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We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor
quantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum-
wire systems than in higher-dimensional systems because of severe phase-space restrictions on particle-hole
excitations in one dimension. As examples, we use the plasmon-pole approximation to calculate the electron
self-energy due to the Coulomb interaction and the hot-electron energy relaxation rate due to LO-phonon
emission in GaAs quantum wires. We find that the plasmon-pole approximation works extremely well as
compared with more complete many-body calculations.@S0163-1829~96!04536-5#

I. INTRODUCTION

Recently, there has been an increasing interest1 in semi-
conductor quantum-wire structures, where the motion of
electrons is essentially restricted to be one dimensional.
Technological progress has made it possible to fabricate2

high quality quantum wires where only the lowest subband is
populated by electrons, so that a truly one-dimensional inter-
acting electron gas is realized. Much in the same way as
quantum-well structures have generated tremendous activi-
ties in pure and applied research on two-dimensional elec-
tron systems, quantum-wire structures have created the po-
tential for different device applications1,3,4 and the
opportunity to carry out experimental study on one-
dimensional Fermi systems, where many theoretical
predictions5 can be tested. Because of the low dimensional-
ity, properties of a quantum wire are very sensitive to
electron-electron interaction effects.5,6 Many experimentally
relevant quantities need to be calculated by taking into ac-
count many-body interaction induced exchange-correlation
effects. The standard perturbation theories, which have been
developed for higher-dimensional electron systems, have
been applied6,7 to quantum-wire systems, and good agree-
ment with experiments2,8 are generally obtained. In this pa-
per, we discuss the application of another well known many-
body approach, the plasmon-pole approximation,9,10 to
quantum-wire systems. The motivation for this work is the
observation that the collective plasmon excitation plays a
more prominent role in a one-dimensional electron system
compared with its higher-dimensional counterparts because
single-particle electron-hole excitation continuum is severely
restricted in one dimension due to energy-momentum con-
servation. Thus, the plasmon-pole approximation, besides
having the obvious benefit of great simplicity, may work
well for one-dimensional quantum wires in calculating
exchange-correlation effects. To illustrate this point, we cal-
culate the electron self-energy correction due to electron-
electron Coulomb interaction and the electron energy relax-
ation rate due to electron LO-phonon Fro¨hlich interaction
and compare the plasmon-pole approximation results with
the corresponding full many-body calculations using the
random-phase approximation~RPA!.

The plasmon-pole approximation has been extensively

employed9–12 in calculating the electron self-energies of
three- and two-dimensional systems. The results obtained
from these calculations are in good semiquantitative agree-
ment with the results of more sophisticated treatments—
namely, the full RPA calculations, and with experimental
results. A many-body interacting electron system has both
collective plasmon excitations and single-particle electron-
hole excitations.13 The plasmon-pole approximation simpli-
fies the many-body excitation spectrum by ignoring the
particle-hole excitations and assigning the whole spectral
weight, which is dictated by thef -sum rule,13 to an effective
collective plasmon excitation, which is assumed to be a real
pole of the response function. This is, in general, a crude
approximation for the actual dynamical response of the elec-
tron system, except in the long wavelength limit where the
plasmon excitation exhausts all the spectral weight in a uni-
form system13 by virtue of particle conservation. It is well
known that in a one-dimensional system, the collective plas-
mon excitation plays a more prominent role because of phase
space restriction on particle-hole excitations. In fact, the long
wavelength RPA plasmon dispersion is exact in one-
dimensional electron liquids up to the second order in wave
vector in contrast to higher-dimensional systems.14 It is,
therefore, worthwhile to explore the possibility that the
plasmon-pole approximation may actually work better in
quantum-wire systems than in higher-dimensional systems.
Our work is motivated by this purpose. We find that the
one-dimensional phase-space restriction on the particle-hole
excitations indeed increases the spectral weight of the plas-
mon excitation over a wide range of wave vectors in one-
dimensional systems under conditions which are typical in
GaAs-based quantum-wire samples, and the plasmon-pole
approximation indeed works extremely well in calculating a
variety of quantities in GaAs-based quantum-wire structures.
We specifically apply the plasmon-pole approximation to
two different problems: one involves the electron-electron
Coulomb interaction and the other involves the polar elec-
tron LO-phonon Fro¨hlich interaction. In the first case, we
calculate quasiparticle properties of the interacting electrons
by taking into account the Coulomb interaction effects
through the plasmon-pole approximation. In the second case,
we calculate the hot-electron energy-loss rate via LO-phonon
emission. We show that the plasmon-pole approximation
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works well in both cases by giving results which are in good
agreement with the corresponding RPA results, which are
much more difficult computationally.

