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Effects of quantum fluctuations of electrons and lattice in doped polyacetylene
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The effects of quantum fluctuations of electrons and the lattice on the electronic and lattice structures of
doped polyacetylene are studied using the quantum Monte Carlo method. We adopt the model where the
on-site U) and the nearest-neighbov) Coulomb interaction terms are added to the Su-Schrieffer-Heeger
(SSH model. In the SSH model, a charged soliton lattice survives quantum fluctuations of the lattice even in
the heavily doped regime. However, the magnitude of bond-length alternation in the interface regions between
charged solitons is reduced by them. In the model wkkered andV=0, the ground state becomes a charged
soliton lattice in the low doping regime by introducing quantum fluctuations of electrons. The magnitude of the
bond-length alternation in the interface regions decreases with increasing doping concentration and becomes
almost zero in the heavily doped regime. In the model whkred andV>0, a charged soliton lattice survives
quantum fluctuations of electrons and the lattice even in the heavily doped regime. However, both the mag-
nitude of the bond-length alternation in the interface regions and the magnitude of the charge-density alterna-
tion around the soliton centers are reduced by them. The interaction between charged solitons is significantly
weakened by quantum fluctuations of electrons, which results in a significant reduction of the charged soliton
formation energy in the heavily doped regini80163-182@06)08535-9

[. INTRODUCTION or deal with them as small perturbations are not valid in the
present case.

The Pauli susceptibility rises sharply when the doping Recently, extensive studies have been done on strongly
concentration ¥) increases beyond a critical concentration correlated systems away from half-filling, and various inter-
(about 6%.12 This shows that the heavily doped polyacety- esting physics have been fouffHHowever, the present sys-
lene has a finite density of staté80S) at the Fermi energy. tem includes unique physics which, to our knowledge, has
This is confirmed by the transport measurement; the electrinot been revealed by these works. First, electron-phonon
cal conductivity remains finite as low as 1 mK in some coupling is essential in the present system. For example, an
highly conductive samples® On the other hand, infrared injected electron or hole accompanies lattice deformation,
active vibrational modes, which are ascribed to charged soliand results in the formation of a charged soliton or a polaron.
tons in the low doping regime, persist into the heavily dopeOSecond, most studies have been done in the strongly inter-

regime® This suggests that the ground state in this regime i€cting limit, and charge degrees of freedom have been ne-
not the usual metal with a uniform bond length, but aglected. However, such an approach is not valid for the

charged soliton lattice. pret:.sen.t prottr)]Iem tbecauds.etthe s_trength o{ the tC<|)ulomlb inter-
In simple independent-electron models for a single pO'Y'ﬁgLﬁ 'ir']r;r sldnee;renez 'c‘;’:c?r;%'gnrs g;ep?nilagr?gn?r;?/\./an ]EE;
acetylene chain, the ground state is also a charged soliton |, ...\. 9 9 . np way
lattice in the heavily doped reaime. and the charaed solito alf-filling because a charged soliton, which plays important

. . y cop gime, . 9 Yoles there, has a charge-density-w&28W)-like electronic
lattice solution has a finite gap at the Fermi ener@yus the

. L X ) . tructure around the soliton centérThird, only the on-site
simple model is inconsistent with the experiment. Severat, 1omp interaction has been considered in most theories.

theories have been proposed to explain this metallic phase Ryo\yever, the nearest-neighbor interaction is essential to
adding some ||jteract|()1r11§ neglected in the S|mple.modelzé suchudy the electronic structure, particularly away from half-
as effect of disordef,™" interaction with dopant ion§ filing, because the CDW-like electronic structure in a
and interchain couplin{;~*" and some of them have suc- charged soliton is stabilized by the nearest-neighbor
ceeded in explaining the metallic phase. interaction?®

