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Plasmon-pole approximation for semiconductor quantum-wire electrons
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We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor
guantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum-
wire systems than in higher-dimensional systems because of severe phase-space restrictions on particle-hole
excitations in one dimension. As examples, we use the plasmon-pole approximation to calculate the electron
self-energy due to the Coulomb interaction and the hot-electron energy relaxation rate due to LO-phonon
emission in GaAs quantum wires. We find that the plasmon-pole approximation works extremely well as
compared with more complete many-body calculati¢88163-18206)04536-5

. INTRODUCTION employed=2 in calculating the electron self-energies of
three- and two-dimensional systems. The results obtained
Recently, there has been an increasing inttiessemi-  from these calculations are in good semiquantitative agree-
conductor gquantum-wire structures, where the motion ofment with the results of more sophisticated treatments—
electrons is essentially restricted to be one dimensionahamely, the full RPA calculations, and with experimental
Technological progress has made it possible to fabAcateresults. A many-body interacting electron system has both
high quality quantum wires where only the lowest subband isollective plasmon excitations and single-particle electron-
populated by electrons, so that a truly one-dimensional interhole excitationg? The plasmon-pole approximation simpli-
acting electron gas is realized. Much in the same way afies the many-body excitation spectrum by ignoring the
guantum-well structures have generated tremendous activparticle-hole excitations and assigning the whole spectral
ties in pure and applied research on two-dimensional elecweight, which is dictated by the-sum rule®® to an effective
tron systems, quantum-wire structures have created the peollective plasmon excitation, which is assumed to be a real
tential for different device applicatiohd* and the pole of the response function. This is, in general, a crude
opportunity to carry out experimental study on one-approximation for the actual dynamical response of the elec-
dimensional Fermi systems, where many theoreticatron system, except in the long wavelength limit where the
predictions can be tested. Because of the low dimensionalplasmon excitation exhausts all the spectral weight in a uni-
ity, properties of a quantum wire are very sensitive toform system?® by virtue of particle conservation. It is well
electron-electron interaction effect§ Many experimentally  known that in a one-dimensional system, the collective plas-
relevant quantities need to be calculated by taking into acmon excitation plays a more prominent role because of phase
count many-body interaction induced exchange-correlatiospace restriction on particle-hole excitations. In fact, the long
effects. The standard perturbation theories, which have beemavelength RPA plasmon dispersion is exact in one-
developed for higher-dimensional electron systems, havdimensional electron liquids up to the second order in wave
been appliedi” to quantum-wire systems, and good agree-vector in contrast to higher-dimensional systéfhdt is,
ment with experiments are generally obtained. In this pa- therefore, worthwhile to explore the possibility that the
per, we discuss the application of another well known manyplasmon-pole approximation may actually work better in
body approach, the plasmon-pole approximatibh,to  quantum-wire systems than in higher-dimensional systems.
guantum-wire systems. The motivation for this work is theOur work is motivated by this purpose. We find that the
observation that the collective plasmon excitation plays ane-dimensional phase-space restriction on the particle-hole
more prominent role in a one-dimensional electron systenexcitations indeed increases the spectral weight of the plas-
compared with its higher-dimensional counterparts becausmon excitation over a wide range of wave vectors in one-
single-particle electron-hole excitation continuum is severelydimensional systems under conditions which are typical in
restricted in one dimension due to energy-momentum conGaAs-based quantum-wire samples, and the plasmon-pole
servation. Thus, the plasmon-pole approximation, besidegpproximation indeed works extremely well in calculating a
having the obvious benefit of great simplicity, may work variety of quantities in GaAs-based quantum-wire structures.
well for one-dimensional quantum wires in calculating We specifically apply the plasmon-pole approximation to
exchange-correlation effects. To illustrate this point, we caliwo different problems: one involves the electron-electron
culate the electron self-energy correction due to electron€oulomb interaction and the other involves the polar elec-
electron Coulomb interaction and the electron energy relaxtron LO-phonon Frhblich interaction. In the first case, we
ation rate due to electron LO-phonon”HRlich interaction calculate quasiparticle properties of the interacting electrons
and compare the plasmon-pole approximation results witiby taking into account the Coulomb interaction effects
the corresponding full many-body calculations using thethrough the plasmon-pole approximation. In the second case,
random-phase approximatidRPA). we calculate the hot-electron energy-loss rate via LO-phonon
The plasmon-pole approximation has been extensivelgmission. We show that the plasmon-pole approximation
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FIG. 1. Excitation spectrum of a one-dimensional electron gas FIG. 2. Calculated RPA oscillator strengths of plasmon excita-
in the RPA. Particle-hole excitations are confined within the phaseions of 1D quantum-wire and 2D quantum well electron systems.
space surrounded by the dotted INBCDE Plasmon excitation is  The input parameters are taken from GaAs-based materials: density
represented by the solid line. n=10° cm * and lateral widtta=b= 200 A for the quantum wire;

