady-state Gummel
approach. In this way, potential divergence problems of the
steady-state iteration methods were completely avoided in
this work.

Just as blind faith in the results of steady-state self-
consistent simulations is not advisable, so too is complete
reliance on transient self-consistent simulations. Admittedly,
the basic transient methods are always adequate in terms of
reliability and accuracy~i.e., the ability to correctly repro-
duce device physics!. However, their extreme computational
cost has some harsh consequences. The first is that one can-
not afford to undertake transient simulations such as those
presented in this work without a good reason~and a very fast
computer!. The problem with this is that often thereis no
concrete reasona priori for running a simulation—only a
vague notion of how the device might behave. Certainly it is
currently completely unfeasible to run multiple week-long
transient self-consistentI -V curve simulations to examine
the effects of varying simulation or device parameters. In
contrast, the decision to run the same steady-state simula-
tions ~in a few hours each! hardly merits a second thought.

The opposite side of the tendency for doing too few tran-
sient self-consistent simulations is trying to do too many. A
good reason to limit reliance on transient simulation where
appropriate is that inadequate computing resources invite un-
necessary compromises to be made in the implementation of
the simulator or in the execution of the simulation. For ex-
ample, fewer bias points or time steps may be simulated than
necessary, the time step or convergence criteria may be
larger than accuracy dictates, and so on. One compromise we
made that seems justified~as discussed in Sec. IV D! was the
use of the transient Gummel method instead of the theoreti-
cally more accurate Newton method. On the other hand, our
choice of slew rate based solely on achieving fast conver-
gence, rather than modeling reality, is not so easily excused.
In fact, investigations using a lower slew rate17 show that
transient current predictions like that in Fig. 5 may bear little
resemblance to what a real RTD would do under test. How-
ever, in a circuit of RTD-like devices, 100-fs bias slewing
may be reasonable. Since generating theI -V curve was the
test case for this work, the details of the evolution to the
steady state could be ignored in this case. In general, any
compromises in implementation or execution should be con-
sidered carefully, so that they do not conspire to weaken the
direct physical link which is the main advantage of the tran-
sient iteration methods over the steady-state approaches. The
best defense against these compromises is to focus comput-
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ing resources on a limited set of transient simulations that are
expected to add value to the steady-state results.

We have advocated using the various self-consistency it-
eration methods in a hierarchical manner. An efficient
steady-state approach should be used to investigate a broad
range of operating conditions, and to narrow the scope for
more exacting~and expensive! transient simulations. We
now discuss the clues from steady-state simulations that in-
dicate device operating conditions for which transient simu-
lation might be warranted~i.e., where sustained, significant,
or interesting transient effects might occur!. Some of these
clues are obvious. A negative differential resistance region is
a known cause of oscillations, whether intrinsic to the device
or a result of the device interacting with the~simulated or
real! measurement apparatus. Also, any operating point at
which the steady-state simulation has significant difficulty
converging should raise a red flag. Obviously, if the steady-
state iteration method completely fails to converge at a par-
ticular bias point, a transient simulation is necessary to de-
termine device operation. Finally, only a transient iteration
method can be used for inherently transient self-consistent
simulations, such as switching, small-signal, or large-signal
investigations.

G. Other iteration methods

As a final note, the Newton and Gummel methods pre-
sented above are certainly not the only possible ways to
solve the WFTE-PE system and thereby implement self-
consistency, although they are perhaps the most basic. Many
variations on the Gummel and Newton methods are
possible,26 and other nonlinear system solving approaches
may be used. For example, Jansen, Farid, and Kelly27 used
the conjugate-gradient method to compute the self-consistent
I -V curve for a RTD. According to their analysis, this
method is about an order of magnitude faster than the tran-
sient Gummel approach, making it about an order of magni-
tude slower than the steady-state Gummel and Newton itera-
tion methods described herein. However, the conjugate-
gradient method has the distinct advantage of a much smaller
memory footprint. This would be useful for very large simu-
lations ~e.g.,Nx ,Nk.200!. Since memory usage for solving
the WFTE-PE system has been highly optimized in the
SQUADS, the conjugate-gradient method has not been con-
sidered necessary for our purposes.

VII. SUMMARY

We reviewed the theory and numerical implementation of
four basic approaches to implementing self-consistency in
the Wigner function approach to quantum device simulation.
These approaches include steady-state and transient Gum-

mel, and steady-state and transient Newton. To our knowl-
edge, this is this first time that all these approaches have
been described in a single mathematical framework and no-
tation. In the process of describing the numerical implemen-
tations of these iteration methods, we gave expressions for
the off-diagonal Jacobian blocks in the Newton formulation,
apparently for the first time. We also presented an acceler-
ated convergence algorithm for the steady-state Gummel ap-
proach which makes it the most efficient means of generating
the self-consistentI -V curve for a RTD.

We also analyzed the strengths and weaknesses of the
various self-consistency iteration methods. A large part of
that analysis concerned relative computational costs. The
computational efficiency of the steady-state methods makes
them ideal for wide-ranging initial investigations, such as
full I -V curve traces. There are undeniable difficulties in
using the steady-state iteration methods, such as lack of ro-
bustness in the Newton and accelerated Gummel methods,
and the relatively slow convergence of the standard Gummel
approach. These problems may have discouraged the use of
steady-state approaches in the past. We have demonstrated
how these problems can be avoided, and we have shown the
excellent results and efficiencies that the steady-state itera-
tion methods can achieve.

We have also shown that even if a steady-state iteration
method converges to a simultaneous solution of the steady-
state WFTE and PE, there is no guarantee that this is a stable
operating point. Transient iteration methods are inherently
more accurate and reliable, and are required to treat time-
dependent situations~such as unstable oscillations!. How-
ever, we have shown that steady-state methods are just as
importantin practice in the investigation of quantum device
physics. Efficient steady-state simulations can be used to de-
termine the basic operation of the device~e.g., theI -V curve,
possible unstable regions!, allowing one to narrow the scope
of ~expensive! transient simulations. Those transient simula-
tions whichare done can then be implemented and executed
without serious compromises so that they will correctly
model device physics and add value to the steady-state re-
sults.
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