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Direct numerical simulations were performed to investigate conditions for the strong effects of photon-
assisted quantum transport. Transmission probabilities of incident electrons as Gaussian wave packets were
calculated for single- and double-barrier structures irradiated by electromagnetic fields that were focused
within a finite regionjac. When the period of the ac electromagnetic field is short compared with the time
tjac

, which is the traversal time of the electrons in the region of the applied ac field, the transmission prob-
ability can be affected by photon emission and photon absorption. The magnitude of these effects strongly
depends on the widthjac and the bound-state character of the electrons. These dependences can be understood
from the selection rule, which results from the momentum conservation of the electron and photon system.
Consequently, we have shown that photon-assisted transport over a single barrier is difficult to achieve in
two-dimensional electron-gas devices due to the relatively long screening length. We have demonstrated,
however, that the photon-assisted process is significantly enhanced in double-barrier devices due to
quasibound-to-extended-state transitions.@S0163-1829~96!02435-6#

I. INTRODUCTION

Photon-assisted transport at far-infrared frequencies
(\v'1–10 meV! in quantum-point-contact devices has
been proposed1 and theoretically investigated.2 In essence,
the process of photon-assisted transport is analogous to the
photoemission phenomenon in metals, which inspired Ein-
stein to propose the famousE5\v relationship. Our quan-
titative analysis of the photon-assisted transport process is
based on Tien-Gordon’s theory of photon-assisted tunneling
in superconducting tunnel junctions.3 In this theory, photon
absorption~or emission! is characterized as creating a set of
electron eigenstates with eigenenergies ofE1n\v, where
E is the eigenenergy of the original electron state without
radiation. Positiven’s correspond to photon absorption,
while negativen’s correspond to photon emission. The prob-
ability of absorbing or emittingn photons is proportional to
Jn
2(a), whereJn is thenth Bessel function anda is a dimen-
sionless number that is proportional to the radiation field
strength. Consequently, similar to photon-assisted tunneling
steps for superconducting tunnel junctions, photon-assisted
steps for quantum-point-contact devices should appear on the
drain-source conductance vs the gate voltageGDS2VGS
curves, provided that the photon energy is much greater than
the thermal broadening.

In spite of the intuitively plausible picture and the
straightforward analogy with photoemission and photon-
assisted tunneling, experimental investigations have failed to
provide evidence of photon-assisted transport in quantum-
point-contact devices.4,5 Extensive measurements conducted
over a broad frequency range from 90 GHz to 2.5 THz

(\v'0.3–10 meV!, with the electric-field polarization both
parallel and perpendicular to the drain-source conductance
path, have yielded only bolometric signals. These signals
result from heating of the 2DEG~two-dimensional electron
gas! in the source and drain.4,5 The process of photon-
assisted quantum transport is analogous to many well-
established phenomena such as photoemission in metals,6

photoionization of atoms,7–9 photon-excited bound-to-
extended-state transitions in quantum-well structures,10 and
photon-assisted tunneling in quantum-well diodes,11 super-
conducting tunnel junctions,3,12–15 and quantum dots.16,17

Thus it is natural to ask why such a simple process has not
been observed in quantum-point-contact devices. It is the
scope of this paper to solve the one-dimensional Schro¨dinger
equation numerically, including the radiation term, and to
investigate the conditions necessary for photon-excited pro-
cesses as characterized by additional components at energy
E1n\v in the wave function. These conditions are a direct
consequence of the selection rule, which is a mathematical
statement of the momentum conservation for electron-photon
systems. Mathematically, in order to achieve an appreciable
photon-excited transition probability, the dipole-moment in-
tegration must be truncated to a region that is not much
greater than the coherence length 1/Dk, whereDk is equal to
the momentum difference between the electrons before and
after photon absorption or emission. This truncation can be
realized experimentally by either a localized electron state or
a localized photon-field profile. Physically, this spatial local-
ization of the electron or photon field provides the momen-
tum spread that relaxes the requirement for momentum con-
servation in photon-excited processes. Without such a spatial
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localization, the probability of photon excitation will be ex-
ponentially small. Thus heating, which is unavoidable be-
cause of the gapless nature of excitations in 2DEG, will
dominate the radiation response of the devices.

As a consequence of this understanding, we have found
that the photon-excited transition between two extended
electronic states is prohibited if the radiation field is spatially
extended. Therefore, photon-assisted transport in single-
barrier devices, such as quantum point contacts,1,2,4,5,18will
be difficult to observe due to the relatively long screening
length in 2DEG structures. For superconducting tunnel junc-
tions, photon-assisted tunneling does occur between two ex-
tended electron states. In this case, the strong screening pro-
cess localizes the photon field near the tunnel barriers within
the London penetration depth, thus enabling the transition to
occur.3,12–15For 2DEG devices, we have demonstrated that
double-barrier~or multiple-barrier! structures are more suit-
able for photon-assisted transport, which results from the
quasibound-to-extended-state transitions. This theoretical un-
derstanding is supported by strong evidence of photon-
assisted transport observed in a dual-gate device irradiated at
millimeter-wave frequencies.19

