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Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency
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We investigate the properties of resonant modes which arise from the introduction of local defects in
two-dimensional2D) and 3D photonic crystals. We show that the properties of these modes can be controlled
by simply changing the nature and size of the defects. We compute the frequency, polarization, symmetry, and
field distribution of the resonant modes by solving Maxwell's equations in the frequency domain. The dynamic
behavior of the modes is determined by using a finite-difference time-domain method which allows us to
compute the coupling efficiency and the losses in the microcd\8163-18206)05135-1

I. INTRODUCTION most any requirement. We also compute the losses of the
cavity and show that the quality fact@Q can be made very

It is well known that the rate of spontaneous radiativelarge by simply increasing the size of the crystal.
decay of an atom scales with the atom-field coupling and
with the density of allowed states at the atomic transition
frequency. By changing either the atom-field coupling or the To investigate the properties of defect states in photonic
density of states, the rate of spontaneous emission can lmeystals, two different computational approaches are used.
significantly affected. The first solves Maxwell’s equations in the frequency do-

In free space, the density of states scales quadraticallnain, while the second solves the equations in the time do-
with the frequency, and the probability of finding an atom inmain. These two methods reveal different information about
an excited state simply decays exponentially with time. Théhe cavity. The frequency-domain method vyields the fre-
introduction of boundaries in the vicinity of the atom has theduency, polarization, symmetry, and field distribution of ev-
effect of changing the density of allowed states. For ex2ry €igenmode in the cavity, and the time-domain method
ample, in the case of a bounded system with perfectly redllows us to determine ;he temporal behav_lor of the modes.
flecting walls, the density of states is reduced to a spectrall)?y looking at the evolution .Of the .f'elds In time, we V.V'” be
discrete set of very sharp peaks, each corresponding to le to o_Ietermlne the coupll_ng efficiency, the scattering, and
resonant mode of the cavity. If the atomic transition fre- (e quality factor of the cavity.
guency falls between any of these peaks, atomic radiative
decay can be essentially suppressed. However, if the transi- ] . )
tion frequency matches one of the resonances, the density of In the first method, the fields are expanded into a set of
available modes for radiative decay becomes very |argeha'rmon.|c modes; the wave equation for the magnetic field is
which in turn enhances the rate of spontaneous emission. Written in the form

It has been suggested recently that photonic crystals could 1 w2
be used to control the rate of spontaneous emission, since VX —VXH(r)] =—H(r). (1)
they have the ability of suppressing every mode in the struc- e(r) ¢
ture for a given range of frequencit§.These crystals be- Equation(1) is an eigenvalue problem which can be rewrit-
have essentially like three-dimensional dielectric mirrors, reten as
flecting light along every direction in space. In the case
where the radiative transition frequency of an atom falls OH,=\pHp, )
within the frequency gap of the crystal, spontaneous radiawhere ©® is a Hermitian differential operator and, is the
tive decay can be suppressed. nth eigenvalue, proportional to the squared frequency of the

If a small defect is introduced in the photonic crystal, amode. We solve Eq(2) by using a variational approach,
mode(or group of modescan be created within the structure where each eigenvalue is computed separately by minimiz-
at a frequency which lies inside the g&%. The defect be- ing the functionakH,|®|H,). This method is described in
haves like a microcavity surrounded by reflecting walls. Ifmore detail in Refs. 9 and 10. Briefly, to find the minimum,
the defect has the proper size to support a state in the bange use the conjugate gradient method with preconditions,
gap, and if the radiative transition frequency of the atomkeepingH,, orthogonal to the lower states. The conjugate
matches that of the defect state, the rate of spontaneous emigradient method has the advantage of being more efficient
sion will be enhanced. than the traditional method of steepest descents, in that it

In this paper, we investigate the properties of these defegiequires less iterations to reach convergence. In order to
states: their frequency, polarization, symmetry, and field disminimize the functional, we need to calculate
tribution, as well as their coupling efficiency to modes out-
side the crystal. We show that, by choosing a proper defect,
we can shape the resonance and tune its frequency to suit

Il. COMPUTATIONAL METHODS

A. Frequency domain

1
OH,(r)= VXWVX Hn(r). 3
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Since the curl is a diagonal operator in reciprocal space, and e o——s doubly-degenerate states
1/e(r) is a diagonal operator in real space, each of these 0.45
operators is computed in the space where it is diagonal by

going back and forth between real and reciprocal space using 3 040
fast Fourier transform@=FT’s). This allows the operato® g8 monopole
to be diagonalized without storing every element of the <
Nx N matrix; instead, only thé\ elements ofH,, need be g 035
stored. In turn, we will be able to consider structures of very g dipole
large dimensions. £ 030 v uadrupole

