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We investigate the origin of commensurability oscillation in an antidot lattice in detail, by calculating
magnetoresistance through square, rectangular, and disordered antidot lattices. Our calculations show that the
commensurability oscillation inRxx is mainly determined by the arrangement of antidots in theY direction, and
vice versa. In the case of a rectangular antidot lattice withb,a (a andb are lattice constants in theX and
Y directions!, peaks inRxx appear at higher magnetic fields and peaks inRyy appear at lower magnetic fields.
In the disorder case,X disorder suppresses the commensurability oscillation inRyy , but has only a slight effect
on Rxx . Two-direction disorder suppresses the commensurability oscillations in bothRxx andRyy , as we
expected. Our results agree quantitatively with the experiments. The electron magnetic focusing effect can be
used to explain the commensurability oscillation.@S0163-1829~96!08135-0#

I. INTRODUCTION

In the last few years, weak and strong potential modula-
tions of two-dimensional electron gas~2DEG! have been
achieved in many laboratories. For the weak potential modu-
lation, Weisset al.1 observed a type of magnetoresistance
oscillation periodic in 1/B, which is called the Weiss oscil-
lation. For the strong potential modulation, there exists a
different behavior. Weisset al.2 observed commensurability
oscillations in the square antidot lattice, i.e., magnetoresis-
tance peaks appear when the cyclotron diameter
~2Rc) can be associated with a commensurate orbit encir-
cling a specific number of antidots~1,2,4,9 . . .!. The trans-
port properties on periodic and quasiperiodic triangular anti-
dot lattices were investigated by Takaharaet al.,3 and
commensurability oscillations observed in their experiments.
These phenomena are interpreted on the basis of pinned clas-
sical orbits in billiard model. Similar results were observed
by other groups.4

Recent experiments by Tsukagoshiet al.5 investigated the
magnetoresistance through disordered and anisotropic anti-
dot lattices in GaAs/AlxGa12xAs heterostructures, and
found that the peak position in magnetoresistance depends
on the current flow direction. This phenomenon cannot be
interpreted by the pinned orbit model. It is suggested that the
commensurability oscillations are determined only by the pe-
riod along the direction perpendicular to the current.

Theoretically, Fleischmann, Geisel, and Ketzmerck,6 us-
ing a continuous antidot potential, calculated magnetoresis-
tance through a square antidot lattice. Their results showed
that commensurability oscillations are mainly caused by the
correlation function of unperturbed chaotic motion and not
by the pinned orbits. Geisel, Zacherl, and Radons7 have in-
vestigated the chaotic diffusion and 1/f noise of particles in
two-dimensional solids, and found that the trapping mecha-
nism no longer operates for higher energy.

To our knowledge, calculations on magnetoresistance for
rectangular and disordered lattices have not been carried out.
In the present paper, we study in detail the commensurability
oscillation in the antidot lattice by calculating the magnetore-
sistance through square, rectangular, one-direction disor-

dered and two-direction disordered antidot lattices.
Since the Fermi lengthlF is smaller than the lattice con-

stant in the above-mentioned experiments, the problem can
be dealt with in classical approximation. In Sec. II, we out-
line the equation of motion of the electron wave packet in the
classical regime. The model potential for the antidot is also
given in this section. Results and discussions on Poincare´
surfaces of section and magnetoresistances are given in Sec.
III and a summary is given in Sec. IV.

II. EQUATION OF MOTION AND MODEL POTENTIAL

For a perpendicular homogeneous magnetic fieldB, we
choose the gauge
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2
,
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2
,0D . ~1!

In the classical regime, a one-electron wave packet mov-
ing in a two-dimensional modulated potential is described by
the Hamiltonian

H5
1

2m S px1 eBy

2 D 21 1

2m S py2 eBx

2 D 21U~x,y!, ~2!

wherem is the effective mass of the electron.U(x,y) is the
modulated potential. In the following, we measure the en-
ergy in units ofEF , the length in units of lattice constant
a, the time in units oft05(ma2/EF)

1/2, and the magnetic
field in units ofB052(2mEF)

1/2/ea. WhenB5B0, the di-
ameter of the free cyclotron orbit equals the lattice constant
a. If we define
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m S px1 eBy
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2 D . ~3!

