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In the present work, we compare the efficiency, accuracy, and robustness of four basic iteration methods for
implementing self-consistency in Wigner function-based quantum device simulation. These methods include
steady-state Gummel, transient Gummel, steady-state Newton, and transient Newton. In a single mathematical
framework and notation, we present the numerical implementation of each of these self-consistency iteration
methods. As a test case to compare the iteration methods, we simulate the current-te¥ageu(ve of a
resonant tunneling diode. Standard practice for this task has been to rely solely on either a steady-state or a
transient iteration method. We illustrate the dangers of this practice, and show how to take advantage of the
complimentary strengths of both steady-state and transient iteration methods where appropriate. Thus, because
the steady-state methods are vastly more effidiemt have a much lower computational gpsind are usually
equal in accuracy to the transient methods, the former are preferable for wide-ranging initial device investi-
gations such as tracing theV curve. Implementation difficulties which we address here may have reduced the
use of the steady-state methods in practice. On the other hand, the transient methods are inherently more robust
and accuratéi.e., they reliably and correctly reproduce device physidewever, the high computational cost
of the transient methods makes them more appropriate for a narrower range of directed investigations where
transient effects are inherent or suspected, rather than fot-Mllcurve traces. Finally, we found the two
Gummel methods to be generally preferable to tkiieoretically more accuratéewton counterparts, since
the Gummel methods are equally accurate in practice, while having a lower computational cost.
[S0163-182696)00135-X

I. INTRODUCTION search. The simulation tool used in this work, SQUADS
(Stanford quantum device simulatphas been designed for

The Wigner function formulation of quantum the investigation of quantum devigmulationas much as
mechanics has many useful characteristics for the simula-for the investigation of quantum devicperation Its modu-
tion of quantum-effect electronic devices, including the natu{ar structure makes it ideally suited to the analysis of alter-
ral ability to handle small-signal or transient conditions in native simulation approaches, such as the comparison of self-
self-consistent, dissipative, and open-boundary sysfefns. consistency iteration methods in this work. Only by
However, solving the Wigner function transport equation is gyresenting the theory, numerical implementation, and simu-
relatively computer-intensive proposition. Further, the inclu-j5ion examples for all of these simulation alternatives in a
sion of self-consistendy** requires an iterative solution of nhasive framework is this comparison possible.
the Wigner function transport equation and Poisson’s equa- |, selecting specific simulation examples for this com-

tion, making the computational efficiency of the iteration parison, we note that only transient iteration methods are

methad cr_|t|ca_1lly Important. In the present work, we COnSIOIersuitable for time-dependent investigations, such as switch-
four basic iteration methods for implementing self-

consistency in the Wigner function approach to quantum del9: small-signal, or large-signal simulations. However, for

vice simulation, including steady-state Gummel, transienfhe very basic electronic device simulation task of tracing the

Gummel, steady-state Newton, and transient Newton. In th§UITent-voltage [-V) curve, steady-state methods are also
first half of this paperSecs. II-\j, we present, in a single suitable. Therefore, we usgd the accurate generation of the
mathematical framework and notation, the analytical formu- -V curve for the “prototypllzcallz quantum device, the reso-
lation and numerical implementation of each of these self'ant tunneling diod¢RTD),"*"*"as the test case for evalu-
consistency iteration methods. In the second k@#c. V),  ating the four self-consistency iteration methods. In fact, this
we use simulation examples to compare the efficigeoyn- ~ device and simulation task have been the most common in
putational cost accuracy(ability to correctly reproduce de- the Wigner function simulation literature. Figure 1 shows a
vice physics, and robustnesgreliability) of these iteration “typical” measured RTDI-V curve! Some features of note
methods. in this |-V curve are a negative differential resistance region
Due to the difficulty of implementing and maintaining and a bistable region. The “plateau” shape in the negative
multiple self-consistency iteration approaches in a numericadlifferential resistance region is actually the time average of a
simulator, most researchers using Wigner function simulavery fast oscillating current. The ability of the various self-
tion rely on a single implementation, usually the steady-stateonsistency iteration methods to efficiently and reliably re-
or transient Gummel approach, in their quantum device reproduce these features will be the basis for their comparison.
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tor means requiring that the energy-band prdili) of the
device be consistent with the charge-density prgf{ie) in
the device. To ensure this, Poisson’s equati®B) must be

; - satisfied simultaneously with the WFTE. The PE uses the
/ i charge density to determine the energy-band profile of the
8 A device, and the WFTE uses the energy-band profile to deter-
mine (among other thingshe charge density. In one dimen-
2 / é A sion, Poisson’s equation can be written

CURRENT (mA)

dx =gp(X)=97[C(x)—c(X)], (4

d
e(X) ax u(x)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 wheree is permittivity, u is the (Hartree, or mean-fie)doo-
VOLTAGE (V) tential, g is the electronic charge, is the free-electron den-
FIG. 1. Experimental RTD-V curve (Ref. 15 showing the  sity, andC is the fixed charge densitg.g., ionized dopants
characteristic negative differential resistance region and platealthe conduction-band minimum is calculated from the poten-
structure between 0.8 and 1.3 V. The plateau current is actually thgal
time average of a high-frequency oscillating curréRermission to
reprint data given by T.C.L.G Sollngr. U(x) =u(x)+ sU(x), (5

II. WIGNER FUNCTION FORMULATION where 6U is the (fixed) heterostructure band offset. The
boundary conditions on the PE as enforced in SQUADS are
The Wigner function approach models a quantum systenjery simple: the applied bias strictly determines the potential
by computing the evolution of the Wigner functié(x,k,t),  at the contacts. We chose the=0 Fermi level as the refer-

a phase-space state function, according to the Wigner fungnce energy, so thatu (0)=—pg. Thus the PE boundary
tion transport equatiofWFTE). In one dimension and for a ¢onditions are:

constant effective mass, the WFTE is

u(0)=0, (63)
of  hk of 1F Tk
7 2amt ax h ) KTk U(L)=(mo— ) +[8U(0)—SU(L)]—qV,. (6b)
* To complete the WFTE-PE interdependence, the carrier
X f_xdy[U(x+y)—U(x—y)] density is calculated from the Wigner function using

. of 1
Xsin2y(k—k"]+—| , (D) c(x)=EJ’dk f(x,k). (7

ot

coll

where h is Planck’s constantn™ is the electron effective
mass, andJ is the conduction-band minimunfWe use an
n-type device for all derivations and simulations in this  To solve the WFTE-PE system, we must discretize the
work.) Scattering has been implemented in the Wigner funcsimulation domain and, accordingly, these two equations.
tion method using the relaxation time approximation, basedhe details of this process are well described elsewh¥te,

on the analogy of the WFTE to thelassical Boltzmann  so only a summary is reported here, as implemented in
transport equation® The resulting scattering term is SQUADS. In this section, we complete most of this discreti-
zation process, leaving only those details which differ be-

Ill. DISCRETIZATION

5_f :E Fex.k) dk f(x,k)— F(x,k) @) tween the self-consistency iteration methods for the follow-
o T Jdkf®qx,k) ' P ing sections. The simulation domain is discretized as
follows:
wherer is the relaxation time antf%is the equilibrium(zero
bias, no scatteringVigner function. In this work, we use the fOx k) —f(x ki, t) =1 ; 1, (8)
upwind (i.e., incoming-carrier equilibrium, Fermi-Dirac
distribution boundary conditions given by Frensfey: xi=iA,, i€{0,1,...N,}, (L=NA,), (9)
Amm*kgT [ 1 [ h%?
bc _ B - _ T ) N+1 )
fx=o,k>o——hz_|” 1+exp_ keT (W MO)H, kj:NkAx[j— 5 , je{l,2,...Ny}, (20
(33
tp=nA,, 0,1,... N}, 11
be A7m* kBT 1 h2k2 n=NAy nE{ Nt} ( )
fxzLk<o=—pz— Inj1+exg— kT | 872m* HL/|[*  whereL is the width of the simulation region.