densityn=1.6x 10** cm™2 for a zero thickness purely 2D quantum
works well in both cases by giving results which are in goodwell.
agreement with the corresponding RPA results, which are
much more difficult computationally.

In Fig. 1, we show the elementary excitation spectrum of Spi(Q,0)=—
a one-dimensional electron system calculated within the
RPA, where the particle-hole excitations are confined within
the phase-space surrounded by the dottedAiB&DE, and . .
the plasmon excitation is represented by the solid line. In onJen Fig. 2, we compare the oscillator strengths of plasmon

dimension, the RPA plasmon dispersion has a simple analytﬁz(giﬁlitr:):ngoigln:-udallr:tirr]:I(\)/\r/]éilébqotiﬁni)ubrpaivrzgg v\\/l\::'[]hitrr]]atthzf a
cal expressioh(we setfi=1 throughout this papkr RPA). The plasmon oscillator strength in the quantum well

1

a
Slw—wg].
Ve(Q) | 9 a

’a—wRe[f(q,w)]’

A(QE.(9)—E_(q) drops quickly to zero at a critical wave vector, beyond which
0= i —, (1)  anundamped well-defined plasmon mode does not exist. The
A(q)—1 oscillator strength of the plasmon excitation in a quantum

wire, on the other hand, extends well into the range of large
wave vectors, decreasing slowly with increasing wave vec-
tor. Note that theq—O0 behavior of these curves, i.e.,
F(q)=1 for q—0, is just a manifestation of thiesum rule.

The interesting point is thd(q) ~1 in one dimension even

or g>Kkg. It is seen clearly that the plasmon dominance of
wave vectors 8 q< . the spectra_l weight is significantly increaged in guantum-wire

The most characteristic feature of the one-dimensiona}ySt€Ms- Since the plasmon-pole approximation assumes that

spectrum is that particle-hole excitations are prohibited fromt_he excitation spectrum consists of no particle-hole excita-

a large portion of the low energy phase space, the regioHons, but solely of a collective mode which gxists for all
below the dotted lin®CD in Fig. 1. This restrictio,n which values of wave vectors and possesses unit oscillator strength,

arises from the momentum-energy conservation, increas .tsis easy to unde.rstand why the p_Iasmon-poIe approxima}tion
the dominance of plasmon excitations in a quantum wird&y _;NOI’k well |r; a :_wantfum-wwet system. ;I'h? densr[ty-
compared with higher-dimensional systems. The situation igens' y response function ot a quantum-wire electron system

totally different in higher-dimensional systerh’s,where In the plasmon-pole approximation is given as
particle-hole excitations are allowed in the whole phase

whereE .. (q) = g%/2m=keq/m with m as electron mass and
ke the electron Fermi wave vectoA(q)=exda/7V.(q)]
with V.(q) as the electron-electron Coulomb interaction
potentiat® of a quantum wire of finite lateral width. Unlike
plasmon modes in higher dimensions, the RPA plasmon e
citation in a quantum wire exist§.e., is undampedfor all

space between the dotted linA8 andDE in Fig. 1. For a qu

quantitative measure of the relative importance of the plas- . m

mon excitation, we evaluate its oscillator strength within the Xpe(0, @)= —5— o ()
RPA,