B. Time domain 025

0 02 0.4 0.6 0.8
The second method solves Maxwell's equations in real Radius of Defect (a)

space, where the explicit time dependency of the equations is
maintained. The equations for the electric and magnetic FIG. 1. Frequency of the defect states in an array of dielectric
fields can be written as rods with radius 0.28. The defect is introduced by changing the
radiusR of a single rod. The case whelRe= 0.20a corresponds to a
J perfect array, while the case wheR=0 corresponds to the re-
EH(r,t) =—VXE(r,t), (4) moval of a rod. The shaded regions indicate the edges of the band

gap.

d pendent, it is possible to study the behavior of each polariza-
e(r)EE(r,t):VxH(r,t). (5 tion separately. For the remainder of this section, only TM
modes will be considered.
These equations are discretized on a simple cubic ldttice, A defect is now introduced into the perfect array of rods.
where space-time points are separated by fixed units of tim&he defect can have any shape or size; it can be made by
and distance. The derivatives are approximated at each laghanging the refractive index of a rod, modifying its radius,
tice point by a corresponding centered difference, whichor removing a rod altogether. The defect could also be made
gives rise to finite-difference equations. By solving theseby changing the index or the radius of several rods. Here we
equations, the temporal response of the microcavities can hoose to modify the radius of a single rod. The modes in the
determined. crystal are computed using a supercell approximation, which
In solving Egs.(4) and (5), special attention must be consists of placing a large crystal with a defect into a super-
given to the fields at the boundary of the finite-sized compu<cell and repeating it periodically in space. In the example
tational cells. Since information outside the cell is not avail-below, the supercell contains &7 crystal.
able, the fields at the edges must be updated using boundary We begin with a perfect crystal—where every rod has a
conditions. In our simulations, we used Mur’s second-orderadius of 0.2@—and gradually reduce the radius of a single
absorbing boundary conditions in order to minimize backrod. Initially, the perturbation is too small to localize a mode
reflections into the ceff? in the crystal. When the radius reaches @,1& resonant
mode appears in the vicinity of the defect. Since the defect
involves removing dielectric material in the crystal, the mode
appears at a frequency close to the lower edge of the band

We begin by investigating the properties of a microcavitygap. As the radius of the rod is further reduced, the fre-
in a two-dimensional photonic crystal. The crystal consists ofiuency of the resonant mode sweeps upward across the gap,
a perfect array of infinitely long dielectric rods located on aand eventually reachef=0.38&/a when the rod is com-
square lattice of lengtla. Each rod has a radius of 020 Ppletely removed. Figure 1 shows the frequency of the mode
and a refractive index of 3.4. By normalizing every param-for several values of the radius. The frequency of the mode
eter with respect to the lattice constamtwe can scale the can be tuned by simply adjusting the size of the rod.
microcavity to any length scale simply by scaliag The electric field distribution of the resonant mode is
shown in Fig. 2a) for the specific case where the radius is
equal to 0.1@. The electric field is polarized along the axis
of the rods and decays rapidly away from the defect. Since

We investigate the propagation of electromagnetic fieldghe field does not have a node in the azimuthal direction, it is
in the plane normal to the rods. Since the rods have transldabeled a monopole. The frequency of the mode fis
tional symmetry along their axes, the waves can be decou=0.3%/a.
pled into two transversely polarized modes, transverse elec- Instead of reducing the size of a rod, it would also have
tric (TE) and transverse magnetiTM), depending on been possible to increase its size. Again, starting from a per-
whether the electric or magnetic field is normal to the rodsfect crystal, we gradually increase the radius of a rod. When
The allowed modes in this structure are computed by usinghe radius reaches 0.25two doubly degenerate modes ap-
the frequency domain approach described in Sec. Il A. Apear at the top of the gap. Since the defect involves adding
large gap for TM modes is found between the frequenciesnaterial, the modes sweep downward across the gap as the
f=0.2%/a and f=0.4Z/a. A similar gap for TE modes radius increases. The modes eventually disappear into the
does not exist. Since TE and TM modes are linearly indecontinuum below the gap when the radius becomes larger