3b) In the present work, we compare to and extend the results
of Jensen and Budf, and, therefore, we use their device
Enforcing self-consistency in an electronic device simula-structure and WFTE discretization scheme. In particular, we
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use a second-order upwind difference scheme to discretize —ghA 3 i—fiio (<3N
the position derivative, and Cayley discretization for the time ~ J,, ,,= K 2 e i _
derivative. The discretized WFTE, a system of, ¢ 1)N, 8mm* S0 |3~ fiiyy (j>1Ny)
simultaneous equationgone for each phase-space grid (19

ing n reviat T . . . .
poin, can be abbreviated We will discuss in somewhat more detail the discretiza-

T N tion of the Poisson equation, since the implementation of
(THKFPHS)[Fijnl =~ (420 0, (12 self-consistency using the PE is the focus of this work. The
where. in the transient mode PE has been discretized in two ways by researchers investi-
’ ’ gating the WFTE-PE system: the direct fdfnand the dif-
[Fijn]=— (2/A)F . (133 ferential (or Newton) form.” The appropriate form of the PE

depends on the self-consistency iteration method, as dis-
cussed in Secs. IV and V. Both forms are described here.

The direct Poisson equation can be written, for a position-
dependent permittivity,

Fijn=Ffijnritfijn. (13b)

[Note that, for a transient simulation with the Cayley time

derivative(hereafter called a Cayley simulatjosolving the (1+a)u;,,—2u+(1—a)u;,_;=(g?A%/e)[Ci—ci]
system of equations yields, , from which the Wigner func- ' ' s '(éoa
tion f,,,; must be calculatedlin the steady-state mode,
a=(ej+1—&i-1)/(4e)). (20b
T=0, (14a Lo o
[Note that for the position-independent permittivity assumed
in the simulations of Sec. VR=0, and that the discrete PE
Fijn=Tfij. (14b)

(in both formg is even simplef.

The Newton form of the PE is more complicated but more
flexible. Newton equations are inherently iterative, seeking
to find the solution to a nonlinear system by successively
. better approximations. To derive the Newton PE, we first
KIF, 1= hk; Fiioj—4Fi 1, +3F;; (1=2Nw) define the “Poisson function’P(u), which is based on the

VA Amm* Ay | —FiogjtAFiC1—3F 0 (j>iNy) PE and must evgluate to 0 W_hen th(_a self-consistent potential
(15) and carrier density are supplied as input. From &g,

Below, the time subscriph is suppressed, since the other
terms in Eq.(12) are time independent. For these terms,

Ni P(M(u)= i

—g?[C(x)—c™(x)].
PIFi 1= 2 VijjFijr, (163 o
i'=1

(21)

In Eq.(21), n is the iteration indexwhich for transient simu-
lations is also the time stgpA Newton iteration is a two-
step process. First, the Newton PE system of equations is
solved foréu, the changein the potential,

i (n)
e(Xx) dXu (X)

1

(Uiyir—Uj_i»), (16b

aP<“>( )
ou

1 Fe Nk
SFijl=~ J—( > F ) , (1) }[5 MU= —[PM(W)]. (22
( 2 Feq”> J =
N, Then the potential is updated,
whereV is called the nonlocal potentiglNote that for Cay- u™ B0 =uM(x)+ su" H(x). (23
ley simulations,F®%=2 f®% although the factor of 2 cancels
out in Eq.(17). However, it is important to use=2 f° for
all boundary conditions in Cayley simulatiohs.

Given the discrete Wigner function, the discrete carrier
density is computed as

If the Newton iteration converges to the self-consistent solu-
tion, P("(u) converges to 0, and therefore so will the up-
dates,su. We denote the converged self-consistent potential
asu* (x).

In discrete form, the Newton PE becomes

Ak < pim
K o (n+1)7_ (n)
Ci=5_ 2‘,1 fij- (189 o [ou(™ D)= —[PM(u)], (249
For completeness, the expression for the discrete current
p p Ui(n+1):Ui(n)+5Ui(n+l)' (24b)

density will be given. It is determined from the continuity
equation, using the fact that the current density must be powhere
sition independent at steady stat€he resulting expression
depends on the form used for the discrete position derivative. PW(u)=(1+a)u?;—2u™+(1—a)ul";

For the second-order upwind derivative, the discrete current b2 -
density i§ —(q°A}/e)[Ci—c], (25)
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apgm consistency to the WFTE. This is due to the simplicity of the
—my =(1+a) 5i(T1i,—26?'}),+(1—a)6fi)1i, Gummel approach, since the two equations are solved
Iu;» ’ ' ' independently® and the PE is numerically much simpler to
implement and solve than the WFTE. For the steady-state
=, (260  Gummel method;? the steady-state WFTE and the PE are
au;, iteratively and alternately solved, plugging in one equation’s

and g, is the Kronecker delta function. Note that/du is solution as input for the che.r. When th_e Wigner function

left unspecified for now, since its value depends on whicr2Nd potential stop changingvithin specified convergence

self-consistency iteration method is used. It is not difficult toCriteria), the self-consistent operating point has been reached.

show that the direct PE, E¢R0a), is actually a special case For the transient Gummel meth8d the only mathematical

of the Newton PE, where we tak#/du=0. This is how difference is that the transient WFTE is used, so that each

SQUADS implements the direct PE when needed. iteration is a time step. That is, we alternately time step the
Solving the direct PE yields the exact potential profile WFTE and update the potential using the PE until steady-

u(x) for the given carrier density profile(x). The Newton state operation is reachddgain, within specified conver-

PE, in contrast, uses th&/Ju term to account for changes gence criteria The transient Gummel iteration is initiated by

in c(x) that will result from theu(x) solution, and thereby solving the WFTE once in steady-state mode.

attempts to predict a(x) which is closer tau* (x). In other We now consider whether the direct or Newton form of

words, thedgc/du term (which should be based on a distilla- the PE[i.e., zero or nonzeréc/du term in Eq.(26)] should

tion of the WFTH in the Newton PE provides some correc- he used for the steady-state and transient Gummel iteration

tive feedback to. ach|e_ve faster convergence to the selimethods. We have observed that a steady-state Gummel it-

consistent operating point. - _ eration often divergegconsecutive Wigner function and
An unresolved issue is what to use for the initial potentialy, ) solutions oscillate wildly unless some corrective feed-

profile u™ in the first solution of the Newton PE and the 50 is supplied through a nonzefol du. Thus we must use

