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Theoretical study on commensurability oscillation in anisotropic antidot lattices
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We investigate the origin of commensurability oscillation in an antidot lattice in detail, by calculating
magnetoresistance through square, rectangular, and disordered antidot lattices. Our calculations show that the
commensurability oscillation iR, is mainly determined by the arrangement of antidots intttiérection, and
vice versa. In the case of a rectangular antidot lattice witha (a andb are lattice constants in thé¢ and
Y directions, peaks inR,, appear at higher magnetic fields and peakRjpappear at lower magnetic fields.

In the disorder cas& disorder suppresses the commensurability oscillatid® in but has only a slight effect

on R,,. Two-direction disorder suppresses the commensurability oscillations inRgtland R,,, as we
expected. Our results agree quantitatively with the experiments. The electron magnetic focusing effect can be
used to explain the commensurability oscillatip80163-18206)08135-0

[. INTRODUCTION dered and two-direction disordered antidot lattices.
Since the Fermi length is smaller than the lattice con-

In the last few years, weak and strong potential modulastant in the above-mentioned experiments, the problem can
tions of two-dimensional electron gg@DEG) have been be dealt with in classical approximation. In Sec. Il, we out-
achieved in many laboratories. For the weak potential moduline the equation of motion of the electron wave packet in the
lation, Weisset al® observed a type of magnetores|stanceC|aSSICB.| regime. The model potential for the antidot is also
oscillation periodic in 1B, which is called the Weiss oscil- given in this section. Results and discussions on Poincare
lation. For the strong potential modulation, there exists esurfaces of section and magnetoresistances are given in Sec.
different behavior. Weisst al? observed commensurability Il and a summary is given in Sec. IV.
oscillations in the square antidot lattice, i.e., magnetoresis-
tance peaks appear when the cyclotron diameter | EQUATION OF MOTION AND MODEL POTENTIAL
(2R.) can be associated with a commensurate orbit encir-
cling a specific number of antidot4,2,49...). The trans- For a perpendicular homogeneous magnetic fi&jdve
port properties on periodic and quasiperiodic triangular antichoose the gauge
dot lattices were investigated by Takahaetal,® and
commensurability oscillations observed in their experiments. > By Bx
These phenomena are interpreted on the basis of pinned clas- A PRPE
sical orbits in billiard model. Similar results were observed

by other groupé. In the classical regime, a one-electron wave packet mov-

. . 5 . .
Recent experiments by Tsukagoshial.> investigated the  jng in a two-dimensional modulated potential is described by
magnetoresistance through disordered and anisotropic anthe Hamiltonian

dot lattices in GaAs/AlGa; ,As heterostructures, and
found that the peak position in magnetoresistance depends 1 ( eBy
Pxt

@

1 eBx|?
Tom\PT 2

wherem is the effective mass of the electrdd(x,y) is the

h icall leisch isel. and & modulated potential. In the following, we measure the en-
Theoretically, Fleischmann, Geisel, and Ketzmétals- o0 i ynits of £, the Iength in units of lattice constant

ing a continuous antidot potential, calculated magnetoresis: , the time in units ofry=(ma?Eg)Y2 and the magnetic
tance through a square antidot lattice. Their results show eld in units ofBO=2(2mEF)1’2/ea, WhenB=B,, the di-
that Comme”S“rf”‘b"'W oscillations are ma'mly ca_used by theameter of the free cyclotron orbit equals the lattice constant
correlation function of unperturbed chaotic motion and NOL, it e define
by the pinned orbits. Geisel, Zacherl, and Raddmave in- '
vestigated the chaotic diffusion andf Tloise of particles in 1
two-dimensional solids, and found that the trapping mecha- V= —
nism no longer operates for higher energy. m
To our knowledge, calculations on magnetoresistance fo
rectangular and disordered lattices have not been carried out.
In the present paper, we study in detail the commensurability
oscillation in the antidot lattice by calculating the magnetore- K=1 2\/—Bv _ ﬂ (4)
sistance through square, rectangular, one-direction disor- X Y

on the current flow direction. This phenomenon cannot be H=
interpreted by the pinned orbit model. It is suggested that the
commensurability oscillations are determined only by the pe
riod along the direction perpendicular to the current.

