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Direct numerical simulations were performed to investigate conditions for the strong effects of photon-
assisted quantum transport. Transmission probabilities of incident electrons as Gaussian wave packets were
calculated for single- and double-barrier structures irradiated by electromagnetic fields that were focused
within a finite regioné,.. When the period of the ac electromagnetic field is short compared with the time
Té o which is the traversal time of the electrons in the region of the applied ac field, the transmission prob-
ability can be affected by photon emission and photon absorption. The magnitude of these effects strongly
depends on the width,. and the bound-state character of the electrons. These dependences can be understood
from the selection rule, which results from the momentum conservation of the electron and photon system.
Consequently, we have shown that photon-assisted transport over a single barrier is difficult to achieve in
two-dimensional electron-gas devices due to the relatively long screening length. We have demonstrated,
however, that the photon-assisted process is significantly enhanced in double-barrier devices due to
guasibound-to-extended-state transitidi$)163-18206)02435-4

[. INTRODUCTION (hw=~0.3—10 meV, with the electric-field polarization both
parallel and perpendicular to the drain-source conductance
Photon-assisted transport at far-infrared frequenciepath, have yielded only bolometric signals. These signals
(hw~1-10 meV in quantum-point-contact devices has result from heating of the 2DE@wo-dimensional electron
been proposédand theoretically investigatédin essence, gas in the source and draft® The process of photon-
the process of photon-assisted transport is analogous to thgsisted quantum transport is analogous to many well-
photoemission phenomenon in metals, which inspired Einestablished phenomena such as photoemission in nfetals,
stein to propose the famous=7 o relationship. Our quan- photoionization of atom&;® photon-excited bound-to-
titative analysis of the photon-assisted transport process isxtended-state transitions in quantum-well structifemd
based on Tien-Gordon’s theory of photon-assisted tunnelinghoton-assisted tunneling in quantum-well diotfespper-
in superconducting tunnel junctioﬁsln this theory, photon  conducting tunnel junction%%z_15 and quantum dot¥:17
absorption(or emission is characterized as creating a set of Thus it is natural to ask why such a simple process has not
electron eigenstates with eigenenergiesEafnzw, where  been observed in quantum-point-contact devices. It is the
E is the eigenenergy of the original electron state withoutscope of this paper to solve the one-dimensional Stihger
radiation. Positiven’s correspond to photon absorption, equation numerically, including the radiation term, and to
while negativen’s correspond to photon emission. The prob-investigate the conditions necessary for photon-excited pro-
ability of absorbing or emittingn photons is proportional to cesses as characterized by additional components at energy
Jﬁ(a), wherelJ, is thenth Bessel function and is a dimen- E+n%w in the wave function. These conditions are a direct
sionless number that is proportional to the radiation fieldconsequence of the selection rule, which is a mathematical
strength. Consequently, similar to photon-assisted tunnelingtatement of the momentum conservation for electron-photon
steps for superconducting tunnel junctions, photon-assisteglystems. Mathematically, in order to achieve an appreciable
steps for quantum-point-contact devices should appear on thghoton-excited transition probability, the dipole-moment in-
drain-source conductance vs the gate voltdggs—Vgs  tegration must be truncated to a region that is not much
curves, provided that the photon energy is much greater thagreater than the coherence length B/ whereAk is equal to
the thermal broadening. the momentum difference between the electrons before and
In spite of the intuitively plausible picture and the after photon absorption or emission. This truncation can be
straightforward analogy with photoemission and photon+ealized experimentally by either a localized electron state or
assisted tunneling, experimental investigations have failed ta localized photon-field profile. Physically, this spatial local-
provide evidence of photon-assisted transport in quantumization of the electron or photon field provides the momen-
point-contact device$® Extensive measurements conductedtum spread that relaxes the requirement for momentum con-
over a broad frequency range from 90 GHz to 2.5 THzservation in photon-excited processes. Without such a spatial
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localization, the probability of photon excitation will be ex- dependent electric field, ardandm* are the charge and the
ponentially small. Thus heating, which is unavoidable be-effective mass of an electron, respectively. Here we use the
cause of the gapless nature of excitations in 2DEG, willunits of4=1. It should be noted that E¢R.1) also describes
dominate the radiation response of the devices. electrons in three-dimensional layered structures grown
As a consequence of this understanding, we have foundy molecular-beam epitaxy. In this case, the polarization
that the photon-excited transition between two extende@f the electromagnetic field and the tunneling current are
electronic states is prohibited if the radiation field is spatiallyin the growth” direction. Most of resonant-tunneling
extended. Therefore, photon-assisted transport in singleexperiment®2°-2° belong to this configuration. The only
barrier devices, such as quantum point contaéfs>*will difference between 2DEG configurations and layered struc-
be difficult to observe due to the relatively long screeningtures is the typical values of parameters such as electron
length in 2DEG structures. For superconducting tunnel juncedensities and dimensions of dc potential profiles. Here we
tions, photon-assisted tunneling does occur between two exemploy parameter values that correspond to 2DEG configu-
tended electron states. In this case, the strong screening pn@tions. In order to solve E@2.1) and calculate transmission
cess localizes the photon field near the tunnel barriers withiprobabilities, we choose a Gaussian wave packet as the inci-
the London penetration depth, thus enabling the transition tdent electron wave function. This initial condition is relevant
occur>'?~1°For 2DEG devices, we have demonstrated thato actual experiments at finite temperatures. The tempera-
double-barrier(or multiple-barriey structures are more suit- tures at which quantum transport experiments are performed
able for photon-assisted transport, which results from thare typically between 0.1 and 10 K. Thus the energy of in-
quasibound-to-extended-state transitions. This theoretical urtident electrons has a finite spread. The effect of this energy
derstanding is supported by strong evidence of photonuncertainty can be represented by incident Gaussian wave
assisted transport observed in a dual-gate device irradiated packets given by
millimeter-wave frequencies.
This paper is organized as follows. In Sec. Il we describe o 14 (x—=X)2
a numerical path-integral technique used to solve the time- Y(x,0)=(2m5%) " exp — — o +ikox
dependent Schdinger equation. Effects of wave packets
with finite widths are also discussed. In Sec. lll, conditionswhere § is the width of the wave packet related to the
for strong quantum coupling between electrons and electraemperature T and the Fermi energyEg through
magnetic fields are shown by calculating the escape prolic,T 6= \2E-/m*, andk, is the wave number of the incident
ability of an electron from a bound state by photon excita-electron given by
tions. We also discuss the coupling between free Gaussian
wave packets and spatially confined ac fields. By calculating 1/2
the transmission probabilities through single-barrier struc- ko={2m* Ee— ﬁ} . 2.3
tures irradiated by electromagnetic fields, it is shown that
e 1t 2 Sl et s el e v employe a rumericlpats el mefies
can be produced. In Sec iV we calculate transmission pro s__olve Eq.(2.1) _nume_rlcally. Using this techm_que, the C(.)nd"
abilities for doubie-barriér s,tructures and present numericcsl)tllor.| ?f Ctjhe umtgllry n ? Eme (Ijevelog)nr]]ent. IS auton;atrllcally
evidence of photon-assisted quantum transport that is showsnatls led, regardless of the values of the time stemd the

