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The effects of quantum fluctuations of electrons and the lattice on the electronic and lattice structures of
doped polyacetylene are studied using the quantum Monte Carlo method. We adopt the model where the
on-site (U) and the nearest-neighbor (V) Coulomb interaction terms are added to the Su-Schrieffer-Heeger
~SSH! model. In the SSH model, a charged soliton lattice survives quantum fluctuations of the lattice even in
the heavily doped regime. However, the magnitude of bond-length alternation in the interface regions between
charged solitons is reduced by them. In the model whereU.0 andV50, the ground state becomes a charged
soliton lattice in the low doping regime by introducing quantum fluctuations of electrons. The magnitude of the
bond-length alternation in the interface regions decreases with increasing doping concentration and becomes
almost zero in the heavily doped regime. In the model whereU.0 andV.0, a charged soliton lattice survives
quantum fluctuations of electrons and the lattice even in the heavily doped regime. However, both the mag-
nitude of the bond-length alternation in the interface regions and the magnitude of the charge-density alterna-
tion around the soliton centers are reduced by them. The interaction between charged solitons is significantly
weakened by quantum fluctuations of electrons, which results in a significant reduction of the charged soliton
formation energy in the heavily doped regime.@S0163-1829~96!08535-9#

I. INTRODUCTION

The Pauli susceptibility rises sharply when the doping
concentration (y) increases beyond a critical concentration
~about 6%!.1,2 This shows that the heavily doped polyacety-
lene has a finite density of states~DOS! at the Fermi energy.
This is confirmed by the transport measurement; the electri-
cal conductivity remains finite as low as 1 mK in some
highly conductive samples.3–5 On the other hand, infrared
active vibrational modes, which are ascribed to charged soli-
tons in the low doping regime, persist into the heavily doped
regime.6 This suggests that the ground state in this regime is
not the usual metal with a uniform bond length, but a
charged soliton lattice.

In simple independent-electron models for a single poly-
acetylene chain, the ground state is also a charged soliton
lattice in the heavily doped regime, and the charged soliton
lattice solution has a finite gap at the Fermi energy.7 Thus the
simple model is inconsistent with the experiment. Several
theories have been proposed to explain this metallic phase by
adding some interactions neglected in the simple model such
as effect of disorder,8–11 interaction with dopant ions,12,13

and interchain coupling,14–17 and some of them have suc-
ceeded in explaining the metallic phase.

In all the theories mentioned above, quantum fluctuations
of both electrons and the lattice have been neglected. How-
ever, as shown by Su18 and others,19,20 the magnitude of
quantum fluctuations of the lattice is almost the same as that
of bond-length alternation. Such large fluctuations have been
shown to play important roles in the physics of
polyacetylene.20–25 As for the quantum fluctuations of elec-
trons, it is well known that they are very large in one-
dimensional systems like polyacetylene and their importance
has been confirmed by several studies in short polyenes.26,27

Thus theories which neglect these two quantum fluctuations

or deal with them as small perturbations are not valid in the
present case.

Recently, extensive studies have been done on strongly
correlated systems away from half-filling, and various inter-
esting physics have been found.28 However, the present sys-
tem includes unique physics which, to our knowledge, has
not been revealed by these works. First, electron-phonon
coupling is essential in the present system. For example, an
injected electron or hole accompanies lattice deformation,
and results in the formation of a charged soliton or a polaron.
Second, most studies have been done in the strongly inter-
acting limit, and charge degrees of freedom have been ne-
glected. However, such an approach is not valid for the
present problem because the strength of the Coulomb inter-
action is in the intermediate regime in polyacetylene. In par-
ticular, charge degrees of freedom are important away from
half-filling because a charged soliton, which plays important
roles there, has a charge-density-wave~CDW!-like electronic
structure around the soliton center.29 Third, only the on-site
Coulomb interaction has been considered in most theories.
However, the nearest-neighbor interaction is essential to
study the electronic structure, particularly away from half-
filling, because the CDW-like electronic structure in a
charged soliton is stabilized by the nearest-neighbor
interaction.29

