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Ultrafast optical nonlinearities in semiconductors play a central role in determining transient amplification
and pulse-dependent gain saturation in diode lasers. Both carrier-phonon and carrier-carrier scattering are
expected to determine the gain dynamics in these systems. We present a relaxation-time approximation model
for carrier-carrier scattering in strained-layer lasers. The carrier-carrier scattering rates are determined using the
quasiequilibrium distribution functions for a given background carrier density. The distribution function to
which the photoexcited distribution relaxes is a Fermi-Dirac function where the chemical potential and tem-
perature are self-consistently chosen so that both particle number and energy are conserved in the carrier-
carrier scattering process. The relaxation approximation makes the problem an effective one-dimensional
problem which can then be solved directly for the carrier distributions using an adaptive Runge-Kutta routine.
This procedure is less computationally intensive than a full Monte Carlo simulation. The results show that the
inclusion of carrier-carrier scattering improves previous results where only carrier-phonon scattering was
included and that carrier-carrier scattering is necessary to produce heating of the carriers in the high-energy
tails. @S0163-1829~96!07535-2#

I. INTRODUCTION

Femtosecond pump-probe spectroscopy is a valuable tool
for studying the basic physics of nonequilibrium carrier dy-
namics and high-speed processes in both bulk semiconduc-
tors and devices. At the same time, the study of femtosec-
ondgain dynamics in laser diodes plays an important role in
understanding laser linewidth, modulation bandwidth, ampli-
fication, and short pulse generation.1–6 Measurements of ul-
trafast gain dynamics have been performed in bulk
GaAs,7–9 bulk InxGa12xAs12yP12y,

10 InxGa12xAsyP12y
multiple-quantum-well ~MQW!,11,12 and InxGa12xAs/
InxGa12xAsyP12y strained-layer MQW diode amplifiers.13

Transient carrier temperature changes, that is, changes in
the carrier distribution functions, influence the gain dynam-
ics on 1-ps time scales. These changes in the carrier distri-
bution function can be produced either by free-carrier ab-
sorption or by state filling produced by stimulated interband
transitions, and two-photon absorption. Initial studies
showed that free-carrier absorption can play a dominant role
in carrier heating. Later,14 it was shown that, not only free-
carrier absorption, but stimulated interband transitions con-
tribute to the carrier distribution changes in
In12xGaxAs/Al12yGayAs strained-layer single-quantum-well
~SQW! diode lasers.

In an earlier paper, we presented measurements
and calculations of femtosecond gain dynamics in
In12xGaxAs/Al12yGayAs strained-layer single-quantum-well
diode laser.15 We presented detailed calculations of gain dy-
namics in an In12xGaxAs/Al12yGayAs strained-layer SQW
diode laser and compared them to experimental studies. A
multiple wavelength femtosecond pump-probe technique
was used to study transient gain dynamics in an active diode
laser under various injection conditions. We found reason-
able agreement between theory and experiment where stimu-
lated emission and absorption were dominant. In our theo-
retical model, transient gain and differential transmission
were computed in a multiband effective-mass model includ-
ing biaxial strain, valence subband mixing, and polar optical
phonon scattering both within and between subbands. Tran-
sient photogeneration of electron-hole pairs by the pump
pulse and subsequent relaxation of carriers by polar optical
phonon scattering were calculated in a Boltzmann equation
framework.

In spite of the reasonable agreement between the experi-
mental and theoretical differential transmission curves re-
ported in our earlier paper, improvements can still be made.
In our earlier work, the pump and probe wavelengths were
fixed and differential transmission curves were measured for
several different values of the injection current~i.e., several
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different values of injected carrier concentration!. The ex-
perimental technique has since been modified to allow for
the measurement of time-dependent differential transmission
spectra over a range of probe wavelengths~the pump wave-
length is still kept fixed!. In addition, we extend our theoreti-
cal formalism to include carrier-carrier scattering and we
compare our results with the experimentally measured differ-
ential transmission spectra. Our results show that the inclu-
sion of carrier-carrier scattering improves agreement be-
tween experiment and theory where only carrier-phonon
scattering was included. Furthermore, carrier-carrier scatter-
ing is necessary to produce heating in the high-energy tails
of the distribution functions.

Our paper is organized as follows: In Sec. II, we discuss
the experimental setup. The theoretical method is presented
in Sec. III, and the theoretical results are presented in Sec.
IV. The theory is compared to experiment in Sec. V.

II. EXPERIMENT

The schematic of the modified experimental setup for the
measurement of time-dependent differential transmission16 is
shown in Fig. 1. The pulse spectrum of a modelocked
TiAl 2O3 laser was first broadened in an optical fiber using
self-phase modulation and then selected for the pump and the
probe using spectral windows. A portion of the probe was
split to provide a reference pulse and both probe and refer-
ence pulses were frequency shifted using acousto-optic
modulators with 50 and 51 MHz modulation frequency, re-
spectively. The pump, probe and reference pulses were
coupled collinearly into the diode laser with the reference
pulse 1 ns ahead of the pump and the probe. An imbalanced
Michaelson interferometer was used after the device to delay
the reference pulse and interfere it with the probe pulse at the
detector. An am radio receiver was used to detect the probe
signal by monitoring the 1-MHz beat frequency.
Background-free measurements were performed by chopping
the pump at 400 Hz and using lock-in detection.

The devices used for these investigations were
InxGa12xAs/AlyGa12yAs GRIN-SCH SQW diode lasers17

which were 300mm in length. The band gap for the active
region was near 960 nm for the heavy-hole transition and

near 910 nm for the light-hole transition. The pump was
chosen to be at 935 nm and the probe wavelengths were
varied over a range of625 nm from the pump, both with TE
polarizations. The pulse duration was 200 fs with an 8.2-nm
bandwidth. Only the HHl→Cl transition contributes to the
initial stimulated emission processes without the light-hole
band being directly involved. We performed experiments in
the perturbative limit where the differential transmission
changes were directly proportional to changes in the gain
spectrum.

III. THEORY

A. Electronic states and optical-matrix elements

A schematic of the active region of the strained-layer
single-quantum-well diode laser used in the experimental
measurements is shown in Fig. 2. It consists of a 100-Å
In0.13Ga0.87As quantum well surrounded by two 25-Å GaAs
barriers. The 25-Å GaAs barriers, in turn, are sandwiched
between two Al12xGaxAs layers. Because of the lattice mis-
match between InAs and GaAs, the quantum well is under
biaxial strain. In our treatment of electronic states, we as-
sume that all the strain is accommodated by the 100-Å
In0.13Ga0.87As quantum well. We take the growth direction
~the direction perpendicular to the heterojunctions! to be

FIG. 1. Heterodyne multiple-wavelength
pump-probe measurement technique for measur-
ing time-dependent differential transmission
spectra. The pump and probe wavelengths can be
varied independently and differential transmis-
sion can be studied as a function of probe delay
and probe wavelength.