By constructionxpp(g,®) in the above expression satisfies
fwwsp( 0)da @) the f-sum rule and the static Kramers-Kronig relatidn.
o Jo 9, ' Equation(3) is our plasmon-pole approximation modet?
which we use to calculate quantum-wire many-body elec-
wheren is the average density of the electron gas, and théronic properties.
plasmon spectral weight is defined fwyith the plasmon dis- In Secs. Il and Ill, we apply the plasmon-pole approxima-
persionw, given by Eq.(1)] tion to the calculations of electron self-energy due to Cou-

F(a)=-
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lomb interaction and electron energy relaxation rate due tgingularities due to a divergence gt=2kg. Using the
LO-phonon emission, respectively. A short summary in SecKramer-Kronig relation, we have

IV concludes our paper. 2
1 w
—l=———y—. 9)
Il. SELF-ENERGY AND SPECTRAL FUNCTION €(q,0) 0~ wgtid

Within the PPA the self-energy can now be separated into a

The one-dimensiondllD) self-energy within the leading frequency independent exchange term and a correlation term

order GW approximatioh® neglecting vertex correction at

T=0 is given by S(K,w) =3k, o)+ ol K, o), (10

dq do’ where
E(k,w):if(ZT)ZW(q,a))GO(k—q,w—w’), (4

. (dgde’
. . _ Eex(k,w):|fﬁvc(q)Go(kqu,quw’), (11)
whereGy(k,w) is the Green’s function for the noninteract- (2m)

ing electron gas, and
o(kl—ke) . O(ke—|K]) .qudw' }
= 3 ol K, w) =i \Y ——1
Gtk )= oo +io” Tomew-i0 © ol =1 | T Vel g
with  &(k)=k?2m—pu (u=chemical potentia) and XGo(k+q,0+w’). (12
W(q,w) is the dynamically screened Coulomb interaction,The exchange energyie(k,») as well as the correlation
which is given by energy= .., within the full RPA theory has been calculated
earlier by Hu and Das Sarmidsing Eq.(9) in Eq. (12) and
_ Ve(9) performing a frequency integration, the correlation part be-
W(q,») . (6)
€(q,0) comes
HereV.(q) is the bare Coulomb interaction, which is loga- dg Vc(Q)w;Z) 6(ke—|k+q])
rithmically divergent in the 1D wave vector space. Thus, we Ecor:j o 2w 0t 0g—Egrg—10
TP . . q a  Sk+q
use the more realistic finite width quantum-wire model, the
fully approximated matrix element of which can be found in o(lk+q|—kg)
the literature’® €(q, ) is the dielectric function, which de- + 0= wq—Eiqtid) (13

scribes the dynamical screening properties of the electron

gas. The dynamically screened interactdtiq,) can be The real and the imaginary parts of the are given by

separated into an unscreened term which gives rise to the d 6(ke—|k+q])
i q F q
exchange part of the self-energy and another term which REX ol k,w) =P 5-9(a) P——
gives rise to the correlation part of the self-energy and in- g Skta
volves coupling to density fluctuations, N O(|k+q|+kg) 14
w_wq_§k+q ’
W(q,w)=V(q)+Vc(q) @) (7  and
The imaginary part of the second term is nonzero within the ;5. (K,w)= Wf d—qg(q)[a(kF—|k+q|)
electron-hole continuum and along the plasmon dispersion con 2@
line in the RPA. In the plasmon-pole approximation _ _ _
(PPA),°*2the second term is replaced by a coupling to the X B(W+Wq— i) ~ O]k +a| —k)
effective plasmon mode as described in Sec. |, X 80— wq—Erq)], (15)
1  w? whereg(q) =V,(q) 3/ (2w,) and B indicates the principle
Im m— 1} =—3 w—&(w—wq), (8 value integral.>From the restrictions on the integration re-
' q

gion arising from various? and é functions, we see that
where the strengtl3=(n/m)Vc(q)q? is determined by the M ¢ is nonzero only for

requirement that Eq8) satisfies thef-sum rule, andwy is
the 1D plasmon dispersion which is exactly known within
RPA (Ref. 7) [see Eq(1)]. Unlike in 2D and 3D, where the &> @ and —wg(kp+k)<o<-—wq(k—kg) if k>kg.
exact analytic RPA plasmon dispersion is unknown so that (16)
the static RPA dielectric functioa(q,»=0) is used in ob-  Carrying out the integral ovey, one obtains the imaginary
taining the effective plasmon frequenay,, we use the ana- part of theX
lytically known 1D RPA plasmon dispersion given in Eq.