?g/tli:c;l;\i theLigr[])gIﬁzegﬂlirr]\galichfrtgggg t?:)it?rmcmu&()a aStIThue_ the Newton PE for the steady-state Gummel method. In gen-

eral, there is no exact, closed-form expressiondidu for

previous two bias pointgAt the first bla§ point, "”e?‘r l_aand a quantum system. This is why we solve the WFTE—it ac-
bending is used, and at the second, a linear potential is added ' :

. : . i . counts for quantum effects such as tunneling and reflection,
to u* (x) from the first bias point.Transientl -V curve trac-

o ! . : ' . ._along with nonequilibrium carrier transport, to relate the en-
ing is one continuous simulation, so the final potential profile

U*(x) at one bias point is used to comput®at the next, In ergy bands to carrier concentration. So we seek an approxi-

articular, when the bias is incremented in a transient simur-nate form forgc/ou that is easy to compute but siill pro-
pal ’ . S . duces convergence. To this end, the SQUADS uses the
lation, the potential profile is incremented linearly across the

: T S L .. Classical, equilibrium expression fac/Ju. Any justification
entire device. [/—\_gam, I!near banq bendmg is used to ini must be based on the transport equation. In this case, we see
tialize the potential profile at the first bias point.

S . . hat the boundary conditions supply carriers to the device
The cor'nbma'uon'of the WF.TE and PE, \{vhen dISCreuZEdft';\ccording to the classical relationship, even though quantum
for numerical solution, constitutes a nonlinear system o

: ) ; . rocesses and nonequilibrium transport will distort this rela-
equations. The self-consistency iteration methods offer $ hi he di f h . Al
means of solving this nonlinear systefwhich we cannot 'onship as t e distance from the contacts Increases. A'so,

. > ' : . . scattering(if included) tends to produce the classical result.
solve directly by iteratively solving a set of linear equations

: . . ; The standard approadkee, e.g., Ref.)din deriving dc/
(Wh'c.h we can solve d|rec_tly. Secﬂons v and V detail the du is to assume classical Maxwell-Boltzmann statistics:
remainder of the numerical implementation of four self-
consistency iteration methods for the WFTE-PE system. Be- _ _
cause the mathematics of the steady-state and transient ap- c(w) =N, expf (u=uo)/(ksT)]. @
proaches of each methdGummel or Newtohare similar,
the two Gummel approaches are described together in Sec. R
IV, and the two Newton approaches in Sec. V. However, the u  kgT

task of tracing the self-consistent operating points along th

1.V curve. which has been chosen for our iteration metho(?quation(ZS) results in relatively slow but reliable conver-

comparison, is very different for the transient and steadySc o to the self-consistent operating point. Note, however,
P ! y Yihat the boundary conditions in Eq8a) and(3b) are based
state approaches. The steady-state approaches try to locate D _ 0

. . g : . on Fermi-Dirac statistics, not Maxwell-Boltzmann statistics.

the self-consistent operating point in as few iterations as po;jv

sible, while the transient approaches seek to follow the actu L
c/du can significantly accelerate the convergence speed of

time-dependent operation of the device until it evolves to thefhe steady-state Gummel method. SQUADS uses the Joyce-

steady state. _Therefore, wherj running simulations, the COM5ixon approximatiof’ to relatec andu according to Fermi-
verse pairing is more appropriate, so in Sec. VI we Cor]S'debirac statistics. To determinéc/du, we write u(c), derive

the two steady-state methods together followed by the tw%,u J9c. and invert. Thus
transient methods. ' :

quf) {acf“)

€j

Jc  c(u) 29

e have observed that using Fermi-Dirac statistics to derive

IV. GUMMEL (PLUG-IN) APPROACH r=c/Nc, (29
The Gummel(a.k.a. plug-in approacf to solving the U—Up=kgT|IN(D+ > a,rm (30)
WFTE-PE system is almost universally used to add self- me1 |
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Ju  du or 1 the transient Newton method should be more accurate than
it %=k3 . > = fm_l} N (38D the transient Gummel method, but by how much is not yet
m=1 ¢ clear.
e N.[1 a -1 Use of the Newton formulation for quantum
¢ {_ 2 mem-1 (32 self-consistency requires us to define a WFTE function
gu KgT[r m=1 m W(F), just as we defined the PE function in EQ1). For

this purpose, we simply use E@L2),
We have found that using Joyce-Dixon terms abowe3 purp Py 42

does not improve convergence speed. In fact, in cases where _ N

r,;>1 for one or more position nodes, including higher- WIR)=(TH+K+PH SR+ (AA0T 0. 33
order terms, may render the steady-state Gummel methofhe Newton formulation for the WFTE-PE system solves the
nonconvergent. Therefore, SQUADS uses a third-ordefo|iowing system:

Joyce-Dixon approximation by default. If the iterate§ are

not converging toward 0, we drop back to Maxwell- AW oW1 ™

Boltzmann statisticgzeroth-order Joyce-Dixon approxima-

=T (n+1) (n)
tion) until progress toward convergence is maintained for JF du oF - _ W(F) 7 (34)
several iterations. The algorithm by which the Joyce-Dixon ﬁ ﬁ u P(u)
order is dynamically chosen to accelerate convergence of the dF du

steady-state Gummel method in SQUADS is now rather o _ _ _
complicated, being based more on experience than theorythere the leftmost matrix is the Jacobian, @ the Pois-
To our knowledge, only the standard.e., Maxwell- son function defined in Eq21). After each solution of Eq.
Boltzmann form of 9c/du has been used in previous steady-(34), the unknowns are updated as

state Gummel iterations of the WFTE-PE system. In Sec.

VI E we show that our accelerated convergence algorithm FOHD=F™M 4 g(sF)n*+D), (359
greatly decreases the computational cost of the steady-state
Gummel iteration method. UMt D=y 4 o(su) D). (35b)

In contrast to the steady-state Gummel method, the tran-
sient Gummel method seeks to follow the exact evolution ofAs with the Gummel iteration methods, convergence toward
the device. Since there is no closed form far/du in a  the steady-state, self-consistent operating point with the
general quantum system, and because the approximatiohewton iteration methods is determined by monitoring the
typically used(such as those used with the steady-state Gumprogress of the Poisson functid™(u), and updatesu"
mel method are only heuristically correct, using them in the iterates towards 0.
transient Gummel method is more likely to create physics The update scaling factore and 8 in Egs. (359 and
than model it. To avoid this, we must use the direct PE(35b) are used only for the steady-state Newton method. Be-
(9c/au=0). For the transient Gummel method, then, eachcause the transient Newton method attempts to follow the
iteration starts with the exact potential profile for the carriertransient operation of the device exactly, one must not
density at the current time point, the system is evolved onenodify the updates that are computed. Even for the steady-
time step with the transient WFTE, and then the potential isstate Newton method, these update factors are ideally unity,
adjusted for the nevbut only slightly different carrier den-  though they can be reduced to some fraction when the iter-
sity. We present the results of particular transient and steadyates are not converging. Frensiyseda=0.5 ands=0.1.