The effects of quantum fluctuations of the lattice in the
nearly half-filled Su-Schrieffer-Heeger~SSH! model have
been investigated by the author using the adiabatic quantum
Monte Carlo ~QMC! method.20 It is shown that quantum
fluctuations of the lattice produce a DOS inside the classical
gap, and that the gap may be closed in the heavily doped
regime. Galli has studied the same problem by the QMC
method without the adiabatic approximation, and found that
a finite DOS at the Fermi energy is produced by quantum
fluctuations of the lattice in the heavily doped regime.30

However, since his way of calculating the DOS is based on
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the adiabatic picture, we think the problem is still open. As
for the quantum fluctuations of electrons, Takahashi, Yama-
moto, and Fukutome have taken account of superpolaron
fluctuations in a charged soliton lattice, and have succeeded
in showing that metallic properties appear in the heavily
doped regime in the extended Hubbard model.31 However, it
is not clear whether this assumption is valid or not. More-
over, since they used the lattice geometry of the Hartree-
Fock ~HF! charged soliton lattice solution, neither the lattice
distortions caused by superpolarons nor quantum fluctuations
of the lattice were considered there. Jeckelmann and
Baeriswyl showed that the gap is closed in the heavily doped
regime in the model where only the on-site Coulomb inter-
action is considered.32 However, the nearest-neighbor inter-
action is important in the present problem, as mentioned
above. Moreover, they assumed, that the geometry for
equally spaced solitons and geometry optimization has not
been done. Quantum fluctuations of the lattice were also not
considered in the theory.

Considering the points mentioned before, we investigate
the effects of quantum fluctuations of electrons and the lat-
tice away from half-filling in this paper. We adopted the
QMC method developed by Hirschet al.33 This method
gives exact electronic and lattice structures of the ground
state except for the statistical errors. Thus large and nonlin-
ear fluctuations can be described, and quantum fluctuations
of both electrons and the lattice can be taken into account
simultaneously by the method. Moreover, the method is ap-
plicable to the model which includes not only the on-site
Coulomb interaction but also the Coulomb interaction be-
tween different sites.

II. MODEL

As mentioned in Sec. I, both electron-electron and
electron-phonon interactions play important roles in poly-
acetylene. Furthermore, not only the on-site but also the
nearest-neighbor Coulomb interactions are important there.
Considering these points, we have adopted the following
Hamiltonian for a single chain of polyacetylene:

H52(
i ,s

$t01a~ui2ui11!%$ci11,s
† ci ,s1ci ,s
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$Uni ,↑ni ,↓1Vnini11%. ~1!

The first three terms show the SSH Hamiltonian, whereui is
the displacement operator of thei th CH group along the
chain direction, the operatorci ,s (ci ,s

† ) annihilates~creates! a
p electron of spins at the i th site, t0 is the mean transfer
integral between neighboring electrons,a is the elec-
tron-phonon coupling constant,K is thes-bond spring con-
stant,ȳ is a constant which determines the mean bond length,
M is the mass of the CH group, andpi is the momentum
operator conjugate toui . The fourth term describes the on-
site and nearest-neighbor Coulomb interactions betweenp
electrons, whereU and V are the on-site and the nearest-

neighbor repulsions, respectively, andni ,s is the electron-
density operator of spins at thei th site given by

ni ,s5ci ,s
† ci ,s ~2!

and

ni5ni ,↑1ni ,↓ . ~3!