In Fig. 1, we show the elementary excitation spectrum of
a one-dimensional electron system calculated within the
RPA, where the particle-hole excitations are confined within
the phase-space surrounded by the dotted-lineABCDE, and
the plasmon excitation is represented by the solid line. In one
dimension, the RPA plasmon dispersion has a simple analyti-
cal expression7 ~we set\51 throughout this paper!,

vq5
A~q!E1~q!2E2~q!

A~q!21
, ~1!

whereE6(q)5q2/2m6kFq/m with m as electron mass and
kF the electron Fermi wave vector,A(q)5exp@q/pVc(q)#
with Vc(q) as the electron-electron Coulomb interaction
potential16 of a quantum wire of finite lateral width. Unlike
plasmon modes in higher dimensions, the RPA plasmon ex-
citation in a quantum wire exists~i.e., is undamped! for all
wave vectors 0<q,`.

The most characteristic feature of the one-dimensional
spectrum is that particle-hole excitations are prohibited from
a large portion of the low energy phase space, the region
below the dotted lineBCD in Fig. 1. This restriction, which
arises from the momentum-energy conservation, increases
the dominance of plasmon excitations in a quantum wire
compared with higher-dimensional systems. The situation is
totally different in higher-dimensional systems,13 where
particle-hole excitations are allowed in the whole phase
space between the dotted linesAB andDE in Fig. 1. For a
quantitative measure of the relative importance of the plas-
mon excitation, we evaluate its oscillator strength within the
RPA,

F~q!52
2m

pnq2E0
`

vSPL~q,v!dv, ~2!

wheren is the average density of the electron gas, and the
plasmon spectral weight is defined by@with the plasmon dis-
persionvq given by Eq.~1!#

SPL~q,v!52
p

Vc~q!

1

U ]

]v
Re@e~q,v!#U d@v2vq#.

In Fig. 2, we compare the oscillator strengths of plasmon
excitation of a one-dimensional quantum wire with that of a
two-dimensional quantum well~both obtained within the
RPA!. The plasmon oscillator strength in the quantum well
drops quickly to zero at a critical wave vector, beyond which
an undamped well-defined plasmon mode does not exist. The
oscillator strength of the plasmon excitation in a quantum
wire, on the other hand, extends well into the range of large
wave vectors, decreasing slowly with increasing wave vec-
tor. Note that theq→0 behavior of these curves, i.e.,
F(q)51 for q→0, is just a manifestation of thef -sum rule.
The interesting point is thatF(q);1 in one dimension even
for q.kF . It is seen clearly that the plasmon dominance of
the spectral weight is significantly increased in quantum-wire
systems. Since the plasmon-pole approximation assumes that
the excitation spectrum consists of no particle-hole excita-
tions, but solely of a collective mode which exists for all
values of wave vectors and possesses unit oscillator strength,
it is easy to understand why the plasmon-pole approximation
may work well in a quantum-wire system. The density-
density response function of a quantum-wire electron system
in the plasmon-pole approximation is given as

xPP~q,v!5

n

m
q2

v22vq
2 . ~3!

By construction,xPP(q,v) in the above expression satisfies
the f -sum rule and the static Kramers-Kronig relation.13

Equation~3! is our plasmon-pole approximation model,9–12

which we use to calculate quantum-wire many-body elec-
tronic properties.

In Secs. II and III, we apply the plasmon-pole approxima-
tion to the calculations of electron self-energy due to Cou-

FIG. 1. Excitation spectrum of a one-dimensional electron gas
in the RPA. Particle-hole excitations are confined within the phase
space surrounded by the dotted lineABCDE. Plasmon excitation is
represented by the solid line.

