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Based on a variational model, we obtain the spectra of excited states in metallic voids. Void plasmons are
seen to have a peculiar behavior, concerning the radius of the cavity, which can be ascribed to a delay in the
onset of collectivity. This is further demonstrated by the electronic currents and transition densities obtained.
One of the major features of the developed method is that it enables us to describe arbitrarily large voids, up
to the bulk limit. @S0163-1829~96!08631-6#

INTRODUCTION

Microcavities in metals and in other materials have been
the object of much experimental and theoretical activity in
the last 30 years. One of the driving reasons for such an
interest is the understanding of the processes~damage! oc-
curring in metals by the incidence of neutrons and ions.
Cavities are usually filled with some noble gas, especially
helium. The presence of such bubbles, even at very low con-
centrations, causes drastic changes in the metal properties.
Among the facilities that lead to a growth of helium bubbles
on the constituent, or shielding material, are fast fission and
fast breeder reactors, fusion devices, tritium storages, spalla-
tion sources, and directa implantation.1–3

In this work we study the collective excitations of voids in
metals, originated by the interaction of photons and electrons
with the bubbles. Although the large majority of experimen-
tal work concerns the structure and formation of bubbles, in
the last two decades, many of them also aimed to study the
excitation of surface plasmons on voids,4–11using, basically,
ultraviolet and energy-loss spectroscopy. The gas pressure
inside the bubbles varies largely with the bubble size, de-
creasing with increasing radii.

In our model we will consider spherical voids, with a zero
gas concentration inside. Although this situation should be
considered as a limiting case of the available experimental
data, it turns out to be a good approximation.

Existing theoretical models range from the earlier, purely
classical models,12–16 to more recent works, using density
functional theory in a local density approximation,17 a hydro-
dynamical approach,18 and a sum-rule-based method.19 How-
ever, there are still many aspects to be understood concern-
ing the void plasmons.

The present model, based on a variational scheme origi-
nally due to Andōand Nishizaki,20 further developed by da
Providência and others21 and recently successfully applied to
the study of clusters,22 aims to bring a deeper insight into the
dynamics of the excited states in cavities, by exploiting the
power of the model to obtain not only sum rules and their
exhausted fractions, but also transition densities and elec-
tronic currents for the excited states.

Since the details of the formalism have already been pre-
sented in a previous paper22 we shall only briefly summarize
the main steps in Sec. II, pointing out the changes in the
formalism relative to this former work. In Sec. III we collect

our results. In Sec. IV, comparison to data is presented and
some conclusions are drawn.

THE MODEL

Our physical model is an electron gas in a uniform posi-
tive background, the so-called jellium model, which can be
summarized by the following Hamiltonian:
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where the first term is the kinetic energy,U~x! is the poten-
tial energy due to the uniform positive density distribution,
andW is the electrostatic energy of the positive background
~2e being the electron charge!.

We assume that the equilibrium electron density is the
same as for the jellium described byn0~x!5n0Q(r2R). We
assume that the electron dynamics is well approximated by
the Vlasov equation.21 Since Vlasov dynamics neglects ex-
change effects and electron-electron correlations, these ef-
fects are taken into account phenomenologically by adding a
two-body d interaction~simulating exchange effects! and a
three-bodyd interaction ~simulating correlation effects! to
the Hamiltonian. We also add a one-bodyd interaction,
which describes the effect of the more conventional pseudo-
potential. The effective energy functional referring to the
metal cluster may therefore be expressed as follows:
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The inclusion of the effective one-body, two-body, and
three-body interactions is essential to confer predictive
power to our method. The termEe2 j

(c) stands for the energy
associated with the Coulomb interaction electron-jellium,

Ee2 j
~c! 52e2E d3x1E d3x2

n~1!n0~2!

ux12x2u
, ~3!

andW stands for the interaction of the jellium with itself:
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In Eq. ~2!, the term inv12 includes the energy associated
with the electron-electron Coulomb interaction,Ee2e

(c) ,
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The symbolf stands for the distribution function of the va-
lence electrons,n is the density of the valence electrons,
dG5gd3xd3p/~2p\!3 is the volume element in phase space,
and g52 the spin multiplicity. The one-, two-, and three-
body d interactions lead to an effective potential energy of
the form
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whereas are force constants adjusted so that we obtain the
experimental values of the volume energy, bulk modulus,
and density of the metal.