FIG. 2. Schematic structure of InyGa12yAs/AlxGa12xAs GRIN-
SCH SQW diode laser.
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along thez direction. Both GaAs and In12xGaxAs are direct
gap materials and we use an effective-mass model to de-
scribe the confined electron and heavy- and light-hole states.
We solve for the electron and hole envelope functions by
finite-differencing the effective-mass Schro¨dinger equation
on an equally spaced mesh. We take the AlxGaxAs barrier to
be infinite and require that the effective-mass envelope func-
tions vanish at the Al12xGaxAs interfaces. The finite-
difference equations, together with the vanishing of the en-
velope functions at the Al12xGaxAs interfaces, lead to a
matrix eigenvalue problem which can be solved to obtain the
electron and hole subband energiesEnc

(k) and Env
(k) as

well as the corresponding envelope functions evaluated at
the mesh points. Using the computed wave functions, we can
obtain the squared optical matrix elements~expressed in
units of energy! defined as

ul–Pnc ,nv~k!u25U E drcnc ,k
* ~r !A2/m~l–p!cnv ,k

~r !U2. ~1!

B. Solution of the Boltzmann transport equation

To study the time evolution of the distribution functions
for electrons or holes in the presence of the pump laser, we
use the time-dependent Boltzmann equation,

] f n~k,t !

]t
5F] f n]t G

gen

1F] f n]t G
sc

1F] f n]t G
cc

, ~2!

where f n~k,t! is the time-dependent distribution function for
electrons~or holes! in subband,n with wave vectork. The
first term on the right-hand side represents the time rate of
change of the distribution functions due to transient photo-
generation of electron-hole pairs by the pump, while the sec-
ond term represents the time rate of change due to scattering
by polar optical phonons. The final term describes the time
rate of change of the distribution functions due to carrier-
carrier scattering. To simplify the calculations, we adopt an
axial approximation in which the distribution functions are
replaced by their angular averages in the plane of the quan-
tum well. We define axial distribution functions

f n~k,t ![
1

2p E
0

2p

du f n~k,t !5
1

2p E
0

2p

du f n~k,u,t !, ~3!

where we have written the wave vector in cylindrical coor-
dinatesk5kr̂1uû. We take the moment of the Boltzmann
equation overu to obtain a one-dimensional Boltzmann
equation:

] f n~k,t !

]t
5

1

2p E
0

2p

duF] f n~k,t !]t G
gen

1
1

2p E
0

2p

duF] f n~k,t !]t G
sc

1
1

2p E
0

2p

duF] f n~k,t !]t G
cc

. ~4!

To solve the one-dimensional Boltzmann equations, we
convert them to a coupled set of ordinary differential equa-

tions ~ODE’s!. In the ODE method, we dividek space into
evenly spaced cells of widthDk5kmax/Nk whereNk is the
number ofk cells and the value ofk at the midpoint of each
cell is km (m51,...,Nk). In eachk cell the average of the
distribution function is defined as

f n~km ,t ![
1

kmDk Ekm2Dk/2

km1Dk/2

dk k fn~k,t !. ~5!

Taking the weighted average of the one-dimensional Boltz-
mann equation over ak cell and assuming the distribution
functions are slowly varying in each cell, we obtain

d fn~km ,t !

dt
5Fd fn~km ,t !dt G

sc

1Fd fn~km ,t !dt G
gen

1Fd fn~km ,t !dt G
cc

. ~6!

This is a set of ordinary differential equations forf n(km ,t).
Given initial values of the distribution functions in eachk

cell, f n(km ,t→2`), we can solve the system of ODE’s
with an adaptive stepsize Runge-Kutta routine. The initial
distribution functions are determined by the electron and
hole quasi-Fermi levels. The initial electron distribution
functions are

f nc~km ,t→2`!5
1

11exp$@Enc
~km!2Fc#/kBT%

, ~7!

while the initial hole distribution functions are given by

f nv~km ,t→2`!5
1

11exp$2@Env
~km!2Fv#/kBT%

. ~8!

Here we use the angular averaged subbands

En~k!5
1

2p E
0

2p

du En~k!. ~9!

The electron and hole quasi-Fermi levels,Fc and Fv , are
related to the total carrier concentration~assumed equal for
electrons and holes! by

n2D5
1

p (
nc ,m

f nc~km ,t→2`!kmDk

5
1

p (
nv ,m

f nv~km ,t→2`!kmDk. ~10!

A factor of 2 has been included to account for the spin of
electrons and holes.

For the electron photogeneration term, we have

F ] f nc~km ,t !

]t
G
gen

}(
nv

u~\v,t !ul–Pnc ,nv~km!u2

3@12 f nc~km ,t !u2 f nv~km ,t !#, ~11!

where the photon energy is

\v5Enc
~km!2Env

~km! ~12!
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and the transient energy density of the pump is an ideal
Gaussian pulse,

u~\v,t !}sech2S 2t cosh21~& !

t0
D

3expS 24 ln~2!

s2 ~\v2\v0!
2D . ~13!

The pulse is centered at\v0 with a temporal widtht0 and a
spectral widths. It is worth noting that the photogeneration
term at a givenk can be positive or negative depending on
the sign of 12 f nc(km ,t)2 f nv(km ,t). This method of gener-
ating carriers is quasiclassical and is valid providing the
dephasing time of the photoexcited carriers is short with re-
spect to the pulse duration; otherwise carriers must be gen-
erated using the semiconductor Bloch equations. In generat-
ing the photoexcited carriers, we first use the full
~nonangular averaged! bands to determine an ‘‘effective
pulse width’’ that is then used to generate carriers in the
angular averaged bands.

The first two terms in the Boltzmann equation~6! describ-
ing photogeneration and scattering by polar optical phonons
have been described in detail in our earlier paper.15 Here we
focus on the carrier-carrier scattering term. We model
carrier-carrier scattering using an effective relaxation opera-
tor approach.18 Carrier-carrier scattering for both electrons
and holes is described by an effective relaxation operator of
the form

F] f n~k,t !]t G
cc

52
f n~k,t !2 f n

0~k,m* ,T* !

tn~k!
. ~14!

The relaxation time,tn(k), depends on subband indexn and
wave vectork and ~in the case of electrons!

f n
0~k,m* ,T* !5

1

11exp$@En~k!2m* #/kBT* %
~15!

is a quasiequilibrium distribution function characterized by
an effective temperatureT* and chemical potentialm* . In
the usual relaxation-time approximation, we would setT* to
the lattice temperature andm* to the electron quasi-Fermi
level Fc . In the effective relaxation operator approach, the
effective temperature and chemical potential are time depen-
dent. They are determined by the constraints that the particle
number and energy are conserved in carrier-carrier colli-
sions. Sincet(k) is k dependent, the actual distribution func-
tion f n(k,t) and the relaxation functionf n

0(k,m* ,T* ) may
be characterized by different chemical potentials and effec-
tive temperatures. They are equal if the actual distribution
function is a Fermi-Dirac function as it must be whent→`.