FIG. 2. Calculated RPA oscillator strengths of plasmon excita-
tions of 1D quantum-wire and 2D quantum well electron systems.
The input parameters are taken from GaAs-based materials: density
n5105 cm21 and lateral widtha5b5200 Å for the quantum wire;
densityn51.631011 cm22 for a zero thickness purely 2D quantum
well.
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lomb interaction and electron energy relaxation rate due to
LO-phonon emission, respectively. A short summary in Sec.
IV concludes our paper.

II. SELF-ENERGY AND SPECTRAL FUNCTION

The one-dimensional~1D! self-energy within the leading
order GW approximation15 neglecting vertex correction at
T50 is given by

S~k,v!5 i E dq dv8

~2p!2
W~q,v!G0~k2q,v2v8!, ~4!

whereG0(k,v) is the Green’s function for the noninteract-
ing electron gas,

G0~k,v!5
u~ uku2kF!

v2j~k!1 i01 1
u~kF2uku!

v2j~k!2 i01 , ~5!

with j(k)5k2/2m2m (m5chemical potential!, and
W(q,v) is the dynamically screened Coulomb interaction,
which is given by

W~q,v!5
Vc~q!

e~q,v!
. ~6!

HereVc(q) is the bare Coulomb interaction, which is loga-
rithmically divergent in the 1D wave vector space. Thus, we
use the more realistic finite width quantum-wire model, the
fully approximated matrix element of which can be found in
the literature.16 e(q,v) is the dielectric function, which de-
scribes the dynamical screening properties of the electron
gas. The dynamically screened interactionW(q,v) can be
separated into an unscreened term which gives rise to the
exchange part of the self-energy and another term which
gives rise to the correlation part of the self-energy and in-
volves coupling to density fluctuations,

W~q,v!5Vc~q!1Vc~q!F 1

e~q,v!
21G . ~7!

The imaginary part of the second term is nonzero within the
electron-hole continuum and along the plasmon dispersion
line in the RPA. In the plasmon-pole approximation
~PPA!,9–12 the second term is replaced by a coupling to the
effective plasmon mode as described in Sec. I,

ImF 1

e~q,v!
21G52

p

2

v0
2

vq
d~v2vq!, ~8!

where the strengthv0
25(n/m)VC(q)q

2 is determined by the
requirement that Eq.~8! satisfies thef -sum rule, andvq is
the 1D plasmon dispersion which is exactly known within
RPA ~Ref. 7! @see Eq.~1!#. Unlike in 2D and 3D, where the
exact analytic RPA plasmon dispersion is unknown so that
the static RPA dielectric functione(q,v50) is used in ob-
taining the effective plasmon frequencyvq , we use the ana-
lytically known 1D RPA plasmon dispersion given in Eq.
~1!. Note that any attempt to use the static RPA~similar to
what is done in 2D and 3D PPA! in 1D PPA is not only
unnecessary~because the 1D RPA plasmon dispersion is
known analytically!, but also incorrect because the 1D static
RPA dielectric function has logarithmic zero temperature

singularities due to a divergence atq52kF . Using the
Kramer-Kronig relation, we have

1

e~q,v!
215

v0
2

v22vq
21 id

. ~9!

Within the PPA the self-energy can now be separated into a
frequency independent exchange term and a correlation term

S~k,v!5Sex~k,v!1Scor~k,v!, ~10!

where

Sex~k,v!5 i E dq dv8

~2p!2
Vc~q!G0~k1q,v1v8!, ~11!

and

Scor~k,v!5 i E dq dv8

~2p!2
Vc~q!F 1

e~q,v8!
21G

3G0~k1q,v1v8!. ~12!

The exchange energySex(k,v) as well as the correlation
energyScor within the full RPA theory has been calculated
earlier by Hu and Das Sarma.6 Using Eq.~9! in Eq. ~12! and
performing a frequency integration, the correlation part be-
comes

Scor5E dq

2p

Vc~q!vp
2

2vq
F u~kF2uk1qu!
v1vq2jk1q2 id

1
u~ uk1qu2kF!

v2vq2jk1q1 idG . ~13!