The total energy in the equilibrium state is given by
E5V~t1(s51

3 asn
s!, whereV5N/n stands for the volume

of the metal andt is the kinetic energy density:
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The equilibrium distribution function of the valence elec-
tron gas is
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and
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is the self-consistent potential.
The minimum of the total energy yields the equilibrium

density and leads to the equilibrium condition:
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A nonequilibrium state is obtained from the ground state
uf0& through

uf&5expS i\ ŜD uf0&, ~11!

whereŜ is a hermitian one-body operator and the dynamics
is described~up to second order! by the Lagrangian
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Considering an expansion ofŜ in powers of the momen-
tum, restricted to the first two terms,
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wherex and s are taken as basic dynamical variables, the
Lagrangian reads
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n0
2m

~“x!•~“x!2
t0
3 S ~“•s!21

1

2
~]asb1]bsa!2D 2(

s
as

s~s21!

2
n0

s~“•s!2

2
e2

2 E d3x1d
3x2

@“•~n0s!#1@“•~n0s!#2
ux12x2u J . ~14!

We expand the dynamical variablesx ands in multipoles and their radial dependence in powers of (r /R),
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Requiring the action to be stationary, we obtain the following matrix equation for the variablesbk :

2m(
k
Aqkb̈k5(

k
Bqkbk , ~17!

where we have used one of the equations of motion to eliminate the variableak(t).
In the present calculations we choosekmax522 so that the integrals implied by the Lagrangian~14! do not diverge.

According to the choice ofkmin we obtain a variational scheme of orderndim5kmax2kmin11 with ndim eigenmodes.
The matricesAkq andBkq read
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is the plasma frequency, or bulk volume plasmon, andB is
the compression modulus.

Solving this system, we obtain a set of eigenvalues, cor-
responding to the energy spectrum of the excited states and a
set of eigenvectors describing the dynamical variablesx ~a
velocity potential! and s @“•~n0s! is the transition density#.
These normal modes are orthogonal and it can be shown that
they satisfy the single and triple energy weighted sum rules
~m1 andm3!, when we consider an external operator of the
form

D~x!5 (
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If we chooseD~x!5r22 for l50 andD~x!5r2 l21Yl0 for
l.0, the sum rules read, forl50,
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and, for l.0,
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It is instructive to write down the ratio of them3 to them1
sum rules. The result is the energy of the collective mode,
provided it exhausts 100% of the sum rules. This quantity,
usually calledE3

2, is the energy of the mode that can be
obtained in a sum rule approach. Forl50,
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For l50, one sees that, for increasing radii, the energy
approaches the volume plasmon value,\vp . The first term,
important for smaller radii, depends, basically, as expected,
on n0~0!, B, and, implicitly, through the force constantsas ,
in the bulk energy. The formalism describes the dependence
of the monopole energy~breathing mode! on the compress-
ibility of the metal, through the bulk modulusB.

For l.0, E3 for large radii converges to
\vpA( l11)/(2l11), which is the classically obtained en-
ergy for void excitations, analogous to the Mie limit for
clusters.12,13,22The first term depends essentially on the den-
sity n0~0! and on the number of the missing atoms, since
t0~0!/n0~0! is the kinetic energy per valence electron.

NUMERICAL RESULTS

With the choice given before for the excitation operator,
we calculate the excitation spectra in some metals. In Fig. 1,
we show the excitation of voids in aluminum, as a function
of the number of missing atoms in the cavity up to 100, for
the first five angular momenta and for several normal modes
of each multipolarity. The monopole, already for very few
missing atoms, reaches its limiting value, the bulk plasmon
\vp . The dipole and also the higher multipoles show a blue-
shift with decreasing radii, in agreement with experimental
data.9 For l51,2,..., surface plasmons are predicted. As a
function of the number of missing atoms, the volume plas-
mons are crossed by the surface plasmons, which are de-
scribed by much steeper curves. At the crossings, the re-
sidual behavior is present and the curves actually behave as
if the two modes repelled each other. Available data refer to
gas filled bubbles and a direct comparison is subject to re-
strictions, as already pointed out by other authors.6,9,17–19