Then the equation of motion can be written as

ẋ5vx , v̇x52A2Bvy2
]U

]x
~4!
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]U

]y
. ~5!

Near an antidot at (x0 ,y0), the potential is modeled as an
exponentially decayed function

U~x,y!5U0exp@2b~x2x0!
22b~y2y0!

2# ~6!

whereb is chosen to control the steepness of the potential,
and b5320 in the present paper.U0 is chosen so that the
potential equals Fermi energyEF , when the distance from
the center of the antidot (x0 ,y0) equals the radius of the
antidot, one-sixth of the lattice constanta.

In the case of a square antidot lattice with a lattice con-
stanta, the antidot sites (x0 ,y0)5(na,ma), with n andm
being integers 0,61,62, . . . . In thecase of a rectangular
antidot lattice with lattice constantsa in theX direction and
b in the Y direction, the antidot sites (x0 ,y0)5(na,mb).
When the disorder is introduced in theX direction,
x05(n1d)a, whered is a random number in the Gaussian
distribution with the standard deviationXs . When the disor-
der is also introduced in theY direction,y05(m1d)b. Fig-
ure 1 gives a schematic view of disordered antidot lattices
with Xs 50.1 and 0.25,Ys50, andXs5Ys50.1 and 0.25.

III. RESULTS AND DISCUSSIONS

A. Poincaré surfaces of section

In the two-dimensional problem, the phase space
(x,y,px ,py) is four dimensional, and the energy surface
H5EF is three dimensional. The Poincare´ surface of the
section atx5x0 is the intersection of the energy surface with
the surfacex5x0.

8 Since the modulated potential is periodi-
cal for the square or the rectangular antidot superlattice and

quasiperiodical for the disordered antidot superlattice, it is
reasonable to identify allx coordinates mod(a) andy coor-
dinates mod(b). So, the Poincare´ surfaces of the section at
mod(x,a)50 reduce to a unit cell@0,b# in y coordinate.

1. Square antidot lattice

Figure 2~a! shows a Poincare´ surface of the section at
mod(x,a)50 for the magnetic fieldB5B0 ~the diameter of
the cyclotron orbit isa for this field!. This Poincare´ surface
of the section is generated from four different initial condi-
tions. From the figure it can easily be seen that there are a
chaotic sea, a regular island neary50.5, and a line in the
corner. The chaotic sea, which corresponds to the chaotic
motion, is generated from one initial condition; the two
closed loops in the island, which correspond to regular mo-
tion, are generated from two special initial conditions, and
the line, corresponding to the drifting motion, is generated
from another special initial condition.

From the Kolmogorov-Arnold-Moser~KAM ! theorem,8

the closed loop is the intersection of an invariant torus. Any
orbit with a different initial condition (y,vy) starting out on
the invariant torus remains on it forever. Therefore, orbits
with an initial condition (y,vy) in the island are periodical or
quasiperiodical orbits. These orbits will not drift away when
a weak electric field is applied, because they circle around an
antidot and are pinned by it.

The Poincare´ surfaces of the section for the magnetic field
B50.8B0 and 0.45B0 are also shown in Figs. 2~b! and 2~c!.
From the calculation of the magnetoresistance below, we
know that 0.8B0 corresponds to a valley and 0.45B0 to a
peak in magnetoresistance. By comparing these Poincare´
surfaces of the section, it can be found that the area of the
regular motion island forB5B0 is the largest. For this mag-
netic field, a large peak appears in the magnetoresistance. It
is surprising that the areas of the regular motion islands for
both B50.8B0 and 0.45B0 are almost the same, i.e., the
portions of the pinned orbits are almost the same for these
two magnetic fields. But the magnetoresistance calculation
shows that these two fields correspond to a valley and peak
in magnetoresistance. Therefore, it may be concluded that
the pinned mechanism is not the reason for the commensu-
rability oscillation, as has been pointed out by Geisel, Zach-
erl, and Radons7 and Fleischmann, Geisel, and Ketcmerick.6

ForB50.45B0, there are two regular motion islands. This
is because the periodical orbit encircles four antidots and we

FIG. 1. The schematic view of disordered antidot lattices. Two-
direction disorder with standard deviation~a! Xs5Ys50.1a and
~b! Xs5Ys50.25a, and one-direction disorder with standard de-
viation ~c! Xs50.1a and ~d! Xs50.25a

FIG. 2. Poincare´ surfaces of the section in square lattice at
mod(x,1)50 for ~a! B5B0, ~b! B50.8B0, and~c! B50.45B0. The
closed loops represent the intersections of invariant tori.
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identify all y coordinates mod(b). ForB50.29B0, there are
three regular motion islands, because the periodical orbit en-
circles nine antidots.