A linear chain is considered in this paper because we need
not consider the global flip between QMC samples with dif-
ferent winding numbers in this case.33

We considered the following three sets of the parameters
which have been shown to be appropriate for polyacetylene
by previous works.6,32,34 In the SSH-extended Hubbard
model, t052.5 eV, a54.07 eV Å21, K542 eV Å22,
M53145 eV21 Å 22, U/t052.5, andV/t051.25. ȳ is deter-
mined as described in the following to minimize the bound-
ary effects. First, we obtained the geometry optimized half-
filled HF solutions both in a periodic chain and in a linear
chain. The HF solution is uniformly dimerized, and does not
depend onȳ in the periodic chain. On the other hand, the HF
solution is almost uniformly dimerized except for the chain
edge regions, and it depends onȳ in the linear chain. We
chose the value ofȳ so that the mean bond length in the
uniformly dimerized region in the linear chain is the same as
that of the periodic chain;ȳ50.123 Å. In the SSH-Hubbard
model, V/t050 and the other parameters are the same as
those in the SSH-extended Hubbard model. In the SSH
model,K521eV Å22, ȳ50.243 Å,U/t05V/t050, and the
other parameters are the same as those in the two models.

The expectation values of various physical quantities
were obtained by the QMC method. The inverse of the tem-
peratureb was taken to be 40 eV21. Sincebv054, where
v05A4K/M is the bare optical-phonon frequency, the ef-
fects of thermal phonon excitations can be neglected. The
Trotter number for electrons and that for phonons were taken
to be 1200 and 40, respectively, in models including the
Coulomb interaction, and they were taken to be 400 and 10,
respectively, in the SSH model. To check the validity of
these values, we calculated the ground-state energy when
a50 using the periodic boundary condition. In this case, the
phonon part of the present Hamiltonian is that of the coupled
harmonic oscillators and the electronic part of the present
Hamiltonian is Hubbard~Hückel! Hamiltonian whenV50
(U5V50!. These models can be solved exactly. We com-
pared the energies of these two parts obtained by the present
method with those of the exact solutions, and found that the
errors in them were both within a few percent.

To compare with QMC results, we also obtained the same
physical quantities by using the classical lattice and HF ap-
proximations. In the classical lattice approximation, only lat-
tice degrees of freedom were treated classically by taking the
Trotter number for phonons to be 1 in the QMC simulation.
In the HF approximation, the lattice coordinates were treated
classically and the electronic and lattice structures were self-
consistently determined so as to satisfy Hellmann-Feynman
force equilibrium.

For the convenience in the following, we here introduce
two important physical quantities: the charge density~CD!
and the lattice order parameter~LOP!. The electronic and
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lattice structures of a charged soliton are characterized by
them. The CD at thei th site is given by

di512(
s

^ci ,s
† ci ,s&, ~4!

where ^O& indicates the expectation value of an operator
O. The deviation of the bond length from the mean bond
length at thei th bond is given by

yi5^ui11&2^ui&. ~5!

These quantities are decomposed into nonalternating and al-
ternating components as

di5d̄i1~21! idi8 ,

yi5 ȳi1~21! i yi8 , ~6!

where nonalternating and alternating components are repre-
sented by the bar and prime, respectively. The operational
definition of d̄i is

d̄i5
1
4 ~di2112di1di11!, ~7!

and the same formulae can be used forȳi .
35 The LOP at the

i th bond is defined byyi8 namely, the alternating component
of the deviation of the bond length. Hence the LOP shows
the strength of the bond-length alternation, including the
phase of the alternation. A bond order wave~BOW! state,
where the bond length alternates uniformly, is characterized
by a uniform and finite LOP, and a CDW state is also char-
acterized by a uniform and finitedi8 .

III. RESULTS AT HALF-FILLING

Before turning to the results away from half-filling, we
first discuss the half-filled case. We show the LOP distribu-
tions of the half-filled ground states in the three models in
Fig. 1. The system sizeN is taken to be 54. Note that the
ground states have no CD in all the models.

A. SSH model

In the SSH model, the LOP is finite and almost uniform
except for the chain edge regions, and the ground state is a
BOW state within the classical lattice approximation. The
LOP becomes larger near the chain ends because of a bound-
ary effect.

