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Excited states in metal voids
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Based on a variational model, we obtain the spectra of excited states in metallic voids. Void plasmons are
seen to have a peculiar behavior, concerning the radius of the cavity, which can be ascribed to a delay in the
onset of collectivity. This is further demonstrated by the electronic currents and transition densities obtained.
One of the major features of the developed method is that it enables us to describe arbitrarily large voids, up
to the bulk limit.[S0163-182696)08631-4

INTRODUCTION our results. In Sec. IV, comparison to data is presented and
some conclusions are drawn.
Microcavities in metals and in other materials have been
the object of much experimental and theoretical activity in THE MODEL

the last 30 years. One of the driving reasons for such an ) ) i ) i
interest is the understanding of the processsnage oc- . Our physical model is an ele_ctr_on gasin a unl_form POsI-
curring in metals by the incidence of neutrons and ions Ve baclfgrgubndl[r;[hef ?lo-cglleﬁjelh_?tm _mo.del, which can be
Cavities are usually filled with some noble gas, especiallysummar'ze y the Tollowing Ramiftonian:
helium. The presence of such bubbles, even at very low con-

2 2
centrations, causes drastic changes in the metal properties. H=> p_1+2 € + U(x)+W, (1)
Among the facilities that lead to a growth of helium bubbles To2m S [x _Xj| i :

on the constituent, or shielding material, are fast fission and
fast breeder reactors, fusion devices, tritium storages, spall
tion sources, and direet implantation:=>

In this work we study the collective excitations of voids in .
metals, originated by the interaction of photons and electron(s_e being the electron chargg : T
with the bubbles. Although the large majority of experimen- We assume t.haF the eqw_hbnum electron density is the
tal work concerns the structure and formation of bubbles, P2 '€ @S fhor thhe Jellhum dezcrlbed_ by(_x)=nﬁ®(r— R).' Wed b
the last two decades, many of them also aimed to study th%]Ssume that the _egftr(_)n ynamics is well approximated by
excitation of surface plasmons on voftid! using, basically, 1'¢ Viasov equation. Since Viasov dynamics neglects ex-
ultraviolet and energy-loss spectroscopy. The gas pressu dflange effects and electron-electron correlations, these ef-
inside the bubbles varies largely with the bubble size, del€CtS ar€ taken into account phenomenologically by adding a
creasing with increasing radi. two-body & |n_teract|0.n(5|rr_1ulat|ng exchangg effegtaind a

three-bodyé interaction (simulating correlation effectsto

In our model we will consider spherical voids, with a zero A : )
gas concentration inside. Although this situation should béhe Hamilionian. We also add a one-bodyinteraction,

considered as a limiting case of the available experimenta‘f'hICh Qescrlbes the (_affect of the more convenuonal pseudo-
data, it turns out to be a good approximation. potential. The effective energy functional referring to the

Existing theoretical models range from the earlier, purelyfnev"I cluster may therefore be expressed as follows:

classical model$?~° to more recent works, using density 2
functional theory in a local density approximatita hydro- E= f drf ( L +a,
dynamical approach and a sum-rule-based methtidHow- 2m
ever, there are still many aspects to be understood concern-

vhere the first term is the kinetic enerdy(x) is the poten-
ial energy due to the uniform positive density distribution,
andW is the electrostatic energy of the positive background

1
+§fdrlf szvlzf(l)f(Z)

) . 1
ing the void plasmons. + 37 f dl“lf dl“zf dI'3v105f (1) F(2)f(3)
The present model, based on a variational scheme origi- :
nally due to Andoand Nishizak?® further developed by da LE® LW )
e—] "

Providencia and otherS and recently successfully applied to
the study of cluster& aims to bring a deeper insight into the The inclusion of the effective one-body, two-body, and
dynamics of the excited states in cavities, by exploiting thethree-body interactions is essential to confer predictive
power of the model to obtain not only sum rules and theirpower to our method. The terEgE)j stands for the energy
exhausted fractions, but also transition densities and ele@ssociated with the Coulomb interaction electron-jellium,
tronic currents for the excited states.