The real and the imaginary parts of theScor are given by

ReScor~k,v!5PE dq

2p
g~q!Fu~kF2uk1qu!

v1vq2jk1q

1
u~ uk1qu1kF!

v2vq2jk1q
G , ~14!

and

ImScor~k,v!5pE dq

2p
g~q!@u~kF2uk1qu!

3d~w1wq2jk1q!2u~ uk1qu2kF!

3d~v2vq2jk1q!#, ~15!

whereg(q)5Vc(q)v0
2/(2vq) and P* indicates the principle

value integral..From the restrictions on the integration re-
gion arising from variousu and d functions, we see that
ImScor is nonzero only for

vq~kF2k!.v and 2vq~kF1k!,v,jk if k<kF ,

jk.v and 2vq~kF1k!,v,2vq~k2kF! if k.kF .

~16!
Carrying out the integral overq, one obtains the imaginary
part of theScor

ImScor~k,v!5
1

2(i Fg~q1,i !u~kF2uk1q1,i u!
udV1~q1,i !/dqu

1
g~q2,i !u~ uk1q2,i u2kF!

udV2~q2,i !/dqu G , ~17!
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where V6(q)5v6vq2jk1q and q6,i are zeros of
V6(q). From Eqs. ~15! and ~16! we know that
Im@S(k,v)# as a function ofv has finite discontinuities at
v56vq(k1kF), the magnitude of which can be calculated
from Eq. ~17!. For example, we have the magnitude
g(kF)/@]vq(kF)/]q6kF /m# at v56vq(kF) for k50 and
(1/2)g(2kF)/@]vq(2kF)/]q6kF /m# at v56vq(2kF) for
k5kF . @See the numerically calculated values in Figs. 3~a!
and~b!.# A finite discontinuity in Im@S# gives rise to a loga-
rithmic singularity in Re@S#, which can be verified using the
Kramers-Kronig relation.@See Figs. 3~a! and ~b!.#

In order to determine quasiparticle excitation energies one
must solve the Dyson equation15 which is given by

v1m5j~k!1S~k,v!, ~18!

wherem is the chemical potential of the interacting electron
gas, which is determined by settingk5kF andv50 in the
above equation. Once the self-energyS(k,v) is known, the
single-particle spectral functionA(k,v) is readily calculated.
A(k,v) contains important dynamical information about the
system and is given by

A~k,v!5
2uImS~k,v!u

@v2j~k!2ReS~k,v!#21@ ImS~k,v!#2
.

~19!

It satisfies the sum rule

È`dv

2p
A~k,v!51, ~20!

which we verify to be satisfied within less than a percent in
our numerical calculations.

Figure 3 shows the calculated self-energies and spectral
functions as a function of frequencyv for k50 ~band edge!
andk5kF ~Fermi energy!. The complete RPA results6 ~thin
lines! are also shown for comparison with our PPA results.
From the figures we can see that our PPA results are almost
identical to the full RPA results.6 In both calculation the
parameters corresponding to GaAs are used:m50.07me
(me is the free electron mass!, e0512.9, e`510.9, and
vLO536.8 meV. The well width ofa5100 Å and the 1D
electron density ofn50.563106 cm21, which corresponds
to a Fermi energyEF'4.4 meV and a dimensionless density
parameterr s54me2/pkFe051.4 withkF5pn/2, are used in
both calculation. In Figs. 3~a! and 3~b! the straight lines are
given by v2j(k)2m, and their intersections with Re@S#
indicate the solutions to Dyson’s equation and correspond to
quasiparticle peaks. In the spectral function fork50, we find