Imposing conservation of mass on the carrier-carrier scat-
tering mechanism we obtain

]

]t (n,k f n~k,t !5(
n,k

F] f n~k,t !]t G
cc

50, ~16!

which, in the axial approximation, becomes

(
n
E
0

`

dk kF f n~k,t !2 f n
0~k,m* ,T* !

tn~k!
G50. ~17!

This integral may be evaluated using Simpson’s rule. Thus

C1~m* ,T* ,t !5(
n,m

Dk kmF f n~km ,t !2 f n
0~k,m* ,T* !

tn~km!
G50.

~18!

This last equation may be viewed as a global equation of
constraint to be satisfied by the effective temperature and
chemical potential. From the requirement that carrier-carrier
scattering conserve energy, we obtain a second equation of
constraint

C2~m* ,T* ,t !5(
n,m

Dk kmEn~km!

3F f n~km ,t !2 f n
0~km ,m* ,T* !

tn~km!
G50. ~19!

The two equations of constraint,C1(m* ,T* ,t)50 and
C2(m* ,T* ,t)50, uniquely determine the effective tempera-
ture and chemical potential at any given time in terms of the
time-dependent cell-averaged distribution functions and the
subband and wave-vector-dependent relaxation rates. In the
Runge-Kutta integration of the Boltzmann equation, we use a
Newton-Raphson multidimensional root-finding routine to
obtain the effective temperature and chemical potential
needed for the evaluation of the effective relaxation operator.

C. Relaxation rates for electrons

In order to employ the effective relaxation operator for
electron-electron scattering in the Boltzmann transport equa-
tion, we still need to compute the relaxation rates, 1/tn(km),
for electrons and holes. In the case of electrons, we assume
that the carriers all stay in their original subbands~diagonal
approximation!. That is, carriers can scatter with other carri-
ers in different bands, but they do not change bands in the

scattering process. We letWk,k8
n,n8(q) be the two-body scatter-

ing rate at which an electron initially in stateun,k& scatters
off a second electron initially in stateun8,k8& and ends up in
a final stateun,k1q& having scattered the second electron to
the stateun8,k82q&.

Neglecting Fermi filling effects, the two-body scattering
rate obtained from Fermi’s golden rule is

Wk,k8
n,n8~q!5

2p

\
uVk,k8

n,n8~q!u2d„En~ uk1qu!1En8~ uk2qu!

2En~ uku!2En8~ uk8u!…. ~20!

The two-body interaction matrix is just

Vk,k8
n,n8~q!5E drE dr 8cn,k* ~r !cn8,k8

* ~r 8!

3V~ ur2r 8u!cn,k1q~r !cn8,k82q~r 8!, ~21!

whereV~ur2r 8u! is the screened Coulomb potential. In the
effective-mass approximation, the quantum well electron
wave function for an electron in thenth subband is
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cn,k~r !5
1

AA
eik–rFn~z!uJ5 1

2 ,s&, ~22!

whereFn(z) is the electron envelope function described in
Ref. 15 anduJ51

2,s& is the periodic part of thes-like k50
Bloch state in the bulk material. For a statically screened
Coulomb potential, we obtain19

Vk,k8
n,n8~q!5

2pe2

Ae0qe~q!
Fn,n8~q!, ~23!

where the form factor

Fn,n8~q![E
2`

`

dzE
2`

`

dz8uFn~z!u2 uFn8~z8!u2

3exp~2quz2z8u!. ~24!

It should be pointed out that in the strict two-dimensional
limit, Fn,n8(q)51. ThusFn,n8(q) accounts for the finite size
of the quantum well. In our treatment of screening, we as-
sume that most of the electrons reside in the lowest-lying
electron subband~the electric quantum limit approximation!.
The dielectric function for electrons in a quantum well is
then given in the random phase approximation~RPA! by20

e~q!5S 11
qs
q DF1,1~q!$12Q~q22kF!A12~2kF /q!2%,

~25!

wherekF5A2pn is the Fermi wave vector for carrier con-
centration,n, and

qs5
2e2me*

e0\
2 ~26!

is the screening wave vector. The electron effective mass is
me* and F1,1(q) corrects for the finite size of the quantum
well. With the RPA dielectric function, the screened Cou-
lomb matrix element is given by the rather formidable look-
ing expression

Vk,k8
n,n8~q!5

2pe2

A«0~q1qs!

3
Fn,n8~q!

F1,1~q!$12Q~q22kF!A12~2kF /q!2%
.

~27!

We can simplify things further. Except for very low carrier
concentrations,q,2kF and the heavyside function in the
denominator vanishes. In addition, for the first few electron
subbands, we have

Fn,n8~q!

F1,1~q!
'1 ~28!

to within about 5% for the small values ofq of interest and
so we arrive at the simple expression

Vk,k8
n,n8~q!5

2pe2

A«0~q1qs!
5V~q!. ~29!

This is just the strict two-dimensional limit of the screened
Coulomb potential and depends only onuqu. The expected
reduction in the bare Coulomb potential due to the finite size
of the quantum well is very nearly canceled by a correspond-
ing reduction in the RPA dielectric function and so we are
justified in using the strict two-dimensional limit for the
screened Coulomb potential.

Taking the Pauli exclusion principle into account, the col-
lision integral for electron-electron scattering within the
same band,n, is given by

F] f n~k,t !]t G
cc

5(
k8

$ f n~k8,t !Sk8,k
n

„12 f n~k,t !…

2 f n~k,t !Sk,k8
n

„12 f n~k8,t !…%, ~30!

whereSk,k8
n , the rate at which electrons in bandn scatter

from k to k8, is obtained from the two-body scattering rate
by summing over the states of the target electron. Thus

Sk,k8
n

5 (
n9,k9

f n9~k9!Wk,k9
n,n9~ uk2k8u!@12 f n9~k92k81k!#.

~31!