This paper is organized as follows. In Sec. II we describe
a numerical path-integral technique used to solve the time-
dependent Schro¨dinger equation. Effects of wave packets
with finite widths are also discussed. In Sec. III, conditions
for strong quantum coupling between electrons and electro-
magnetic fields are shown by calculating the escape prob-
ability of an electron from a bound state by photon excita-
tions. We also discuss the coupling between free Gaussian
wave packets and spatially confined ac fields. By calculating
the transmission probabilities through single-barrier struc-
tures irradiated by electromagnetic fields, it is shown that
photon-assisted transport over a single barrier is difficult to
achieve in 2DEG devices, unless a tightly confined ac field
can be produced. In Sec. IV, we calculate transmission prob-
abilities for double-barrier structures and present numerical
evidence of photon-assisted quantum transport that is shown
as an enhancement of transmission probability. We summa-
rize our conclusions in Sec. V.

II. NUMERICAL TECHNIQUE

We have investigated transport properties of electrons in
one-dimensional systems with both time-independent and
time-dependent potentials. These potentials correspond to
2DEG devices that have some structure in thex direction,
but remain uniform in they direction. It can be shown that
quantum-point-contact systems that have structures in both
x and y directions can be reduced to one-dimensional
systems.2 Therefore, our focus on one-dimensional systems
does not sacrifice generality, but it does significantly reduce
the mathematical complexity. An electron in such a system is
governed by the time-dependent Schro¨dinger equation

i
]c

]t
5F2

1

2m*
]2

]x2
1Vdc~x!1Vac~x,t !Gc, ~2.1!

where Vdc(x) is a time-independent static potential,
Vac(x,t)5*0

xeE(x8,t)dx8 is a time-dependent potential that
represents the effect of a radiation field,E(x,t) is a time-

dependent electric field, ande andm* are the charge and the
effective mass of an electron, respectively. Here we use the
units of\51. It should be noted that Eq.~2.1! also describes
electrons in three-dimensional layered structures grown
by molecular-beam epitaxy. In this case, the polarization
of the electromagnetic field and the tunneling current are
in the growth’’ direction. Most of resonant-tunneling
experiments10,20–29 belong to this configuration. The only
difference between 2DEG configurations and layered struc-
tures is the typical values of parameters such as electron
densities and dimensions of dc potential profiles. Here we
employ parameter values that correspond to 2DEG configu-
rations. In order to solve Eq.~2.1! and calculate transmission
probabilities, we choose a Gaussian wave packet as the inci-
dent electron wave function. This initial condition is relevant
to actual experiments at finite temperatures. The tempera-
tures at which quantum transport experiments are performed
are typically between 0.1 and 10 K. Thus the energy of in-
cident electrons has a finite spread. The effect of this energy
uncertainty can be represented by incident Gaussian wave
packets given by

c~x,0!5~2pd2!21/4expF2
~x2X!2

4d2
1 ik0xG , ~2.2!

where d is the width of the wave packet related to the
temperature T and the Fermi energyEF through
kBTd5A2EF /m* , andk0 is the wave number of the incident
electron given by

k05F2m*EF2
1

2d2G
1/2

. ~2.3!

We have employed a numerical path integral method30 to
solve Eq.~2.1! numerically. Using this technique, the condi-
tion of the unitary in a time development is automatically
satisfied, regardless of the values of the time stept and the
grid spacing of spatial divisionDx . Furthermore, this algo-
rithm demands a relatively short computing time to solve the
equation for large systems such as those treated here, as
compared with other conventional methods.31–38

It is well known that the wave functionc(x,t1t) is re-
lated toc(x,t) through

c~x,t1t!5E dy K~x,y;t,t!c~y,t !, ~2.4!

where the propagatorK(x,y;t,t) is given in the path integral
formalism by39

K~x,y;t,t!5E
y

x

Dq expF i E
t

t1t

dt8L„q̇~ t8!,q~ t8!;t8…G .
~2.5!

Here the symbol*y
xDq represents the path integral over all

paths, starting at the pointy and ending withx, andDq is a
measure for integration defined by

Dq[ lim
N→`

S 1

2pt i D
N/2

)
j51

N21

dqj . ~2.6!
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The integrandL(q̇,q;t) in Eq. ~2.5! is the Lagrangian of the
system, and has the form

L~ q̇,q;t !5 1
2 m* q̇

22Vdc~q!2Vac~q,t !. ~2.7!