The bond-length alternation survives quantum fluctua-
tions of the lattice, but the magnitude of the LOP is reduced
by them. We define the average magnitude of the LOP by

ȳ85
1

N215(i58

N28

yi8 . ~8!

To reduce the boundary effect, the LOP’s at the seven bonds
from each chain edge were excluded from the average. The
average magnitudeȳ8 is reduced by 9% by introducing
quantum fluctuations of the lattice. This value is consistent
with that obtained by the adiabatic QMC method.20 This is
an expected result because the energy gap is much larger
thanv0, and the adiabatic approximation is good in this case.
However, this value is smaller than those obtained in earlier
works.18,19We think that this is because much smaller sys-
tems were considered there.

B. SSH-Hubbard model

Within the HF approximation,U stabilizes a spin-density
wave ~SDW! state, but the HF energy of a BOW state is
independent ofU.36 As a result, the HF ground state is a
SDW state in this model with the present parameters.

Next, we consider the effects of quantum fluctuations. In
this SSH-Hubbard model and also in the SSH-extended Hub-
bard model, the LOP distribution obtained by the classical
lattice approximation is almost the same as that obtained by
the QMC method, in contrast to the SSH model. Thus the
effects of quantum fluctuations of the lattice on the LOP are
very small in these two models, including the Coulomb in-
teraction.

When quantum fluctuations of electrons are taken into
account, a finite LOP appears, as seen from Fig. 1, and a
BOW state becomes the ground state in this model. This is
because the correlation energy of a BOW state is larger than
that of a SDW state. This result is consistent with previous
ones.37–40

C. SSH-extended Hubbard model

Within the HF approximation, a BOW state is stabilized
by V,36 and the HF ground state again becomes a BOW state
as seen from Fig. 1. ThusU andV have opposite effects on
the LOP within the HF approximation.

The bond-length alternation survives quantum fluctua-
tions of electrons, but they reduceȳ8 by 19% in this model.
Thus correlations byU andV have also the opposite effects
on the LOP.

IV. RESULTS AWAY FROM HALF-FILLING

We now consider the case away from half-filling. The
following three different doping concentrations were consid-
ered :y54% (n52 andN550, wheren is the net charge!,
y57.7% (n54 and N552!, and y511% (n56 and

FIG. 1. The LOP distribution of the ground state in the half-
filled case. In the SSH model, that obtained by the classical lattice
approximation is shown by the broken line, and that obtained by the
QMC method is shown by the closed diamonds. In the SSH-
extended Hubbard model, that obtained by the HF approximation is
shown by the solid line and that obtained by the QMC method is
shown by the closed circles. In the SSH-Hubbard model, that ob-
tained by the QMC method is shown by the open circles.
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N554!. The doping concentrationy54% belongs to the non-
magnetic regime. The other ones belong to the metallic re-
gime, andy57.7% is just above the critical doping concen-
tration when the experimentally observed metal-insulator
transition occurs. There are two kinds of charged solitons
with different interface structures.35 In order to set all the
charged solitons to be of one kind, we could not fixN. We
show the LOP, CD, nonalternating CD and alternating CD
distributions of the ground state at 11% doping in the SSH
model in Fig. 2~a!, and those in the SSH-extended Hubbard
and the SSH-Hubbard models in Fig. 2~b!.

As seen from Fig. 2, the distribution of the nonalternating
CD is almost independent of the models and approximations
considered here. The nonalternating CD decreases near chain
edges, where the LOP, and therefore the bond-order alterna-
tion, becomes large. This is because the strong bond-order
alternation is incompatible with a large CD.36

Conversely, the alternating CD and LOP distributions de-
pend strongly on the models and approximations. To do a
more quantitative study, we define the amplitude of oscillat-
ing yi8 and di8 of a charged soliton lattice in the following
way. In the continuum version of the Pariser-Par-Pople
model, the analytic HF solution of a charged soliton lattice
has been obtained.41 In the solution,yi8 anddi8 in the heavily
doped regime are given by

y i85 ỹ8cosS pnsi

N D , ~9!

di85d̃8sinS pnsi

N D , ~10!

where ns is the number of charged solitons. The
amplitudesỹ8 and d̃8 are obtained by fitting these curves to
the data using the least-squares method. To eliminate the
boundary effects, the data at seven sites or seven bonds from
each chain edge are not used. The distributions ofyi8 and
di8 could be nicely fitted by these curves at 7.7% and 11%
doping. We show they dependences ofỹ 8 andd̃8 in Fig. 3.
We plot ȳ8 as ỹ 8 at y50.