as an enhancement of transmission probability. We summaq:rld spacing of spat|a_| divisiod,. Furthgrmo_re, this algo-
. . . rithm demands a relatively short computing time to solve the
rize our conclusions in Sec. V.

equation for large systems such as those treated here, as
compared with other conventional methdds®
Il. NUMERICAL TECHNIQUE It is well known that the wave functiogh(x,t+ 7) is re-

We have investigated transport properties of electrons iIllated tog(x.t) through
one-dimensional systems with both time-independent and
time-dependent potentials. These potentials correspond to (X, t+ T):f dy K(x,y;t, 7) g(y,t), (2.9
2DEG devices that have some structure in ¥hdirection,
but remain uniform in the direction. It can be shown that
guantum-point-contact systems that have structures in bo
x and y directions can be reduced to one-dimensional
system&. Therefore, our focus on one-dimensional systems X thr
does not sacrifice generality, but it does significantly reduce K(x,y;t,T):f Dq ex;{if dt’L(q(t"),q(t");t")|.
the mathematical complexity. An electron in such a system is y t
governed by the time-dependent Satinger equation (2.9

. (22

here the propagatd€(x,y;t,7) is given in the path integral
rmalism by

Here the symboﬂDq represents the path integral over all

2
-‘9_’/’ 1 9 ¥, 2.0 paths, starting at the poigtand ending withx, andDq is a

+ Vg X) + Vad X, 1)

=] -
ot 2m* ox? measure for integration defined by

where Vy{(x) is a time-independent static potential, N/oN—1

Vadx,t) = [5e&(x’,t)dx’ is a time-dependent potential that Dg= i <_) 11 dg; . (2.6)

represents the effect of a radiation fiel€{x,t) is a time- Nosoo | 27T TI =1
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symmetric double-barrier structure as a function of energy of

10 ' ' ' ' the incident wave,

b 1.0
:_?:3 0.8 \/ ] w2 2
3 - o5 vdc(x):vgc{ ex;{ - —(X ;(0) +exp{ - —(X+2XO) } ,
De. 06 7 gdc gdc 2.9
5 041 og 4 .
8 P Blmey 0 where the barrier height§, is 10 meV, the distance between
S o2l 1 two peaks %, is 433 A, and the width of each Gaussian
& barrier 4. is 72 A. In this case, no ac potential is applied to
- 0.0 : : : the system. The solid lines in Fig. 1 and its inset show the