Ill. TWO-DIMENSIONAL CRYSTALS

A. Mode symmetry
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FIG. 2. Electric-field distribution of TM defect states in an array 2 06
of dielectric rods for various defect sizésa) Monopole,R=0.1(a.
(b) and(c) Doubly degenerate dipoleR=0.33. (d) and(e) Non- 04
degenerate quadrupoleR=0.60a. (f) Second-order monopole, 02
R=0.60a. (g) and (h) Doubly degenerate hexapold®=0.6Qa. (i)
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DodecapoleR=1.00a. The white circles indicate the position of
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transmission

than 0.4@ (see Fig. 1 The field distribution of the two
doubly degenerate modes is shown in Fig®) 2nd Zc) for
the case wherd&R=0.33a. The modes are labeled dipoles
since they have two nodes in the plane.

By increasing the radius further, a large number of reso
nant modes can be created in the vicinity of the defect. Thi

is shown again in Fig. 1. Several modes appear at the top Qjane passing through the middle of the defect. We have also
the gap: first a quadrupole, then anotheondegenerale  ghoyn that the resonant mode has even symmetry with re-
quadrupole, followed by a second-order monopole and tWQnect 1o thexy plane, since the electric field is polarized

doubly degenerate hexapoles. These modes also Sweghng thez direction. Therefore, plane waves should be able

downward across the gap as the defect is increased. Thg ., L ; ;
2 ple energy efficiently into the cavity as long as they are
modes are shown in Figs.(@-2(h) for the case where polarized along the direction.

R=Q.60a. ) i o Instead of studying the steady-state response of plane

Figure 2i) shows the field distribution for one of the \yayes one frequency at a time, a single pulse of light is sent
many resonant modes which exist in the cavity WS 14 the crystal with a wide frequency profile. The spectrum
equal to the lattice constaat The defect state resembles a ¢ the incident pulse is shown in Fig(l8. It has a Gaussian
whispering-gallery mode found in a microdisk laser. Theprofile centered at=0.35/a and a width of 0.26/a which
field has many noded.2 in this caspand is located mostly  oytands beyond the edges of the gap. The electric field is
at the edges of the defect. polarized along the axis of the rods. The transmission
through the crystal is computed at a single point, marked
“detector” in Fig. 3(a). The transmission is normalized with

In order to couple energy into the cavity, it is necessary taespect to the incident amplitude. Results are shown in Fig.
transfer energy through the walls of the crystal. Incident light3(c).
can transfer energy to the resonant mode by the evanescent A wide gap can be seen in the transmission spectrum. The
field across the array of rods. To compute the coupling effigap extends fronf=0.24c/a to f=0.4Z/a. Although the
ciency, we use the time-domain approach described in Seapper frequency of the gap matches that of Fig. 1, Fig) 3
I B, and consider a finite-sized>711 crystal in which a appears to have a larger gap than Fig. 1. We recall, however,
single rod has been removed. Plane waves are sent at nornthht the gap in Fig. 1 applies to all directions in the plane
incidence, and the transmission is computed through thevhereas the one in Fig.(§ applies only to propagation
crystal. The setup is shown in Fig(a. along the direction of the incident waves.

The incident light must have some component of the same The modes inside the gap are strongly attenuated. They
symmetry as that of the cavity mode in order to couple intocannot propagate through the crystal and are reflected back.

FIG. 3. (a) Setup for the computation of the coupling efficiency.
(b) Gaussian frequency profile of the incident pulgg Normalized
transmission through the cavity as a function of frequency.

the cavity. In the case of a missing rod, we have shown that
fhe resonant mode has even symmetry with respect tazhe

B. Coupling efficiency
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On the other hand, modes outside the gap can be transmitted 10000 F— . :
efficiently; some frequencies have a transmission coefficient teveeneee
close to unity. This suggests that the modes undergo little 1000 £ 1 eeccccses

scattering or reflection as they propagate through the crystal.e «

cavity Q

The rapid fluctuations of the transmission at low frequencies ¢ « + 0 1 seteliite
are not real features of the system; they arise from the small ok 1 seeeeeees
signal-to-noise ratio at the edges of the Gaussian frequency ] sreeeesee
profile. 1 L— . : .
Figure 3c) also shows the presence of a sharp resonance W 99
Size of crystal

inside the gap. The coupling efficiency from the incident
plane waves to the resonant mode is determined by the
height of the peak. Since the resonant mode radiates into a
wide range of angles, and since the transmission is computed . - . .
at a single point in space, only a fraction of the transmitted f ;Lhe vaIL:el OfQ. is shown in Fig. 4tz_15”a fu_r:ﬁt;)]n of th% S'Zef
fields is detected. The coupling efficiency is computed to e the crysta Q increases exponeq lally with thé number o
slightly larger than 50%. rod.s. It reaches a.value close to ]m'n_th as little as f(_)ur
lattices on either side of the defect, in agreement with our
previous results, which showed strong confinement at the