state Gummel simulations in Sec. VI. However, for the simulations reported herein, in the few
cases when the steady-state Newton method could not locate
V. FULL NEWTON APPROACH the self-consistent operating point, reduciagnd 8 did not

help, and in fact usually made convergence less likely. Thus

With the Gummel approach to solving the WFTE-PE sys-the simulations in this work always useg=8=1. Instead,
tem, two independenti.e., uncouplefi sets of linear equa- where convergence was not occurring with the steady-state
tions are alternately solved, one derived from the WFTE ang\ewton method, SQUADS uses the steady-state Gummel
resulting in an updated Wigner function, and the second demethod until the iteration begins converging again. Finally,
rived from the PE and producing an updated potential. Withsjnce the Newton update in E¢35a requires a Wigner
the full Newton formulatior?,l we instead solve aombined function to updatérom, both steady_state and transient New-
(i.e., coupledd WFTE-PE linear system to produce simulta- ton simulations begin with a single steady-state Gummel so-
neous updates of both the Wigner function and potential. Th@,tion of the WFTE. Initialization of the potential profile was
advantage of the full Newton approach is that changes in ongiscussed in Sec. III.
solution direCtly affect the outcome of the Other, so the cor- The full Newton equatior(34) must be discretized for
rective feedback that we had to approximate in the steadynymerical solution. In discrete form E(B4) is
state Gummel method is inherent in the Newton formulation.

This tends to produce much faster convergence with a AW W M

steady-state Newton method than with the steady-state Gum- | ——2% —*L (n+1) ")
mel method. Like the transient Gummel method, the tran- IFirjr Ui OFij =_{Wiyi(':)
sient Newton method seeks to follow the exact evolution of IP;i P ou Pi(u)

the quantum system, so it evolves to the steady-state operat- dFi - dup

ing point only as quickly as a real device would. However, (36
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Expressions foWV; ; andP; ; were given in Sec. Ill. The
Jacobian blocks have yet to be determined. Actually, the -
Jacobian block fosW/JF is identical to the coefficient ma-
trix used for the WFTE solution of a Gummel iteration, al-
though the unknowns that we solve for in the Newton for-
mulation aredF; ; , instead ofF;; ,. The only difference
between the Gummel WFTE coefficient matrix and the New-
ton JW/9F Jacobian block is that terms which become
boundary conditions with the Gummel formulation are zero
with the Newton formulation, sincéF®C is zero. Thus these
terms do not appear in the right-hand-side vector as in the
Gummel methods.

The dP/du Jacobian block is also slightly different from ol I 4, Su. 3
the PE coefficients used in the Gummel formulation. In par- 2L e 13 I R I B
ticular, with the Newton formulation, we do not have to at-
tempt to approximate the effect of the Change in potentia| on FIG. 2. Newton matrix equation for Wigner function method
the carrier concentration througte/Ju. This relationship is self-consistency: Jacobian matrix block sizes and nonzero coeffi-
taken care of exactly through the off-diagonal Jacobiarfient structure foN,=7 andN,=6.
blocks. ThedP/du block is therefore the same as that used

—-———— (Nx+l)Nk4>N -1

il | Wi

Z‘«
:R
2
=

for the direct PE: thus thedW/ 9f Jacobian blockhave been highly optimized.
P The result is that the Newton formulation requires typically
_.I:(1+a)5i+1,i'_25i,i’+(1_a) 8 ;i (37) twice the storage flve. times as much CPU time per loop as
U the Gummel formulation. We present performance data for

) , ) o all self-consistency iteration methods along with simulation
The more interesting Jacobian blocks in this case are thgsgits in Sec. VI.

off-diagonal ones, if only because expressions for them have
(to our knowledgg never been published, although Frensley
has used the steady-state Newton method to solve the
WFTE-PE system? The dW/Ju block is somewhat compli-
cated, due to the convoluted way in which thevalues enter A. Simulated device and parameters
into the computation of the nonlocal potential. Note from the  a¢ stated previously, simulations in this work used the
relationship between the band eddeand the potential en-  pTp device structure and simulation parameters of Jensen
ergy u in Eq. (5) that and Buot'® The simulated RTD, depicted in Fig. 3 at equi-
AW W librium, was composed of a 5-nm undoped GaAs quantum
— (38)  well between 3-nm undoped ;Ga, 7As tunnel barriers and
duir Uy 3-nm undoped GaAs spacer layers. The GaAs contact layers
were 19 nm each, giving a total device widthlof55 nm.
The electron effective mass was assumed constant at

VI. RESULTS AND DISCUSSION

After some effort, the’W/Ju Jacobian block is

N AN 0.066M,, and the permittivity was also taken as constant at
oW, —4 K 2(i—i")(j— 0 P y
B > fi sin[w}, 12.%,. We usedN, =86, N, =72, A,=1 fs, andr=525 fs
Ui Nh iy Ni (Ref. 22 at T=77 K.
(393
(1<|i’—i|s=N/2). (39b 03 T T
[ Ng=2x10"%cm® |« undoped | Ny=2x10"%/cm? )
The Jacobian block fo#P/df is much simpler. Recalling i
from Eq. (7) how carrier concentration is calculated, we 02 T q H ]
find from the definition of the discrete Poisson function in <
Eqg. (25) that ~OCARS 2 ]
JP 2A e | ; ‘
o : =—g NX Siir. (40) ¥ 00 Fuoeeees l T M
i’,j’ & k ! : ]
Combining all of these results, Fig. 2 gives an example of 01 F Ec=U() 7
the structure and size of the discrete full Newton equation for (;' — 1'0 —_ '2'0' — 3'0+~ -4'0' . 5'0 .

N,=7 andN,=6. Since theyW/df Jacobian block is identi-
cal in the Gummel and Newton formulations, and because
this block is by far the largest in the Jacobian matrix, one FiG. 3. Simulated GaAs RTD structure: equilibrium self-
might expect that solving the WFTE-PE system by the twoconsistent conduction band, Fermi levels, and doping. The 0.3-eV
approaches should require roughly the same storage and, Ga,-As tunnel barriers are 3 nm thick, and the GaAs quantum-
CPU time. This is not at all the case, especially in SQUADS well width is 5 nm. The center 17 nm of the devigecluding 3 nm
where the storage and solution of the discrete WKa@Rd  outside each tunnel barrjeare undoped.

Position (nm)
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B. Convergence criteria

The choice of convergence criteria for the WFTE-PE it- | Linear Potentia = fgigggﬂg‘gz‘ot ]
eration presents a dilemma: too loose of criteria and the pre- X e 7
dicted self-consistent operating point is not trustworthy; too b /{
tight and the number of iterations required for convergence \ ]
may rise dramatically. In this work, we chose to err on the 1 .
side of too much computation rather than too little: our con- \ \‘

vergence criteria were relatively strict.

For steady-state simulations the proper convergence crite-
rion is simply to verify that thedirec) Poisson equation is
satisfied to a high degree. Thus we required that

Current Density (105 A/cm?)