cor

(1). Note that any attempt to use the static RBAmilar to M. (K, ) = 12 9(a4 ) 0(ke—|k+a. i|)
what is done in 2D and 3D PPANn 1D PPA is not only con 24 |[dQ . (g, ;)/dq|
unnecessarybecause the 1D RPA plasmon dispersion is

known analytically, but also incorrect because the 1D static 9(q- ) 0(lk+q_ i| —kg)

17

RPA dielectric function has logarithmic zero temperature |dQ_(q_ ;)/dq '
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FIG. 3. (a), (b) Self-energy> (k,w) and(c), (d) spectral functiomA(k,w) as functions of the frequenay for two fixed wave vectors
k=0 [(a) and(c)] andkg [(b) and(d)]. Thick (thin) lines correspond to the PPRPA) results. The vertical lines ift) represen® functions
with the spectral weight given above the peaks. The straight linéa) iand (b) are given byw— ¢(k) — «, and their intersections with
Rd 3] indicate the solutions to Dyson’s equation and correspond to quasiparticle fjeakgis plotted instead of I8 for visual clarity.

where Q.(q)=o0*w,— &y and g.; are zeros of 2|Im2 (k,w)|
Q.(q). From Egs. (15 and (16) we know that Alk,w)= [0—&(K) — Re (K, 0) ]2+ [Im3 (k@) ]2
Im[X(k,w)] as a function ofw has finite discontinuities at (19

o=*wy(k+kg), the magnitude of which can be calculated
from Eq. (17). For example, we have the magnitude
g(kg)/[dwq(Ke)/dq=ke/m] at = * wy(kg) for k=0 and »daw
(1/2)9(2kg) /[ dwq(2ke)/ dq+Ke /m] at w=* wq(2kg) for f 2—A(k,w)=1, (20
k=kg. [See the numerically calculated values in Fige) 3 ™

and(b).] A finite discontinuity in InfX ] gives rise to a loga-  \yhich we verify to be satisfied within less than a percent in

It satisfies the sum rule

©

Kramers-Kronig relation[See Figs. @) and(b).] Figure 3 shows the calculated self-energies and spectral
In order to determine quasiparticle excitation energies ongunctions as a function of frequeney for k=0 (band edge
must solve the Dyson equatiBnwhich is given by andk=kg (Fermi energy. The complete RPA resuftsthin

lines) are also shown for comparison with our PPA results.

From the figures we can see that our PPA results are almost

identical to the full RPA result8.In both calculation the

w+ pu=E&Kk)+2(k,w), (18 parameters corresponding to GaAs are usee: 0.07m,

(mg is the free electron magsey=12.9, €,=10.9, and

w_0=36.8 meV. The well width oa=100 A and the 1D

electron density oh=0.56x 10° cm !, which corresponds
whereu is the chemical potential of the interacting electronto a Fermi energf~4.4 meV and a dimensionless density
gas, which is determined by settitkg=kr andw=0 in the  parameter ;=4me?/ wkrey= 1.4 withkz= 7n/2, are used in
above equation. Once the self-ene@jfk, w) is known, the  both calculation. In Figs. (@) and 3b) the straight lines are
single-particle spectral functioh(k, w) is readily calculated. given by w—£&(k)— «, and their intersections with RE]
A(k,w) contains important dynamical information about the indicate the solutions to Dyson’s equation and correspond to
system and is given by quasiparticle peaks. In the spectral functionKer0, we find
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two undamped quasiparticle peaks. The strengthl, =0 throughout, our results should be valid for low values
(27 0.37) of the regular quasiparticl¢he first peak near of T,)

w=0) within PPA is slightly higher than the corresponding d

RPA result (27X 0.33). The strength (2 0.31) of the sec- * Qo

ond peak, the so-called plasmaron peak, is nearly the same in" — Eq: fﬁw7“’nT(“’)| Mql?Imx"*(q,®)ImD™(q, ),

the PPA as that in the RPA 2x0.32). The low energy (22)
incoherent spectrun Er<w<wq(kg)] arising from the ) o

electron-hole continuum within RPA is transferred to theWherent() is the Bose distribution factor at electron tem-
quasiparticle spectrum in the PPA, making the quasiparticl®€ratureT, and|Mq|2. is the Franlich coupling matrix’ The
spectral weight slightly higher in the PPA than in the RPA.Phonon propagator in E¢21) is