Since the details of the formalism have already been pre- © o[ 43 5. N(1)noe(2)
sented in a previous papéwe shall only briefly summarize Ecoj=—e f d le d°x =g ©)

. . .. . 1 2

the main steps in Sec. Il, pointing out the changes in the
formalism relative to this former work. In Sec. Il we collect andW stands for the interaction of the jellium with itself:
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e’ No(1)No(2) and
L 3, NolH)Nol<)
W= fdxlfdxz —xg 4 .
In Eq. (2), the term inv,, includes the energy associated U= 21 a,on’ "t 9

with the electron-electron Coulomb interactidh(® ,
is the self-consistent potential.

(c) = f d3X1f d3x, ——— n(Hn(2) (5) The minimum of the total energy yields the equilibrium
Txa—xa| density and leads to the equilibrium condition:
The symbolf stands for the distribution function of the va-
lence electronsn is the density of the valence electrons, _0+2 a,(c—1)ng= (10)
dI'=gd®xd®p/(27:)® is the volume element in phase space, 3 %

and g=2 the spin multiplicity. The one-, two-, and three- o ) )
body & interactions lead to an effective potential energy of A nonequilibrium state is obtained from the ground state
the form |y through

3

=f d3x2 a,n’, (6) |¢)= ex;{ )|¢o> 11

wherea,, are force constants adjusted so that we obtain the\_‘\’heres is @ hermitian one-body operator and the dynamics
experimental values of the volume energy, bulk modulusiS describedup to second ordgiby the Lagrangian
and density of the metal.

. . . . . 1 A n 2 N N
The total energy in the equilibrium state is given by L(2)=I— 3S _ STH.S
E=Q(r+22_ja,n’, whereQ=N/n stands for the volume 2h<¢°|[ :Sllo) 2ﬁ2<¢°|[ [H.S]l o).

of the metal andr is the kinetic energy density: (12
A pE Considering an expansion &in powers of the momen-
T= gf (277ﬁ)3 2m = 2nh)® 5m’ (7)  tum, restricted to the first two terms,
The equilibrium distribution function of the valence elec- L 1
tron gas is S:Z X(X,t)+ 5 [p-s(x,t) +s(x,t)-p]|, (13
2 . . .
f(x,p)=0| \— p——U O(R-T), ) where)(.and s are taken as basic dynamical variables, the
2m Lagrangian reads

-1
L<2>—f {—(s V=5 Vx): —(Vx) (Vx)—— ((V 5%+ (&asﬁwﬁsa)z)—g a,,$ng<v~s>2
e [V-(ngs)1a[ V- (ngs) ]2
_= 3y 43
> f d3x,d%x, =] } (14
We expand the dynamical variablgsands in multipoles and their radial dependence in powersréRj,
kmax
( 2 bR Yo, (15)
k= I'T'Iln
kmax
X= 2 ad (R, (16
Requiring the action to be stationary, we obtain the following matrix equation for the variaples
—mY Agbi=2 By, (17)
K K

where we have used one of the equations of motion to eliminate the vasiglb)e

In the present calculations we choodsg,,=—2 so that the integrals implied by the Lagrangidd) do not diverge.
According to the choice ok, we obtain a variational scheme of ordef,,,=Kmax—Kmint1 wWith ng,,, eigenmodes.