A. SSH model

As seen from Fig. 2~a!, the ground state of this model
within the classical lattice approximation has electronic and
lattice structures characteristic of a charged soliton lattice;
the sign of the LOP is reversed at the soliton centers, and a
CDW-like structure appears around the soliton centers.

In the QMC method, a long sequence of classical lattice
configurations~QMC samples! are generated. Each configu-
ration appears in the sequence with a probability propor-
tional to its probability distribution in the quantum ground
state. We show the LOP distributions of three randomly
picked up QMC samples in Fig. 4. As seen from the figure,
the magnitude of quantum fluctuations of the lattice is larger
than ỹ8. The result is consistent with previous ones at half-
filling. 9,20 As seen from Figs. 2~a! and 3, however,ỹ8 re-
mains finite when quantum fluctuations of the lattice are in-
troduced, and the characteristic structures of a charged
soliton lattice survive them even at the heaviest doping con-
centration considered here. The result can be understood as

follows. As shown by previous works,9,20 each lattice site
fluctuates almost independently. As a result, contributions of
the collective tunneling fluctuations between two degenerate

FIG. 2. The LOP, CD, nonalternating CD and alternating CD
distributions of the ground state in the case of 11% doping.~a! In
the SSH model, those obtained by the classical lattice approxima-
tion are shown by the broken lines, and those obtained by the QMC
method are shown by the closed diamonds.~b! In the SSH-extended
Hubbard model, those obtained by the HF approximation are shown
by the solid lines, and those obtained by the QMC method are
shown by the closed circles. In the SSH-Hubbard model, those ob-
tained by the QMC method are shown by the open circles.
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phases of bond-length alternation, which destroy the finite
LOP, are negligible in this case.

The amplitudeỹ 8 is reduced by quantum fluctuations of
the lattice. The reduction inỹ 8 is the largest~25%! at
y54%. The large reduction can be attributed to the fluctua-
tion of the positions of the charged solitons for the following
reasons. First, the fluctuation reducesỹ 8 on average. More-
over the fluctuation is much larger aty54% than at
y57.7% or 11% because the interaction between adjacent
charged solitons is much weaker there. Second, the fluctua-
tion can be seen directly. We divided the QMC samples into
several blocks. By comparing averaged CD and LOP distri-
butions for each block, we can see that the positions of the
charged solitons fluctuate very slowly wheny54%.

In the heavily doped regime, the reductions inỹ 8 by
quantum fluctuations of the lattice~16% aty511% and 17%
at y57.7%! are still larger than that of the half-filled case.
This can be interpreted as follows. Asy increases, the ratio
of the BOW region, where the LOP is finite, decreases, and
the adiabatic potential as a function ofỹ8 becomes shal-

lower. As a result, the effects of noncollective fluctuations,
where each site fluctuates almost independently, are en-
hanced in the heavily doped regime.

B. SSH-Hubbard model

By introducingU, the HF ground state becomes a SDW
state at half-filling, as mentioned above. As a result, the HF
charged soliton lattice solution is unstable in this model.

We next consider the effects of quantum fluctuations. In
the same way as in Sec. IV A, we can see that the magnitude
of the quantum fluctuations of the lattice is very large in this
SSH-Hubbard model, and also in the SSH-extended Hubbard
model. However, the LOP and CD distributions obtained by
the classical lattice approximation and those obtained by the
QMC method are almost the same away from half-filling in
these two models. Thus, the effects of quantum fluctuations
of the lattice on these expectation values are very small in
these two models including the Coulomb interaction.