00 05 10 15 20 35 result obtained by the transfer-matrix method, in which the

Energy (meV) energy of the incident electron has a definite value. Here and

hereafter we have chosen the material parameter correspond-

ing to GaAs,m* =0.067m,, wherem, is the bare electron

structure(with Vo.=10 meV, =433 A, andé,=72 A) as a mass..The sharper peak_ln the inset rep_resents_the resonant
tunneling due to the quasibound state. This peak is magnified

function of the energy of the incident electrons. Solid lines in this™" "' .
figure and its inset indicate the transmission probability calculated? Fig. 1. The dashed and the dotted lines are the results of

from the transfer-matrix method. Dotted and dashed lines indicatéh® numerical path-integral method. The widths of the inci-
the results calculated from the numerical path-integral method usin§€nt Gaussian wave packets for the dashed and dotted lines
incident wave packets with a width of 1805.5 and 3611.0 A, respecare 3611 and 1805 A, respectively. The energy fluctuations
tively. of these wave packets are 0.21 and 0.41 meV, which corre-
spond to temperatures of 2.38 and 4.75 K, respectively. From

The integrand_(q,q;t) in Eq. (2.5) is the Lagrangian of the this figure, we can appreciate the importance of using the

FIG. 1. Transmission probability for a symmetric double-barrier

system, and has the form finite-width wave packet to approximate actual experimental
situations at finite temperatures. For these calculations, we
L(Q,q;t)= 3 m*q2— Vg q) — Vad Q,1). 2.7 have chosen a system size of 236 to accommodate the

transmitting and reflecting waves going far from the origin

To perform the path integral numerically, one needs tgduring long transit times due to the quasibound state. In or-
consider the case that the valuerois so small that only the ~der to obtain precise results, the spatial divisignshould be
straight patts from y to x makes a dominant contribution to made much smaller than the scale of both the potential struc-
the path integration. In this case, the integration ofture and the incident wavelengty*. Here the value of
V(s(t"),t")=Vadas(t')+Vadas(t’),t’) over t’ in Eq. Ax=3.6 A'is used. Thus the number of grids in the system is
(2.5 becomes approximatelyV(x,t+ 7). This quantity no 32 768 219, The time stepr must be much smaller than
longer depends on the path; thus the potential energy givelEg. We choser=15.7 fs. Since the transmission process
only the factorial contribution to the propagator takes about 23 ps to complete for this particular double-
K(x,y;t,7). The path integral of the kinetic energy part can barrier structure, we need about 1400 time steps in our simu-
be evaluated analyticalf. Finally, Eq. (2.4) is approxi- lation.
mated as

12 IIl. CONDITIONS FOR QUANTUM EXCITATIONS

5o SHTiTV(Xt+ )] In this section, we discuss conditions required to obtain
strong quantum interactions between electrons and radiation
o im*(x—y)? fields, and the design of realizable systems to measure these
X Jmexr{z—T Ply,0dy. (28 effects efficiently. For this purpose, this section focuses on
the interaction between electrons and electromagnetic fields
Using this relation iteratively, one can calculate the wavebeyond simple tunneling phenomena.
function at any timet from the initial wave function Due to the selection rule, a free electron described by a
¥(x,0). By calculating the normalization factor of plane wave cannot interact with a uniform electromagnetic
Y(x,t+7), one can show that this procedure satisfies thdield. The matrix element for this interaction has a factor
unitary condition for any time steps and spatial divisions [xexdi(k—k')x]dx, wherek andk’ are the wave number of
A, . In actual numerical calculations, the convolution in Eg.the initial and final electron states. This factor is proportional
(2.8) was done in the Fourier space in order to save CPUo the derivative §'(k—k'), and it is always zero for
time. k#k’. Thus the transition betwednandk’ that is excited
In order to illustrate the effect of the finite width of wave by a spatially uniform field cannot occur. This selection rule
packets associated with actual experiments at finite temper# simply a mathematical statement that says free electrons
tures, we compare the transmission probability calculated bgnd photons have different energy-momentum dispersion re-
the numerical path-integral method described above withations, and therefore it is impossible to satisfy the energy
those obtained by the conventional transfer-matrix techniqueand momentum conservations simultaneously, except at a
which corresponds to the transmission for plane waves. Figzero frequency. This is known as the generalized Kohn's
ure 1 shows the transmission probability for the followingtheorem. We can show that the selection rule also applies to

*

Y(Xt+7)=
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free-electron states other than the plane waves. For example,
a free Gaussian wave packet in a uniform electromagnetic 0.3 ' - -
field will not develop photon sidebands. The solution of
Schralinger equation(2.1) with Vy(x)=0 andV(x,t)=
—e&xcost) can be written in terms of the nonrelativistic
Gordon-Volkov functioA®=42