Data are connected to a certain mean bubble radius, in a
distribution that is typically some Å wide and the gas density
~inside the bubbles! is dependent on the bubble radius.8 Both
factors affect the experimental plasmon energies relative to
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the value expected for a single void.
We may compare for instance, the result of Manzke, Cre-

celius, and Fink9 for low He concentration~3.3 at. %! for the
l51 mode,El51

exp 511.5 eV, with our resultEl51513.3 eV.
Existing theories systematically overshoot the plasmon ener-
gies and the reasons for that have been discussed in the pre-
vious works already quoted. The general agreement is good,
with a typical discrepancy of 2–3 eV.

An interesting point we want to address is the qualitative
difference between the behavior of the plasmon energies for
clusters and for cavities, as a function of the number of miss-
ing atoms.

For clusters, one sees from Fig. 2 of Ref. 22, that the
energies show, for every multipolarity, a smooth decreasing
behavior with increasing radii. For voids one has an essen-
tially different behavior: energies show a plateau, whose ex-
tent depends on the considered multipolarity~and, as we
shall see in the following, also depends on the specific
metal!.

Figure 2 shows the dipole sum rule exhaustion for 18
eigenmodes in aluminum~ordered in energies from the low-
est, i51, to the highest,i5ndim! up to a number of missing
atoms well below the end of the plateau that one observes in
Fig. 1. The eigenmodes were obtained in a variational calcu-
lation where in each of the expansions in Eqs.~15! and~16!
we take 18 terms~ndim518!. One sees that below a certain
radius~around 10 missing atoms!, the lowest mode, which is
also expected to be the most collective, bears no collectivity,
for it exhausts only a negligible fraction of the total sum rule
strength. The other~higher! modes exhaust, for different ra-
dii, different shares of the oscillator strength. In Fig. 3, we
show the calculated transition densities for the lowest quad-
rupole mode and for the values ofN where a steeper increase
of the exhaustion of the energy weighted sum rule takes

place. It ranges from the value just below~N510!, to a value
just above~N515!, the end of the plateau, as one can see
from Fig. 1. ForN510, the transition densitydr, character-
istically wiggly, shows no collectivity. ThroughN510–15,
the picture changes rapidly, with the smoothening of the
curve, ending, forN515, in a transition density that is al-
ready characteristic for a collective surface mode~peaked at
the surface!. This sharp onset of collectivity happens for ev-
ery multipolarity. The existence of a ‘‘minimum radius’’ for
having a collective state has already been pointed out by
Barberán and Bausells,18 based on an approximate expres-

FIG. 1. Excitation spectra of voids in aluminum, as a function of
the number of missing atoms in the cavity for the lowest normal
modes of the first five angular momenta. The thick full curves refer
to l50 normal modes, the dashed curves refer tol51 normal
modes, the dotted curves refer tol52 normal modes, the dashed-
dotted curves refer tol53 normal modes, and the thin full curves
refer to l54 normal modes.

FIG. 2. Dipole sum rule exhaustion for the eigenmodes in alu-
minum ~we have ordered the states from the lowest to the highest
energy!, as a function of the number of the missing atoms in the
cavity.