In the limit of a weak pump, the distribution functions
will only be slightly perturbed from thermal equilibrium.
Thus

f n~k,t !5 f n
0~k!1gn~k,t !, ~32!

where the differential distribution functiongn~k,t! is small.
The ‘‘relaxation-time approximation’’ that we make consists
of replacingf n~k8,t! by f n

0~k8! when it is integrated over in
Eq. ~30!. For f n~k,t! outside the integrals in~30!, we use Eq.
~32!. Thus, for the first term on the right-hand side of~30!,
f n~k8,t! is replaced byf n

0~k8! and 12f n~k,t! is replaced by
12f n

0~k!2gn~k,t!. For the termSk,k8
n , only the equilibrium

distribution functions are used. A similar procedure is used
for the second term on the right-hand side of~30!. This pro-
cedure is different from the standard ‘‘linearization’’ proce-
dure where deviations inf n~k,t! from equilibrium are con-
sidered even when integrated over. Our procedure simplifies
the form of the collision integral and is based on the belief
that integrals of the change in distribution function should be
small. As a consequence of the neglect of these extra terms,
one must choosem* and T* in the relaxation function
f n
0~k,m* ,T* ! so as to ensure conservation of energy and par-

ticle number in the carrier-carrier scattering process.
Making the above relaxation approximation, we obtain

F ] f n~k,t !

]t
G
cc

52
gn~k,t !

tn~k!
52

f n~k,t !2 f n
0~k!

tn~k!
, ~33!

where the relaxation rate is given by
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1

tn~k!
5
2p

\
(

n9,k9,q
uV~q!u2$ f n

0~k1q! f n9
0

~k92q!@12 f n
0~k9!#1 f n9

0
~k9!@12 f n

0~k1q!#@12 f n9
0

~k92q!#%d„En~k1q!

1En9~k92q!2En~k!2En9~k9!…, ~34!

wheref n
0~k! is the initial equilibrium distribution function. In

our axial approximation, the distribution functions and sub-
band energies depend only on the magnitudes of their argu-
ments. If we take the spherical average of the relaxation
operator, we find

F] f n~k,t !]t G
cc

52
f n~k,t !2 f n

0~k,t !

tn~k!
, ~35!

where

1

tn~k!
5

1

2p E
0

2p

du
1

tn~k,u!
. ~36!

For each subband, we evaluate and store the relaxation rates
at km .

D. Relaxation rates for holes

The calculation of relaxation rates is more involved in the
case of the holes. In the first place, we can no longer assume
that the incident and target particles remain in their original
subbands. The reason for this will become apparent shortly.
We let Wn8,m8

n,m (k,k8,q) be the two-body scattering rate at
which a hole initially in stateun,k& scatters off a second hole
initially in state un8,k8& and ends up in a final stateum,k1q&
having scattered the second hole to the stateum8,k82q&.

For holes the quantum well wave functions are given by

cn,k~r !5
1

AA
eik–r (

n523/2

n53/2

Fn,k
n ~z!uJ5 3

2 ,n&, ~37!

where uJ5 3
2,n& is the p-like spin 3

2 Bloch state andFn,k
n (z)

are the envelope functions. Unlike the electron envelope
functions, the hole envelope functions depend explicitly on
the spin index,n, as well as the wave vector,k. With the
more complicated wave functions, the matrix element for the
screened Coulomb interaction becomes

Vn8,m8
n,m

~k,k8,q!5
2pe2

A«0q«~q!
Fn8,m8
n,m

~k,k8,q!. ~38!

In calculating the dielectric function,e(q), for Eq. ~38!,
we include only the electrons in the screening. In a static
screening approximation, both the electrons and the holes
would contribute to the screening. However, the holes are
much more massive than the electrons and therefore a dy-
namic screening model is more appropriate, since the heavier
holes are not effective in screening the electrons. To allow
for this, sometimes a pseudodynamic screening model is
used. In pseudodynamic screening, one neglects all carriers
that are heaver than a given carrier in determining the screen-
ing. For instance, heavy holes do not screen the light holes,
but the light holes do screen the heavy holes. This method is
difficult to implement in the strained-layer quantum wells
since the valence subbands are not characterized by a single
effective mass~cf. Fig. 3! and whether a hole is light or
heavy depends upon where it is in a given subband. Thus one
cannot easily implement pseudodynamic screening and
therefore must use a fully dynamical screening model includ-
ing the full band structure. This is beyond the scope of the
present calculations. As a compromise, we therefore choose
to neglect all the holes in the screening. This should be more
realistic than a static screening model but will slightly under-
estimate the effects of screening on the hole scattering. We
do not anticipate that these effects should be major since the
holes, by virtue of their larger effective masses, are gener-
ated by the optical pulse much closer to equilibrium than the
electrons. In this simplified screening model, we have

Vn8,m8
n,m

~k,k8,q!5
2pe2

A«0~q1qs!

Fn8,m8
n,m

~k,k8,q!

F1,1~q!
. ~39!

The form factor is more complicated than for the elec-
trons, however. For holes we have

FIG. 3. Computed electronic subband structure along^110& and
^100& in the active region of the device. The conduction subbands
are shown in~a! and the valence subbands are shown in~b!. The
heavy-hole subbands are solid lines and the first light-hole level is
shown as a dashed line. We include the 100-Å GaxIn12xAs SQW
and the 25-Å GaAs bounding layers and assume complete confine-
ment of electrons and holes within the active layer.
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Fn8,m8
n,m

~k,k8,q!5E dzE dz8e2quz2z8u(
n

Fn,k
n* ~z!Fm,k1q

n ~z!

3(
n8

Fn8,k8
n8* ~z8!Fm8,k82q

n8 ~z8!. ~40!

In the case of electrons, the form factors correct for the finite
size of the well and we saw that in the limit of an infinitely
thin quantum well, the form factors for electron subbands
approached unity. This does not hold in the hole case since
the hole envelope functions depend explicitly on the wave
vectors of the initial and final states. If we were to ignore the
interactions between heavy- and light-hole states, we would

obtain two sets of parabolic hole bands. In this case, it would
be permissible to make the diagonal approximation and as-
sume that incident and target particles remained in their
original subbands. This is because the form factor for a two-
body collision in which a hole scatters to a different subband
would be small in this case. When interactions between
heavy and light holes are included, however, the wave func-
tions become admixtures of heavy- and light-hole states and
the form factors for scattering between heavy- and light-hole
subbands can no longer be ignored. The diagonal approxima-
tion that holes remain in their original subbands is no longer
appropriate and we must explicitly allow for hole scattering
between different subbands.

The relaxation rate for holes is given by
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and we take the angular average of thisk-dependent relax-
ation rate to obtain the relaxation rates atkm in the one-
dimensional model.

Electron-hole scattering is neglected in this calculation.
Since the holes are much more massive than the electrons,
electron-hole scattering is similar to electron-impurity scat-
tering. That is, the scattering is quasielastic and the main
effect is to cause the electrons to relax to their angular aver-
aged distribution. Since the distributions are already angular
averaged, the effects of electron-hole scattering should be
minimal.

E. Time-dependent optical gain and differential transmission

The time-dependent optical gain for a given polarization
can be expressed in terms of the optical matrix elements,
electronic band structure, and time-dependent axial distribu-
tion functions as

gl~\v,t !} (
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m
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3E
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~k!2Env

~k!2\v….