To perform the path integral numerically, one needs to
consider the case that the value oft is so small that only the
straight paths from y to x makes a dominant contribution to
the path integration. In this case, the integration of
V„qs(t8),t8…[Vdc„qs(t8)…1Vac„qs(t8),t8… over t8 in Eq.
~2.5! becomes approximatelytV(x,t1t). This quantity no
longer depends on the path; thus the potential energy gives
only the factorial contribution to the propagator
K(x,y;t,t). The path integral of the kinetic energy part can
be evaluated analytically.39 Finally, Eq. ~2.4! is approxi-
mated as

c~x,t1t!5S m*

2pt i D
1/2

exp@2 i tV~x,t1t!#

3E
2`

`

expF im* ~x2y!2

2t Gc~y,t !dy. ~2.8!

Using this relation iteratively, one can calculate the wave
function at any time t from the initial wave function
c(x,0). By calculating the normalization factor of
c(x,t1t), one can show that this procedure satisfies the
unitary condition for any time stepst and spatial divisions
Dx . In actual numerical calculations, the convolution in Eq.
~2.8! was done in the Fourier space in order to save CPU
time.

In order to illustrate the effect of the finite width of wave
packets associated with actual experiments at finite tempera-
tures, we compare the transmission probability calculated by
the numerical path-integral method described above with
those obtained by the conventional transfer-matrix technique,
which corresponds to the transmission for plane waves. Fig-
ure 1 shows the transmission probability for the following

symmetric double-barrier structure as a function of energy of
the incident wave,

Vdc~x!5Vdc
0 H expF2

~x2x0!
2

jdc
2 G1expF2

~x1x0!
2

j dc
2 G J ,

~2.9!

where the barrier heightVdc
0 is 10 meV, the distance between

two peaks 2x0 is 433 Å, and the width of each Gaussian
barrierjdc is 72 Å. In this case, no ac potential is applied to
the system. The solid lines in Fig. 1 and its inset show the
result obtained by the transfer-matrix method, in which the
energy of the incident electron has a definite value. Here and
hereafter we have chosen the material parameter correspond-
ing to GaAs,m*50.067m0, wherem0 is the bare electron
mass. The sharper peak in the inset represents the resonant
tunneling due to the quasibound state. This peak is magnified
in Fig. 1. The dashed and the dotted lines are the results of
the numerical path-integral method. The widths of the inci-
dent Gaussian wave packets for the dashed and dotted lines
are 3611 and 1805 Å, respectively. The energy fluctuations
of these wave packets are 0.21 and 0.41 meV, which corre-
spond to temperatures of 2.38 and 4.75 K, respectively. From
this figure, we can appreciate the importance of using the
finite-width wave packet to approximate actual experimental
situations at finite temperatures. For these calculations, we
have chosen a system size of 23.66mm to accommodate the
transmitting and reflecting waves going far from the origin
during long transit times due to the quasibound state. In or-
der to obtain precise results, the spatial divisionDx should be
made much smaller than the scale of both the potential struc-
ture and the incident wavelengthk0

21. Here the value of
Dx53.6 Å is used. Thus the number of grids in the system is
32 768(5215). The time stept must be much smaller than
1/EF . We choset515.7 fs. Since the transmission process
takes about 23 ps to complete for this particular double-
barrier structure, we need about 1400 time steps in our simu-
lation.

III. CONDITIONS FOR QUANTUM EXCITATIONS

In this section, we discuss conditions required to obtain
strong quantum interactions between electrons and radiation
fields, and the design of realizable systems to measure these
effects efficiently. For this purpose, this section focuses on
the interaction between electrons and electromagnetic fields
beyond simple tunneling phenomena.

Due to the selection rule, a free electron described by a
plane wave cannot interact with a uniform electromagnetic
field. The matrix element for this interaction has a factor
*x exp@i(k2k8)x#dx, wherek andk8 are the wave number of
the initial and final electron states. This factor is proportional
to the derivatived8(k2k8), and it is always zero for
kÞk8. Thus the transition betweenk andk8 that is excited
by a spatially uniform field cannot occur. This selection rule
is simply a mathematical statement that says free electrons
and photons have different energy-momentum dispersion re-
lations, and therefore it is impossible to satisfy the energy
and momentum conservations simultaneously, except at a
zero frequency. This is known as the generalized Kohn’s
theorem. We can show that the selection rule also applies to

FIG. 1. Transmission probability for a symmetric double-barrier
structure~with Vdc

0 510 meV, 2x05433 Å, andjdc572 Å! as a
function of the energy of the incident electrons. Solid lines in this
figure and its inset indicate the transmission probability calculated
from the transfer-matrix method. Dotted and dashed lines indicate
the results calculated from the numerical path-integral method using
incident wave packets with a width of 1805.5 and 3611.0 Å, respec-
tively.
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free-electron states other than the plane waves. For example,
a free Gaussian wave packet in a uniform electromagnetic
field will not develop photon sidebands. The solution of
Schrödinger equation~2.1! with Vdc(x)50 andVac(x,t)5
2eEx cos(vt) can be written in terms of the nonrelativistic
Gordon-Volkov function40–42

ck~x,t !5
1

A2p
expF i k̃x2

i

2E0
t

dt8k̃ 2~ t8!G , ~3.1!