In all the theories mentioned above, quantum fluctuations The effects of quantum fluctuations of the lattice in the
of both electrons and the lattice have been neglected. Howsearly half-filled Su-Schrieffer-HeegglSSH model have
ever, as shown by 3% and others??° the magnitude of been investigated by the author using the adiabatic quantum
quantum fluctuations of the lattice is almost the same as thd@lonte Carlo (QMC) method? It is shown that quantum
of bond-length alternation. Such large fluctuations have beefiuctuations of the lattice produce a DOS inside the classical
shown to play important roles in the physics of gap, and that the gap may be closed in the heavily doped
polyacetyleng®2° As for the quantum fluctuations of elec- regime. Galli has studied the same problem by the QMC
trons, it is well known that they are very large in one- method without the adiabatic approximation, and found that
dimensional systems like polyacetylene and their importanca finite DOS at the Fermi energy is produced by quantum
has been confirmed by several studies in short poly&ifés. fluctuations of the lattice in the heavily doped regitfie.
Thus theories which neglect these two quantum fluctuationslowever, since his way of calculating the DOS is based on
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the adiabatic picture, we think the problem is still open. Asneighbor repulsions, respectively, ands is the electron-
for the quantum fluctuations of electrons, Takahashi, Yamaeensity operator of spis at theith site given by
moto, and Fukutome have taken account of superpolaron
fluctuations in a charged soliton lattice, and have succeeded N ¢= clCis 2)
in showing that metallic properties appear in the heavily c
doped regime in the extended Hubbard modelowever, it  and
is not clear whether this assumption is valid or not. More-
over, since they used the lattice geometry of the Hartree- ni=n,;+n; . 3
Fock (HF) charged soliton lattice solution, neither the lattice ' '
distortions caused by superpolarons nor quantum fluctuations linear chain is considered in this paper because we need
of the lattice were considered there. Jeckelmann an@ot consider the global flip between QMC samples with dif-
Baeriswyl showed that the gap is closed in the heavily dopegerent winding numbers in this cade.
regime in the model where only the on-site Coulomb inter- \We considered the following three sets of the parameters
action is ConsidereéF. However, the nearest—neighbor inter- which have been shown to be appropriate for p0|yacety|ene
action is important in the present problem, as mentionedy previous work$:3?** In the SSH-extended Hubbard
above. Moreover, they assumed, that the geometry fomodel, t,=2.5 eV, «a=4.07 eVA ! K=42 eVA~2
equally spaced solitons and geometry optimization has ngy1 =3145 ev ' A ~2, U/t,=2.5, andV/t,=1.25.y is deter-
been done. Quantum fluctuations of the lattice were also n@hined as described in the following to minimize the bound-
considered in the theory. ary effects. First, we obtained the geometry optimized half-
Considering the points mentioned before, we investigatgjlled HF solutions both in a periodic chain and in a linear
the effects of quantum fluctuations of electrons and the |atchain_ The HF solution is uniform|y dimerized, and does not
tice away from half-filling in this paper. We adopted the depend ory in the periodic chain. On the other hand, the HF
QMC method developed by Hirscht al®* This method  solution is almost uniformly dimerized except for the chain
gives exact electronic and lattice structures of the groungdge regions, and it depends gnin the linear chain. We
state except for the statistical errors. Thus large and nonlinchgse the value of so that the mean bond length in the
ear fluctuations can be described, and quantum fluctuationgiformly dimerized region in the linear chain is the same as
of both electrons and the lattice can be taken into accounthat of the periodic chainy=0.123 A. In the SSH-Hubbard
simultaneously by the method. Moreover, the method is aPmodel, V/t,=0 and the other parameters are the same as
plicable to the model which includes not only the on-sitethose in the SSH-extended Hubbard model. In the SSH
Coulomb interaction but also the Coulomb interaction be-nggel K=21eVv A=2,y=0.243 A, U/ty=V/t,=0, and the
tween different sites. other parameters are the same as those in the two models.
The expectation values of various physical quantities
Il. MODEL were obtained by the QMC method. The inverse of the tem-
perature was taken to be 40 eVL. SinceBwy=4, where
wo= V4K/M is the bare optical-phonon frequency, the ef-
fects of thermal phonon excitations can be neglected. The
% rotter number for electrons and that for phonons were taken
%0 be 1200 and 40, respectively, in models including the
Eoulomb interaction, and they were taken to be 400 and 10,
respectively, in the SSH model. To check the validity of
these values, we calculated the ground-state energy when
- o T _ s a=0 using the periodic boundary condition. In this case, the
: % ot (U= U ) HO 1.t CioCiasf phonon part of the present Hamiltonian is that of the coupled
harmonic oscillators and the electronic part of the present
+ 52 (U1 — U —y )2+ LZ piz HaTiltgnian is HubbardHuckel) Hamiltonian whenV=0
25 2M (U=V=0). These models can be solved exactly. We com-
pared the energies of these two parts obtained by the present
+> {Un; i +Ving o). (1)  method with those of the exact solutions, and found that the
i errors in them were both within a few percent.
To compare with QMC results, we also obtained the same
The first three terms show the SSH Hamiltonian, wherss  physical quantities by using the classical lattice and HF ap-
the displacement operator of théh CH group along the proximations. In the classical lattice approximation, only lat-
chain direction, the operatas (¢! ) annihilates(createsa tice degrees of freedom were treated classically by taking the
« electron of spins at theith site,ty is the mean transfer Trotter number for phonons to be 1 in the QMC simulation.
integral between neighboring electrong, is the elec- Inthe HF approximation, the lattice coordinates were treated
tron-phonon coupling constark; is the o-bond spring con-  classically and the electronic and lattice structures were self-
stant,y is a constant which determines the mean bond lengthgonsistently determined so as to satisfy Hellmann-Feynman
M is the mass of the CH group, am is the momentum force equilibrium.
operator conjugate ta;. The fourth term describes the on-  For the convenience in the following, we here introduce
site and nearest-neighbor Coulomb interactions between two important physical quantities: the charge den$@p)
electrons, whereJ andV are the on-site and the nearest- and the lattice order parametérOP). The electronic and