1 T I t D 2041
g[/k(x,t)=\/?ex |kx—§f0dt k “(t")], (3.1

where the reduced momentumk is  defined 0.0
by k=k+ (e w)sin(wt), andk is the electron momentum. 0.0 20 4.0 6.0 8.0
Using this complete basis set and the initial condition given Frequency (meV)
by Eq.(2.2) with X=0 andky,=0, we can obtain an expres-
sion for the electron probability density: FIG. 2. Escape probability of an electron from the potential well
U(x) given by Eq.(3.3) under the irradiation of a uniform electro-
1/2 _ 2
p[ Cx=xe(D)]

©
[N}
T

0.1}

Escape Probability

magnetic field cost) as a function ofv. The strength of the field
2A2(t) . (32 is el aUy=0.0488. The irradiation tim&@ is 75.63 ps. The inset
shows the configuration of the potential wel{x) and the ground

2
|¢(X!t)|2: ( 7TA2(t)

where state(which is the initial statewave functiony(x).
A(t)= 25%+ (t%/m*2) o= Aol 1—tant(ax)]%4, (3.59
5 L
Y1 =Aq[1—tant(ax)]¥4ani ax), (3.5b

and the center-of-mass motiog(t) has the classical trajec-

tory of the electron in the same electromagnetic field.and

Quantum-mechanical spreading of the wave packet is not v

influenced by the uniform ac electromagnetic field, which is 2=Ag[ 1—tanif(ax)]¥4tantf(ax) - 1], (3.50

evidenced by the fact that(t) is independent of the ac field respectively, wheré\,, A, and A, are normalization con-

g' ;I'hls ana:cyss gdlcat_es that there LS PO qduantu_rp mtera(?lol tants. We choose the ground stétgas the initial state. The
etween a Iree Lsaussian wave packet and a uniform ac e onfiguration of the potential and the ground-state wave

_From the_ form of a coupling matrix element, either NON"fnction are illustrated in the inset of Fig. 2. We calculate
uniform ac fields and/or electrons in bound states can lead tﬂumerically the time development of this bound state under a
f!mte excitation probapll|t|es. 'We will examine these condi- uniform electromagnetic field described by an ac potential
tions separately. The interaction between an uniform electro; {x,1) = — ex coset). The strength of the fieldd was
magnetic field and an electron in a bound state is treated ﬁrs{:‘ﬁosén aes/al.=0 0;188 The system size, the space divi

0— VY- . ’ -

A typical example is the ionization of atoms in laser sion, and the time step in this calculation are 548, 50 A,

7 7-9 . .
}‘lelds. thWhtin the tyv?velengzjth of fﬂ:ﬁ Iaslertﬁeld IS m?ch and 15.3 fs, respectively. Figure 2 shows the escape prob-
tpngﬁr %nt € sp? 1a ;ﬁ)rga !ngt'o he elec rﬁn ]th?]\/e- ltmcébility from the potential well plotted as a function of fre-
lon bound to an atom, the lonization 1S a resutt ot the in er'quency of the ac field. The escape probabilty was de-
action between the localized electron and a uniform field. ¢

o .. fined by
In order to understand quantitatively the photon excita-

tions, we have numerically investigated the ionization pro-

X1 XR
cess in a uniform ac electric field. We have considered the PE=J |¢(x,T)|2dx+f | p(x,T)|2dx,
case in which an electron is initially in a one-dimensional XL X2
potential well given by wherex, andxg are the left- and right-side edges, respec-

_ tively. The values ok, andx, were set ag,=— 2500 A and
U=~ Uosech(ax), @3 X,=2500 A. The irradiation timeT was chosen as

whereU,=7.303 meV andx *=250 A. These parameters T=75.63 ps. Within this time interval, the finite-size effect
are not relevant to atomic scales, but close to mesoscopkan be neglected. From Fig. 2, one can find a sharp onset at
ones. Time-independent Schiinger equation with this po- the ionization energy- Eq=5.22 meV, which shows that the
tential can be solved analyticalﬁ.For the given set of pa- €lectron in the bound state couples strongly with the uniform
rameterdJ, and a (U= 35a2/8m*), there are three bound ac field. By increasing the photon energy frorE,, the

states. The energies of these states are escape probability decreases rapidly. This is because the
overlap integral between the initidground state and the