where the reduced momentum k̃ is defined
by k̃5k1(eE/v)sin(vt), and k is the electron momentum.
Using this complete basis set and the initial condition given
by Eq. ~2.2! with X50 andk050, we can obtain an expres-
sion for the electron probability density:

uc~x,t !u25S 2

pD2~ t ! D
1/2

expH 2
@x2xc~ t !#

2

2D2~ t ! J , ~3.2!

where

D~ t !5
A2d41~ t2/m* 2!

d
,

and the center-of-mass motionxc(t) has the classical trajec-
tory of the electron in the same electromagnetic field.
Quantum-mechanical spreading of the wave packet is not
influenced by the uniform ac electromagnetic field, which is
evidenced by the fact thatD(t) is independent of the ac field
E. This analysis indicates that there is no quantum interaction
between a free Gaussian wave packet and a uniform ac field.

From the form of a coupling matrix element, either non-
uniform ac fields and/or electrons in bound states can lead to
finite excitation probabilities. We will examine these condi-
tions separately. The interaction between an uniform electro-
magnetic field and an electron in a bound state is treated first.
A typical example is the ionization of atoms in laser
fields.7–9 When the wavelength of the laser field is much
longer than the spatial spreading of the electron wave func-
tion bound to an atom, the ionization is a result of the inter-
action between the localized electron and a uniform field.

In order to understand quantitatively the photon excita-
tions, we have numerically investigated the ionization pro-
cess in a uniform ac electric field. We have considered the
case in which an electron is initially in a one-dimensional
potential well given by

U52U0sech
2~ax!, ~3.3!

whereU057.303 meV anda215250 Å. These parameters
are not relevant to atomic scales, but close to mesoscopic
ones. Time-independent Schro¨dinger equation with this po-
tential can be solved analytically.43 For the given set of pa-
rametersU0 anda (U0535a2/8m* ), there are three bound
states. The energies of these states are

En52
~522n!2a2

8m*
, n50, 1, and 2, ~3.4!

with their values ofE0525.2164 meV,E1521.8779 meV,
andE2520.2086 meV. The corresponding eigenstates are
given by

c05A0@12tanh2~ax!#5/4, ~3.5a!

c15A1@12tanh2~ax!#3/4tanh~ax!, ~3.5b!

and

c25A2@12tanh2~ax!#1/4@4tanh2~ax!21#, ~3.5c!

respectively, whereA0, A1, andA2 are normalization con-
stants. We choose the ground statec0 as the initial state. The
configuration of the potential and the ground-state wave
function are illustrated in the inset of Fig. 2. We calculate
numerically the time development of this bound state under a
uniform electromagnetic field described by an ac potential
Vac(x,t)52eEx cos(vt). The strength of the fieldeE was
chosen aseE/aU050.0488. The system size, the space divi-
sion, and the time step in this calculation are 5.12mm, 50 Å,
and 15.3 fs, respectively. Figure 2 shows the escape prob-
ability from the potential well plotted as a function of fre-
quency of the ac field. The escape probabilityPE was de-
fined by

PE5E
xL

x1
uc~x,T!u2dx1E

x2

xR
uc~x,T!u2dx,

wherexL and xR are the left- and right-side edges, respec-
tively. The values ofx1 andx2 were set asx1522500 Å and
x252500 Å. The irradiation timeT was chosen as
T575.63 ps. Within this time interval, the finite-size effect
can be neglected. From Fig. 2, one can find a sharp onset at
the ionization energy2E055.22 meV, which shows that the
electron in the bound state couples strongly with the uniform
ac field. By increasing the photon energy from2E0, the
escape probability decreases rapidly. This is because the
overlap integral between the initial~ground! state and the
excited extended state becomes smaller at higher frequen-
cies. There is also a sharp peak at 3.3 meV. This energy is
the same as the energy difference betweenE0 andE1, which
means that the peak is caused by a two-photon process. In-
deed, the Fourier transform of the outgoing wave from the
potential well has a sharp peak at 1.4 meV, which is equal to

FIG. 2. Escape probability of an electron from the potential well
U(x) given by Eq.~3.3! under the irradiation of a uniform electro-
magnetic fieldE cos(vt) as a function ofv. The strength of the field
is eE/aU050.0488. The irradiation timeT is 75.63 ps. The inset
shows the configuration of the potential wellU(x) and the ground
state~which is the initial state! wave functionc0(x).
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E012(E12E0). The strong two-photon effect is a result of a
large overlap integral between the ground state and the first
excited state, and between the first excited state and the ex-
tended state over the barriers.

Next, we discuss interactions between a free electron and
a nonuniform electromagnetic field. It was previously men-
tioned that a free electron cannot interact with a uniform ac
field due to the selection rule. The matrix element of the
coupling, however, becomes nonzero if the electromagnetic
field is not uniform, and the probability of photon absorption
becomes finite. In order to illustrate this point quantitatively,
we studied interactions between a free Gaussian wave packet
at rest and a spatially confined electromagnetic field. Fourier
transforms of the wave packet under the ac field are calcu-
lated. The initial wave packet is given by Eq.~2.2! with
X50, k050, andd53000 Å. The confined electromagnetic
field is described by a time-dependent~ac! potential

Vac~x,t !5
Vac
0

2
tanhS x

jac
D cos~vt !. ~3.6!