_ . 0.0 0.1 0.2 0.3 0.4
Pi(u)<10°® eV (0<i<N,). (42 Applied Bias (V)

This convergence criteria, although necessary, was not suffi- _ _

cient in all cases. To assure that consecutive solutions were FIG. 4. Simulated RTD-V curve using the Gummel and New-
not oscillatory, and for steady-state Newton simulationg©" steady-state self-consistency iteration methods. Jensen and
where P(u) is always very smallif update constant is Buot's up-trace (Ref. 11 (where different, and a non-self-

unity), we also required that the potential update at any poinfons's.ter?t("near po.tent'a)l "\./ curve are shown for comparison.
be very small: Permission to reprint data given by K. L. Jensgen.

. _ controversial transient simulation results, we ran transient
ou;<10™° eV  (0<i<N,). (42)  simulations in which all three convergence criteria were four

. . . . orders of magnitude tighter.
These relatively strict convergence criteria were feasible for

the steady-state iteration methods because convergence
tended to be very fast. Some researchbes/e used criteria ) i
like Eq. (42) as their only indication of self-consistency, but ~ One purpose of this work was to examine when the

this is not sufficient. It is possible, especially with an alo_(phy5|cally basedtransient iteration methods are required to

proximate iteration method such as the steady-state Gumm@agcurately reproduce the operation of an RTD, and when the
approach, for the potentia| updates to be small without actucomputat|ona”y more eff|C|en-t Steady-S_tate iteration methods
ally having reached the self-consistent solution. may be used. The test device for this work was selected

The convergence criteria in Eqel1) and (42) were also because of the very interestinigV curve simulated by
enforced for the transient iteration simulations in this work,Jensen and Budt,who used the transient Gummel method
but they are inadequate to guarantee that the steady-stat@, implement self-consistency. Their simulations produced
self-consistent operating point has been reached.sthei-  an |-V curve similar in shape to the experimental curve in
terion is not especially revealing in a transient simulationFig- 1 (although for a different RTD In fact, they even
because of the approximate proportionalitysof to the time observed persistent current oscnlatlons_ for all blgsgs in the
stepAt. (A small time step gives little time for carriers to Platéau region of thé-V curve, concluding that “intrinsic
move, resulting in a correspondingly small change in thedscillations have a do.ml'nant influence on 'the ilglateaullke
potential) Also, because transient simulations tend to oscil-Structure and hysteresis in thev Chazacterlstlcs.’ Sub-
late around the steady-state operating point as they relax t§equent work by Buot and Rajagofiat’ described the phys-
ward it, satisfying theP(u) criterion does not guarantee that IS behind this behavior. _

a simulation has reached the steady state. A more definitive Based on the results obtained by Jensen and Buot, it was
convergence criterion for transient simulations, also used b{fot clear that the steady-state Gummel and Newton iteration
Jensen and Budt,is based on the fact that the discrete cur-method simulations would converge in the plateau region,
rent density for the WFTE is defined such that it is positionSince persistent oscillations indicate that no stable, self-
independent at the steady state, as discussed in Sec. IIl. Thg@nsistent operating point exists. Although unstable equilib-
a WFTE transient simulation can be said to have reached tHfé!mM points should exist in this region, our otherwise conver-
steady state when the variation in current dendiyover the ~ gent iteration methods could be rendered nonconvergent. In
width of the device drops below some relatively small value fact, both the accelerated Gummel and Newton simulations
In this work, current densities were on the order of 10 Were unable to converge at some challenging points in the

Alcm?, so our final transient simulation convergence crite-Platéau. However, by automatically using the standard Gum-
rion was mel iteration method in these cases, the steady-state iteration

methods did find self-consistent operating points over the
83=(Jax—Imin) <1000 Alcn?. (43  entire simulated bias range. The resultiny curve (Fig. 4)

was very similar to that of Jensen and Buyatso showi
This criterion was less strict than we would have liked, butand identical for the two steady-state iteration methods. The
tightening it would have led to much longer simulation hysteresis loop in thé-V curve required the simulation of
times. Actually, when Eq(43) was satisfied in a transient both the up-trac€0.0-0.4 \} and the down-trac€0.4—-0.0
simulation, a steady-state simulation using the final potential/).
profile usually differed from the actual steady-state result by It seems contradictory that the steady-state iteration meth-
less than 10 A/cr Further, when it was necessary to verify ods found steady-state operating points in the plat@aid—

C. Steady-state iteration method simulations
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Current Density (105 A/cm?)

0.31 V on the up-trace and 0.25-0.24 V on the down-irace _
while the transient simulation of Jensen and Buot did not. 48 Ch
One possible explanation is that these oscillations, although i
persistent, are not perpetual. Jensen and Buot’s conclusions 6
seem to rule this out. If the oscillations are perpetual, the ' :
simultaneous WFTE and PE solutions found by the steady- l \ ]
state iteration methods must be unstable equilibrium operat- 4.4 T ]
ing points. Thus, given any impulse or even numerical noise, [ \ /\ /\ /\ A/\ A ]
a system prepared according to the steady-state solution will 42 | v \/ \/\/\/\/\v SN
begin to oscillate in a transient simulation. Determining I V U \“ ]
whether one or both of these explanations are correct can 4.0 1 | : g ‘ :
only be accomplished with transient iteration simulations, P B e
which are described in Sec. VI D. Time (ps)

Before moving on to transient simulations, one conclusion
can already be drawn based on the RIFM curves in Fig. 4. FIG. 5. Simulated transient collector current as RTD evolves to
Also shown in Fig. 4 is a non-self-consistent simulated  the steady state after switching from 0.25 to 0.26 V, showing that
curve for the RTD of Fig. 3. This simulation assumed athe RTD is stable at this bias.
linear potential drop across the undop@éntra) region of
the RTD, and therefore did not require solution of the PE Although the ultimate fates of the remaining points, 0.24 and
and only a single WFTE solution per bias point. Comparing0.25 V on both curve traces, were inconclusive after 4000
these simulated-V curves with the experimental one in Fig. iterations, we expected, extrapolating from the results and
1 (for a different RTD structune we see that the linear po- trends for the other plateau points, that their oscillations
tential simulation was able to predict a negative differentialwould simply be even more persistent, but not perpetual.
resistance region, but that is about the limit of its usefulness. Our belief that the transient RTD simulation would even-
On the other hand, the similarity between the simulated selftually reach the steady state for 0.24 and 0.25 V turned out to
consistentl-V curve and the experimental curve clearly be incorrect. Further evolutiofin either curve-trace direc-
shows that enforcing self-consistency is necessary to reprdion) led to oscillations of constant amplitude by about 8000
duce some of the salient physics of real RTD’s. The operterations at both biases. For example, Fig. 6 shows the tran-
question is whether the computationally expensive transiergient current at 0.24 V on the up-trace. We allowed these

iteration methods can add any further detail. simulations to run for several thousand more iterations to
make certain that the oscillations were not slowly decreasing,
D. Transient iteration method simulations as we had expected. Data on the final oscillations at these

two points(independent of the trace directioare given in

To compare self-consistency iteration methods, and NOW-_ble |
to investigate the nature of the plateau operating points, we We used one additional test to assure that the 0.24- and

used the transient Gummel iteration method to simulate thg 55 \/ pias points were unstable. As suggested in Sec. VI C