o Uy, (2

eBy 1 eBx
P O TmlP T

(©)

hen the equation of motion can be written as
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FIG. 2. Poincaresurfaces of the section in square lattice at
MR ARSI mod(x,1)=0 for (a) B=By, (b) B=0.8B(, and(c) B=0.43,. The
cecee ss e d b oo e oo eo e closed loops represent the intersections of invariant tori.
S]] e e s quasiperiodical for the disordered antidot superlattice, it is
PN SRR reasonable to identify ak coordinates mod) andy coor-
e v S ses 2o dinates modg). So, the Poincarsurfaces of the section at
(©Xo=0.1, Yo =0 (@)X, =025, Y, =0 mod(x,a) =0 reduce to a unit ce(l0,b] in y coordinate.

1. Square antidot lattice

FIG. 1. The schematic view of disordered antidot lattices. Two-  Figure 2a) shows a Poincarsurface of the section at
direction disorder with standard deviati¢a) X,=Y,=0.1a and  mod(x,a)=0 for the magnetic fiel= B, (the diameter of
(b) X,=Y,=0.2%, and one-direction disorder with standard de- the cyclotron orbit isa for this field). This Poincaresurface
viation (¢) X,=0.1a and(d) X,=0.25% of the section is generated from four different initial condi-
tions. From the figure it can easily be seen that there are a
: U chaotic sea, a regular island near 0.5, and a line in the
y=vy, Uy:_z‘/EBUX_ oy ()  cormer. The chaotic sea, which corresponds to the chaotic
motion, is generated from one initial condition; the two
Near an antidot atxy,Y,), the potential is modeled as an closed loops in the island, which correspond to regular mo-
exponentially decayed function tion, are generated from two special initial conditions, and
the line, corresponding to the drifting motion, is generated
U(x,y)=Ugexd — B(X—Xq)?— B(Y—Yo)?] (6)  from another special initial condition.
. . From the Kolmogorov-Arnold-MosetKAM) theorent
where 3 is chosen to control the steepness of the potentiahhe closed loop is the intersection of an invariant torus. Any

and =320 in the present papet, is chosen so that the ot with a different initial condition y,v,) starting out on
potential equals Fermi enerdy:, when the distance from ¢ invariant torus remains on it forever. Therefore, orbits
the center of the antidotxp,yo) equals the radius of the \yith an initial condition §,v,) in the island are periodical or
antidot, one-sixth of the lattice constamt _ quasiperiodical orbits. These orbits will not drift away when

In the case of a square antidot lattice with a lattice con- \eak electric field is applied, because they circle around an
stanta, the antidot sitesXy,yo) =(na,ma), with n andm  gntidot and are pinned by it.

being integers &;1,+2,... . In thecase of a rectangular  The poincareurfaces of the section for the magnetic field
antidot lattice with lattice constangsin the X direction and B=0.88, and 0.48B, are also shown in Figs.(8) and Zc).
b in the Y direction, the antidot sitesxf,yo)=(na,mb).  From the calculation of the magnetoresistance below, we
When the disorder is introduced in thX direction, know that 0.8, corresponds to a valley and OB to a
Xo=(n+ d)a, wheres is a random number in the Gaussian peak in magnetoresistance. By comparing these Pdincare
distribution with the standard deviatiof), . When the disor-  gyrfaces of the section, it can be found that the area of the
der is also introduced in the direction,yo=(m+ 8)b. Fig-  regular motion island foB= B, is the largest. For this mag-
ure 1 gives a schematic view of disordered antidot latticesetic field, a large peak appears in the magnetoresistance. It
with X, =0.1 and 0.25Y,=0, andX,=Y,=0.1 and 0.25.  js surprising that the areas of the regular motion islands for
both B=0.8B, and 0.4B, are almost the same, i.e., the
lll. RESULTS AND DISCUSSIONS portions of the pinned orbits are almost the same for these
two magnetic fields. But the magnetoresistance calculation
shows that these two fields correspond to a valley and peak
In the two-dimensional problem, the phase spaceén magnetoresistance. Therefore, it may be concluded that
(X,y,Px,Py) is four dimensional, and the energy surfacethe pinned mechanism is not the reason for the commensu-
H=Eg is three dimensional. The Poincaserface of the rability oscillation, as has been pointed out by Geisel, Zach-
section aix= X, is the intersection of the energy surface with erl, and Radorfsand Fleischmann, Geisel, and Ketcmefick.
the surfacex=x,.2 Since the modulated potential is periodi-  For B=0.45B,, there are two regular motion islands. This
cal for the square or the rectangular antidot superlattice anig because the periodical orbit encircles four antidots and we