The parameters in Eq.~3.6! were chosen asVac
0 51.159 meV,

jac5600 Å, andv51.159 meV. The system size, the space
division, and the time step are 24.58mm, 30 Å, and 2.72 fs,
respectively. The square of the Fourier transform of the wave
function att543.56 ps~irradiation starts att50), uc(k)u2, is
shown in Fig. 3. The main peak atk50 represents the origi-
nal Gaussian wave packet. One can easily find at least five
pairs of subpeaks located symmetrically around the main
peak. These subpeaks are at the wave numbersk615
60.043, k62560.061, k63560.075, k64560.086, and
k65560.097 in units ofp/Dx , whereDx is the grid spacing
of the spatial division. These values correctly correspond to
k6n56A2nm*v, which is the wave number of the excited
electrons produced by then-photon process. Thus these sub-
peaks are referred to as photon subbands. Clearly, a spatially
confined electromagnetic field can interact effectively with
free electrons.

We have investigated the effect of the width of the con-
fined ac field on photon-absorption processes. Figure 4
shows the values ofuc(k)u2 at one-, two-, and three-photon

absorption peaks as functions of the spatial confinementjac
of the applied ac field. Parameters in the calculation are the
same as those for Fig. 3, except for the system size of 12.29
mm and the radiating time of 21.78 ps. This figure clearly
shows that the interaction between a free electron and an
electromagnetic field decreases exponentially as the width
jac of the confined ac field increases, while the value of
Vac
0 is kept constant. The straight line in the semilog plot

shows the asymptote ofuc(k1)u2 at largejac values, which
has a functional form ofe2(jack1)/p. uc(k2)u2 and uc(k3)u2
decrease even faster withjac because of the larger values of
k2 andk3. In the present numerical situation, the wavelength
of the excited electron through a one-photon process
is 1380 Å. It appears from Fig. 4 that the interaction de-
creases rapidly whenjac.l/2p'200 Å. This result
can be understood from an analytical argument. The
matrix element of this interaction has a factor of
*exp(2x2/4d2)exp(ikx)tanh(x/jac)dx, where k is the wave
number of the excited state. The real part of this function
vanishes because of the integrand’s parity. We need to con-
sider only the imaginary part of this integral. Ford@1/k,
which is the case in this situation, sin(kx) oscillates many
times within the Gaussian width. If the value ofjac is much
larger than 1/k, this oscillation cancels out the integral. In the
case ofjac&1/k, however, the oscillation cannot be canceled
out within the rangeuxu&jac, and the matrix element be-
comes finite. The wave number of the excited electronk is
related to the energyv by k5A2m*v. Thus it is necessary
for a large coupling that the value ofjac be less than
1/A2m*v. This means the coupling becomes weaker at
higher frequencies for a fixed confinementjac. This is es-
sentially the same phenomenon as the decrease of the escape
probability at higher frequencies~beyond2E0) in Fig. 2.
Similarly, we will also have a large matrix element if
d&1/k, which qualitatively corresponds to the bound-to-
extended-state transition shown in Fig. 2.

FIG. 3. Square of the Fourier transform of the wave function at
t543.56 ps of a free electron irradiated by a spatially confined
electromagnetic field. The initial wave function is a Gaussian wave
packet described by Eq.~2.2! with d53000 Å,X50, andk050.
The applied ac potential is given by Eq.~3.6! with Vac

0 51.159 meV,
jac5600 Å, andv51.159 meV.

FIG. 4. Peak values ofuc(k)u2 as functions of the width of the
ac field jac. Parameters for the calculations are the same as those
for Fig. 3, except for the irradiation time of 21.78 ps and the system
size. Solid, broken, and dotted lines indicate the values of the pho-
ton subbandsuc(k)u2 at k50.043, 0.061, and 0.075, respectively.
The straight line in the semilog plot indicates the exponential rela-
tion of uc(k1)u2}exp(2jack1 /p).
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This argument can be also understood in terms of the
uncertainty principle. According to this principle, a photon
excitation process that results in an electron momentum
changeDk should occur within a spatial region on the order
of 1/Dk. This limits jac,1/Dk. The quantityDk is evaluated
as Dk;vAm* /2EF for EF@v, and Dk;A2m*v for
EF!v. In the case of Figs. 3 and 4,EF50 andDk5k1.
Therefore, we have the conditionjac,1/A2m*v to obtain a
strong coupling between a free electron at rest and an elec-
tromagnetic field. ForEF@v, the condition becomes
jac,A2EF /m* /v.