The matricesA, 4 and B, read
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A qu+|(|+1) 1
kq= —0(0) Tkrqrl (18)
and
-2 274(0) o, [B 279(0)
qu:(k+q_1)R 3 {kq(kg—k—q+3)+1(1+1)(2kgq—3k—3g+1)+[I(1+1)]%}+ 57 g |Lk(k+1)
I I M(OMOR [ e (ko) !
S D@ D= DI =g TR e U D s D ke T kT D)
! ! k(k+1)—1(1+1 D—-I(+1 19
ot lgrT tiore) Kk D10 D Tla@ ) -+ D (19
|
where ms 3 (128 Bt 26
T ABnZl Ta 7o wp,
, 4mno(0)e? m; 5mny(0)R“\ 9
Wp= m ’ (20 and forl>0 we obtain
is the plasma frequency, or bulk volume plasmon, #nig ms 4 7145(0) l+1

the compression modulus. (I+2)(21+1)+ 2l+1 “p (27

Solving this system, we obtain a set of eigenvalues, cor-
responding to the energy spectrum of the excited states and a For | =0, one sees that, for increasing radii, the energy
set of eigenvectors describing the dynamical varialléa  approaches the volume plasmon valtiey, . The first term,
velocity potential ands [V-(ngs) is the transition densily  important for smaller radii, depends, basically, as expected,
These normal modes are orthogonal and it can be shown thah n(0), B, and, implicitly, through the force constarss,
they satisfy the single and triple energy weighted sum rulesn the bulk energy. The formalism describes the dependence
(m; and my), when we consider an external operator of thepf the monopole energgbreathing modeon the compress-

m,  3mR po(0)

form

kmax

D(X)= > Y. (22)

= Kmin

If we chooseD(x)=r 2 for =0 and D(x)=r 'Y, for
>0, the sum rules read, foe=0,

87Ng(0)
and
_ 87 (. 128 8mny(0) .
M= s | BT 5 o)t 3me @ (B3
and, forl >0,
no(0)(1+1)
My =— T (29

_ 279(0) No(0) w5(1+1)?
mg—W (| +1)(|+2)(2| +1)+ 2(2I+1)mR2 I1-

(29

It is instructive to write down the ratio of th@a; to them;

ibility of the metal, through the bulk modulus.

For 1>0, E; for large radii converges to
fiwy\(1+1)/(21+1), which is the classically obtained en-
ergy for void excitations, analogous to the Mie limit for
clusters?*22The first term depends essentially on the den-
sity ng(0) and on the number of the missing atoms, since
70(0)/ny(0) is the kinetic energy per valence electron.

NUMERICAL RESULTS

With the choice given before for the excitation operator,
we calculate the excitation spectra in some metals. In Fig. 1,
we show the excitation of voids in aluminum, as a function
of the number of missing atoms in the cavity up to 100, for
the first five angular momenta and for several normal modes
of each multipolarity. The monopole, already for very few
missing atoms, reaches its limiting value, the bulk plasmon
fiw, . The dipole and also the higher multipoles show a blue-
shift with decreasing radii, in agreement with experimental
data’ For 1=1,2,..., surface plasmons are predicted. As a
function of the number of missing atoms, the volume plas-
mons are crossed by the surface plasmons, which are de-
scribed by much steeper curves. At the crossings, the re-
sidual behavior is present and the curves actually behave as
if the two modes repelled each other. Available data refer to
gas filled bubbles and a direct comparison is subject to re-
strictions, as already pointed out by other auttfots’—1°

sum rules. The result is the energy of the collective modeData are connected to a certain mean bubble radius, in a
provided it exhausts 100% of the sum rules. This quantitygistribution that is typically some A wide and the gas density
usually calledEZ2, is the energy of the mode that can be (inside the bubbléss dependent on the bubble radfuBoth

obtained in a sum rule approach. Het0,

factors affect the experimental plasmon energies relative to
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FIG. 1. Excitation spectra of voids in aluminum, as a function of
the number of missing atoms in the cavity for the lowest normal  FIG. 2. Dipole sum rule exhaustion for the eigenmodes in alu-
modes of the first five angular momenta. The thick full curves referminum (we have ordered the states from the lowest to the highest
to =0 normal modes, the dashed curves referl tal normal energy, as a function of the number of the missing atoms in the
modes, the dotted curves referlte2 normal modes, the dashed- cavity.
dotted curves refer tb=3 normal modes, and the thin full curves

refer tol =4 normal modes. place. It ranges from the value just bel@=10), to a value
_ _ just above(N=15), the end of the plateau, as one can see
the value expected for a single void. from Fig. 1. ForN=10, the transition densityp, character-