FIG. 3. ~a!, ~b! Self-energyS(k,v) and ~c!, ~d! spectral functionA(k,v) as functions of the frequencyv for two fixed wave vectors
k50 @~a! and~c!# andkF @~b! and~d!#. Thick ~thin! lines correspond to the PPA~RPA! results. The vertical lines in~c! representd functions
with the spectral weight given above the peaks. The straight lines in~a! and ~b! are given byv2j(k)2m, and their intersections with
Re@S# indicate the solutions to Dyson’s equation and correspond to quasiparticle peaks.uImSu is plotted instead of ImS for visual clarity.
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two undamped quasiparticle peaks. The strength
(2p30.37) of the regular quasiparticle~the first peak near
v50) within PPA is slightly higher than the corresponding
RPA result (2p30.33). The strength (2p30.31) of the sec-
ond peak, the so-called plasmaron peak, is nearly the same in
the PPA as that in the RPA (2p30.32). The low energy
incoherent spectrum@EF,v,vq(kF)# arising from the
electron-hole continuum within RPA is transferred to the
quasiparticle spectrum in the PPA, making the quasiparticle
spectral weight slightly higher in the PPA than in the RPA.
For k5kF we find that the quasiparticlelike peak atv50 is
not a strictd-function peak, which means that the system
within PPA has no true long-lived quasiparticles. This result
is qualitatively the same as the RPA result, implying that
there can be no true quasiparticles in one dimension. As
v→0, the dominant contribution to Im@S(kF ,v)# within
RPA comes from the plasmon excitation.6 Therefore, the be-
havior of the spectral function nearv50 for k5kF shows
exactly the same behavior for both the PPA and the RPA.

In 2D ~Ref. 12! and 3D,9,10 the quantitative differences
between the results of plasmon-pole approximation and the
random-phase approximation are comparable, and are con-
siderably larger than what we find in our 1D calculations. In
our 1D calculation, the agreement between the RPA and
PPA self-energies is almost perfect. Since the 1D electron-
hole continuum is strongly suppressed by the severe phase
restriction due to energy-momentum conservation, the 1D
plasmon is the dominant excitation which contributes to the
electron self-energy, with the contribution from single-
particle excitations being essentially negligibly small. In this
paper, we provide an easy method for calculating the effects
of correlation on the single-particle self-energy in one di-
mension. It should be fairly straightforward to extend the
PPA self-energy calculation to more complicated experimen-
tally relevant situations, such as finite temperatures and mul-
tisubband occupancies, with reasonable confidence of obtain-
ing quantitatively accurate results. This is the main
significance of our work.

III. ENERGY RELAXATION IN A QUANTUM WIRE

In this section, we apply the plasmon-pole approximation
to a coupled electron-LO-phonon system in a quantum wire
and study hot-electron energy relaxation17 through LO-
phonon emission. Although this topic is of great importance
by itself,17 the present purpose is to use it as an example to
show the simplicity and the reasonable quantitative accuracy
of the plasmon-pole approximation in calculating quantum-
wire electronic properties. We, therefore, refrain from dis-
cussing in details the hot-electron relaxation phenomena.18

When excess energy is supplied to an electron gas, the
electrons go out of equilibrium with the underlying lattice,
with the electron gas attaining an effective electron tempera-
ture T higher than the embedding lattice temperatureTL .
Such a hot-electron gas loses energy to its surrounding in
order to return to equilibrium with the lattice. In polar semi-
conductors such as GaAs, the most efficient energy relax-
ation process, except at very low electron temperatures, is
through LO-phonon emission. When reabsorption of the
emitted LO-phonons is ignored, the hot-electron energy loss
rate at zero lattice temperature is given by18 ~we take

TL50 throughout, our results should be valid for low values
of TL)

P5(
q
E

2`

` dv

p
vnT~v!uMqu2Imx ret~q,v!ImD ret~q,v!,

~21!

wherenT(v) is the Bose distribution factor at electron tem-
peratureT, and uMqu2 is the Fröhlich coupling matrix.7 The
phonon propagator in Eq.~21! is

D~q,v!5
2vLO

v22vLO
2 22vLOuMqu2x~q,v!

. ~22!