C. Quality factor resonance. Since the only energy loss in the structure occurs
The quality factorQ is a measure of the losses in the PY tunneling through the edges of the crystl,does not
cavity. Since the reflectivity of the crystal surrounding the Saturate even for a very large number of rods.
defect increases with the number of rods, we expecthat
will also increase with the size of the crystal. To compQte
we choose to use an approach which first involves pumping
energy into the cavity, then monitoring its decay. We recall In order to control every property of a resonant mode, the

FIG. 4. Quality factor as a function of the size of the crystal.

IV. THREE-DIMENSIONAL CRYSTALS

that the quality factor is defined s mode must be completely isolated from the continuum.
Three-dimensional photonic crystals have the ability to iso-
woE woE late a mode by opening a complete band gap along every

Q= BT TS (6)  direction in 4 steradians.

whereE is the stored energyw, is the resonant frequency, A. Crystal geometry
and P=—dE/dt is the dissipated power. A resonator can
therefore sustai@ oscillations before its energy decays by a
factor ofe™ 2™ (or approximately 0.2%of its original value.

The fabrication of three-dimension@D) crystals poses a
great challenge. It is equally as important to find a geometry
After exciting the resonant mode, the total energy can bwhich lends itself to microfabrication as it is to dgsign a

' tructure that generates a large gap. In the past five years,

;nonltcr)]red asba funct|o_n c|>f t|r'r|1e, ang _ca(;\ fbe ﬁomputed several different geometries have been suggested for the fab-
drg(r;‘t e number or optical cycles required for the energy t0;. i, of 3p crystal$*~*8Figure 5 shows one such geom-
Be):‘.ore presenting the results, we note that hdactor etry. Itis de_signed to be bl.mt layer by layer using two dif-
could also have been computed Ljsing a different method errent materials. The materials are ch.osen such that one may
- Whe removed at the end of the fabrication process. The result-

5&8‘3'1' g}[artglf?agwier g?ttlr?:dreag)oéi%r'\ghl_eor?eAn(;)ziI;r:hrZstugnseing structure is a connected dielectric network filled with air.
P P Since the size of the gap scales with the index contrast be-

By computlngAw from transmission calculation, we could tween the different materials, the use of air optimizes the size
have estimated the value @f This method, however, would ?f the gap
J .

have led to larger uncertainties, especially for large values
Q.
We consider again a finite-sized crystal made of dielectric
rods where a single rod has been removed. The crystal di-
mensions ar&l X N, whereN is an odd number. We compute

Q for several values oN.

In order to excite the resonance efficiently, the initial con-
ditions are chosen such that the pump mode and the resonant
mode have a large overlap. Since the resonant mode is a
monopole, we chose to initialize the system with a Gaussian
field profile centered around the defect. The energy inside
the cavity was then measured over time. During the initial
stages of the decay, every mode—except the Rigbre—
quickly radiated away, leaving only the energy associated
with the resonant mode inside the cavity. The mode contin- FIG. 5. Three-dimensional photonic crystal. The dielectric ma-
ued its slow exponential decay. From the rate of decay, weerial is shown in gray, with edges in black. The rest of the structure
computedQ. is filled with air.
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FIG. 7. Vector plot of the electric field in a vertical plane pass-
FIG. 6. Frequency of the resonant mode as a function of théng through the middle of the defect. The overlay indicates the
defect height in units of lattice constants. The defect is introduceedges of the crystal. The defect is located at the center of the crys-
by breaking one of the dielectric ribs. The shaded regions indicatéal, and is created by breaking one of the dielectric ribs.
the edges of the band gap.