;—Vtﬁurv;a o;thet TTD. n II:I? 3 0\\'/?; thetsame t_)las ralnggt 83ve ran transient Gummel simulations starting from the fully
40500‘?t3 e? y;(s4a 3 5|mubz_:\ 1ons. " elfst‘ra] a}[max_lmlilm_ Imll 0converged steady-state Gummel solution at 0.24 and 0.25 V,
terationd= ps per bias pont. € transient simufa- expecting them to divergéoscillations to build. This was

t'on.”d',? not tct:]onvgrg(al Itr'] this t|m§et.g.,thdue tot sbqstame.dt indeed the result. The collector current versus time for the
oscillations, the simulation moved to the next bias poin 0.24-V simulation is shown in Fig. 7. The result for 0.25 V

anyway. Surprisingly, although the current oscillations O.b'was similar. Divergence was very regular, with a decay con-

"Stants of—0.4/ps at 0.24 V and-0.2/ps at 0.25 V. For the

the simulation converged for all bias points except the ﬁrs'bscillation amplitude at 0.24 V

three in the platea0.24, 0.25, and 0.26 V Further, the
resultingl -V curve(except for those three pointwas indis-
tinguishable from the steady-state curve, as one would ex- ) R R R IR RIS
pect(assuming the convergence criteria are strict enpugh : ; ]
We noticed that the oscillations in the plateau region were
progressively more persistent at lower biases. Whereas only
1300 iterations were required to reach convergence at 0.31
V, fully 3800 iterations were required at 0.27 V. The 0.26-V
bias point was apparently on course to convergence at 4000
iterations. Indeed, further evolution resulted in full conver-
gence after a total of 7008 iterations. To demonstrate these
oscillations, Fig. 5 shows the complete plot of collector cur-
rent versus time at 0.26 V on the up-trace. Both the oscilla- R SV
tions and the convergence criteria decreased very regularly 0 1 2 3 4 5 6 7 8
over the course of the simulation, with a decay constant of Time (ps)
0.2/ps. For example, for the oscillation amplitude,

Current Density (10% A/cm?)

FIG. 6. Simulated transient collector current after switching
A(t)~0.8x 10°e~ (021 P9 Ajcm?. (44)  from 0.23 to 0.24 V, showing sustained oscillations.
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TABLE I. Collector current final oscillation dat@fter 10 p$ at

applied biases of 0.24 and 0.25 V. Current density from steady-state
simulations is appended for comparison.
Oscillation parameter 0.24V 0.25V =

3
Amplitude (10° Alcm?) 1.98 1.08 3
Period(p9 0.413 0.374 8,'
Frequency(THz) 2.42 2.67 -
Time average10® Alcm?) 4.18 4.06
Steady-state curretil0® Alcm?) 4.50 4.10

Time (ps)
A(t)~6.31e %41 PS Ajcn?, (45)

o . . . FIG. 8. Current variation vs time after switching from 0.25 to
Of course, the oscillation amplitude will be bounded, just asp 26 v. dJ is the current variation, andJ, is the convergence

it was in Fig. 6. These results prove that the RTD is inher-riterion of 0.1 A/cnf. The simulation converges regularly, show-
ently unstable at these biases. To model this behavior, Bugg that the RTD is stable at this bias. The spikes in the curve are
and Jensen describe an equivalent circuit model for the RTue to the decaying oscillations.

(Ref. 29 that reproduces the bounded instability depicted in . | ) )
Figs. 6 and 7. tonic increase in the exponential decay cons{aee Egs.

The results at 0.24 and 0.25 V called into question our(4;') and(45)§ from —0b-4/p3 at (;'24 V, through (ﬁ‘at aboutt)l
conclusion that the remainder of the plateau was stable. THg222 V. an “p.tLOJa out 0'62 pBS a:’0.31 \I/t The unstable
convergence criterion in Eq43) is admittedly not as strict [)Z%O;; :sggiﬁ:;ovr\w"s - tigsggtggu wlrﬁest hrgzl:ats)l ; rgé\ill)nngcgir-
as we quld like. It leaves open the pOSS'.b'“ty that the RTDtradicts their conclusion that these oscillations occur
might oscillate perpetually with an amplitude of less than

! X throughout the plateau and are required for the plateau to
1000 A/cn. To verify that the upper portiof0.26-0.31 Y gccur. In fact, these oscillations have only a minor effect on

of the plateau was stable, we ran simulations at the lower englo \,a1ue of thel-V curve in the unstable region of the
(0.26 V), middie (0.29 V), and top(0.31 V) of this region  nateay (see Table ), and no effect at all elsewhere. We
with four orders of magnitude stricter convergence criteriag,spect that Jensen and Buot's incorrect conclusions resulted
Most importantly, the current variation was required 10 begjther from premature termination of their transient simula-
less than 0.1 Alcfifor convergence. Throughout these simu-gions or from their use of an accelerated convergence
lations, the oscillations continued to decay regularly at alltechniquél
three bias points, reaching convergence at 27 906, 10 424, |, \he apove discussion of transient self-consistency simu-
and 7522 iterations, respectively. To illustrate, Fig. 8 shoWsgiinns we did not mention the transient Newton iteration
a plot of the current variation versus time for the 0.26-V athod. In fact. we only ran parti&tV curve traceg5—10
simulation. . . : \Boints in either direction and some plateau region ppints
Based on the above transient simulations, we can Noising this iteration method. Based on these simulations, we
conclude that the plateau in the simulated RTDY curve  getermined that the RTD evolved almost identically with
is composed of two parts: an unstable regior24—-0.25V  ansient Newton method as with the transient Gummel

in which the RTD oscillates forever, and a stable regionyethod. For example, Fig. 9 compares the collector current
(0.26-0.31 V where persistent oscillations eventually di€ from the -V curve simulations at 0.06 V for the two tran-

out. Actually, these regions are simply the result of @ monOgjent jteration methods. Although the transient Newton
method sometimes converged a few iterations faster, for the

454 N R bias point shown in Fig. 9, the transient Gummel and New-
i ’ ' i ] ton methods converged in exactly the same number of itera-
% aso bod2ox bbb ” tions (629). _ _
3 i We concluded from these observations that performing a
= 450 Lo i /\f\ '\ﬂ i full I-V curve trace with the transient Newton method would
T 450 b RARAN \/\/\/\/ \/ I provide no additional information. Thus, although in theory
2 . I the transient Newton approach is more accurate than the
8 448 B - i transient Gummel approach, for the relatively small time step
'g 1 used here, the improvement in accuracy was found to be
3 480 N equally small. Another reason we did not complete the tran-
sient Newtonl-V curve simulation was, as we discuss in

444 L] S S W i i
0 ] > 3 4 5 6 = 8 Sec. VIE, that it would have required an unreasonable

Time (ps) amount of CPU time.