2. Rectangular antidot lattice

For the magnetic fieldB5B0, the Poincare´ surfaces of the
section are shown in Figs. 3~a! and 3~b! in the cases of rect-
angular antidot lattices withb51.2a and 0.8a, respectively.
The regular motion island in the case ofb51.2a is almost
the same as that for the square lattice (b5a). Shapes of the
closed loops are also the same as those in the case of the
square lattice. But in the case ofb50.8a, the regular motion
island is completely different from that in the case of the
square lattice. The shapes of the closed loops are also differ-
ent. These mean that the invariant tori in the case of
b51.2a are the same as those in the case of the square
lattice, and that they are different in the case ofb50.8a.
These results can be explained as follows. The orbits on the
invariant tori are cyclotronlike orbits with a radius
Rc50.5a. In the case ofb51.2a, those orbits on the invari-
ant tori, especially on the inner ones, are almost collision
free, as in the case of the square lattice. Conversely, in the
case ofb50.8a, those orbits on the invariant tori, especially
on the outer ones, are not collision free. It is obvious that the
area of the regular motion island in this case is smaller than
that in the case of the square lattice. This is also because
some regular orbits in the square lattice change to chaotic
orbits in the rectangular lattice withb50.8a due to the col-
lision with the antidots.

For the casesb50.8a, b5a, andb51.2a, the islands of
the regular motion have a fixed point aty50.5a with elliptic
type. This fixed point is the intersection of mod(x,a)50,
with a cyclotron orbit ofRc50.5a with its center at the
center of an antidot. The fixed point does not depend on the
lattice constant, but on the radius of the collision-free cyclo-
tron orbit.

In the case ofb51.2a, there are other regular motion
islands in the Poincare´ surfaces of the section~near
y50.8a andvy561.2). The intersections of mod(x,a)50

with these invariant tori are not closed, and the fixed point is
of a hyperbolic type. According to KAM theory,8 a hyper-
bolic fixed point is unstable under small perturbation. In fact,
the orbit on these invariant tori is cyclotronlike, with its cen-
ter near the minimum of the potential, and is not pinned by
the antidot. When a weak electric field~a small perturbation!
is applied, this cyclotronlike orbit will change to a drifting
orbit or a chaotic orbit. Therefore, the regular orbit starting
out on these invariant tori also contributes to the conductance
as the chaotic orbit does.

3. One-direction disordered antidot lattice

When a fluctuation of the antidot site is introduced in one
direction, for example in theX direction, the antidot lattice is
disordered in this direction and ordered in the other direc-
tion. We introduce the disorder in the Gaussian distribution
with a standard deviationXs as in the experiments by Tsuka-
goshiet al.5 Figures 4~a! and 4~b! show Poincare´ surfaces of
the section for standard deviationsXs50.1 and 0.25, respec-
tively. Because of fluctuation of the antidot site, there is no
regular motion island, even whenXs50.1. But there still
exist some invariant tori, whose intersections with
mod(x,a)50 ~closed loops! are also shown in the figures.
The shapes of these closed loops are different, and their fixed
points are also different from one another. The reason for
these results is also the fluctuation of the antidot site due to
the introduction of disorder in theX direction. Orbits starting
out on these invariant tori are pinned by the antidot, and they
do not respond to a weak electric field, i.e., they make no
contribution to the conductance.

Another difference of the Poincare´ surfaces of the section
in the disordered lattice from that in the ordered lattice is that
chaotic orbits cover the entireY direction @0,1#. This is be-
cause some antidots deviate from their original location in
the ordered lattice, and does not mean the electron can ap-
proach the antidots.

B. Magnetoresistance

In the present classical regime, electrons with two degrees
of freedom move in the three-dimensional energy surface

FIG. 3. Poincare´ surfaces of the section in rectangular lattices
~a! b51.2a and~b! b50.8a at mod(x,1)50 for B5B0. The closed
loops represent the intersections of invariant tori. The two islands
neary50.8a in ~a! correspond to drifting orbits~see text!.