For k=kg we find that the quasiparticlelike peakat=0 is

not a strict 5-function peak, which means that the system D(q,0)=
within PPA has no true long-lived quasiparticles. This result '

is qualitatively the same as the RPA result, implying that he | in the d . i the ph it
there can be no true quasiparticles in one dimension. adhe last term in the denominator is the phonon self-energy

w—0, the dominant contribution to I (ke ,®)] within cor_rection due to many-body electron-phonon coupling,
RPA comes from the plasmon excitatidherefore, the be- which broadens the phonon spectral .f“'?C“O”- The phonan
havior of the spectral function near=0 for k=kg shows mode couples to the. plasmon exmtatm@the so—calle_d
exactly the same behavior for both the PPA and the RPA. plasmon-phonon couplings well as to particle-hole excita-

In 2D (Ref. 12 and 3D%% the quantitative differences tions, so that the renormalized phonon spectrum may be

between the results of plasmon-pole approximation and thghargcterized as containing hyl_aridi_zed phononlike and plas-
10nlike modes, and quasiparticlelike modes. The phonon-

-ph imati I
random-phase approximation are comparable, and are cop . ode has a large spectral weight and high energy

siderably larger than what we find in our 1D calculations. In . .
our 1D calculation, the agreement between the RPA an ~wL0), Wh'l_e th_e other mode_s have §mal| spectral weights
but have arbitrarily low energies. At high electron tempera-

PPA self-energies is almost perfect. Since the 1D electro | on th hth L p
hole continuum is strongly suppressed by the severe phaggres «BTNf"LO)' energy relaxation through the emission o
restriction due to energy-momentum conservation, the 1phe phononlike mode dominates because of its large spectral

plasmon is the dominant excitation which contributes to theV€ight, while at low temperaturesk¢T<w, ), energy re-
electron self-energy, with the contribution from single- l@xation though emission of the plasmon- and quasiparticle-
particle excitations being essentially negligibly small. In this!iké modes dominates because of their low energies. The
paper, we provide an easy method for calculating the effect§XiStence of the low energy modes enhances the energy loss
of correlation on the single-particle self-energy in one di_ra_te at low temperatures_smce emission of bare phonon mode
mension. It should be fairly straightforward to extend theWith @ frequency w o is effectively frozen out when
PPA self-energy calculation to more complicated experimenksT <@Lo. Our present objective is to compare the energy
tally relevant situations, such as finite temperatures and mul9SS rates among these three cases: no many-body phonon-
tisubband occupancies, with reasonable confidence of obtaifl€ctron coupling, involving only the bare phonon mode;

ing quantitatively accurate results. This is the mainPhonon-electron coupling in the plasmon-pole approxima-
significance of our work. tion, involving only the hybridized plasmon- and phonon-

like modes, but no quasiparticlelike modes; and the phonon-
electron coupling in the full RPA, involving all the modes.
Ill. ENERGY RELAXATION IN A QUANTUM WIRE One can see that these are three increasingly sophisticated

In thi _ v the ol | ... _approximations to the phonon self-energy correction in Eq.
n this section, we apply the plasmon-pole approxmatpn(zz) with the phonon self-energy correction completely ne-
to a coupled electron-LO-phonon system in a quantum W'reglected in the bare phonon case
and study hot-electron energy relaxafibrthrough LO- )

phonon emission. Although this topic is of great importancecor\gv :Sh aths(ianglzg-?s: cti)erlf_:tnjr:gi |gnoErC<]aS é‘tilggc(l’zci))) trl]) eer;
by itself!’ the present purpose is to use it as an example t Lo