FIG. 7. Simulated transient collector current starting from a E. Computational efficiency

fully converged steady-state Gummel iteration simulation at 0.24 V, We have shown that essentially identi¢aV curves are
showing that the RTD is unstable at this bias. produced for the RTD in Fig. 3 by all four self-consistency
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. and thus to minimize convergence time. The transient simu-
p—cTT T lations further assume that the four oscillating operating
L Newton | points(0.24 and 0.25 V in both trace directionsere termi-
nated at 8000 iterations, while all other bias points were run
! to full convergence. Since we did not conduct a complete
...................... . transient Newtori-V curve simulation, the data in Table Il
/MWM** for this iteration method are estimates, but should be very
Y ad : close, based on the arguments at the end of Sec. VI D.
oo ] We note that the simulations for this work were carried
out on several platforms. THeV curves for which data are
i i reported in Table Il were produced on independent proces-
300 400 500 600 sors of an SGI Challenge XL computer and on DEC Alpha
Time (fs) 3000/300LX workstations. These platforms were roughly
equivalent in performance, requiring about 12 CPU s per
FIG. 9. Simulated collector current for transient Gummel andGymmel loop and 60 s per Newton loop. A Cray C-90 su-
Newton ite_rat_ion_ method simulations after switchin_g from Q.05 to percomputer was used for the longer, single-bias investiga-
0.06 V. This indicates that the Gummel approach is effe_ctlvely 3Sions (e.g., the detailed investigations at 0.24 and 0.25 V
accurate at the Newton approach for the chosen simulation param,q Cray required only 1.05 CPU s per Gummel loop.
eters. Several factors determine the relative computational costs

, . , . of the self-consistency iteration methods. Considering just
iteration methods. It is reasonable in such a case to use thge steady-state Gummel simulations, the importance of us-

most efficient iteration method. Thus the relative efficiencies‘ing our accelerated convergence implementatisee Sec.

of the iteration methods is another main point of comparison,v) is clear. In fact, the CPU time advantage of using Fermi-

As one can surmise from the foregoing discussions, the comyjy4¢ statistics is often even more dramatic than the roughly
putational costs of the four iteration methods are vastly dis3-1 ratio shown in Table II. Outside the plateau region, the

parate. The number of WFTE solves and total CPU timeyyerage number of iterations required for convergence to the
used by each of the iteration methods for the two-ttad€  gejf-consistent solution was 41 using the standard approach,
curve is summarized in Table Il. Data for the non-self-1,;; gy seven using our accelerated approach. However, for

consistent simulation shown in Fig. 4 are also given for comy jteration methods, most of the iterations took place in the
parison. We have also included data for the standard Stead}fhallenging plateau region of tHeV curve. (One result of

state Gummel implementatidsee Sec. IV, for comparison  ihis was that the up-trace always took more CPU time than
to the accelerated implementation used in this work. the down-trace.For the accelerated Gummel simulation, lo-
Some notes regarding the data in Table Il are in ordercaiing operating points in the plateau often required dropping
The current was simulated at 0.01-V bias increments in botyack 1o the more reliable standard approach. The result was
directions over the range 0.0-0.4 V, giving a total of 82 b'asonly a 2.2:1 advantage in CPU time over the standard ap-
points plus the equilibrium solution needed for scatteringyrgach in the plateau region. With its faster convergence, the

calt;ulations. The 140 steady-state Gummel i'teratio'ns do”&dvantage of the accelerated Gummel implementation in-
during the course of the steady-state Newton simulation wergesses as convergence criteria become more strict.

a result of the Newton method’s inability in some cases 10 A more general factor influencing the relative computa-
locate the self-consistent operating point as it entered or &%5n4] costs of the self-consistency iteration methods is the
ited the plateau region. The transient simulations used 100-f$, ,cp, greater CPU time required for a Newton loop than a
bias slewing(rather than changing the applied bias in agymmel loop. In this work, the ratio was 5:1. In spite of this,
single time stepto mitigate the “shock” of bias changes he fy| steady-state Newton simulation required only 44%
_ more CPU time than the accelerated steady-state Gummel
TABLE II. Number of WFTE solves and total CPU time re- gimy|ation, and only half the time of the standard Gummel
quired for a two-tracel =V curve simulation for each self- gimyjation. This recoup by the steady-state Newton method
consistency iteration method. Data are given for both the standar\g!,as a result of yet another factor in the efficiency equation:
Eninacce!eralte? SteadY'Stgte Gumlrgel apprlolaCheS_' The StZi‘?y'Tt%tS Newton method’s more sophisticated solution update al-
ewlon simulation required severa ummel I0ops In some dimcu . . . .
cases. The transient Newton data are estimated. CPU times are fo?égl)qrﬁihr? d(?c?recgr?\(/:érgerr:liar:hnzpti?:toﬁ\rl]vgrs tltﬁ:rtaggrr:\?e\r,\éeerr?ce
DEC Alpha 3000300 LX. criteria used, aside from the plateau region, almost all bias

Current Density (10° A/cm?)

Simulation type WETE solves CPU time points requireq o_nly three sfceady-state Newton _iterat?ons to
(Iteration methoy (i.e., iterations (h mee; these criterig The relatlvely Iow_ number of iterations
required by both steady-state iteration methods was made
Linear (non-self-consistent 84 0.28 possible by the initialization algorithm far®, as discussed in
Steady-state Gumméstd) 4300 14.3 Sec. lll) Again, the faster convergence of the steady-state
Steady-state Gumméacg 1450 5.0 Newton approach improves its favorability in comparison to
Steady-state Newton 4M0- 140G 7.2 the steady-state Gummel approach as convergence criteria
Transient Gummel 96 500 330 become more strict.
Transient Newton ~96 500 ~1,650 By far the most significant factor in the computational

cost equation is whether the iteration method uses the steady-
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state or transient approach to finding the self-consistent opseveral potential causes of this lack of “robustness” or reli-
erating point. The mathematical descriptions, and thus thebility. First, there are almost certainly “pathologic” oper-
CPU time per iteration, of the steady-state and transieniting conditions for some quantum devices where the steady-
methods are very similar for each formulati@@ummel or  state methods will be unable to converge. Even if a device is
Newton). However, Table Il shows that the transient itera-stable at a given bias, the operating point may not be found if
tion methods require roughly two orders of magnitude morehe previous WFTE and PE solutions are far away from it.
iterations(on averaggthan the steady-state methods to con-|ncrementing the bias across a bistable operating point, of
verge o the self-consistent operating point. The reason fQgnich there are three in Fig. 4, is the usual culprit here.
the huge difference is that the transient iteration methodgisiapie operating points were, in fact, problematic for both
attempt to follow the exact evolution of the device as it re-y,, steady-state Newton method and (daeceleratexisteady-
laxes towards the steady state after a bias change, so thgyate Gummel method. However, SQUADS detects noncon-

must take as longn simulation timg as a real device would vergent behavior during steady-state self-consistent simula-
to reach the steady state. Because of the extreme computta—

tional cost of the transient iteration method, to complete the oS and automatically switchestemporarily to the
transient Gummel simulation in an acceptable amount of redl

time, we ran several sections of each trace concurrently, ugpproach. In this way, potential divergence problems of the

ing a steady-state Gummel-converged solution for the initiaPt€ady-state iteration methods were completely avoided in

condition (except for the two points on each trace which didthis work. o
not converge Just as blind faith in the results of steady-state self-
consistent simulations is not advisable, so too is complete
F. Discussion reliance on transient self-consistent simulations. Admittedly,
In this section, we discuss the strengths and weaknesset%e bg;ic transient methods are ava_ays adequate in terms of
in terms of efficiency, accuracy, and robustness, of the four liability .and acguracyﬂ.e., the apmty to correctly repro-
duce device physi¢sHowever, their extreme computational