FIG. 4. Poincare´ surfaces of the section in one-direction disor-
dered lattices~a! Xs50.1a and ~b! Xs50.25a at mod(x,1)50 for
B5B0. The closed loops represent the intersections of invariant
tori.
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H5E. From the above analysis of Poincare´ surfaces of the
section, we know that pinned orbits starting out on the in-
variant tori make no contribution to the conductance. There-
fore, the conductivity is the sum of contributions from cha-
otic orbits and drifting orbits.

According to classical linear response theory,9 the fre-
quency dependent conductivity at zero temperature can be
written

s i j ~E!5
4pme2

h2 E
0

`

dteivtCi j ~ t !, ~7!

Ci j5^v i~ t !v j~0!&, ~8!

whereE is the total energy of the electron,h Planck con-
stant, andCi j the velocity correlation function averaged over
phase space. In the presence of impurity scattering with a
mean scattering timet, the probability that an electron is not
scattered by an impurity in the time interval@0,t# is e2t/t.
Because impurity scattering destroys any correlation, only
the unperturbed orbits, which are not scattered by the impu-
rity, make a contributionC̃i j (t) to the velocity correlation
function

Ci j ~ t !5e2t/tC̃i j ~ t !. ~9!

Since the contribution to the conductivity from the pinned
orbits is zero, the conductivity can be written as

s i j ~E!5~12Pp!
4pme2

h2 E
0

`

dtC̃i j ~ t !e
@2~1/t!1 iv#t,

~10!

wherePp is the portion of the pinned orbits.
The correlation functionC̃i j (t) can be easily obtained nu-

merically, because it includes only the contribution from the
unperturbed orbits. Then, integrating on timet, we can ob-
tain the conductivity. At temperatureT, the conductivity is
finally written as

s i j52E
0

` ] f

]E
s i j ~E!dE, ~11!

wheref5(11e(E2EF)/kBT)21 is the Fermi-Dirac distribution
function, andkB the Boltzman constant. In the present cal-
culation,kBT is chosen to be 0.007EF . The corresponding
temperature is 1.5 K when the carrier density of the sample is
5.231011 cm22. The magnetoresistancesRxx andRyy are

Rxx5syy /~sxxsyy2sxysyx!, ~12!

Ryy5sxx /~sxxsyy2sxysyx!. ~13!

In the case of the square lattice,Rxx is equal toRyy . In the
other cases for the rectangular and disordered lattices,Rxx is
not equal toRyy .

To calculate the magnetoresistance, it is necessary to cal-
culate the portion of the pinned orbits first. Fleischmann,
Geisel, and Ketzmerick6 used the volume of the outermost
torus in a Poincare´ surface of the section to determine this
portion. In the present paper, we randomly choose 6000 ini-
tial conditions in the three-dimensional energy surface, and
calculate the number of pinned orbits and then the portion of
the pinned orbits. Our results for the square lattice are in
good agreement with those obtained by Fleischmann, Geisel,
and Ketcmerick.6 Our method is convenient, especially for
the disordered antidot lattice, since it is difficult to find the
outermost torus in the Poincare´ surface of the section in the
disordered cases. Then it is necessary to calculate the veloc-
ity correlation function. In the present paper, 6000 initial
conditions are randomly chosen to make the average over
phase space.

Before the discussion on magnetoresistance, it is useful to
study the zero-field resistance. Table I gives the zero-field
resistancesRxx

0 andRyy
0 in the ordered and disordered cases.

In the ordered cases,Rxx
0 increases a little andRyy

0 does not
change with the decrease of the lattice constantb. With the
introduction of theX disorder,Ryy

0 increases much more than
Rxx
0 does. It seems thatRxx

0 is mainly determined by the
arrangement of antidots inY the direction, and vice versa.

First, let us consider the rectangular antidot lattice, the
ordered cases. The portion of the pinned orbitsPp , and the
magnetoresistancesRxx andRyy , which are normalized to
the zero-field resistances, are shown in Fig. 5 as a function of
B/B0. Peak positions appearing in these figures are listed in

TABLE I. Zero-field resistancesRxx
0 and Ryy

0 ~in units ofRxx
0 of the square lattice! and peak positions

~2Rc in units ofa) of Pp , Rxx , andRyy in different cases.