(5—2n)2a? excited extended state becomes smaller at higher frequen-

=" —gmr + N=0 1 and 2, (34  cies. There is also a sharp peak at 3.3 meV. This energy is

the same as the energy difference betwgmandE,, which
with their values oEy=—5.2164 meVE,;= —1.8779 meV, means that the peak is caused by a two-photon process. In-
and E,=—0.2086 meV. The corresponding eigenstates areleed, the Fourier transform of the outgoing wave from the
given by potential well has a sharp peak at 1.4 meV, which is equal to
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FIG. 3. Square of the Fourier transform of the wave function at :
t=43.56 ps of a free electron irradiated by a spatially confined Eac (1000A)
electromagnetic field. The initial wave function is a Gaussian wave
packet described by E2.2) with §=3000 A, X=0, andky=0. FIG. 4. Peak values dfj(k)|? as functions of the width of the
The applied ac potential is given by Eg.6) with Vo, =1.159 meV,  ac field ¢,.. Parameters for the calculations are the same as those
£,c=600 A, andw=1.159 meV. for Fig. 3, except for the irradiation time of 21.78 ps and the system

size. Solid, broken, and dotted lines indicate the values of the pho-
Eo+2(E1—Ep). The strong two-photon effect is a result of a ton subbands$y(k)|? at k=0.043, 0.061, and 0.075, respectively.
large overlap integral between the ground state and the firgthe straight line in the semilog plot indicates the exponential rela-
excited state, and between the first excited state and the etien of | (k) |?<exp(— &k, /).
tended state over the barriers.

Next, we discuss interactions between a free electron angbsor tion peaks as functions of the spatial confine ¢
a nonuniform electromagnetic field. It was previously men- P P P &N

tioned that a free electron cannot interact with a uniform aco'c the applied ac field. Parameters in the calculation are the

field due to the selection rule. The matrix element of theSaMe as those for Fig. 3, except for the system size of 12.29

coupling, however, becomes nonzero if the electromagneti¢™ and the radiating time of 21.78 ps. This figure clearly
field is not uniform, and the probability of photon absorption shows that th? Interaction between a freg electron and_ an
becomes finite. In order to illustrate this point quantitatively, €'€ctromagnetic field decreases exponentially as the width
we studied interactions between a free Gaussian wave packgge ©f the confined ac field increases, while the value of
at rest and a spatially confined electromagnetic field. FourieYac IS kept constant. The Str";"ght line in the semilog plot
transforms of the wave packet under the ac field are calcuShows the asymptote ¢fi(ky)|” at largeé,c values, which
lated. The initial wave packet is given by E.2) with  has a functional form o&~(¢ad0'™. |y (ky)[* and |y (ks)|?
X=0, ko=0, and8=3000 A. The confined electromagnetic decrease even faster wit. because of the larger values of

field is described by a time-dependdat) potential k, andks. In the present numerical situation, the wavelength
of the excited electron through a one-photon process

vgc X is 1380 A. It appears from Fig. 4 that the interaction de-
VadX,t) = Ttam‘(f—) coq wt). (3.6)  creases rapidly when¢,>M\/27w~200 A. This result
ac can be understood from an analytical argument. The
The parameters in E¢3.6) were chosen ag2=1.159 meV, matrix element of this interaction has a factor of
£,=600 A, andw=1.159 meV. The system size, the space/ exp(—x745%) expktanh§/s,)dx, wherek is the wave
division, and the time step are 24.58n, 30 A, and 2.72 fs, number of the excited state. The real part of this function
respectively. The square of the Fourier transform of the wav&anishes because of the integrand’s parity. We need to con-
function att=43.56 pgirradiation starts at=0), |4(k)|?,is  sider only the imaginary part of this integral. Fép 1Kk,
shown in Fig. 3. The main peak lat 0 represents the origi- Which is the case in this situation, sk oscillates many
nal Gaussian wave packet. One can easily find at least fivémes within the Gaussian width. If the value &f; is much
pairs of subpeaks located symmetrically around the maiharger than I, this oscillation cancels out the integral. In the
peak. These subpeaks are at the wave numbers= case of¢é =<1/, however, the oscillation cannot be canceled
+0.043, k. ,=*+0.061, k. 3= +0.075, k. ,= +=0.086, and out within the ranggx|<¢&,;, and the matrix element be-
k.s==*0.097 in units ofr/A,, whereA, is the grid spacing comes finite. The wave number of the excited eleckas
of the spatial division. These values correctly correspond teelated to the energy by k=+2m* w. Thus it is necessary
k. ,==*\2nm* w, which is the wave number of the excited for a large coupling that the value of,. be less than
electrons produced by thephoton process. Thus these sub-1/y2m* w. This means the coupling becomes weaker at
peaks are referred to as photon subbands. Clearly, a spatialygher frequencies for a fixed confinemefyt. This is es-
confined electromagnetic field can interact effectively withsentially the same phenomenon as the decrease of the escape
free electrons. probability at higher frequenciedbeyond —Eg) in Fig. 2.
We have investigated the effect of the width of the con-Similarly, we will also have a large matrix element if
fined ac field on photon-absorption processes. Figure 4#=<1/k, which qualitatively corresponds to the bound-to-
shows the values dfis(k)|? at one-, two-, and three-photon extended-state transition shown in Fig. 2.
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FIG. 5. Transmission probability for an irradiated single Gauss- ] )
ian potential barriefwith VgC: 11 meV andé,=1000 A as a FIG. 6. Squares of Fourier transforms of the wave functions at

function of the frequency of the ac field. The incident wave packet = 39-9 ps for the same conditions with those for the case of Fig. 5.