As mentioned in Sec. |, both electron-electron and
electron-phonon interactions play important roles in poly-
acetylene. Furthermore, not only the on-site but also th
nearest-neighbor Coulomb interactions are important ther
Considering these points, we have adopted the followin
Hamiltonian for a single chain of polyacetylene:
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A. SSH model

In the SSH model, the LOP is finite and almost uniform
except for the chain edge regions, and the ground state is a
BOW state within the classical lattice approximation. The
LOP becomes larger near the chain ends because of a bound-
ary effect.

F ] The bond-length alternation survives quantum fluctua-
T tions of the lattice, but the magnitude of the LOP is reduced
by them. We define the average magnitude of the LOP by

FIG. 1. The LOP distribution of the ground state in the half- N—8
filled case. In the SSH model, that obtained by the classical lattice 72 1 2 y; (8)
approximation is shown by the broken line, and that obtained by the N—15<% 7'

QMC method is shown by the closed diamonds. In the SSH- ;
extended Hubbard model, that obtained by the HF approximation id © reduce the boundary effect, the LOP's at the seven bonds
shown by the solid line and that obtained by the QMC method isffom each chain edge were excluded from the average. The

shown by the closed circles. In the SSH-Hubbard model, that ob@verage magnitudg’ is reduced by 9% by introducing

tained by the QMC method is shown by the open circles. quantum fluctuations of the lattice. This value is consistent
with that obtained by the adiabatic QMC metH8drhis is

lattice structures of a charged soliton are characterized b§n expected result because the energy gap is much larger

them. The CD at théth site is given by thanw,, and the adiabatic approximation is good in this case.
However, this value is smaller than those obtained in earlier
works 81 We think that this is because much smaller sys-

di=1->, (CISCLS% (4)  tems were considered there.
S

where (O) indicates the expectation value of an operator B. SSH-Hubbard model

O. The deviation of the bond length from the mean bond Within the HF approximationy stabilizes a spin-density

length at thath bond is given by wave (SDW) state, but the HF energy of a BOW state is
independent olU.*® As a result, the HF ground state is a
yi=(Uis 1) —(u;). (5)  SDW state in this model with the present parameters.