We may compare for instance, the result of Manzke, Creistically wiggly, shows no collectivity. Throughl=10-15,
celius, and Finkfor low He concentratiori3.3 at. % for the  the picture changes rapidly, with the smoothening of the
I=1 mode,EfZ}=11.5 eV, with our resulE,_;=13.3 eV.  curve, ending, folN=15, in a transition density that is al-
Existing theories systematically overshoot the plasmon eneready characteristic for a collective surface m@geaked at
gies and the reasons for that have been discussed in the ptae surfacg This sharp onset of collectivity happens for ev-
vious works already quoted. The general agreement is gooeyy multipolarity. The existence of a “minimum radius” for
with a typical discrepancy of 2—3 eV. having a collective state has already been pointed out by

An interesting point we want to address is the qualitativeBarbera and Bausell$® based on an approximate expres-
difference between the behavior of the plasmon energies for
clusters and for cavities, as a function of the number of miss-
ing atoms.

For clusters, one sees from Fig. 2 of Ref. 22, that the
energies show, for every multipolarity, a smooth decreasing

ALUMINUM, 4'=2,", N=10, 13, 14, 15, ny,=18
1.0

behavior with increasing radii. For voids one has an essen- 0.75
tially different behavior: energies show a plateau, whose ex-
tent depends on the considered multipolariand, as we 0.5
shall see in the following, also depends on the specific

Figure 2 shows the dipole sum rule exhaustion for 18
eigenmodes in aluminurfordered in energies from the low- 00

est,i =1, to the highesti=ng,,) up to a number of missing
atoms well below the end of the plateau that one observes in
Fig. 1. The eigenmodes were obtained in a variational calcu- -0.25
lation where in each of the expansions in E4%) and(16)

we take 18 termsng,,=18). One sees that below a certain s

radius(around 10 missing atomshe lowest mode, which is o ol ' '1'2' ' '1‘4' t 1'6' b 1'8' ' ‘2 0

also expected to be the most collective, bears no collectivity, ‘ ’ " r/R ' '

for it exhausts only a negligible fraction of the total sum rule

strength. The othethighep modes exhaust, for different ra-  F|G. 3. Transition densities in aluminum, for the quadrupole, for
dii, different shares of the oscillator strength. In Fig. 3, we1o, 13, 14, and 15 missing atoms. We have normalized the transi-
show the calculated transition densities for the lowest quadton densities to 1 at=R. The full curve refers taN=15, the
rupole mode and for the values Nfwhere a steeper increase dashed curve refers td=14, the dotted curve refers d¢=13, and

of the exhaustion of the energy weighted sum rule takeshe dashed-dotted curve refersNe=10.

T T T Y IO
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FIG. 4. Excitation spectra of voids in potassium, as a function of ~FIG. 5. Hexadecapole sum rule exhaustion for the eigenmodes
the number of missing atoms in the cavity for the lowest normalin copper, as a function of the number of the missing atoms in the
modes of the first five angular momenta. The thick full curves refercavity. We have ordered the states from the lowest to the highest
to =0 normal modes, the dashed curves referl +al normal energy.
modes, the dotted curves referlte2 normal modes, the dashed-

dotted curves refer tb=3 normal modes, and the thin full curves sity, and also that of the currents, in Fig. 7 shows this mode
refer tol =4 normal modes. to be a collective surface state.