self-consistency iteration methods considered in this work, th e harsh con N The first is that on n
From previous sections, the obvious strength of the stead)f-OS as some harsh consequences. 1ne first1s that one can-
ot afford to undertake transient simulations such as those

state methods is their relative computational efficiency. Ad o i
we have also stated, the main strength of the transient metiye€sented in this work without a good reasend a very fast
ods is their direct physical basis, and their resulting “exact” COMPpute). The problem with this is that often theis no
adherence to the time-dependent operation of the device bgoncrete reasom priori for running a simulation—only a
ing simulated. These are clearly complementary strengths, S6:gue notion of how the device might behave. Certainly it is
that both the steady-state and transient approaches have igHrrently completely unfeasible to run multiple week-long
portant uses. In particular, we recommend using a stead)transient self-consisterltV curve simulations to examine
state iteration method for wide-ranging initial investigationsthe effects of varying simulation or device parameters. In
(e.g., to trace thd-V curve, thereby gaining the insight contrast, the decision to run the same steady-state simula-
necessary to narrow the focus of a more detailed investigaions (in a few hours eaghhardly merits a second thought.
tion where transient effects are inheréatg., switching or The opposite side of the tendency for doing too few tran-
suspectede.g., oscillations Strangely, we find the literature sient self-consistent simulations is trying to do too many. A
roughly equally divided between use of transient and steadygood reason to limit reliance on transient simulation where
state Gummel approaches, with apparently no group simulappropriate is that inadequate computing resources invite un-
taneously using the information and advantages provided bgecessary compromises to be made in the implementation of
both. Hopefully this work will help to end that unnecessarythe simulator or in the execution of the simulation. For ex-
exclusivity. ample, fewer bias points or time steps may be simulated than
If a main strength of the steady-state methods is theinecessary, the time step or convergence criteria may be
relative efficiency, their main shortcoming, at least in somdarger than accuracy dictates, and so on. One compromise we
cases, is accuracy. The inability of the steady-state iteratiomade that seems justifi€ds discussed in Sec. IV)lvas the
methods to show the transient oscillations predicted by these of the transient Gummel method instead of the theoreti-
transient iteration methods was to be expected: only transiemally more accurate Newton method. On the other hand, our
simulations can model time-dependent effects. Much morehoice of slew rate based solely on achieving fast conver-
of a concern was the fact that the steady-state methods offence, rather than modeling reality, is not so easily excused.
fered no concrete indication that an unstable operating corln fact, investigations using a lower slew rHteshow that
dition existed, and thus that a transient simulation should bé&ansient current predictions like that in Fig. 5 may bear little
used. For the simulations in this work, if we had not knownresemblance to what a real RTD would do under test. How-
to look for oscillations in the plateau, we would have beenever, in a circuit of RTD-like devices, 100-fs bias slewing
perfectly satisfied that our steady-state simulations told thenay be reasonable. Since generating Ithé curve was the
entire story about the RTD’6-V curve. Admittedly, the ac- test case for this work, the details of the evolution to the
tual I-V curve was only slightly different at two points, but steady state could be ignored in this case. In general, any
the physics underlying those small differences was quite imeompromises in implementation or execution should be con-
portant. sidered carefully, so that they do not conspire to weaken the
Another shortcoming of the steady-state iteration methodslirect physical link which is the main advantage of the tran-
is that convergence to a simultaneous solution of the steadient iteration methods over the steady-state approaches. The
state WFTE and the PE cannot be guaranteed. There abest defense against these compromises is to focus comput-

tandardiand more robust but slowesteady-state Gummel
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ing resources on a limited set of transient simulations that armel, and steady-state and transient Newton. To our knowl-
expected to add value to the steady-state results. edge, this is this first time that all these approaches have
We have advocated using the various self-consistency itdeen described in a single mathematical framework and no-
eration methods in a hierarchical manner. An efficienttation. In the process of describing the numerical implemen-
steady-state approach should be used to investigate a brotations of these iteration methods, we gave expressions for
range of operating conditions, and to narrow the scope fothe off-diagonal Jacobian blocks in the Newton formulation,
more exacting(and expensive transient simulations. We apparently for the first time. We also presented an acceler-
now discuss the clues from steady-state simulations that iréted convergence algorithm for the steady-state Gummel ap-
dicate device operating conditions for which transient simu{roach which makes it the most efficient means of generating
lation might be warranted.e., where sustained, significant, the self-consistent-V curve for a RTD.
or interesting transient effects might ockuBome of these We also analyzed the strengths and weaknesses of the
clues are obvious. A negative differential resistance region igarious self-consistency iteration methods. A large part of
a known cause of oscillations, whether intrinsic to the devicéhat analysis concerned relative computational costs. The
or a result of the device interacting with tiigimulated or ~computational efficiency of the steady-state methods makes
rea) measurement apparatus. Also, any operating point ghem ideal for wide-ranging initial investigations, such as
which the steady-state simulation has significant difficultyfull I-V curve traces. There are undeniable difficulties in
converging should raise a red flag. Obviously, if the steadyusing the steady-state iteration methods, such as lack of ro-
state iteration method completely fails to converge at a parbustness in the Newton and accelerated Gummel methods,
ticular bias point, a transient simulation is necessary to deand the relatively slow convergence of the standard Gummel
termine device operation. Finally, only a transient iterationapproach. These problems may have discouraged the use of
method can be used for inherently transient self-consisterfiteady-state approaches in the past. We have demonstrated
simulations, such as switching, small-signal, or large-signahow these problems can be avoided, and we have shown the
investigations. excellent results and efficiencies that the steady-state itera-
tion methods can achieve.
G. Other iteration methods We have also shown that even if a steady-state iteration
) method converges to a simultaneous solution of the steady-
As a final note, the Newton and Gummel methods préxiate WFTE and PE, there is no guarantee that this is a stable

sented above are certainly not the only possible ways @perating point. Transient iteration methods are inherently
solve the WFTE-PE system and thereby implement Selfyygre accurate and reliable, and are required to treat time-

consistency, although they are perhaps the most basic. Majtpendent situationgsuch as unstable oscillationsHow-
variations - on the Gummel and Newton methods ar&yer we have shown that steady-state methods are just as
possible’® and other nonlinear system solving approachegmportantin practicein the investigation of quantum device
may be used. For example, Jansen, Farid, and Kellged  pnysics. Efficient steady-state simulations can be used to de-
the conjugate-gradient method tp compute_the self-c_onswfteﬁgrmine the basic operation of the devieeg., the -V curve,

I-V curve for a RTD. According to their analysis, this hossible unstable regionsllowing one to narrow the scope
method is about an order of magnitude faster than the transt (expensive transient simulations. Those transient simula-
sient Gummel approach, making it about an order of magnisions whichare done can then be implemented and executed
tude slower than the steady-state Gummel and Newton iterggithout serious compromises so that they will correctly
tion methods described herein. However, the conjugatemqggel device physics and add value to the steady-state re-
gradient method has the distinct advantage of a much smallggis.

memory footprint. This would be useful for very large simu-

lations (e.g.,N,,N,>200). Since memory usage for solving ACKNOWLEDGMENTS
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