We can conclude from these investigations that in order to
obtain a strong coupling between an electron and an electro-
magnetic field, either the electrons must be in a bound or
quasibound state or that the ac field must be confined within
a spatial region of the order of 1/Dk (p/Dk to be more
precise!. We believe this is the main reason that experiments
on photon-assisted transport in 2DEG devices have so far
yielded negative results in single-barrier structures such as
quantum point contacts. In Fig. 5, our numerical simulation
shows that only a weak photonic quantum effect appears in
electron transport through a single-barrier structure. This fig-
ure shows the frequency dependence of the transmission
probability affected by an electromagnetic field with a
weakly confined spatial profile. The shape of the static po-
tential barrier is given by

Vdc~x!5Vdc
0 exp@2x2/jdc

2 #, ~3.7!

where the potential heightVdc
0 is 11 meV and the widthjdc is

1000 Å. The incident energy dependence of the transmission
probability for the dc potential alone is shown in the inset of
Fig. 5. The result of the frequency dependence shown in Fig.
5 is calculated for a fixed energy of the incident wave packet
at E510 meV, which is the typical value of the Fermi en-

ergy in 2DEG systems. The incident wave packet defined by
Eq. ~2.2! has an initial width ofd51.2 mm and an initial
location atX525.11mm, which is sufficiently far from the
dc and ac potentials. This width of the wave packet corre-
sponds to a temperature ofT51.4 K in actual experimental
situations. The size of the whole system is 41.84mm. The ac
potential is given by Eq.~3.6!. The magnitude and width of
the ac potential are chosen asVac

0 510 meV andjac53000 Å,
respectively.

The symbolvcl in Fig. 5 denotes the frequency below
which the oscillating potentialVac(x,y) leads to an adiabatic
~classical! effect. That is, the electron transport is governed
by the instantaneous value of the total potentialVdc1Vac.

44

This frequency is related to the traversal timetjac
, which is

the time for the electrons to go through the electromagnetic
field region, byvcl52p/tjac

. The timetjac
can be estimated

by using the Bu¨ttiker-Landauer formula44

tjac
5A2m* E

xc

jac/2 dx

AEF2Vdc~x!

1Sm*2 D 1/2E
2xc

xc dx

AVdc~x!2EF

, ~3.8!

where xc is the classical turning point defined by
Vdc(xc)5EF . We neglect the small amount of energy fluc-
tuations due to the finite width of the wave packet. Using the
above parameters and the functionVdc(x) given by Eq.~3.7!,
we havetjac

53.55 ps, and thusvcl51.13 meV. From Fig. 5,

enhancements of the transmission probabilities atv@vcl
~the quantum effect region! are small. This is expected be-
cause of the loose confinement of the ac field. Figure 6
shows that the enhancements atv.vcl indeed come from
photon absorption as a quantum effect. The solid line in Fig.
6 represents the square of the Fourier transform of the wave
function att539.9 ps. The frequency of the external ac field
is v52.0 meV. The main peak atk050.22 ~in units of
p/Dx , where Dx565 Å! corresponds to the transmitting

FIG. 5. Transmission probability for an irradiated single Gauss-
ian potential barrier~with Vdc

0 511 meV andjdc51000 Å! as a
function of the frequency of the ac field. The incident wave packet
has an energy of 10 meV and a width of 12 000 Å. The amplitude
Vac
0 and the widthjac of the ac potential are 10 meV and 3000 Å,

respectively. The crossover frequencyvcl from the classical to the
quantum region is indicated by an arrow. The transmission prob-
ability for the nonirradiated single barrier with the same structure at
EF510 meV is also shown by an arrow. The inset shows the dc
transmission probability for the same static potential as a function
of the energy of the incident electron, which is calculated from the
transfer-matrix method.

FIG. 6. Squares of Fourier transforms of the wave functions at
t539.9 ps for the same conditions with those for the case of Fig. 5.
The solid and dashed lines show the results forv52.0 and 0.1
meV, respectively. There are sharp peaks atk5kn in the solid line,
which indicate photon absorption and emission, while the dashed
line does not show such peaks.
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wave at energyEF , i.e., k05A2m*EF. There are sharp
peaks atkn5A2m* (EF1n\v), which implies that the small
enhancements atv.vcl in Fig. 5 are caused by the photon
absorption.

The larger enhancement atv!vcl produced by the adia-
batic effect is because the quasistatic potential (Vdc1Vac)
increases the transmission probability ifTdc,0.5, which cor-
responds toEF,Vdc. Under this condition, a low-frequency
sinusoidal modulation will produce an instantaneous barrier
with a height ranging fromVdc2Vac to Vdc1Vac. Conse-
quently, the transmission probability can be enhanced during
the half-cycle in which the total potential is belowVdc. The
dashed line in Fig. 6 shows the enhancements of transmis-
sion probabilities at low frequencies (v/vcl!1) are due to
the adiabatic effect. The dashed line is obtained under the
same conditions as those for the solid line, except for the
frequency ofv50.1 meV. There are no photon peaks indi-
cating the quantum effect. The broad two hills atk50.20 and
0.24 show that the wave packets decelerated and accelerated
by the slowly oscillating ac potential, respectively.