Next, we consider the effects of quantum fluctuations. In
These quantities are decomposed into nonalternating and dhis SSH-Hubbard model and also in the SSH-extended Hub-
ternating components as bard model, the LOP distribution obtained by the classical
lattice approximation is almost the same as that obtained by

d=d+(—1)d’ the QMC method, in contrast to the SSH model. Thus the

b b effects of quantum fluctuations of the lattice on the LOP are

o ) very small in these two models, including the Coulomb in-

yi=yi+t(=1'y{, (6)  teraction.

When quantum fluctuations of electrons are taken into
where nonalternating and alternating components are repreccount, a finite LOP appears, as seen from Fig. 1, and a
sented by the bar and prime, respectively. The operation®OW state becomes the ground state in this model. This is

definition of d; is because the correlation energy of a BOW state is larger than
that of a SDW state. This result is consistent with previous
— ones37-40
di=z2(di—1+2d;+djq), (7 '
and the same formulae can be usedyfar® The LOP at the C. SSH-extended Hubbard model

ith bond is defined by; namely, the alternating component  \wjthin the HF approximation, a BOW state is stabilized
of the deviation of the bond length. Hence the LOP shows,y v/ 3% and the HF ground state again becomes a BOW state
the strength of the bond-length alternation, including thess seen from Fig. 1. Thus andV have opposite effects on
phase of the alternation. A bond order walBOW) state,  the LOP within the HF approximation.
where the bond length alternates uniformly, is characterized The pond-length alternation survives quantum fluctua-
by a uniform and finite LOP, and a CDW state is also charyions of electrons, but they redugé by 19% in this model.
acterized by a uniform and finite . Thus correlations by andV have also the opposite effects
on the LOP.

IIl. RESULTS AT HALF-FILLING

. . IV. RESULTS AWAY FROM HALF-FILLING
Before turning to the results away from half-filling, we

first discuss the half-filled case. We show the LOP distribu- We now consider the case away from half-filling. The
tions of the half-filled ground states in the three models infollowing three different doping concentrations were consid-
Fig. 1. The system sizdl is taken to be 54. Note that the ered :y=4% (v=2 andN=50, wherev is the net charge
ground states have no CD in all the models. y=7.7% (=4 and N=52), and y=11% (»=6 and
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N=54). The doping concentration=4% belongs to the non- e e S

magnetic regime. The other ones belong to the metallic re- 0.2 - f:‘ ‘f . ; ot N ’ 3
gime, andy=7.7% is just above the critical doping concen- = RBAMR Th | AL ST ST
tration when the experimentally observed metal-insulator 04?",’"‘1.’\"!1'."}" V.O'""t"V"\lv"H',,i,t
n . \ VY Sy Je Ve S ¥y VT

transition occurs. There are two kinds of charged solitons Fy ¢ 1‘
with different interface structureS.In order to set all the OF . ) . ) R
charged solitons to be of one kind, we could notNixWe 012E Mmoo . e g ]
show the LOP, CD, nonalternating CD and alternating CD f‘w“""‘“*““’m"\%” &' :
distributions of the ground state at 11% doping in the SSH TR |
model in Fig. Za), and those in the SSH-extended Hubbard 0.08 ,‘ t-
and the SSH-Hubbard models in Figh® 0.06 B Y

As seen from Fig. 2, the distribution of the nonalternating R e e o
CD is almost independent of the models and approximations 01F ,“\;
considered here. The nonalternating CD decreases near chain = [ £ ‘.“"0\ Vol 3
edges, where the LOP, and therefore the bond-order alterna- ™ 0 3 ‘o' \0'.‘;’ L E
tion, becomes large. This is because the strong bond-order . _\m,’ hedd F
alternation is incompatible with a large CB. N ; ; ; . ;

Conversely, the alternating CD and LOP distributions de- W T,
pend strongly on the models and approximations. To do a 0.05 f_\‘ [ ;
more quantitative study, we define the amplitude of oscillat- 2 N @,\ “\ 'f
ing y/ andd/ of a charged soliton lattice in the following 5 OF ¥ ll N '." LN 3
way. In the continuum version of the Pariser-Par-Pople = [ \w L ’»,..
model, the analytic HF solution of a charged soliton lattice ~ 005 ' m ' PR
has been obtainet.In the solutiony/ andd/ in the heavily (@)
doped regime are given by

, o~ ng
yi—ycos( N ) ©
~ [wnd
d{zd’sm( N ) (10

where ng is the number of charged solitons. The
amplitudesy’ andd’ are obtained by fitting these curves to
the data using the least-squares method. To eliminate the
boundary effects, the data at seven sites or seven bonds from
each chain edge are not used. The distributiong oind

di could be nicely fitted by these curves at 7.7% and 11%
doping. We show thg dependences of ' andd’ in Fig. 3.