has an energy of 10 meV and a width of 12 000 A. The amplitude! "€ Solid and dashed lines show the results dor 2.0 and 0.1

V2. and the widthé, of the ac potential are 10 meV and 3000 A, meV, respectively. There are sharp peakk=ak, in the solid line,

respectively. The crossover frequensy, from the classical to the \{Vthh indicate photon absorption and emission, while the dashed

quantum region is indicated by an arrow. The transmission prob!ine does not show such peaks.

ability for the nonirradiated single barrier with the same structure at

Er=10 meV is also shown by an arrow. The inset shows the d€rgy in 2DEG systems. The incident wave packet defined by

transmission probability for the same static potential as a functiofEd. (2.2) has an initial width of6=1.2 um and an initial

of the energy of the incident electron, which is calculated from thelocation atX=—5.11 um, which is sufficiently far from the

transfer-matrix method. dc and ac potentials. This width of the wave packet corre-

sponds to a temperature of=1.4 K in actual experimental

This argument can be also understood in terms of thgituations. The size of the whole system is 41.84. The ac

uncertainty principle. According to this principle, a photon potential is given by Eq(3.6). The magnitude and width of

excitation process that results in an electron momentunthe ac potential are chosen\a.%tz 10 meV andk,.=3000 A,

changeAk should occur within a spatial region on the order respectively.

of 1/Ak. This limits £,.<1/Ak. The quantityAk is evaluated The symbolw in Fig. 5 denotes the frequency below

as Ak~wym*/2Eg for Ep>w, and Ak~{2m*w for  which the oscillating potentia¥ ,{x,y) leads to an adiabatic

Er<w. In the case of Figs. 3 and £g=0 andAk=Kk;. (classical effect. That is, the electron transport is governed

Therefore, we have the conditi@i<1/\2m* w to obtain a by the instantaneous value of the total potendgl+V .**

strong coupling between a free electron at rest and an eledhis frequency is related to the traversal time, which is

tromagnetic field. ForEg>w, the condition becomes the time for the electrons to go through the electromagnetic

§ac< V2EF/M*/ w. _ o _ field region, bywq= 27/, . The time7; _can be estimated
We can conclude from these investigations that in order t%y using the Bttiker-Landauer formuf$

obtain a strong coupling between an electron and an electro-
magnetic field, either the electrons must be in a bound or )
guasibound state or that the ac field must be confined within r. o= WJ"’C“I dx

a spatial region of the order of Ak (w/Ak to be more fac xe  VER—VgdX)

precisg. We believe this is the main reason that experiments

on photon-assisted transport in 2DEG devices have so far N m* |\ 12 rx; dx 3.9
yielded negative results in single-barrier structures such as o A N —E- '
guantum point contacts. In Fig. 5, our numerical simulation %oV VadX) ~Er

shows that only a weak photonic quantum effect appears igjhere x, is the classical turning point defined by
electron transport through a single-barrier structure. This figy (x.)=E. We neglect the small amount of energy fluc-
ure shows the frequency dependence of the transmissijations due to the finite width of the wave packet. Using the
weakly confined spatial profile. The shape of the static poy,e haver, =3.55 ps, and thue.=1.13 meV. From Fig. 5,

tential barvier is given by enhancements of the transmission probabilitieswat w
Vdc(X)=V3CeXri—X2/§§C], (3.7) (the quantum effect regiQrare small. This is expecte_d be-
cause of the loose confinement of the ac field. Figure 6
where the potential height), is 11 meV and the widtlf,.is  shows that the enhancementsait v indeed come from
1000 A. The incident energy dependence of the transmissiophoton absorption as a quantum effect. The solid line in Fig.
probability for the dc potential alone is shown in the inset of6 represents the square of the Fourier transform of the wave
Fig. 5. The result of the frequency dependence shown in Figunction att=39.9 ps. The frequency of the external ac field
5 is calculated for a fixed energy of the incident wave packets w=2.0 meV. The main peak dt;=0.22 (in units of
at E=10 meV, which is the typical value of the Fermi en- m/A,, where A,=65 A) corresponds to the transmitting
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wave at energyEg, i.e., kg=+v2m*Eg. There are sharp . . . .
peaks ak,= y2m* (Eg+ nAw), which implies that the small 10°f
enhancements at> w in Fig. 5 are caused by the photon 0.2

absorption.