IV. PHOTON-ASSISTED QUANTUM TRANSPORT
IN DOUBLE-BARRIER STRUCTURES

As we have shown in Sec. III, it is difficult to achieve
quantum photonic effects in electron transports through
single-barrier structures. It has also been clarified that either
electrons in bound states or spatially confined electromag-
netic fields are necessary to obtain a strong coupling between
electrons and photons. This understanding suggests that we
can utilize the localized nature of quasibound states in a
double-barrier structure to achieve the photonic effect. The
corresponding long lifetime of the quasibound states~char-
acterized by narrow energy widths in the transmission coef-
ficient peaks! means a long dwell timet in the transmission
process. Both the long dwell time~at t@1/v) and the
bound-state character of the quasibound states are preferred
in order to obtain photonic effects.

If the configuration of the double-barrier structure is sym-
metric, the transmission probability at the quasibound-state
energy is exactly unity. Thus any photonic effects on the
electron transport will decrease the transmission probability.
Since we are mostly interested in an enhancement of trans-
mission probabilities by photon-assisted quantum transport,
asymmetric double-barrier structures are more illustrative for
our purpose. For asymmetric double-barrier structures, trans-
mission probabilities are not unity even at the energies of
resonant states. Thus enhanced transmission could be ob-
tained by applying an ac electromagnetic field. We have cho-
sen the geometries of the asymmetric double barriers such
that complete simulations can be accomplished within a rea-
sonable CPU time. For example, if the barrier has a Gaussian
shape, then the energy widthDEq becomes extremely small
for quasibound states far below the barriers. This is because
the thickness of the Gaussian potential increases rapidly at its
foot. To avoid such a technical difficulty, we have chosen the
double-barrier potential structure in the following form:

Vdc~x!5Vdc
L expF2

~x1x0!
4

jL
4 G1Vdc

R expF2
~x2x0!

4

jR
4 G .

~4.1!

These barriers are ‘‘thinner’’ than the Gaussian profile. The
incident wave packet and the applied ac potential are given
by Eqs.~2.2! and ~3.6!, respectively.

Figure 7 shows the frequency dependence of the enhanced
or reduced transmission probabilitiesT*5(Tac2Tdc)/Tdc,
whereTac andTdc are transmission probabilities for the sys-
tem with and without the ac potential. The parameters for the
static double-barrier defined by Eq.~4.1! are chosen as fol-
lows: jL5118.4 Å, jR5204.8 Å, 2x05377.6 Å, and
Vdc
L 510.19 meV as common parameters for systemsA, B,

andC ~corresponding to linesA, B, andC in Fig. 7!, respec-
tively; andVdc

R511.72 meV~for A), 12.23 meV~for B), and
12.74 meV~for C). The widths of barriers are small com-
pared to the actual experimental situations, which will yield
a dwell time too long for our simulation studies. However,
the results shown here illustrate the main features semiquan-
titatively. Actual experiments should yield even stronger
quantum effects due to narrower quasibound levels. In each
of these systems, there is only one quasibound state. The
quasibound energiesEq are 8.91, 9.19, and 9.27 meV, and
the widthsDEq are 0.55, 0.61, and 0.71 meV for systems
A, B, andC, respectively. The parameters for the incident
wave packet defined by Eq.~2.2! were chosen as
X522.7 mm andd54800 Å commonly for all the three
systems, andEF5Eq for each system~namely,EF58.91,
9.19, and 9.27 meV for systemsA, B, andC, respectively!.
The value ofd corresponds to a temperature ofT53.3 K.
The applied ac potentials are the same for all the systems and
are given by Eq.~3.6! with Vac

0 52.04 meV andjac5320.0
Å. The system size, space division, and time step are 10.48
mm, 3.2 Å, and 12.39 fs, respectively, in all the calculations.
These three systems have different degrees of asymmetry
characterized by the height asymmetry ratiob[Vdc

R /Vdc
L The

values ofb are 1.15, 1.20, and 1.25 for systemsA, B, and
C, respectively. Calculated dc transmission probabilities
Tdc are 0.2382, 0.1822, and 0.1371 atE5Eq for systems
A, B, andC, respectively. LineD shows the quantityT*

FIG. 7. Frequency dependence of the excess transmission prob-
abilities for asymmetric double-barrier structures with different de-
grees of asymmetry. The parameters for calculations are presented
in the text. The inset shows the radiation-induced excess transmis-
sion probability as a function of the width of the electromagnetic
field. This has an asymptotic form ofx0

2/(x01jac)
2 which is shown

by the dotted line withx05130 Å.
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calculated using the Tien-Gordon formalism.3 In this formal-
ism, the process of photon-assisted tunneling can be modeled
with an effective transmission coefficient,
Tac*5(n52`