~42!

It should be noted that in the absence of carriers, the optical
gain is just the negative of the absorption coefficient. In cal-
culating ~42!, the energies of the bands are shifted by 23
meV to match the disagreement between the theoretical band
edge calculated with the Luttinger model and the experimen-
tal edge. This discrepancy is most likely due to band-gap
renormalization resulting from the injected background car-
riers.

Spectral broadening of the probe pulse is taken into ac-
count by replacing the Diracd function in the gain equation
with a Lorentzian function:

d~x!→
1

p

\/tprobe
x21~\/tprobe!

2 , ~43!

where

\/tprobe5
\

2
~1/te11/th! ~44!

is the associated energy broadening factor and 1/te , 1/th are
the electron and hole scattering rates. In calculating the
broadening factor, we must not only take into account
carrier-phonon scattering, but also carrier-carrier scattering.
We take \/tprobe522.5 meV based on the calculation of
Asada.21 In addition, the time-dependent optical gain
gl(\v,t) is convoluted in time with the probe pulse.

The time-dependent transmission coefficient is defined as
the ratio of transmitted to incident power.22 In the thin
sample limit, whereL is the thickness of the sample, we have

DTl

Tl '@gl~\v,t !2gl~\v,t→2`!#L. ~45!

In practice, we theoretically calculate only the change in ab-
sorption and do not multiply by a given length scale since the
experimental sample lengths vary from sample to sample.
The units in our plots are therefore arbitrary.~In addition, the
plots have also been scaled so that the numbers on the graphs
are easier to read.! In the experiments, the typical values for
DT/T are 0.1–2%. This depends, however, on the intensity
of the pump pulse since in the low-intensity limit, the mag-
nitude of the signal depends on the number of carriers cre-
ated.
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IV. THEORETICAL RESULTS

A. Band structure

The active region of the device consists of the 100-Å
Ga0.87In0.13As SQW and the two 25-Å GaAs bounding lay-
ers. We assume that the carriers are completely confined
within the AlxGa12xAs GRIN structure and take the barriers
to be infinite. The SQW barriers are taken to be finite and we
allow the carriers to tunnel into the GaAs bounding layers.
The Brillouin zone lies in thex-y plane and the computed
subband structures neark50 are shown in Fig. 3 along the
^110& and ^100& directions.

The conduction subbands in Fig. 3~a! are isotropic and
parabolic and the electron states are derived froms-like
Bloch states. By convention, we label the electron subbands
Cn wheren51,2,3,... denotes the subband index. The hole
subbands in Fig. 3~b! are nonparabolic and anisotropic and in
general the hole states are mixtures of heavy- and light-hole
Bloch functions. By convention, we label the hole subbands
Hn or Ln depending on their heavy- and light-hole character
at the zone center. The terms ‘‘heavy’’ and ‘‘light’’ refer to
the effective masses along thez direction. Heavy holes are
heavy along thez direction but light in thex-y plane, while
light holes are light in thez direction but heavy in thex-y
plane. In the figure, the heavy-hole subbands are shown as
solid lines and the first light-hole subband is shown as a
dashed line.

B. Optical matrix elements

The squared optical matrix elements for dipole-allowed
transitions between valence and conduction subbands are
shown in Fig. 4 for TE polarization. We plot the squared
optical matrix elements as a function of wave vector in the
^110& and ^100& directions for transitions involving the first
four valence and first two conduction subbands. The squared

optical matrix elements are seen to be anisotropic and to
strongly depend on wave vector.

At the zone center, the squared optical matrix element is
proportional to the product of the squared momentum matrix
element between the electron and hole envelope functions.
The hole envelope function atk50 will vanish unless the
subband indices for the valence and conduction subbands are
the same. This is theDn50 selection rule for optical transi-
tions between quantum well subbands. This is evident in Fig.
4, where the strongest optical matrix elements at the zone
center correspond toH1-C1 , L1-C1 , andH2-C2 transitions.

Our model includes the effects of mixing of light- and
heavy-hole states in the Luttinger Hamiltonian. As we move
away from the zone center, we find that the oscillator
strength is redistributed among the various subbands. As can
be seen in Fig. 4, the forbidden transitions pick up oscillator
strength at the expense of the allowed transitions.

C. Carrier-carrier relaxation rates

For the SQW laser device shown in Fig. 2, the polar op-
tical phonon scattering-out rates for electrons and holes were
reported in our earlier paper.15 In the present paper we con-
sider both polar optical phonon scattering and carrier-carrier
scattering in the effective relaxation model. In general, the
relaxation rates, 1/tn , for carrier-carrier scattering in sub-
bandn depend on the lattice temperature, the initial carrier
concentration, and the carrier energy~or equivalently, the
carrier wave vector!. The energy-dependent relaxation rate at
a lattice temperature of 300 K for electrons in the first con-
duction subband is shown in Fig. 5 for several initial carrier
concentrations. The relaxation rate for electron-electron scat-
tering is seen to increase as the background carrier concen-
tration is raised. We can anticipate that at low background
carrier concentrations, carrier-carrier scattering can be ne-
glected in comparison with polar optical phonon scattering
while at high background concentrations, carrier-carrier scat-
tering will be the dominant scattering mechanism. Estimates
indicate that for carrier concentrations above 131012 cm22,
carrier-carrier scattering is important and must be included.

FIG. 4. Squared optical matrix elements along^110& and ^100&
for dipole-allowed TE transitions between the first four valence
subbands and the first~a! and second~b! conduction subbands.

FIG. 5. Energy-dependent carrier-carrier relaxation rates at 300
K for electrons in the first conduction subband. The carrier-carrier
relaxation rate depends on the lattice temperature and injected car-
rier density. As the carrier density is increased, carrier-carrier scat-
tering becomes more effective in thermalizing the electron distribu-
tion function.
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D. Time-dependent distribution functions

To illustrate the effects of carrier-carrier scattering on
electron dynamics at moderately high injected carrier densi-
ties, we set the lattice temperature to 300 K and the injected
carrier concentration to 5.031012 cm22 and compute the
time-dependent distribution functions in the presence of a
strong pump pulse with a pulse energy ofE050.4 fJ ~as
defined in Ref. 15!, a central energy of\v51.358 eV, a
spectral width ofs530 meV, and a temporal width of
t05200 fs. For this combination of lattice temperature, in-
jected carrier concentration, and central pulse energy, the
pump is in the gain regime and will act to deplete carriers
from the active region of the device through stimulated emis-
sion. In simulating the carrier dynamics of the device, the
distribution functions were first computed with polar optical
phonon scattering as the only scattering mechanism. The re-
sults for the first electron subband are shown in Figs. 6 and 7
with only polar optical phonon scattering.