A. Poincare surfaces of section
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FIG. 3. Poincaresurfaces of the section in rectangular lattices ~ FIG. 4. Poincaresurfaces of the section in one-direction disor-
(@) b=1.2a and(b) b=0.8a at mod,1)=0 for B=B,. The closed  dered latticega) X,=0.1a and(b) X,=0.25 at modk,1)=0 for
loops represent the intersections of invariant tori. The two island$=B,. The closed loops represent the intersections of invariant
neary=0.8a in (a) correspond to drifting orbitésee texk tori.

with these invariant tori are not closed, and the fixed point is
of a hyperbolic type. According to KAM theof/a hyper-
"Bolic fixed point is unstable under small perturbation. In fact,
the orbit on these invariant tori is cyclotronlike, with its cen-
ter near the minimum of the potential, and is not pinned by
the antidot. When a weak electric figld small perturbation

For the magnetic fiel8=B,, the Poincarsurfaces of the is applied, this cyclotronlike orbit will change to a drifting
section are shown in Figs(& and 3b) in the cases of rect- orbit or a chaotic orbit. Therefore, the regular orbit starting
angular antidot lattices witb=1.2a and 0.&, respectively. ~out on these invariant tori also contributes to the conductance
The regular motion island in the case lpf1.2a is almost ~ as the chaotic orbit does.
the same as that for the square lattibe=@). Shapes of the
closed loops are also the same as those in the case of the
square lattice. But in the case Inf 0.8a, the regular motion When a fluctuation of the antidot site is introduced in one
island is completely different from that in the case of thedirection, for example in thX direction, the antidot lattice is
square lattice. The shapes of the closed loops are also diffefisordered in this direction and ordered in the other direc-
ent. These mean that the invariant tori in the case ofion. We introduce the disorder in the Gaussian distribution
b=1.2a are the same as those in the case of the Squa[\@ith a standard deviatioK,, as in the experimgnts by Tsuka-
lattice, and that they are different in the casebof0.8a.  goshiet al® Figures 4a) and 4b) show Poincaresurfaces of
These results can be explained as follows. The orbits on thée section for standard deviatiokg=0.1 and 0.25, respec-
invariant tori are cyclotronlike orbits with a radius tively. Because of fluctuation of the antidot site, there is no
R.=0.5a. In the case ob=1.2a, those orbits on the invari- regular motion island, even whex,=0.1. But there still
ant tori, especially on the inner ones, are almost collisioreXist some invariant tori, whose intersections with
free, as in the case of the square lattice. Conversely, in therod(x,a) =0 (closed loops are also shown in the figures.
case ofb=0.8a, those orbits on the invariant tori, especially The shapes of these closed loops are different, and their fixed
on the outer ones, are not collision free. It is obvious that théoints are also different from one another. The reason for
area of the regular motion island in this case is smaller thathese results is also the fluctuation of the antidot site due to
that in the case of the square lattice. This is also becaud&e introduction of disorder in th¥ direction. Orbits starting
some regular orbits in the square lattice change to chaotigut on these invariant tori are pinned by the antidot, and they

orbits in the rectangular lattice with=0.8a due to the col- do not respond to a weak electric field, i.e., they make no
lision with the antidots. contribution to the conductance.

For the caseb=0.8a, b=a, andb=1.2a, the islands of Another difference of the Poincasairfaces of the section
the regular motion have a fixed pointyat 0.5a with elliptic in the disordered lattice from that in the ordered lattice is that
type. This fixed point is the intersection of m(xda)zoi chaotic orbits cover the entiré direction [0,1] This is be-
with a cyclotron orbit ofR,=0.5a with its center at the Ccause some antidots deviate from their original location in
center of an antidot. The fixed point does not depend on théhe ordered lattice, and does not mean the electron can ap-
lattice constant, but on the radius of the collision-free cyclo-Proach the antidots.

identify all y coordinates mody). For B=0.298B,, there are
three regular motion islands, because the periodical orbit e
circles nine antidots.