Ordered X disordered XY disordered
b5a b50.91a b50.83a Xs50.1 Xs50.25 Xs50.1 Xs50.25

Rxx
0 1.0 1.05 1.08 1.31 1.38 2.07 2.26

Ryy
0 1.0 1.00 1.00 2.10 2.87 2.21 2.33

Pp 1.02 1.02 0.98 ;1.0 ;1.0 ;1.0
1.58 1.49 1.45 1.56
2.27 2.12 2.08 2.32 2.2 2.27

Rxx 1.02 0.92 0.85 1.01 1.08 ;1.04
1.58 1.42 1.38 1.53
2.27 2.17 1.98 2.32 2.2 ;2.22

Ryy 1.02 1.02 1.02 1.04 ;1.05
1.58 1.52 1.38
2.27 2.24 2.22 2.17 ;2.22
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Table I. The results for the square antidot lattice are also
shown in these figures for comparison. As it is known, the
peaks in the portion of the pinned orbits correspond to the
magnetic field at which the cyclotron orbits enclose one, two,
and four antidots. The peak positions shift a bit to higher
magnetic fields with the decrease of the lattice constantb.
The height of the peak which is related to the orbits circling
around two antidots increases somewhat. The reason for this
is that the corresponding radii of the cyclotron orbits become
smaller and smaller with the decrease of the lattice constant
b.

Comparing the peak positions in the magnetoresistance
with those in the portion of the pinned orbits, one can find
that they are not related, especially for the magnetoresistance
Rxx . Therefore, the pinned orbit mechanism does not play an
important role in the commensurability oscillation. The fail-
ure of the pinned orbit mechanism has also been pointed out
by Geisel, Zacherl, and Radons7 and Fleischmann, Geisel,
and Ketzmerick.6 For the magnetoresistanceRxx , the princi-
pal peak, at which the cyclotron motion is commensurate
with the circumference around one antidot, shifts to
B'1.1B0 and 1.2B0 in the cases ofb50.91a and 0.83a,
respectively. The corresponding radii of the cyclotron orbits
are not 0.5a but 0.5b. But for the magnetoresistanceRyy , the
principal peak does not shift in either case ofb50.91a or
b50.83a. The second-largest peak, at which the cyclotron
orbits include four antidots, tends to act in the same way as
the principal peak. Experiments by Tsukagoshiet al.5 ob-
served that the peak positions depend only on the period
along the direction perpendicular to the current. In other
words, the lattice constanta in theX direction plays an im-
portant role in the magnetoresistanceRyy , and the lattice
constantb in theY direction affects mainly the magnetore-
sistanceRxx . Our calculations agree very well with their
experiments.

The peak corresponding to the orbits circling around two
antidots shows some different behavior from the above two
peaks. For bothRxx andRyy , this peak shifts to a higher
magnetic field. In the experiment, this peak is so weak that
we cannot compare it with our results. It may be because the
antidot in the experiment is not so steep as the modeled
potential used by us.

Second, we consider one direction disordered cases, i.e.,
the fluctuation of the antidot sites is introduced only in one
direction, theX direction@see Figs. 1~c! and 1~d!#. The fun-
damental unit cell is still a square. The standard deviation
Xs is chosen to be 0.1a and 0.25a as in the experiments.
Figure 6~a! gives the magnetic dependence of the portion of
the pinned orbits for the cases ofXs50, 0.1a, and 0.25a.
The peaks corresponding to the cyclotron orbits around one
and four antidots can be clearly seen for all three cases. The
peak heights decrease obviously with the increase of the
standard deviationXs . The peak corresponding to the cyclo-
tron orbit around two antidots disappears with the introduc-
tion of the fluctuation of antidot sites. In Sec. III A 3, we
discussed the Poincare´ surfaces of the section, and found that
there does not exist a regular motion island for the disor-
dered cases. But there exist some invariant tori. These results
also indicate that pinned orbits exist, but the portion de-
creases due to the introduction of the fluctuation.