` Jn
2(a)Tdc(EF1n\v), where Jn is the nth

Bessel function,a5Vac* /\v, andVac* is the amplitude of the
effective potential. The dc transmission probabilityTdc(E) is
calculated from the conventional transfer-matrix method.
This calculation has been used to analyze experimentally ob-
served photon-induced current in vertical and lateral
quantum-well structures.11,19 The justification of using this
simple picture lies in the fact that the photon absorption and
emission mainly occur within the well, where the dipole-
moment integration yields nonvanishing results. Conse-
quently, the only effect of radiation is a modification of the
outgoing electron wave functions, which can be modeled us-
ing an effective transmission coefficientTac* . For lineD, we
chose the value ofVac* to be 3.06 meV (51.5Vac

0 ) and all the
other parameters to be the same as those for lineC. The
result qualitatively resembles lineC. However, similar to
Fig. 1, Tdc(E) calculated from the transfer-matrix method
has a sharper peak than that calculated using the numerical
path-integral method. Thus the radiation-induced transmis-
sion coefficients calculated from the two methods do not
agree with each other quantitatively.

It should be noted that our numerical results show only
quantum effects in the frequency region investigated. The
crossover frequencyvcl to the adiabatic~classical! effect re-
gion is approximately equal toDEq , which are the lowest
frequencies in our calculations.

Let us first discuss the result for systemA, which is indi-
cated by the solid line. For the lowest-frequency region, the
energy of the excited electron is slightly shifted from the
resonant levelEq . Thus the transmission probability be-
comes smaller than the value of the dc transmission probabil-
ity Tdc at EF5Eq . By increasing the frequency of the ac
field, the electron-photon coupling decreases for the same
reason as for the decrease of the escape probability at high
frequencies in Fig. 2. Therefore, the transmission probability
rapidly approaches the value ofTdc. By increasing the fre-
quency further from the valuevs5Vdc

R2EF52.81 meV, the
energy of the excited electron exceeds the height of the right-
side barrier. Thus the transmission probability increases be-
yond Tdc, resulting from a photon-assisted over-the-barrier
transport. In the highest-frequency region, the interaction be-
comes too weak to have any photonic effects, and thus the
transmission probability approachesTdc asymptotically.
Consequently,T* has a peak atv0;vs .

The dashed and dotted lines, which indicate the results for
systemsB andC, show that the values ofTmax* increase with
b. This means a stronger asymmetry yields a larger photonic
effect. This is becauseTdc atEq is smaller for a more asym-
metric double-barrier structure, whileTac is approximately
constant for v.vs . Thus the enhancedT*5(Tac
2Tdc)/Tdc is greater for a greaterb. In order to clarify the
confinement effect of the ac field quantitively, the inset of
Fig. 7 illustrates the maximum valueTmax* as a function of
the widthjac of the ac field. The conditions for this calcula-
tion are the same as those for lineB, except thatjac is now a
variable andv55.5 meV. This frequency is chosen because

it is the frequency at whichT* takes its maximum value
Tmax* . The enhanced transmission probabilityTmax* is ap-
proximately constant at small values ofjac, and decreases
algebraically with an increase ofjac when jac.x0 . The
T*2jac relation has an approximate functional form of
x0
2/(x01jac)

2. This implies that the decrease is simply due to
a decrease of the ac electric-field strength in the active region
between the two barriers. This feature differs qualitatively
from that in Fig. 4, which shows the strength of the coupling
between a free electron and a confined electromagnetic field.
In that case, the interaction vanishes exponentially asjac
increases because of the selection rule.

V. CONCLUSIONS

In summary, we have performed numerical studies on the
effect of photon-assisted quantum transport in order to obtain
conditions for substantial enhancements of transmission
probabilities. These conditions require a spatial localization
of either the electronic wave function or the applied electro-
magnetic fields. The validity of these conditions were quan-
titatively demonstrated by two numerical simulations. The
first one is the frequency dependence of the photon-
detaching probability of electrons from a bound state. The
result exhibits a strong coupling between the electron and the
ac field, even if the ac field is not spatially confined. It was
also clarified that the quantum coupling becomes weak as the
frequency of the ac field increases. The second example is
the interaction between a free electron and a spatially con-
fined electromagnetic field. We have investigated how the
strength of the interaction depends on the width of the ac
field. The result shows that a confinement of the ac field
within a region narrower than the wavelength of the excited
electron is necessary to obtain strong coupling between free
electrons and electromagnetic fields. Consequently, photon-
assisted transport in single-barrier structures will be difficult
to achieve if the photon field is spatially extended. This un-
derstanding may explain why photon-assisted transport has
not been observed in single-barrier devices such as quantum
point contacts. One alternative approach to achieve a strong
electron-photon coupling is to use double- or multiple-barrier
structures to create quasibound states. The spatially localized
nature of these states will provide the momentum spread
necessary for the photon excitation process. Our simulation
studies on asymmetric double-barrier structures have yielded
a positive effect of photon-assisted transport, even with spa-
tially extended photon fields.
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