When quantum fluctuations of electrons are introduced,
finite ỹ 8 appears as seen from Fig. 3, and the ground state
becomes a charged soliton lattice aty54%. This comes from
the stabilization of a BOW state by them. However,ỹ 8 de-
creases with increasingy, and the bond lengths become al-
most uniform in the heavily doped regime as seen from Fig.
3. The result is consistent with that obtained by Jeckelmann
and Baeriswyl,32 except thatỹ 8 at y54% is much smaller in
the present case. In their calculation, lattice structure of
equally spaced solitons is assumed, and the fluctuation of the
positions of the charged solitons mentioned before is not
considered. We think that the difference can be attributed to
this point.

In this model,d̃8 is almost zero at all doping concentra-
tions considered in this paper, as seen from Fig. 3. This is
because the HF energy is increased by CD alternation in this
model.36

C. SSH-extended Hubbard model

First, we consider the effects of the Coulomb interaction
within the HF approximation. Since a BOW state is stabi-
lized by V, the HF ground state again becomes a charged
soliton lattice in this model, as seen from Fig. 2~b!. As seen
from Fig. 3, d̃8 in this model is much larger than that in the
SSH model in spite of the fact that the distributions of non-
alternating CD are almost the same in these models. This is
because the CDW-like electronic structure is stabilized by
V. The amplitudeỹ 8 decreases with increasingy in the SSH
model, whileỹ 8 is almost constant toy in this model. This
comes from the fact that a soliton is an amplitude soliton in
the SSH model, but is a phase soliton in this model.41

When quantum fluctuations of electrons are introduced,
ỹ8 and d̃8 remain finite even at the highest doping
considered here, as seen from Fig. 3. This indicates that a
charged soliton lattice survives them even in the heavily
doped regime.

The quantum fluctuations of electrons reduce bothỹ 8
and d̃8. The reductions both inỹ 8 and in d̃8 are nearly
independent ofy away from half-filling and the reduction in
ỹ8 is larger away from half-filling than at half-filling. This
can be understood in the same way as the SSH model; the

FIG. 3. They dependences ofỹ 8 and d̃8. In the SSH model,
those obtained by the classical lattice approximation are shown by
the broken lines, and those obtained by the QMC method are shown
by the closed diamonds. In the SSH-extended Hubbard model,
those obtained by the HF approximation are shown by the solid
lines, and those obtained by the QMC method are shown by the
closed circles. In the SSH-Hubbard model, those obtained by the
QMC method are shown by the open circles.

FIG. 4. The LOP distributions of the randomly picked up three
QMC samples in the SSH model in the case of 11% doping, are
shown by the thin solid, broken, and dotted lines. The LOP distri-
bution~expectation value! of the ground state obtained by the QMC
method is shown by the thick solid line.
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fluctuation of the positions of the charged solitons reduces
ỹ 8 in the low doping regime, and noncollective fluctuations,
which also reduceỹ 8, increase in the heavily doped regime
because the HF energy potential becomes shallow there.

D. Formation energy

The formation energy of a charged solitonEf is defined
by

Ef5$E~1n!1E~2n!22E~0!%/~2n!, ~11!

whereE(6n) is the ground-state energy when the net charge
is 6n, andE(0) is that of the half-filled case. Using the
anion-cation symmetry of the present Hamiltonian, we ob-
tain

Ef5$E~1n!2E~0!1Un/2%/n. ~12!