o . exhibits the largest delocalization along that direction, which
The structure shown in Fig. 5 could be fabricated, forghould lead to the largest deviation in frequency from the
example, with GaAs and Ba _,As; the connected net- computed value df. As expected, the error bars decrease in
work could be made of GaAs, while &ba; _,As could be  sjze when the resonant mode moves toward the center of the
used as a sacrificial material. After SeleCtively remOVing thQJap since the mode becomes more Strong|y localized, i.e., the
Al,Ga_As, the resulting gap would extend from attenuation through each unit cell becomes larger.
f=0.5Z/a tOf:O.Ga:/a, aSSUming a refractive index of 3.4 A vector p|0t of the resonant mode is shown in F|g 7 for
for GaAs at 1.55um.*® A more detailed description of the the specific case wheké=0.32a. The electric field is shown
fabrication process of this crystal can be found in Ref. 18. in 3 vertical plane through the middle of the defect. The state
is localized in all three dimensions, and the field has even
B. Resonant mode symmetry with respect to the plane. The electric field
t“jumps” from one edge of the broken rib to the other, while
@e magnetic field has the shape of a torus and runs around
e electric field. The frequency of the modefis 0.5%/a.
The symmetry of the mode can be changed by choosing a

As we have shown in Sec. lll, the introduction of a defec
in a 2D crystal can create one or more sharp resonant mod
in the vicinity of the defect. The same holds for 3D crystals.
In the case of 3D crystalsuch as the one shown in Fig), 5

a defect can be made either by adding extra dielectric mz‘;ltéj-iffe".ent type Of. defect V‘.’ith a different shape or size.
rials, or by breaking a rib. Either of these defects could be A time-domain analysis reveals the same overall results as

implemented during the growth sequence in one of the |ay'ghose presented in Secs. Il B and Il C; incident light can

ers transfer energy to the resonant mode by the evanescent field
In this section, we choose to break a single dielectric ripAcross the crystal, and the quality facfrincreases expo-

at the center of the crystal shown in Fig. 5. The defect isner:tlalfly "t‘ﬂth th% S'Zﬁ of the Fc;rys;al. W? COTPUtefdth@e_
created by cutting across one of the vertical ribs with an ajfactor for the mode shown in Fig. 7 as a function of the size
disk. The radius of the disk is 0.27wherea is the lattice ©f (€ crystal, using a similar excitation scheme as the one
constant of the crystal. The overall size of the defect is agused in Sec. Il C. Results are shown in Fig. 8. The overall
justed by varying the heighi of the disk. If the size of the ce_II SIze 1S plotted along the axis. In th? case of a crystal
defect is properly chosen, a single localized state appears ith dimensions AX2nx2n, the defect is surrounded oy

the gap. Figure 6 shows the frequency of the state as a funb’—n't ceIIs.m every Q|rect|_c>n. Since the resonant que IS sur-
tion of H. Again, the frequency can be tuned by changing th ounded in three dimensions, the only loss mechanism occurs
size of the defect. Since the defect consists of removing di-rc.mll coupling to the continuum through the walls of finite
electric material, the resonance appears at the bottom of tH3ICkness:
gap and moves upward as the size of the defect increases. As

we have shown in Fig. 1, the curve which runs through the 10000 — . . .
points need not vary linearly with the size of the defect. E ]
Furthermore, the volume of dielectric material removed does 1000

not vary linearly withH. WhenH =0.16a, the disk begins to
overlap with the horizontal dielectric ribs, and has the effect
of removing a larger volume of material per unit lendth

The error bars arise from numerical uncertainty which is
due to size limitations in our simulations. The modes are
computed in a X2X2 supercell with 32 FFT points per unit N , , ,
cell length(or a total of 2.6<10° FFT pointg. To estimate 2x2x2  4xdxd  6x6x6  8x8x8
the size of the error bars, the frequency of the resonant mode
was computed at both thié and X points of the first Bril-
louin zone in reciprocal space. Thé point—which lies in FIG. 8. Quality factor as a function of the size of the three-
the vertical direction in Fig. 5—was chosen since the modalimensional crystal.

100 3 E

cavity Q

10§

Size of crystal
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The growth rate ofQ per unit cell is proportional to the in a photonic crystal, sharp resonant states can be created in
localization strength of the resonant mode. For the casthe vicinity of the defect. The properties of these modes—
shown in Fig. 8, the resonance is located at midgap, a disfrequency, polarization, symmetry, and field distribution—
tance(weyqs— wo)/ @y of 12% from the edges of the gap. For can be controlled by changing the nature and the size of the
purposes of comparison, the resonance in the 2D crystalefect. Furthermore, the resonant states can couple to exter-
shown in Fig. 4 was located a distance of 11% from thenal modes by the evanescent field across the crystal, and the
closest gap edge. Since both resonances are located at almqatlity factor Q increases exponentially with the crystal’s
equal distances from the closest gap edge, the exponentisize.
growth of Q is similar in both cases.
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