In Fig. 6, we plot the electron distribution as a function of
energy relative to the bottom of the first conduction subband
for several different times. The different curves are: before
the pulse~solid line!, center of the pulse~dashed line!, 200 fs
~dash-dotted line!, 400 fs ~dash-multi dotted line! and 3 ps
~dotted line!. At t52`, the initial electron distribution is a

Fermi function determined by the subband structure of the
device, the lattice temperature, and the injected carrier con-
centration. Att50, the pump reaches its maximum intensity
and a hole is burned in the electron distribution function near
18 meV. As time progresses, electrons at higher energy are
scattered into this hole by emission of polar optical phonons
and a series of dips appear in the electron distribution func-
tion spaced a LO phonon energy apart. After a few picosec-
onds, a quasiequilibrium Fermi distribution is established.

It is useful to plot the quantity

lnS 12 f ~E!

f ~E! D
as a function of energy. Iff (E) is a Fermi distribution, we
obtain a straight line,

lnS 12 f ~E!

f ~E! D5bE2bm, ~46!

where the interceptbm is proportional to the chemical po-
tential m and the slopeb51/kBT is the reciprocal of the
temperature in units of energy. In Fig. 7 we plot

lnS 12 f ~E!

f ~E! D
for the distribution functions depicted in Fig. 6. At the be-
ginning and end of the simulation, the distribution function is
seen to be a Fermi function with a temperature of 300 K~the
initial lattice temperature!. Note that the chemical potential
shifts ~as seen by the change in intercept! due to the fact that
the pump laser has removed carriers from the device. Around
t50, the distribution function is nonthermal and the hole
burning peak and associated phonon replicas are clearly vis-
ible in the energy range below 100 meV. In the high-energy
tail of the distribution above 100 meV, the distribution func-
tions are well characterized by Fermi functions at the initial
lattice temperature, but with a slowly varying chemical po-
tential. The effective ‘‘electron temperature’’ does not
change during the relaxation.

We next computed the distribution functions including
bothpolar optical phonon and carrier-carrier scattering in the
simulation. The results for the first electron subband are
shown in Fig. 8 where the electron distribution is plotted as a
function of energy. The pump pulse and the initial electron
distribution are the same as in Fig. 6. As the pump reaches
its maximum intensity att50, a hole is again burned in the
electron distribution function near 18 meV. The laser acts to
deplete carriers and drive the device to transparency while
the scattering mechanisms act to oppose this tendency and
restore an equilibrium distribution. Comparing Figs. 6 and 8
we see that the hole burning peak is shallower in the pres-
ence of carrier-carrier scattering as one would expect.
Carrier-carrier scattering also acts to smooth out the phonon
replicas at later times. We find that more carriers are de-
pleted from the sample when carrier-carrier scattering is in-
cluded.

In Fig. 9 we plot

lnS 12 f ~E!

f ~E! D

FIG. 6. Time-dependent electron distribution function in the first
conduction subband in the presence of a pump pulse. The pump is
in the gain regime and electrons are depleted through stimulated
emission and subsequently relax through polar optical phonon scat-
tering.

FIG. 7. ln$[12 f (E)]/ f (E)% plotted as a function of energy for
the time-dependent electron distribution functions shown in Fig. 6.
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as a function of energy for the first conduction subband for
the distribution functions depicted in Fig. 8 including both
carrier-carrier and polar optical phonon scattering. When the
pump is at maximum intensity, the distribution function is
nonthermal around the pump energy. Carrier-carrier scatter-
ing quickly thermalizes the distribution functions and heats
the high-energy tails of the distribution functions~0–400 fs!.
Eventually~3 ps!, the temperature of the tail relaxes back to
room temperature. Neglecting the hole burning peak near the
center of the pulse, the distribution functions can be charac-
terized by a Fermi distribution with a time-varying effective
temperature and chemical potential.

We plot the time-dependent distribution functions for the
first hole subband in Fig. 10 for optical phonon scattering
only and in Fig. 11 we show the corresponding results with
carrier-carrier scattering included. The time for the various
curves are the same as in Figs. 6–9. In Fig. 10, one sees the
relaxation process of the hole distribution functions occur-
ring through optical phonon scattering. When carrier-carrier
scattering is turned on, the phonon replicas disappear and the
carrier-carrier scattering acts to thermalize the distribution.

V. COMPARISON OF THEORY AND EXPERIMENT

For the device shown in Fig. 2, time-dependent differen-
tial transmission spectra have been measured at different

probe frequencies. These measurements can be directly com-
pared with our theoretically predicted differential transmis-
sion spectra. Depending on the position of the pump relative
to the transparency point, the pump can either be in the gain
or loss regime, that is, the pump can either create or deplete
carriers.

A. Differential transmission spectrum:
Pump in the gain regime

We first consider what happens when the injection current
is high enough for the pump to be in the gain regime. We set
the injection current to 4.2 mA, which corresponds to an
injected carrier concentration of 2.131012 cm22. For this in-
jection current, the transparency point is at 925 nm and the
pump is at 935 nm. This places the pump in the gain regime
close to the transparency point. The pump is amplified on
passing through the device and electrons and holes recom-
bine through stimulated emission. Consequently, the differ-
ential transmission is negative.

The experimentally measured differential transmission
spectra are shown as a surface plot in Fig. 12 in which the
negativeof the differential transmission is measured as a

FIG. 8. Time-dependent electron distribution function in the first
conduction subband in the presence of a pump pulse. The pump is
in the gain regime and electrons are depleted through stimulated
emission and subsequently relax through both polar optical phonon
scattering and carrier-carrier scattering.

FIG. 9. ln$[12 f (E)]/ f (E)% plotted as a function of energy for
the time-dependent electron distribution functions shown in Fig. 8.

FIG. 10. Time-dependent hole distribution function in the first
valence subband in the presence of a pump pulse. The pump pulse
is the same as in Fig. 6 and the holes relax by means of polar optical
phonon scattering.

FIG. 11. Time-dependent hole distribution function in the first
valence subband in the presence of a pump pulse. The pump pulse
is the same as in Fig. 6 and the holes relax by means of both polar
optical phonon and carrier-carrier scattering.
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function of probe delay and probe wavelength.23 We can
examine the data by taking slices through this surface. In
Fig. 13~a!, we plot differential transmission as a function of
probe wavelength measured at several delay times and in
Fig. 13~b! we plot the differential transmission as a function
of probe delay at several different probe wavelengths.
Around zero time delay, sharp transmission decreases are
observed with a spectral peak at the pump wavelength~935
nm! with no spectral shift and a time-resolution-limited re-
covery. At intermediate time delays, gain changes are medi-
ated by carrier heating and a decrease in the carrier
population.23 Much stronger carrier heating and carrier
population-induced transmission decreases are observed for
probe wavelengths close to the transparency point.