We ploty’ asy ' aty=0.

A. SSH model

As seen from Fig. @), the ground state of this model
within the classical lattice approximation has electronic and
lattice structures characteristic of a charged soliton lattice;
the sign of the LOP is reversed at the soliton centers, and a
CDW-like structure appears around the soliton centers.

In the QMC method, a long sequence of classical lattice
configurationsd QMC samplesare generated. Each configu-
triaotlg: t?)pipt)s T)rrsotl)r;btirllitey Sd?gtlrjiirll,lct:i?)nwilrt]htr? e pqucJ) g?ﬂgﬁyg%ﬂﬂgrthe SSH model, those obtaingd by the classical Igttice approxima-

o tion are shown by the broken lines, and those obtained by the QMC
state. We show the LOP distributions of three randomly .

. - . method are shown by the closed diamortgIn the SSH-extended
picked up QMC samples in Fig. 4'_ As seen from_ th? flgure’Hubbard model, those obtained by the HF approximation are shown
the Q?gnltude of qgantum_fluctuat!ons of t.he lattice is Iargerby the solid lines, and those obtained by the QMC method are
thany’. The result is consistent with previous ones at half-gpo\yn by the closed circles. In the SSH-Hubbard model, those ob-

" 9,20 ; ~
filing. ™" As seen from Figs. @) and 3, howevery’ re-  (ained by the QMC method are shown by the open circles.
mains finite when quantum fluctuations of the lattice are in-

troduced, and the characteristic structures of a chargefbllows. As shown by previous worke’ each lattice site
soliton lattice survive them even at the heaviest doping confluctuates almost independently. As a result, contributions of
centration considered here. The result can be understood &g collective tunneling fluctuations between two degenerate

FIG. 2. The LOP, CD, nonalternating CD and alternating CD
distributions of the ground state in the case of 11% dopfagin
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Y — lower. As a regult, the effects of non_collective fluctuations,
where each site fluctuates almost independently, are en-
oak 1 hanced in the heavily doped regime.
Vo
o1k . ° ° B. SSH-Hubbard model
§mmmm==mm e s By introducingU, the HF ground state becomes a SDW
() PN . SN TPRIPI- BRI N <IN state at half-filling, as mentioned above. As a result, the HF
0.08 :“~--.:_ ' ' ' ' 4 charged soliton lattice solution is unstable in this model.
< I Tt . We next consider the effects of quantum fluctuations. In
R - 1 the same way as in Sec. IV A, we can see that the magnitude
0.04& " . = ] of the quantum fluctuations of the lattice is very large in this
b o . SSH-Hubbard model, and also in the SSH-extended Hubbard
) J model. However, the LOP and CD distributions obtained by
0o 1 1 1 AT T the classical lattice approximation and those obtained by the
0 4 8 yo 12 QMC method are almost the same away from half-filling in