FIG. 3. Transition densities in aluminum, for the quadrupole, for
10, 13, 14, and 15 missing atoms. We have normalized the transi-
tion densities to 1 atr5R. The full curve refers toN515, the
dashed curve refers toN514, the dotted curve refers toN513, and
the dashed-dotted curve refers toN510.
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sion for the radius obtained analytically. However, they fore-
see such an effect not only for cavities but also for clusters.
According to our calculations22 this only happens for cavi-
ties. Moreover, in our formalism, we can ascribe this lack in
collectivity in the lowest eigenmode~i51! to the higher
eigenmodes of the system. This effect is strongly dependent
on the density and bulk modulus of the metal. So, concerning
cavities, we can loosely speak of ‘‘soft’’ metals, such as
cesium and potassium, where the minimum radius able to
sustain a collective mode does not correspond to more than
some missing atoms~;1 Å! even for higher multipolarities,
as can be seen from Fig. 4. In an analogous way we can
speak of ‘‘hard’’ metals, such as aluminum and copper,
where the minimum radius can correspond to some hundreds
of missing atoms~;tens of Å! for higher multipoles, and
some tenths for the dipole. In Figs. 5 and 6, we show, re-
spectively, the fraction of the exhausted sum rule and the
energy spectrum with the number of missing atoms for the
hexadecapole in copper. Since the higher the multipolarity,
the more sudden the onset of the collectivity for the lowest
eigenmode, we discuss thel54 case. In this case, for up to
about 80 missing atoms, there is no collectivity in thei51
mode ~i orders the eigenmodes for each multipolarity with
increasing order of energy!. Note that as long as one does not
have any single collective mode exhausting~almost! all the
sum rule strength, sum rule based methods loose any predic-
tive power, since this is an ‘‘a priori’’ hypothesis of such
methods. To study whether the higher modes that share frac-
tions of the sum rule strength for some radial interval are
indeed collective, we show, in Fig. 7, the transition density
and currents for the third~i53! hexadecapole, forN578,
where it peaks in the sum rule exhaustion, reaching about
90% of the total strength. The behavior of the transition den-

sity, and also that of the currents, in Fig. 7 shows this mode
to be a collective surface state.

It is interesting to notice that there is some experimental
evidences for plasmons of higher multipolarities, even for
small bubbles.6,7 According to our results, we could suggest
that, for those small bubbles, the observed plasmons could
correspond to higher eigenmodes, instead of the lowest one.

Concerning to the monopole, Fig. 8 shows the obtained

FIG. 4. Excitation spectra of voids in potassium, as a function of
the number of missing atoms in the cavity for the lowest normal
modes of the first five angular momenta. The thick full curves refer
to l50 normal modes, the dashed curves refer tol51 normal
modes, the dotted curves refer tol52 normal modes, the dashed-
dotted curves refer tol53 normal modes, and the thin full curves
refer to l54 normal modes.

FIG. 5. Hexadecapole sum rule exhaustion for the eigenmodes
in copper, as a function of the number of the missing atoms in the
cavity. We have ordered the states from the lowest to the highest
energy.

FIG. 6. Excitation spectra of voids in copper, as a function of
the number of missing atoms in the cavity for the lowest normal
modes of the first five angular momenta. The thick full curves refer
to l50 normal modes, the dashed curves refer tol51 normal
modes, the dotted curves refer tol52 normal modes, the dashed-
dotted curves refer tol53 normal modes, and the thin full curves
refer to l54 normal modes.
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sum rule exhaustion. We recall that this result is connected
with the choice made for the external operator. In this work,
D~x!5r22. Figure 8 shows that no mode bears a sizable
fraction of the total strength, which is scattered among the
different modes. It must be noted that, with this simple in-
tuitive form of operator, sum rule methods give no reason-
able result. In such a case, an adequate procedure is to use
the radial dependence of the electronic currentj ~x!, as calcu-
lated, for instance, in this work, as the external operator of
maximum overlap, in order to obtain a main collective state.
Comparison should then be made with real external excita-
tions in order to evaluate the probability of exciting such a
state.

CONCLUSIONS

Void excitations have been calculated in the framework of
a fluid-dynamical model. The energies of the plasmons of

various multipolarities were obtained, showing a good agree-
ment with available experimental data.

Cavity excited states present interesting behavior concern-
ing the onset of the collectivity: there is a minimum radius
below which one cannot speak of a collective plasmon. It is
seen that for hard metals, such as copper, collectivity re-
mains distributed among many higher-lying modes, up to
many hundreds of missing atoms, for the higher multipolari-
ties. Such an effect, which is absent for clusters,22 puts re-
strictions on the use of methods based on the hypothesis of a
single collective state for small voids. The bulk limit for
every multipolarity is correctly obtained, even with the sheer
use of the sum rules satisfied by the model.
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