To compare these results with theory and to better appre-
ciate the role of carrier-carrier scattering in the gain dynam-
ics, we compute theoretical differential transmission spectra
with and without carrier-carrier scattering. The computed
differential transmission spectra as a function of probe delay
and probe wavelength in the absence of carrier-carrier scat-
tering is shown in Fig. 14. In Fig. 15~a! we plot the com-
puted differential transmission as a function probe wave-
length at several delay times and in Fig. 15~b! the computed
differential transmission as a function of probe delay is
shown for several different probe wavelengths. In Fig. 14,
we can clearly see a large peak in the negative differential
transmission centered around the pump wavelength similar
to the experimental curve. Electrons and holes are depleted
from the lowest-lying conduction and valence subbands and
the gain in the vicinity of the pump is suppressed, resulting
in a negative differential transmission centered on the pump

FIG. 12. Experimental data showing femtosecond spectral de-
pendence of transient gain for 4.2-mA bias with the pump in the
gain region. The transparency point is at 925 nm and the pump is at
935 nm. The vertical axis is the negative of the transmission change
and the differential transmission is measured as a function of probe
wavelength and probe delay.

FIG. 13. Selected slices through the experimental differential
transmission data seen in Fig. 12. In~a! the differential transmission
is plotted as a function of probe wavelength at several different
values of the probe delay while in~b! the differential transmission
is plotted as a function of probe delay for several values of the
probe wavelength.

FIG. 14. Theoretically calculated differential transmission spec-
tra for the experimental situation depicted in Fig. 12. Carrier relax-
ation is by means of polar optical phonon scattering only.

FIG. 15. Selected slices through the theoretical differential
transmission spectra seen in Fig. 14. In~a! the differential transmis-
sion is plotted as a function of probe wavelength at several different
values of the probe delay while in~b! the differential transmission
is plotted as a function of probe delay for several values of the
probe wavelength.
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wavelength. After the pump dies away, scattering restores a
quasiequilibrium gain spectrum on a time scale of a few
picoseconds. In Fig. 14 the thermalization of electrons and
holes is entirely due to scattering with polar optical phonons.
The secondary peak seen near 910 nm is a phonon replica.
Phonon replicas arises when carriers are scattered by an in-
tegral number of optical phonon energies and jump into the
electron and hole states depleted by the pump.

The computed differential transmission in the presence of
carrier-carrier scattering is shown in Fig. 16. In Fig. 17~a! we
plot the computed differential transmission as a function
probe wavelength at several delay times and in Fig. 17~b! the
computed differential transmission as a function of probe
delay is shown for several different probe wavelengths. In
general, any scattering mechanism will act to restore a qua-
siequilibrium distribution. The inclusion of carrier-carrier
scattering in our model suppresses the dip observed in the

differential transmission around the pump frequency and
smooths out the phonon replicas. Agreement between these
curves and the experiments is better than with phonon scat-
tering only. While inclusion of carrier-carrier scattering
smooths out the sharp peaks in the results with only phonon
scattering~Figs. 14 and 15!, the agreement between experi-
ment and theory with only phonon scattering is not too bad,
considering it is much easier to calculate the effects of pho-
non scattering only.

The Sommerfeld enhancement factor used in calculating
the optical matrix elements has not been reduced due to car-
rier screening. To estimate the importance of screening, we
can recalculate the differential transmission without the
Sommerfeld factor. This is done in Figs. 18 and 19 where we
plot the differential transmission with carrier-carrier and op-

FIG. 16. Theoretically calculated differential transmission spec-
tra for the experimental situation depicted in Fig. 12. Carrier relax-
ation is by means of both polar optical phonon and carrier-carrier
scattering.

FIG. 17. Selected slices through the theoretical differential
transmission spectra seen in Fig. 16. In~a! the differential transmis-
sion is plotted as a function of probe wavelength at several different
values of the probe delay while in~b! the differential transmission
is plotted as a function of probe delay for several values of the
probe wavelength.

FIG. 18. Theoretically calculated differential transmission spec-
tra for the experimental situation depicted in Fig. 12. Carrier relax-
ation is by means of both polar optical phonon and carrier-carrier
scattering and the probe signal is modified by the suppression of the
Coulomb enhancement factor.

FIG. 19. Selected slices through the theoretical differential
transmission spectra seen in Fig. 18. In~a! the differential transmis-
sion is plotted as a function of probe wavelength at several different
values of the probe delay while in~b! the differential transmission
is plotted as a function of probe delay for several values of the
probe wavelength.
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tical phonon scattering, butno Sommerfeld factor. In Fig.
19~a! the differential transmission is shown as a function of
probe wavelength at several delay times and in Fig. 19~b! the
computed differential transmission as a function of probe
delay is shown for several different probe wavelengths.
While the inclusion of the enhancement factor significantly
changes the overall magnitude of the signal, it only slightly
modifies the wavelength dependence. Details of the screen-
ing effects on the Coulomb enhancement should therefore
not be extremely important for the overallshapeof the re-
sults.

B. Differential transmission spectrum:
Pump in the loss regime

We next consider what happens when the injection cur-
rent is low enough for the pump to be in the loss regime.
When we set the injection current to 3 mA, the injected
carrier concentration is 1.4131012 cm22. The transparency
point is now 935 nm and the pump is at 925 nm. This places
the pump in the loss regime. The pump will now be attenu-
ated on passing through the device and it will generate
electron-hole pairs through stimulated absorption.

The experimentally measured differential transmission
spectra are shown in Fig. 20. Here we plot the experimen-
tally measured~positive! differential transmission changes as
a function of probe wavelength and probe delay. The pump
is fixed at 925 nm with a bias current of 3 mA, correspond-
ing to a carrier concentration of 1.431012 cm22. The trans-
parency point was at 935 nm and the probe wavelength was
tuned from 910 to 965 nm in increments of 5 nm. At zero
time delay, we observe a sharp transmission decrease. This
has been attributed to either two photon absorption or details
of the generation mechanism not included in our quasiclas-
sical method. To account for this in our calculations, we add
an additional contribution to the differential transmission sig-
nal proportional to the convolution of the pump and probe
pulse. This initial negative transient is followed by a fast
rise, induced by the inverted spectral hole burning and car-
rier cooling effects,24 which reached a maximum at a time
delay of 120 fs. A spectral peak at 920 nm is observed, with
a 5 nm blue shift relative to the pump central wavelength. At
400 fs time delay, this spectral peak is smoothed out com-
pletely, and the nonlinear gain is induced by carrier cooling
and carrier concentration increase. The carrier cooling effects

relaxed through exchange energies with the lattice in;1 ps.
After 1 ps a steady spectral response is reached which was
induced only by carrier concentration increases and relaxed
on a much longer time scale.