The last term in the denominator is the phonon self-energy
correction due to many-body electron-phonon coupling,
which broadens the phonon spectral function. The phonon
mode couples to the plasmon excitation~the so-called
plasmon-phonon coupling! as well as to particle-hole excita-
tions, so that the renormalized phonon spectrum may be
characterized as containing hybridized phononlike and plas-
monlike modes, and quasiparticlelike modes. The phonon-
like mode has a large spectral weight and high energy
(;vLO), while the other modes have small spectral weights
but have arbitrarily low energies. At high electron tempera-
tures (kBT;vLO), energy relaxation through the emission of
the phononlike mode dominates because of its large spectral
weight, while at low temperatures (kBT!vLO), energy re-
laxation though emission of the plasmon- and quasiparticle-
like modes dominates because of their low energies. The
existence of the low energy modes enhances the energy loss
rate at low temperatures since emission of bare phonon mode
with a frequency vLO is effectively frozen out when
kBT!vLO . Our present objective is to compare the energy
loss rates among these three cases: no many-body phonon-
electron coupling, involving only the bare phonon mode;
phonon-electron coupling in the plasmon-pole approxima-
tion, involving only the hybridized plasmon- and phonon-
like modes, but no quasiparticlelike modes; and the phonon-
electron coupling in the full RPA, involving all the modes.
One can see that these are three increasingly sophisticated
approximations to the phonon self-energy correction in Eq.
~22! with the phonon self-energy correction completely ne-
glected in the bare phonon case.

With the phonon self-energy ignored, ImD(q,v) be-
comes a singled-function atv5vLO . Equation~21! then
gives the energy loss rate as

P05vLOnT~vLO!(
q

~22!uMqu2x~q,vLO!. ~23!

The characteristic of the bare phonon result is an approxi-
mate exponential temperature dependenceP0
}exp(2vLO /kBT), which comes from the Bose factor
nT(vLO). With the plasmon-pole approximationxPP, ImD
becomes a pair ofd functions atv5v6 , the frequencies of
the hybridized plasmon-phonon modes.18 The energy relax-
ation rate is then given as

PPP5P11P2 , ~24!

with
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P65(
q

v6nT~v6!
vLOuv6

2 2vP
2 u

v6~v1
2 2v2

2 !
uMqu2~22!Imx~q,v6!,

~25!

where P6 refer, respectively, to energy loss via upper
~lower! hybrid plasmon-phonon modes. It should be noticed
that the above expression is formally as simple as the corre-
sponding bare phonon result given in Eq.~23!, both involv-
ing a wave vector integral.

The energy loss rates with no phonon renormalization,
with phonon renormalization in the plasmon-pole approxi-
mation, and with phonon renormalization in the full RPA,
are shown in Fig. 4. Two things need to be emphasized. The
first is that the phonon renormalization enhances the energy
loss rate by orders of magnitude at low temperatures, al-

though its effect is negligible at high temperatures. The sec-
ond is that the plasmon-pole approximation gives an excel-
lent description of the energy loss process, in the sense that
its result agrees very well with the full RPA result. This
example shows again that the plasmon-pole approximation
can work remarkably well in a quantum-wire system because
of the increased dominance of plasmon excitation in one
dimension.

IV. SUMMARY

The plasmon-pole approximation has been widely em-
ployed in three- and two-dimensional many-body electron
systems. In this work, we discuss two specific applications of
the plasmon-pole approximation to 1D electrons in a
quantum-wire structure. Our results suggest that the
plasmon-pole approximation can work exceptionally well in
calculating electronic many-body properties in a semicon-
ductor quantum-wire structure because of the severe phase-
space restriction on single-particle electron-hole excitations
in one-dimensional systems. We apply the plasmon-pole ap-
proximation to calculations of electron self-energy due to
Coulomb interactions and hot-electron energy relaxation rate
via LO-phonon emission, and find that our calculated PPA
results agree extremely well with the results of the full RPA
calculations. The agreement of the PPA results with the full
RPA results is substantially better~in fact, essentially exact!
in 1D than in the corresponding 2D and 3D systems. Our
results should influence future electronic calculations in
semiconductor quantum wires where calculations may now
safely ignore the full complications of the RPA and adapt the
simple, intuitively appealing, and quantitatively accurate
PPA.
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base of the logarithmic function is 10.
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