The larger enhancement at< w produced by the adia-
batic effect is because the quasistatic potentigl.{ Va0
increases the transmission probabilityrjf.<0.5, which cor-
responds t&E:<Vy.. Under this condition, a low-frequency
sinusoidal modulation will produce an instantaneous barrier
with a height ranging fronVy.— Vg t0 Vgt V. Conse-
guently, the transmission probability can be enhanced during
the half-cycle in which the total potential is belowy.. The
dashed line in Fig. 6 shows the enhancements of transmis-
sion probabilities at low frequencies(wy<<1) are due to
the adiabatic effect. The dashed line is obtained under the
same conditions as those for the solid line, except for the
frequency ofw=0.1 meV. There are no photon peaks indi-
cating the quantum effect. The broad two hillkat0.20 and
0.24 show that the wave packets decelerated and accelerat%rci
by the slowly oscillating ac potential, respectively.

2
Xo

N Ottad’

/ ------B: f=1.20

[ e C:p=1.25

: e D: Tien-Gordon

5.0 100 150 200 250
Frequency (meV)

FIG. 7. Frequency dependence of the excess transmission prob-
abilities for asymmetric double-barrier structures with different de-
es of asymmetry. The parameters for calculations are presented
he text. The inset shows the radiation-induced excess transmis-
sion probability as a function of the width of the electromagnetic
field. This has an asymptotic form &f/(xo+ &,92 Which is shown

IV. PHOTON-ASSISTED QUANTUM TRANSPORT by the dotted line withk,=130 A.
IN DOUBLE-BARRIER STRUCTURES
As we have shown in Sec. Ill, it is difficult to achieve Th(_ese barriers are “thinner” than t_he Gaussian .profile. The
guantum photonic effects in electron transports throug ncident wave packet and the_applled ac potential are given
y Egs.(2.2) and(3.6), respectively.

single-barrier structures. It has also been clarified that eith - Zsh ho f q d fth h d
electrons in bound states or spatially confined electromag- lgure 7 s OWSt_ € Irequency dependence o the enhance
reduced transmission probabilitids = (T~ Tgd/Tgc.

netic fields are necessary to obtain a strong coupling betweet o o &
and T are transmission probabilities for the sys-

electrons and photons. This understanding suggests that Wd'6€ Tac : .
can utilize the localized nature of quasibound states in &M With and without the ac potential. The parameters for the

double-barrier structure to achieve the photonic effect. Th&tatic double-barrier defined by EG.1) are chosen as fol-
corresponding long lifetime of the quasibound staesar-  OWS: £=1184 A, £=2048 A 2%,=377.6 A, and
acterized by narrow energy widths in the transmission coefYdc=10-19 meV as common parameters for systéms,
ficient peaky means a long dwell time in the transmission andC (corregpondmg to lined, B, andC in Fig. 7), respec-
process. Both the long dwell timéat >1/w) and the tively; andVy=11.72 meV(for A), 12.23 meV(for B), and
bound-state character of the quasibound states are preferréd.74 meV(for C). The widths of barriers are small com-
in order to obtain photonic effects. pared to the actual experimental situations, which will yield

If the configuration of the double-barrier structure is sym-a dwell time too long for our simulation studies. However,
metric, the transmission probability at the quasibound-statéhe results shown here illustrate the main features semiquan-
energy is exactly unity. Thus any photonic effects on thelitatively. Actual experiments should yield even stronger
electron transport will decrease the transmission probabilityguantum effects due to narrower quasibound levels. In each
Since we are mostly interested in an enhancement of trangf these systems, there is only one quasibound state. The
mission probabilities by photon-assisted quantum transporguasibound energiei, are 8.91, 9.19, and 9.27 meV, and
asymmetric double-barrier structures are more illustrative fothe widthsAE, are 0.55, 0.61, and 0.71 meV for systems
our purpose. For asymmetric double-barrier structures, tran#, B, andC, respectively. The parameters for the incident
mission probabilities are not unity even at the energies ovave packet defined by Eq(2.2 were chosen as
resonant states. Thus enhanced transmission could be o¥=—2.7 um and 56=4800 A commonly for all the three
tained by applying an ac electromagnetic field. We have chosystems, andEg=E, for each systen{namely, Er=8.91,
sen the geometries of the asymmetric double barriers such19, and 9.27 meV for systerds B, andC, respectively.
that complete simulations can be accomplished within a reaFhe value ofs corresponds to a temperature Bf 3.3 K.
sonable CPU time. For example, if the barrier has a Gaussiahhe applied ac potentials are the same for all the systems and
shape, then the energy widlE, becomes extremely small are given by Eq(3.6) with V9.=2.04 meV and¢,=320.0
for quasibound states far below the barriers. This is becausk. The system size, space division, and time step are 10.48
the thickness of the Gaussian potential increases rapidly at ifsm, 3.2 A, and 12.39 fs, respectively, in all the calculations.
foot. To avoid such a technical difficulty, we have chosen theThese three systems have different degrees of asymmetry
double-barrier potential structure in the following form: characterized by the height asymmetry raie V5/V5. The