We show they dependence ofEf in Fig. 5.
In the SSH model,Ef increases slightly with increasing

y, and the effects of quantum fluctuations of the lattice on
Ef are small. Conversely, in the SSH-extended Hubbard
model,Ef obtained by the HF approximation increases rap-
idly in the regimey.8%, where the adjacent charged soli-
tons strongly overlap. This indicates that the interaction be-
tween them is very strong in this regime in this case, and that
the increase inEf can be attributed to the soliton-soliton
interaction energy. By introducing quantum fluctuations of
electrons,Ef is slightly increased aty54% and 7.7%. The
small increase in the regime where the soliton-soliton inter-
action energy is small can be attributed to the increase in the
formation energy of an isolated charged soliton. This shows
that stabilization by quantum fluctuations in the BOW phase
is larger than that in the CDW phase around the charged
soliton centers. On the other hand,Ef is significantly reduced
by quantum fluctuations of electrons aty511%. The large
reduction implies that the interaction between adjacent
charged solitons is weakened significantly by them. This is
partially because the magnitudes of both bond-length and
CD alternations are reduced by them.

V. DISCUSSIONS

As shown in Sec. IV,ỹ 8 becomes almost zero in the
heavily doped regime in the SSH-Hubbard model. Jeckel-
mann and Baeriswyl obtained a similar result using the varia-
tional approach with the Gutzwiller wave function.32 They
further showed that the energy gap also becomes almost zero
in the regime as a result of the vanishing LOP. Thus they
proposed that the metal-insulator transition can be explained
in the SSH-Hubbard model. As shown in Sec. IV, however,
V has effects on the electronic and lattice structures which
cannot be described byU, and a finite LOP survives even in
the heavily doped regime in the SSH-extended Hubbard
model. Since it is not natural to assume that onlyV is
strongly screened in polyacetylene, we conclude that quan-
tum fluctuations of electrons reduce the energy gap, but that
it remains finite even in the heavily doped regime; the metal-
insulator transition can not be explained by a simple single-
chain model.

We have not considered some important effects such as
interchain coupling, the electric field from dopant ions, and
disorder. It will be necessary to consider them to explain the
metal-insulator transition in polyacetylene. Among them, the
last two effects can be taken into account straightforwardly
by the present method. The electric field from dopant ions
pins charged solitons, and strongly suppresses the fluctuation
of their positions. As a result, it probably reduces the corre-
lation effects on the electronic and lattice structures of a
charged soliton lattice in the lightly doped regime. As for the
effects of disorder, since the interaction between charged
solitons is significantly weakened by quantum fluctuations of
electrons, the electric field from disordered dopant ions, for
example, causes stronger effects on the arrangement of
charged solitons when quantum fluctuations are considered.
In this way, these two effects which are not considered in
this paper, couple with the effects of quantum fluctuations.
These are subjects of a future study.

It is widely accepted that charged solitons carry electronic
current in the nonmagnetic regime.6 However, the conduc-
tion mechanism remains to be explained as noted from the
beginning of the soliton model.42 The problem is that
charged solitons are pinned by the electric field from dopant
ions, and the pinning potential~about 0.1 eV! is too strong to
be unpinned by the thermal fluctuations. To explain the un-
pinning mechanism, Fukutome and Takahashi proposed a
conduction mechanism in which electronic current is carried
by interstitial solitons and soliton holes in a pinned charged
soliton lattice produced by thermal excitations.43 The theory
has been improved by several authors.44,45The formation and
pinning energies of these defects were calculated using the
HF approximation in these papers. However, because of the
strong interaction between charged solitons, these energies
are too large to explain the high conductivity in this regime.
Since the interaction is significantly weakened by introduc-
ing quantum fluctuations of electrons, the unpinning mecha-
nism may be explained by the theory when fluctuations are
taken into account. In this way, quantum fluctuations may
also play an important role in the conduction mechanism in
this regime.

FIG. 5. They dependences ofEf . In the SSH model, that ob-
tained by the classical lattice approximation is shown by the broken
line, and that obtained by the QMC method is shown by the closed
diamonds. In the SSH-extended Hubbard model, that obtained by
the HF approximation is shown by the solid line, and that obtained
by the QMC method is shown by the closed circles. In the SSH-
Hubbard model, that obtained by the QMC method is shown by the
open circles.
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