Since the pump wavelength is not far from the transpar-
ency point, weak inverted spectral hole burning effects are
expected. This agrees with experimental observations which
show a fast positive transient having a weak spectral peak at
920 nm. The probe transmission changes induced by carrier
cooling and carrier concentration increase are comparatively
much stronger and dominate the measured response through-
out the whole spectrum.

In Fig. 21~a! we plot the experimental differential trans-
mission as a function of probe wavelength measured at sev-
eral delay times and in Fig. 21~b! we plot the differential
transmission as a function of probe delay at several different
probe wavelengths.

In Figs. 22 and 23, we plot our computed differential
transmission as a function of probe delay and probe wave-
length for a simulation in which only polar optical phonon
scattering is included. In Figs. 24 and 25, our computed dif-
ferential transmission includes the effects of both polar opti-
cal phonon and carrier-carrier scattering. Again, as can be
seen, the inclusion of carrier-carrier scattering improves the
agreement between theory and experiment, the net result be-
ing that carrier-carrier scattering smooths out sharp struc-
tures in the differential transmission. Comparison of Figs. 24
and 20 show that in our model, it appears that the carrier-
carrier scattering is slightly too strong. This could possibly
result from~1! the use of the screening model discussed ear-
lier, ~2! the use of a relaxation time approximation, or~3!
subtle differences in the experimental and theoretical initial
conditions. It warrants future investigations.

FIG. 20. Experimental data showing femtosecond spectral de-
pendence of transient gain for 3.0-mA bias with the pump in the
loss region. The transparency point is at 935 nm and the pump is at
925 nm. The differential transmission is measured as a function of
probe wavelength and probe delay.

FIG. 21. Selected slices through the experimental differential
transmission data seen in Fig. 20. In~a! the differential transmission
is plotted as a function of probe wavelength at several different
values of the probe delay while in~b! the differential transmission
is plotted as a function of probe delay for several values of the
probe wavelength.
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C. Injection current dependence and two-photon absorption

In addition to computing differential transmission spectra
with the pump in the gain and loss regions, we have also
studied in detail the dependence of differential transmission
on injection current for fixed pump and probe wavelengths.
The pump wavelength is fixed at 920 nm~43 meV above the
band gap! and the probe wavelength is fixed at 942 nm~11
meV above the band gap!. In Fig. 26~a!, we show the experi-
mentally measured differential transmission spectra at sev-
eral different injection currents as functions of the probe de-
lay. The instantaneous decrease in probe transmission near
zero probe delay seen in all the traces is the result of possible
two-photon absorption as discussed earlier. The steplike
transmission changes at long time delay are produced by net
changes in carrier concentration through interband stimu-

lated transitions, and depend on the position of the pump
within the gain spectrum. The pump is at the transparency
point for an injection current of 4.85 mA. The pump is in the
loss regime for injection currents less than 4.85 mA, and in
the gain regime for injection currents greater than 4.85 mA.
Peak-to-peak transmission changes are around 1%.24

Figure 26~b! shows our computed differential transmis-
sion spectra at the probe energy as a function of time delay
for several injection carrier concentrations, including the ef-
fects of polar optical phonon scattering butignoring carrier-
carrier scattering. We see that our calculation correctly re-
produces the overall trends seen in the experiments. At low
injected carrier concentrations, the pump is in the loss re-
gime and carriers are injected into the quantum well by
stimulated absorption. Likewise, at high carrier concentra-

FIG. 22. Theoretically calculated differential transmission spec-
tra for the experimental situation depicted in Fig. 21. Carrier relax-
ation is by means of polar optical phonon scattering.

FIG. 23. Selected slices through the theoretical differential
transmission spectra seen in Fig. 22. In~a! the differential transmis-
sion is plotted as a function of probe wavelength at several different
values of the probe delay while in~b! the differential transmission
is plotted as a function of probe delay for several values of the
probe wavelength.

FIG. 24. Theoretically calculated differential transmission spec-
tra for the experimental situation depicted in Fig. 20. Carrier relax-
ation is by means of both polar optical phonon and carrier-carrier
scattering.

FIG. 25. Selected slices through the theoretical differential
transmission spectra seen in Fig. 24. In~a! the differential transmis-
sion is plotted as a function of probe wavelength at several different
values of the probe delay while in~b! the differential transmission
is plotted as a function of probe delay for several values of the
probe wavelength.
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tions, the pump is in the gain regime and carriers are ex-
tracted from the quantum well through stimulated emission.

Finally, in Fig. 26~c! we plot the computed differential
transmission spectra at the probe energy as a function of time
delay for several injection currentsincluding the effects of
both polar optical phonon and carrier-carrier scattering.
Comparing Figs. 26~c! and 26~b! with the experimental
curves in Fig. 26~a!, we see that the inclusion of carrier-
carrier scattering improves the overall agreement between
theory and experiment. In particular, the slow decrease at
long times seen in the top curve of Fig. 26~a! ~the 3.5-mA
case!, is reproduced in Fig. 26~c!.

VI. CONCLUSIONS

We have presented measurements and calculations of the
femtosecond gain dynamics in In12xGaxAs/Al12yGayAs
strained-layer single-quantum-well diode lasers. A multiple-
wavelength femtosecond pump-probe technique was used to
study transient gain dynamics in an active diode laser under
various injection conditions. The pump and probe wave-
lengths can be varied independently and the differential
transmission studied as a function of probe wavelength and
probe delay.

To model the experimentally measured differential trans-
mission spectra, we developed a multiband effective-mass
model for gain dynamics in quantum-well diode structures.
Transient photogeneration of electron-hole pairs by the pump
pulse and subsequent relaxation of carriers by polar optical
phonon and carrier-carrier scattering are investigated. Polar
optical phonon scattering rates are described by a collision
integral term in the Boltzmann equation and carrier-carrier

scattering is modeled using an effective relaxation operator.
The carrier-carrier scattering rates are determined using the
quasiequilibrium distribution functions for a given back-
ground carrier density and the distribution function to which
the photoexcited distribution relaxes is a Fermi-Dirac func-
tion where the chemical potential and temperature are self-
consistently chosen so that both particle number and energy
are conserved in the carrier-carrier scattering process. The
relaxation approximation for carrier-carrier scattering makes
the problem an effective one-dimensional problem which can
then be solved directly for the carrier distributions using an
adaptive Runge-Kutta routine. This procedure is much less
computationally intensive than a full Monte Carlo simula-
tion. The results show that the inclusion of carrier-carrier
scattering improves previous results where only carrier-
phonon scattering was included and that carrier-carrier scat-
tering is necessary to produce heating of the carriers in the
high-energy tails.
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