2. Rectangular antidot lattice

3. One-direction disordered antidot lattice

tron orbit. ]
In the case ofb=1.2a, there are other regular motion B. Magnetoresistance
islands in the Poincaresurfaces of the sectionnear In the present classical regime, electrons with two degrees

y=0.8a andvy=*1.2). The intersections of moxi@) =0 of freedom move in the three-dimensional energy surface
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TABLE |. Zero-field resistanceR;, and R), (in units of R}, of the square lattigeand peak positions
(2R; in units ofa) of P,, R, andR,, in different cases.

Ordered X disordered XY disordered

b=a b=0.91a b=0.83 X,=0.1 X,=0.25 X,=0.1 X,=0.25
RO, 1.0 1.05 1.08 1.31 1.38 2.07 2.26
RSy 1.0 1.00 1.00 2.10 2.87 2.21 2.33
Po 1.02 1.02 0.98 ~1.0 ~1.0 ~1.0

1.58 1.49 1.45 1.56

2.27 2.12 2.08 2.32 2.2 2.27
Ry 1.02 0.92 0.85 1.01 1.08 ~1.04

1.58 1.42 1.38 1.53

2.27 2.17 1.98 2.32 2.2 ~2.22
Ryy 1.02 1.02 1.02 1.04 ~1.05

1.58 1.52 1.38

2.27 2.24 2.22 2.17 ~2.22

H=E. From the above analysis of Poincamerfaces of the wheref=(1+e(E~Er)/keT)~1is the Fermi-Dirac distribution
section, we know that pinned orbits starting out on the in-function, andkg the Boltzman constant. In the present cal-
variant tori make no contribution to the conductance. Thereeulation, kgT is chosen to be 0.0&%. The corresponding
fore, the conductivity is the sum of contributions from cha-temperature is 1.5 K when the carrier density of the sample is

otic orbits and drifting orbits. 5.2<10'1 cm™% The magnetoresistanc&s, andR,, are
According to classical linear response thedrhe fre-
guency dependent conductivity at zero temperature can be Rix= Tyy/ (TxTyy— TxyTyx), (12)
written
477_m Ryy= 0xx/ (OxxTyy— TxyTyx). (13
i (E dte'“'C;i(t 7 : .
i (B)= f (0 @ In the case of the square lattid@,, is equal toR, . In the

other cases for the rectangular and disordered lattRgsis
Cij=(vi(t)v;(0)), (8  not equal toR,, _ o
To calculate the magnetoresistance, it is necessary to cal-
whereE is the total energy of the electroh, Planck con-  culate the portion of the pinned orbits first. Fleischmann,
stant, andC;; the velocity correlation function averaged over Geisel, and Ketzmerikused the volume of the outermost
phase space. In the presence of impurity scattering with grus in a Poincarsurface of the section to determine this
mean scattering time, the probability that an electron is not portion. In the present paper, we randomly choose 6000 ini-
scattered by an impurity in the time intervid t] is e V7. tial conditions in the three-dimensional energy surface, and
Because impurity scattering destroys any correlation, onlyalculate the number of pinned orbits and then the portion of
the unperturbed orbits, which are not scattered by the imputhe pinned orbits. Our results for the square lattice are in
rity, make a COI’]tI’IbutIOFC,J(t) to the velocity correlation good agreement with those obtained by Fleischmann, Geisel,
function and Ketcmericl. Our method is convenient, especially for
_ the disordered antidot lattice, since it is difficult to find the
cij(t):e*”fcij(t)_ (9)  outermost torus in the Poincaserface of the section in the
disordered cases. Then it is necessary to calculate the veloc-
Since the contribution to the conductivity from the pinnedity correlation function. In the present paper, 6000 initial
orbits is zero, the conductivity can be written as conditions are randomly chosen to make the average over
phase space.
Before the discussion on magnetoresistance, it is useful to
study the zero-field resistance. Table | gives the zero-field
(10) resistance®), and R0 in the ordered and disordered cases.
_ _ _ _ In the ordered caseRXX increases a little anagy does not
whereP is the portion of the pinned orbits. change with the decrease of the lattice constantith the
The correlation functioi€;; (t) can be easily obtained nu- introduction of thex disorder, RY, increases much more than
merically, because it mcludes only the contribution from ther? qoes. It seems thaR?, |s malnly determined by the

unperturbed orbits. Then, integrating on timeve can ob-  4rangement of antidots M the direction, and vice versa,