L n o ives the energy loss rate as
show the simplicity and the reasonable quantitative accurac% 9y

of the plasmon-pole approximation in calculating quantum-
wire electronic properties. We, therefore, refrain from dis- P0=wLonT(wLo)2 (—2)|Mq|2X(q,wLo). (23
cussing in details the hot-electron relaxation phenom@na. a

When excess energy is supplied to an electron gas, thene characteristic of the bare phonon result is an approxi-
electrons go out of equilibrium with the underlying lattice, 5t exponential temperature dependenceP,,
with the electron gas attaining an effective electron tempera;, exp(— w, o/ksT), which comes from the Bose factor
ture T higher than the embedding lattice temperatiife nr(w_o). With the plasmon-pole approximatioppp, ImD

Such a hot-electron gas loses energy to its surrounding ifecomes a pair of functions atw=w. , the frequencies of

order to return to equilibrium with the lattice. In polar semi- ¢, hybridized plasmon-phonon modé&sThe energy relax-
conductors such as GaAs, the most efficient energy relaxsiion rate is then given as

ation process, except at very low electron temperatures, is

thr(_)ugh LO-phonon emission. When reabsorption of the Pop=P.+P_, (24)
emitted LO-phonons is ignored, the hot-electron energy loss

rate at zero lattice temperature is givenbywe take  with

2(0|_O

2 (22

® —wEo—ZwLolMQIZ)((q,w) '
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7 . . ; though its effect is negligible at high temperatures. The sec-
~ ond is that the plasmon-pole approximation gives an excel-
& -8 E lent description of the energy loss process, in the sense that
5 ot its result agrees very well with the full RPA result. This
L example shows again that the plasmon-pole approximation
2 -10¢ can work remarkably well in a quantum-wire system because
< ik : of the increased dominance of plasmon excitation in one
g dimension.

& 12t o
&
& —13F IV. SUMMARY
~14 . s s s . The plasmon-pole approximation has been widely em-
O 2 4 & .8 10 12 ployed in three- and two-dimensional many-body electron

6o/ keT systems. In this work, we discuss two specific applications of
the plasmon-pole approximation to 1D electrons in a

FIG. 4. Energy relaxation rates per electron as functions of elecduantum-wire struct.ure.' Our results suggest that t.he
tron temperaturd . The dotted line, dot-dashed line, and solid line plasmon-pole appro_XImatlon can work exc_:ept!onally We_" n
are, respectively, the results with no phonon renormalization, wittf@lculating electronic many-body properties in a semicon-
phonon renormalization in the plasmon-pole approximation, andlUCtor quantum-wire structure because of the severe phase-
phonon renormalization in the full RPA. The quantum wire has aSPace restriction on single-particle electron-hole excitations
carrier densityn=10° cm™* and wire widthsa=b=200 A. The in one-dimensional systems. We apply the plasmon-pole ap-
base of the logarithmic function is 10. proximation to calculations of electron self-energy due to
Coulomb interactions and hot-electron energy relaxation rate

w002 — wd via LO-phonon emission, and find that our calculated PPA

P.=> w0 N(0)——7——~|Mg|3%(—2)Imx(q,w.), results agree extremely well with the results of the full RPA
a w:(0f o) calculations. The agreement of the PPA results with the full

(29 RPA results is substantially bettén fact, essentially exart

where P. refer, respectively, to energy loss via upperin 1D than in the corresponding 2D and 3D systems. Our
(lower) hybrid plasmon-phonon modes. It should be noticedresults should influence future electronic calculations in
that the above expression is formally as simple as the corrég@miconductor quantum wires where calculations may now
sponding bare phonon result given in E83), both involv-  safely ignore the full complications of the RPA and adapt the
ing a wave vector integral. simple, intuitively appealing, and quantitatively accurate

The energy loss rates with no phonon renormalizationPPA.
with phonon renormalization in the plasmon-pole approxi-
mation, angl Wi_th phonon r_enormalization in the fu_II RPA, ACKNOWLEDGMENTS
are shown in Fig. 4. Two things need to be emphasized. The
first is that the phonon renormalization enhances the energy This work is supported by the U.S.-ONR and the U.S.-
loss rate by orders of magnitude at low temperatures, alARO.
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