4 4 values of 8 are 1.15, 1.20, and 1.25 for systelsB, and

(X+Xo) +VRexd — (X—Xo) C, respectively. Calculated dc transmission probabilities

& de & | Ty are 0.2382, 0.1822, and 0.1371 BEE, for systems

(4. A, B, andC, respectively. LineD shows the quantityT™*

Vgdx) = vscexn[ -
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calculated using the Tien-Gordon formalisrm this formal- it is the frequency at whici* takes its maximum value
ism, the process of photon-assisted tunneling can be modeletf .. The enhanced transmission probabiliy,,, is ap-
with an effective transmission coefficient, proximately constant at small values &f;, and decreases
Ti=37__J%(a)Te(Ertnfiw), where J, is the nth  algebraically with an increase df,. when &,>%,. The
Bessel functiona=V3/fw, andV} is the amplitude of the T* —¢,. relation has an approximate functional form of
effective potential. The dc transmission probability(E) is xé/(x0+ £,0°. This implies that the decrease is simply due to
calculated from the conventional transfer-matrix method.a decrease of the ac electric-field strength in the active region
This calculation has been used to analyze experimentally otbetween the two barriers. This feature differs qualitatively
served photon-induced current in vertical and lateralfrom that in Fig. 4, which shows the strength of the coupling
quantum-well structure§:*® The justification of using this between a free electron and a confined electromagnetic field.
simple picture lies in the fact that the photon absorption andn that case, the interaction vanishes exponentiallyéas
emission mainly occur within the well, where the dipole- increases because of the selection rule.

moment integration yields nonvanishing results. Conse-

quently, the only effect of radiation is a modification of the V. CONCLUSIONS
outgoing electron wave functions, which can be modeled us-
ing an effective transmission coefficiefif.. For lineD, we In summary, we have performed numerical studies on the

chose the value 0}, to be 3.06 meV € 1.5V3) and all the  effect of photon-assisted quantum transport in order to obtain
other parameters to be the same as those for@indhe  conditions for substantial enhancements of transmission
result qualitatively resembles lin€. However, similar to  probabilities. These conditions require a spatial localization
Fig. 1, T4(E) calculated from the transfer-matrix method of either the electronic wave function or the applied electro-
has a sharper peak than that calculated using the numericalagnetic fields. The validity of these conditions were quan-
path-integral method. Thus the radiation-induced transmistitatively demonstrated by two numerical simulations. The
sion coefficients calculated from the two methods do nofirst one is the frequency dependence of the photon-
agree with each other quantitatively. detaching probability of electrons from a bound state. The

It should be noted that our numerical results show onlyresult exhibits a strong coupling between the electron and the
guantum effects in the frequency region investigated. Thec field, even if the ac field is not spatially confined. It was
crossover frequency to the adiabati¢classical effect re-  also clarified that the quantum coupling becomes weak as the
gion is approximately equal tAE,, which are the lowest frequency of the ac field increases. The second example is
frequencies in our calculations. the interaction between a free electron and a spatially con-

Let us first discuss the result for systéfnwhich is indi-  fined electromagnetic field. We have investigated how the
cated by the solid line. For the lowest-frequency region, thestrength of the interaction depends on the width of the ac
energy of the excited electron is slightly shifted from thefield. The result shows that a confinement of the ac field
resonant levelE,. Thus the transmission probability be- within a region narrower than the wavelength of the excited
comes smaller than the value of the dc transmission probabiklectron is necessary to obtain strong coupling between free
ity Tqc at Ep=E,. By increasing the frequency of the ac electrons and electromagnetic fields. Consequently, photon-
field, the electron-photon coupling decreases for the samassisted transport in single-barrier structures will be difficult
reason as for the decrease of the escape probability at high achieve if the photon field is spatially extended. This un-
frequencies in Fig. 2. Therefore, the transmission probabilityderstanding may explain why photon-assisted transport has
rapidly approaches the value ®f.. By increasing the fre- not been observed in single-barrier devices such as quantum
quency further from the Va|U6>s=V§c— Er=2.81 meV, the point contacts. One alternative approach to achieve a strong
energy of the excited electron exceeds the height of the righ€lectron-photon coupling is to use double- or multiple-barrier
side barrier. Thus the transmission probability increases bestructures to create quasibound states. The spatially localized
yond T4, resulting from a photon-assisted over-the-barriefature of these states will provide the momentum spread
transport. In the highest-frequency region, the interaction bedecessary for the photon excitation process. Our simulation
comes too weak to have any photonic effects, and thus thétudies on asymmetric double-barrier structures have yielded
transmission probability approache®,, asymptotically. @ positive effect of photon-assisted transport, even with spa-
ConsequentlyT* has a peak aby~ ws. tially extended photon fields.

The dashed and dotted lines, which indicate the results for
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