The magnetic-field dependencies ofRxx andRyy for an
X direction disordered antidot lattice are shown in Figs. 6~b!
and 6~c!. The curve for the square lattice (Xs50! is also
shown in these figures. Comparing the curves forXs50.1a
and 0.25a with the curve forXs50, one can find the follow-
ing facts. WhenXs50.1a, two main peaks~circling around
one and around four antidots! in bothRxx andRyy still ap-
pear at the same magnetic field as in the square lattice. The
X disorder strongly affects the peak heights of the commen-
surability oscillation inRyy , and has only a slight effect on
the peak heights inRxx . WhenXs50.25a, the commensu-
rability oscillation inRyy disappears completely. The com-

FIG. 5. ~a! Portion of the pinned orbits and magnetoresistances
~b! Rxx , and~c! Ryy as functions ofB/B0. Solid lines represent the
case of the square lattice, and long-dashed and short-dashed lines
represent the cases of rectangular lattices withb50.91a and
b50.83a, respectively.
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mensurability oscillation inRxx still exists, although the peak
heights decrease a great deal. The above facts indicate that
the commensurability oscillation in the magnetoresistance
Rxx depends mainly on the antidot array in theY direction,
and vice versa.

Finally, we consider two-direction disordered cases, i.e., a
fluctuation of antidot sites is introduced in bothX and Y
directions at the same time@see Figs. 1~a! and 1~b!#. Figure 7
shows the magnetic-field dependencies of the portion of the
pinned orbitsPp , and the magnetoresistancesRxx andRyy .

The portion of the pinned orbits decreases much more in
two-direction disorder than in one-direction disorder. When
Xs5Ys50.25a, there is no peak in the curvePp vs B/B0.
From Figs. 7~b! and 7~c!, we can observe that changes in
both magnetoresistancesRxx andRyy have the same trend,
because of the introduction of the fluctuation inX and Y
directions with the same standard deviation (Xs5Ys). When
Xs5Ys50.25a, no commensurability oscillation exists in
the magnetoresistance. In other words, large fluctuations in
two directions destroy all the commensurability oscillations.

FIG. 6. The same as in Fig. 5, except that long-dashed and
short-dashed lines represent the cases of one-direction disordered
lattices withXs50.1a andXs50.25a, respectively.

FIG. 7. The same as in Fig. 5, except that long-dashed and
short-dashed lines represent the cases of two-direction disordered
lattices withXs5Ys50.1a andXs5Ys50.25a, respectively.
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Analyzing the above results for disordered cases, we can
conclude thatX disorder mainly affects the commensurabil-
ity oscillation in the magnetoresistanceRyy , and destroys it
when Xs50.25a, and vice versa for Y disorder.
Experiments5 have observed that the peak height of the com-
mensurability oscillation is strongly affected by the disorder
in the direction perpendicular to the current. Our results are
in good agreement with their experimental observations.

To sum up, there exists a commensurability oscillation in
the magnetoresistance in the antidot lattice systems. What is
the reason for this oscillation? Weisset al.2 suggested a
pinned electron model to explain the oscillation in the square
antidot lattice. Within this model, the commensurability os-
cillations in bothRxx andRyy should be the same even for
the rectangular or disordered antidot lattice. Theoretical stud-
ies by Geisel, Zacherl, and Radons7 and by Fleischmann,
Geisel, and Ketzmerick showed the failure of the pinned or-
bit explanation. The present calculations and experiments by
Tsukagoshiet al.5 on rectangular and disordered antidot lat-
tice systems show the different oscillations inRxx andRyy ,
and also indicate the failure of the pinned electron model.

To understand the origin of this oscillation, let us look at
experiments on the electron focusing effect. Van Houten
et al.10 investigated transverse electron focusing in a 2DEG,
in which two point contacts were used as the injector and
collector of ballistic electron. Their observation shows
clearly that the electron focusing effect occurs when the
separation between two point contacts is an integer multiple
of the cyclotron diameter. Electrons injected from the injec-
tor can reach the collector directly or after specular reflec-
tions from the boundary. Niheyet al.11 studied the magne-
toresistance with multiparallel wires, and observed electron
focusing effects, although the wires are longer than the bal-
listic mean free path. Subsequently, electron focusing effects
with a single- or double-grid geometry were carried out.12

Because of a multiple opening in the grid, i.e., multiple in-
jectors and collectors in the grid, some peaks were observed
when the cyclotron diameter is an integer multiple of the
period of the grid.