Amrme? (= ~ _
aij(E):(l—Pp)Wh—zfo dtCj(t)el~(Hnrielt

tain the conductivity. At temperaturg, the conductivity is First, let us consider the rectangular antidot lattice, the
finally written as ordered cases. The portion of the pinned orBifs and the
magnetoresistanceR,, and R,,, which are normalized to
= of the zero-field resistances, are shown in Fig. 5 as a function of
Uij:_f —=0j;(E)dE, (11 > o or= ST 9. , .
o JE B/B,. Peak positions appearing in these figures are listed in
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Comparing the peak positions in the magnetoresistance
with those in the portion of the pinned orbits, one can find
that they are not related, especially for the magnetoresistance
E R.x- Therefore, the pinned orbit mechanism does not play an
important role in the commensurability oscillation. The fail-
ure of the pinned orbit mechanism has also been pointed out
. by Geisel, Zacherl, and Raddnand Fleischmann, Geisel,
and Ketzmericl. For the magnetoresistangg, , the princi-
pal peak, at which the cyclotron motion is commensurate
] with the circumference around one antidot, shifts to
B~1.1B;, and 1.B, in the cases ob=0.91a and 0.83,
respectively. The corresponding radii of the cyclotron orbits
are not 0.a but 0.%. But for the magnetoresistangg, , the
principal peak does not shift in either caselsf 0.91a or
b=0.83. The second-largest peak, at which the cyclotron
orbits include four antidots, tends to act in the same way as
the principal peak. Experiments by Tsukagoshial® ob-

. served that the peak positions depend only on the period
along the direction perpendicular to the current. In other
words, the lattice constamt in the X direction plays an im-
portant role in the magnetoresistanBg,, and the lattice
constantb in the Y direction affects mainly the magnetore-
sistanceR,,. Our calculations agree very well with their
experiments.

] The peak corresponding to the orbits circling around two
antidots shows some different behavior from the above two
peaks. For botlR,, and R, this peak shifts to a higher
1.4 magnetic field. In the experiment, this peak is so weak that
we cannot compare it with our results. It may be because the
antidot in the experiment is not so steep as the modeled
potential used by us.

Second, we consider one direction disordered cases, i.e.,
the fluctuation of the antidot sites is introduced only in one
direction, theX direction[see Figs. (c) and Xd)]. The fun-

RXX/RXXO

> 1 damental unit cell is still a square. The standard deviation
& X, is chosen to be Odland 0.2% as in the experiments.
o 4 Figure Ga) gives the magnetic dependence of the portion of

the pinned orbits for the cases ¥f.=0, 0.1a, and 0.2%.
The peaks corresponding to the cyclotron orbits around one
and four antidots can be clearly seen for all three cases. The
peak heights decrease obviously with the increase of the
002 0'4 0'6 0'8 1 1"2 ” standard deviatioX, . The peak corresponding to the cyclo-
‘ ’ " BB, ’ : tron orbit around two antidots disappears with the introduc-
tion of the fluctuation of antidot sites. In Sec. Ill A 3, we
FIG. 5. (a) Portion of the pinned orbits and magnetoresistancesliscussed the Poincaserfaces of the section, and found that
(b) Ryx, and(c) R, as functions oB/B,. Solid lines represent the there does not exist a regular motion island for the disor-
case of the square lattice, and long-dashed and short-dashed lingered cases. But there exist some invariant tori. These results
represent the cases of rectangular lattices With0.91a and  also indicate that pinned orbits exist, but the portion de-
b=0.83a, respectively. creases due to the introduction of the fluctuation.
The magnetic-field dependencies Rf, and R, for an
Table I. The results for the square antidot lattice are alseX direction disordered antidot lattice are shown in Figé) 6
shown in these figures for comparison. As it is known, theand @c). The curve for the square latticeX(=0) is also
peaks in the portion of the pinned orbits correspond to theghown in these figures. Comparing the curvesXge=0.1a
magnetic field at which the cyclotron orbits enclose one, twoand 0.2% with the curve forX,=0, one can find the follow-
and four antidots. The peak positions shift a bit to highering facts. WhenX,=0.1a, two main peakgcircling around
magnetic fields with the decrease of the lattice constant one and around four antidots both R,, and Ry, still ap-
The height of the peak which is related to the orbits circlingpear at the same magnetic field as in the square lattice. The
around two antidots increases somewhat. The reason for th¥ disorder strongly affects the peak heights of the commen-
is that the corresponding radii of the cyclotron orbits becomesurability oscillation inR,,, and has only a slight effect on
smaller and smaller with the decrease of the lattice constarthe peak heights ifr,,. WhenX,=0.25, the commensu-
b. rability oscillation inR,, disappears completely. The com-