~ these two models. Thus, the effects of quantum fluctuations
FIG. 3. They dependences of ' andd’. In the SSH model, of the lattice on these expectation values are very small in
those obtained by the classical lattice approximation are shown bthese two models including the Coulomb interaction.
the broken lines, and those obtained by the QMC method are shown When quantum fluctuations of electrons are introduced,
by the closed diamonds. In the SSH-extended Hubbard modefinite y ' appears as seen from Fig. 3, and the ground state
those obtained by the HF approximation are shown by the SO”CbecomeS a Charged soliton |att|cqla:t4% This comes from
lines, and those obtained by the QMC method are shown by théne stabilization of a BOW state by them. Howewgr, de-
closed circles. In the SSH-Hubbard quel, those obtained by th(ereases with increasing, and the bond lengths become al-
QMC method are shown by the open circles. most uniform in the heavily doped regime as seen from Fig.
) } . 3. The result is consistent with that obtained by Jeckelmann
phases of bond-length alternation, which destroy the finitgyq BaeriswyP? except tha§/ ' aty=4% is much smaller in
LOP, are negligible in this case. _ the present case. In their calculation, lattice structure of
The amplitudey ' is reduced by quantum fluctuations of eqyally spaced solitons is assumed, and the fluctuation of the
the lattice. The reduction ity ' is the largest(25%) at  positions of the charged solitons mentioned before is not

y=4%. The large reduction can be attributed to the fluctuagonsidered. We think that the difference can be attributed to
tion of the positions of the charged solitons for the following thjs point.

reasons. First, the fluctuation reduge$ on average. More-

over the fluctuation is much larger at=4% than at sng considered in this paper, as seen from Fig. 3. This is

y=7.7% or 11% because the interaction between adjacefecayse the HF energy is increased by CD alternation in this
charged solitons is much weaker there. Second, the fluctugs e3¢

tion can be seen directly. We divided the QMC samples into

several blocks. By comparing averaged CD and LOP distri-

butions for each block, we can see that the positions of the C. SSH-extended Hubbard model

charged solitons fluctuate very slowly whgr4%. First, we consider the effects of the Coulomb interaction

In the heavily doped regime, the reductionsyin by  within the HF approximation. Since a BOW state is stabi-
quantum fluctuations of the latti¢@6% aty=11% and 17% |ized by V, the HF ground state again becomes a charged
at y=7.7%) are still larger than that of the half-filled case. soliton lattice in this model, as seen from FigbR As seen
This can be intgrpreted as follows. Q(sir!creases, the ratio from Fig. 3,'5/ in this model is much larger than that in the
of the BOW region, where the LOP s finite, decreases, an&ssH model in spite of the fact that the distributions of non-
the adiabatic potential as a function gf becomes shal- ajternating CD are almost the same in these models. This is
because the CDW:-like electronic structure is stabilized by
V. The amplitudégy ' decreases with increasiygn the SSH
model, whiley ' is almost constant tg in this model. This
comes from the fact that a soliton is an amplitude soliton in
the SSH model, but is a phase soliton in this mddel.

When guantum fluctuations of electrons are introduced,
y' and d’ remain finite even at the highest doping
considered here, as seen from Fig. 3. This indicates that a
charged soliton lattice survives them even in the heavily
doped regime.

FIG. 4. The LOP distributions of the randomly picked up three T[le quantum fluctuations Oi electrons~reduce bpth
QMC samples in the SSH model in the case of 11% doping, arénd d’. The reductions both iry ' and ind’ are nearly
shown by the thin solid, broken, and dotted lines. The LOP distri-iﬂde‘pendent of away from half-filling and the reduction in
bution (expectation valueof the ground state obtained by the QMC Y' is larger away from half-filling than at half-filling. This
method is shown by the thick solid line. can be understood in the same way as the SSH model; the

In this model,a’ is almost zero at all doping concentra-

0.2

LOP (&)
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V. DISCUSSIONS

4k . As shown in Sec. IVy ' becomes almost zero in the
> 3 ] heavily doped regime in the SSH-Hubbard model. Jeckel-
= F mann and Baeriswyl obtained a similar result using the varia-
2k ] tional approach with the Gutzwiller wave functidhThey
3 ] further showed that the energy gap also becomes almost zero
oF in the regime as a result of the vanishing LOP. Thus they