The commensurability oscillation in the antidot lattice
may be figured out by the idea of the electron focusing ef-
fect. An array of antidots in one direction acts as a single-
grid geometry, and the antidot lattice is similar to the multi-
grid geometry. The lower potential region between the
neighboring antidots behaves like an ‘‘emitter’’ and a ‘‘col-
lector’’ of the electron. When the current is along theX
direction, the arrangement of the antidots in theY direction
determines the separation between the ‘‘emitter’’ and ‘‘col-
lector.’’ When magnetic fields match the separation, peaks
appear in the magnetoresistanceRxx . Therefore, the peak
positions inRxx depend only on the arrangement of the an-
tidots in theY direction. In addition, the ballistic mean free
path is affected not only by theY-direction arrangement of
antidots, but also by theX-direction arrangement. The peak
heights are determined by the arrangement of antidots in
both directions.

In the present antidot lattice system, the commensurability
oscillation is somewhat different from that in single- or
double-grid system, in which a peak appears at the magnetic
field such that the diameter of cyclotron orbit is an integer
multiple of the period. The diameters of cyclotron orbits cor-

responding to the peak positions in the present system are
small ~see Table I!. This is due to~1! the round corner of an
antidot,~2! the large gap between two neighboring antidots,
and ~3! scattering by the other array. In the rectangular case
with b,a, the separation between ‘‘emitter’’ and ‘‘collec-
tor’’ in the Y direction is smaller than that in theX direction.
Peaks inRxx appear at higher magnetic fields, and peaks in
Ryy appear at lower magnetic fields. In the one direction
disordered case, the separation between the ‘‘emitter’’ and
‘‘collector’’ in this direction varies randomly. Therefore, the
commensurability oscillation in the magnetoresistance is
suppressed when the current is perpendicular to this direc-
tion. That is, the commensurability oscillation inRyy is sup-
pressed byX disorder@see Fig. 6~c! for Xs50.25a#, and vice
versa. In the two-direction disordered case, the commensu-
rability oscillations in bothRxx andRyy are suppressed, as
we expected.

There is an important difference in geometries between
the present antidot system and the system used in magnetic
focusing experiments. In magnetic focusing experiments, the
geometry consists of a sequence of small constrictions sepa-
rated by relatively long sections of a gate. The geometry in
the present antidot lattices is, in fact, an inverse case. The
width of the constrictions~about 23a) is two times that of the
gate~the diameter of the antidot is13a). Therefore, the mag-
netoresistances in the antidot lattices show some different
features compared with those in the magnetic focusing ex-
periments, i.e., the peaks in the present cases are much wider
than those in the magnetic focusing experiments.

IV. SUMMARY

The motion of the electron wave packet was investigated
in the classical approximation. By analyzing the Poincare´
surfaces of the section, it was found that there exist regular
motion islands and a chaotic sea in the case of the rectangu-
lar antidot lattice. In the case of the disordered antidot lattice,
only a chaotic sea is found in the Poincare´ surfaces of the
section, although there still exist some invariant tori. The
linear-response theory was used to calculate the magnetore-
sistance. In the case of the rectangular antidot lattice, the
commensurability oscillation inRxx is mainly determined by
the period of antidots in theY direction and vice versa. The
fluctuation of antidot sites in theX direction plays only a
minor role in the commensurability oscillation inRxx , and
plays an important role inRyy . The commensurability oscil-
lation inRyy can be suppressed by the large fluctuation in the
X direction. When large fluctuations is introduced in both
X and Y directions, commensurability oscillations in both
Rxx andRyy are suppressed. Our results are in good agree-
ment with experiments.5

The commensurability oscillations in square, rectangular,
and disordered antidot lattices can be explained by the elec-
tron focusing effect. The gaps between neighboring antidots
behave like an ‘‘emitter’’ and a ‘‘collector’’ of electrons.
When magnetic fields match the separations between anti-
dots, peaks appear in magnetoresistances. Because the con-
strictions are wider than the gates in the present antidot lat-
tices, the peaks in the magnetoresistances are very wide. It is
concluded that the commensurability oscillation can be ex-
plained by the electron focusing effect.
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