8054 WENCHANG LU 54

04 T T T T 04 T T T T
A (=%
[
Oi %i
%x 3
o} b
& &,
0 1 1 1 L
0.2 04 0.6 0:8 1 1.2
B/B
[e] o
= 2
& & 4
o 2
o o
0 1 ] 1 1 0 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 0.2 0.4 0.6 0.8 1 1.2
B/B,, B/B

FIG. 6. The same as in Fig. 5, except that long-dashed and FIG. 7. The same as in Fig. 5, except that long-dashed and

: R . short-dashed lines represent the cases of two-direction disordered
short-dashed lines represent the cases of one-direction dlsorderF hices withX, =Y, =0.1a andX, =Y, =0.25a, respectively

lattices withX,=0.1a and X,=0.25, respectively. a

mensurability oscillation ifR,, still exists, although the peak The portion of the pinned orbits decreases much more in
heights decrease a great deal. The above facts indicate tHato-direction disorder than in one-direction disorder. When
the commensurability oscillation in the magnetoresistanceX,=Y,=0.25, there is no peak in the curve, vs B/By.
R, depends mainly on the antidot array in tiedirection, =~ From Figs. Tb) and 4c), we can observe that changes in
and vice versa. both magnetoresistanc&, and R,, have the same trend,
Finally, we consider two-direction disordered cases, i.e., #ecause of the introduction of the fluctuation Xnand 'Y
fluctuation of antidot sites is introduced in bo¥handyY  directions with the same standard deviatiof). € Y,). When
directions at the same tinjeee Figs. (@ and 1b)]. Figure 7 X,=Y,=0.25, no commensurability oscillation exists in
shows the magnetic-field dependencies of the portion of théhe magnetoresistance. In other words, large fluctuations in
pinned orbitsP,, and the magnetoresistandeg, andR, . two directions destroy all the commensurability oscillations.
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Analyzing the above results for disordered cases, we caresponding to the peak positions in the present system are
conclude thaiX disorder mainly affects the commensurabil- small (see Table)l This is due ta(1) the round corner of an
ity oscillation in the magnetoresistangg,, and destroys it ~antidot, (2) the large gap between two neighboring antidots,
when X,=0.25, and vice versa forY disorder. and (3) scattering by the other array. In the rectangular case
Experiments have observed that the peak height of the comWith b<<a, the separation between “emitter” and “collec-
mensurability oscillation is strongly affected by the disordertor” in the Y direction is smaller than that in the direction.
in the direction perpendicular to the current. Our results aré&€aks inR,, appear at higher magnetic fields, and peaks in
in good agreement with their experimental observations. Ryy appear at lower magnetic fields. In the one direction
To sum up, there exists a commensurability oscillation indisordered case, the separation between the “emitter” and
the magnetoresistance in the antidot lattice systems. What igollector” in this direction varies randomly. Therefore, the
the reason for this oscillation? Weisg al? suggested a commensurability oscillation in the magnetoresistance is
pinned electron model to explain the oscillation in the squaréuppressed when the current is perpendicular to this direc-
antidot lattice. Within this model, the commensurability os-tion. That is, the commensurability oscillation Ry, is sup-
cillations in bothR,, andR,, should be the same even for Pressed by disorderfsee Fig. &) for X,=0.2%], and vice
the rectangular or disordered antidot lattice. Theoretical studversa. In the two-direction disordered case, the commensu-
ies by Geisel, Zacherl, and Radérand by Fleischmann, rability oscillations in bothR,, andR,, are suppressed, as
Geisel, and Ketzmerick showed the failure of the pinned orWe expected. _ . _
bit explanation. The present calculations and experiments by There is an important difference in geometries between
Tsukagosheet al® on rectangular and disordered antidot lat- the present antidot system and the system used in magnetic
tice systems show the different oscillationsRy, andR,, focusing experiments. In magnetic focusing experiments, the
and also indicate the failure of the pinned electron model. 9eometry consists of a sequence of small constrictions sepa-
To understand the origin of this oscillation, let us look atated by relatively long sections of a gate. The geometry in