12 proposed that the metal-insulator transition can be explained
in the SSH-Hubbard model. As shown in Sec. IV, however,
FIG. 5. They dependences d; . In the SSH model, that ob- V has effects on the electronic and lattice structures which

tained by the classical lattice approximation is shown by the brokerﬁ;annOt bg described b‘yj andl a finite LOP survives even in
line, and that obtained by the QMC method is shown by the closedn€ heavily doped regime in the SSH-extended Hubbard
diamonds. In the SSH-extended Hubbard model, that obtained b§nodel. Since it is not natural to assume that oMyis

the HF approximation is shown by the solid line, and that obtainedstrongly screened in polyacetylene, we conclude that quan-
by the QMC method is shown by the closed circles. In the SSHtum fluctuations of electrons reduce the energy gap, but that
Hubbard model, that obtained by the QMC method is shown by thét remains finite even in the heavily doped regime; the metal-
open circles. insulator transition can not be explained by a simple single-

chain model.
fluctuation of the positions of the charged solitons reduces e have not considered some important effects such as

y' in the low doping regime, and noncollective fluctuations, interchain coupling, the electric field from dopant ions, and
which also reduce’, increase in the heavily doped regime disorder. It will be necessary to consider them to explain the
because the HF energy potential becomes shallow there. metal-insulator transition in polyacetylene. Among them, the
last two effects can be taken into account straightforwardly

D. Formation energy by the present method. The electric field from dopant ion_s

_ o ] pins charged solitons, and strongly suppresses the fluctuation

The formation energy of a charged solitén is defined  of their positions. As a result, it probably reduces the corre-
by lation effects on the electronic and lattice structures of a
charged soliton lattice in the lightly doped regime. As for the

Er={E(+»)+E(—»)—2E(0)}/(2v), (1D effects of disorder, since the interaction between charged
whereE( = v) is the ground-state energy when the net Ch(fjlrg(_§olitons is significanFIy \(veakened t_)y quantum fluctua_ltions of
is = v, and E(0) is that of the half-filled case. Using the electrons, the electric field from disordered dopant ions, for

anion-cation symmetry of the present Hamiltonian, we ob£Xample, causes stronger effects on the arrangement of

tain charged solitons when quantum fluctuations are considered.
In this way, these two effects which are not considered in
Ei={E(+v)—E(0)+Uv/2}/v. (12)  this paper, couple with the effects of quantum fluctuations.
These are subjects of a future study.
We show they dependence dE; in Fig. 5. It is widely accepted that charged solitons carry electronic

In the SSH modelE; increases slightly with increasing current in the nonmagnetic regiriddowever, the conduc-
y, and the effects of quantum fluctuations of the lattice ontion mechanism remains to be explained as noted from the
E; are small. Conversely, in the SSH-extended Hubbardeginning of the soliton modéf. The problem is that
model, E; obtained by the HF approximation increases rap-charged solitons are pinned by the electric field from dopant
idly in the regimey>8%, where the adjacent charged soli- ions, and the pinning potentiédbout 0.1 eV is too strong to
tons strongly overlap. This indicates that the interaction bebe unpinned by the thermal fluctuations. To explain the un-
tween them is very strong in this regime in this case, and thgtinning mechanism, Fukutome and Takahashi proposed a
the increase irE; can be attributed to the soliton-soliton conduction mechanism in which electronic current is carried
interaction energy. By introducing quantum fluctuations ofby interstitial solitons and soliton holes in a pinned charged
electrons E; is slightly increased ay=4% and 7.7%. The soliton lattice produced by thermal excitatidtisThe theory
small increase in the regime where the soliton-soliton interhas been improved by several auth&>The formation and
action energy is small can be attributed to the increase in thpinning energies of these defects were calculated using the
formation energy of an isolated charged soliton. This show#iF approximation in these papers. However, because of the
that stabilization by quantum fluctuations in the BOW phasestrong interaction between charged solitons, these energies
is larger than that in the CDW phase around the chargedre too large to explain the high conductivity in this regime.
soliton centers. On the other hartf}, is significantly reduced Since the interaction is significantly weakened by introduc-
by quantum fluctuations of electrons yt11%. The large ing quantum fluctuations of electrons, the unpinning mecha-
reduction implies that the interaction between adjacentism may be explained by the theory when fluctuations are
charged solitons is weakened significantly by them. This idaken into account. In this way, quantum fluctuations may
partially because the magnitudes of both bond-length andlso play an important role in the conduction mechanism in
CD alternations are reduced by them. this regime.
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