It is interesting to notice that there is some experimental
sion for the radius obtained analytically. However, they fore-evidences for plasmons of higher multipolarities, even for
see such an effect not only for cavities but also for clusterssmall bubble$:” According to our results, we could suggest
According to our calculatiori this only happens for cavi- that, for those small bubbles, the observed plasmons could
ties. Moreover, in our formalism, we can ascribe this lack incorrespond to higher eigenmodes, instead of the lowest one.

collectivity in the lowest eigenmodé =1) to the higher Concerning to the monopole, Fig. 8 shows the obtained
eigenmodes of the system. This effect is strongly dependent

on the density and bulk modulus of the metal. So, concerning
cavities, we can loosely speak of “soft” metals, such as
cesium and potassium, where the minimum radius able to
sustain a collective mode does not correspond to more than
some missing atom&~1 A) even for higher multipolarities,

as can be seen from Fig. 4. In an analogous way we can
speak of “hard” metals, such as aluminum and copper,
where the minimum radius can correspond to some hundreds
of missing atomg~tens of A for higher multipoles, and
some tenths for the dipole. In Figs. 5 and 6, we show, re-
spectively, the fraction of the exhausted sum rule and the
energy spectrum with the number of missing atoms for the
hexadecapole in copper. Since the higher the multipolarity,
the more sudden the onset of the collectivity for the lowest
eigenmode, we discuss the-4 case. In this case, for up to
about 80 missing atoms, there is no collectivity in ikrel . .
mode (i orders the eigenmodes for each multipolarity with 1 )
increasing order of energyNote that as long as one does not UL A R S L B L
have any single collective mode exhaustiamos} all the 00 W5£UM]‘;’E£ oﬁfai%snx?g'?wogéo 900
sum rule strength, sum rule based methods loose any predic-

tive power, since this is and priori” hypothesis of such FIG. 6. Excitation spectra of voids in copper, as a function of
methods. To study whether the higher modes that share fragse number of missing atoms in the cavity for the lowest normal

tions of the sum rule strength for some radial interval aremodes of the first five angular momenta. The thick full curves refer
indeed collective, we show, in Fig. 7, the transition densitytg |=0 normal modes, the dashed curves refer 4ol normal
and currents for the thirdi =3) hexadecapole, foN=78, modes, the dotted curves referlte 2 normal modes, the dashed-
where it peaks in the sum rule exhaustion, reaching abouwotted curves refer tb=3 normal modes, and the thin full curves
90% of the total strength. The behavior of the transition denrefer tol =4 normal modes.

11.25

10.75

VOID EXCITATION ENERGY [eV]
o
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FIG. 8. Monopole sum rule exhaustion for the eigenmodes in
FIG. 7. Transition density and currents for the third hexadecaaluminum, as a function of the number of the missing atoms in the
pole, for 78 missing atoms. Currents are presented in terms of radigaVvity. We have ordered the states from the lowest to the highest
function j.. defined byj(X)=j.(r)Y+10+]-(r)Y; 10, Wwhere  €nergy.
Y, +10 Stands for the vector spherical harmonics. The dashed line . . . .
refer toj . and the dotted curve refers fo. The full curve refersto ~ Various multipolarities were obtained, showing a good agree-

the radial function- j gjy(r) defined by the equatioW - j =jgivY,. ~ Ment with available experimental data. .
Cavity excited states present interesting behavior concern-

sum rule exhaustion. We recall that this result is connecteéhg the onset of the collectivity: there is a minimum radius
with the choice made for the external operator. In this workbelow which one cannot speak of a collective plasmon. It is
D(x)=r 2. Figure 8 shows that no mode bears a sizableseen that for hard metals, such as copper, collectivity re-
fraction of the total strength, which is scattered among thanains distributed among many higher-lying modes, up to
different modes. It must be noted that, with this simple in-many hundreds of missing atoms, for the higher multipolari-
tuitive form of operator, sum rule methods give no reasonties. Such an effect, which is absent for clustérputs re-
able result. In such a case, an adequate procedure is to usictions on the use of methods based on the hypothesis of a
the radial dependence of the electronic curjéxy, as calcu- single collective state for small voids. The bulk limit for
lated, for instance, in this work, as the external operator oBvery multipolarity is correctly obtained, even with the sheer
maximum overlap, in order to obtain a main collective stateuse of the sum rules satisfied by the model.

Comparison should then be made with real external excita-

tions in order to evaluate the probability of exciting such a ACKNOWLEDGMENTS
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