experiments on the electron focusing effect. Van Houterthe present antidot lattices is, in fact, an inverse case. The
et al % investigated transverse electron focusing in a 2DEGWidth of the constrictiongabout3a) is two times that of the
in which two point contacts were used as the injector andate(the diameter of the antidot &a). Therefore, the mag-
collector of ballistic electron. Their observation shows Netoresistances in the antidot lattices show some different
clearly that the electron focusing effect occurs when thdeatures compared with those in the magnetic focusing ex-
separation between two point contacts is an integer multipleriments, i.e., the peaks in the present cases are much wider
of the cyclotron diameter. Electrons injected from the injec-than those in the magnetic focusing experiments.
tor can reach the collector directly or after specular reflec-
tions from the boundary. Nihegt_al.11 studied the magne- V. SUMMARY
toresistance with multiparallel wires, and observed electron
focusing effects, although the wires are longer than the bal- The motion of the electron wave packet was investigated
listic mean free path. Subsequently, electron focusing effecti® the classical approximation. By analyzing the Poincare
with a single- or double-grid geometry were carried But. surfaces of the section, it was found that there exist regular
Because of a multiple opening in the grid, i.e., multiple in- motion islands and a chaotic sea in the case of the rectangu-
jectors and collectors in the grid, some peaks were observddr antidot lattice. In the case of the disordered antidot lattice,
when the cyclotron diameter is an integer multiple of theonly a chaotic sea is found in the Poincanarfaces of the
period of the grid. section, although there still exist some invariant tori. The
The commensurability oscillation in the antidot lattice linear-response theory was used to calculate the magnetore-
may be figured out by the idea of the electron focusing efsistance. In the case of the rectangular antidot lattice, the
fect. An array of antidots in one direction acts as a singlecommensurability oscillation iR, is mainly determined by
grid geometry, and the antidot lattice is similar to the multi- the period of antidots in th¥ direction and vice versa. The
grid geometry. The lower potential region between thefluctuation of antidot sites in thX direction plays only a
neighboring antidots behaves like an “emitter” and a “col- minor role in the commensurability oscillation R,,, and
lector” of the electron. When the current is along the  plays an important role iR, . The commensurability oscil-
direction, the arrangement of the antidots in thelirection  lation inR,, can be suppressed by the large fluctuation in the
determines the separation between the “emitter” and “col-X direction. When large fluctuations is introduced in both
lector.” When magnetic fields match the separation, peakX and Y directions, commensurability oscillations in both
appear in the magnetoresistanRg,. Therefore, the peak R,, andR,, are suppressed. Our results are in good agree-
positions inR,, depend only on the arrangement of the an-ment with experiments.
tidots in theY direction. In addition, the ballistic mean free ~ The commensurability oscillations in square, rectangular,
path is affected not only by th¥-direction arrangement of and disordered antidot lattices can be explained by the elec-
antidots, but also by th&-direction arrangement. The peak tron focusing effect. The gaps between neighboring antidots
heights are determined by the arrangement of antidots ibehave like an “emitter” and a ‘“collector” of electrons.
both directions. When magnetic fields match the separations between anti-
In the present antidot lattice system, the commensurabilitglots, peaks appear in magnetoresistances. Because the con-
oscillation is somewhat different from that in single- or strictions are wider than the gates in the present antidot lat-
double-grid system, in which a peak appears at the magnetiices, the peaks in the magnetoresistances are very wide. It is
field such that the diameter of cyclotron orbit is an integerconcluded that the commensurability oscillation can be ex-
multiple of the period. The diameters of cyclotron orbits cor-plained by the electron focusing effect.
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