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Theory of the Seebeck coefficient in LaCrO3 and related perovskite systems
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We consider the Seebeck coefficient in LaCrO3 and related transition-metal-oxide perovskites using a model
for electronic conduction based on the electronic structure of the 3d orbitals of theB-site transition-metal
cations. Relations for the Seebeck coefficient are presented for those perovskite systems in which electronic
conduction is through thet2g states of theB-site transition-metal cations. High- and low-temperature limits for
the Seebeck coefficient are identified for the cases of both strong and weak magnetic coupling between electron
spins. In these high- and low-temperature limits, the Seebeck coefficient is determined as a function of carrier
concentration. Results are applied to an analysis of experimental data for the~La,Sr!CrO3 series.
@S0163-1829~96!02935-9#

I. INTRODUCTION

Continued interest in materials suitable for use in high-
temperature electrical components has led to considerable
experimental investigation1–13 of a number of transition-
metal oxides possessing the perovskite structureABO3.
Many of these materials exhibit a thermally activated high-
temperature electrical conductivity attributed top-type small
polarons hopping among the transition-metalB-site
cations.1,2,8,14 In addition to the conductivity, experimental
characterization of these materials typically includes mea-
surement of the Seebeck coefficient~or thermoelectric
power! to infer values of the carrier concentration, the latter
of which are then combined with measured values of the
conductivity to obtain estimates of polaron mobilities. In
many of the experimental thermopower studies performed to
date, however, extraction of the carrier concentration from
the thermoelectric power has been performed through analy-
ses based upon temperature-independent formulas15–18 for
the thermopower often attributed to Heikes15,19or to Chaikin
and Beni.17 These formulas are certainly appropriate for the
conditions under which they were developed, namely, for
systems where there are one or at most two carriers of op-
posite spin occupying one orbital state per site. There has
been some concern in recent years, however, regarding the
application of these formulas to systems in which there are
additional degeneracies associated with states of carrier oc-
cupation not previously considered. Doumerc,20 e.g., has re-
cently reemphasized a proper treatment of spin degeneracy
for systems possessing mixed valence cations, for which he
reiterates Heikes’s observation15 that the relevant spin~and
spin degeneracy! to consider in such systems is not just that
of the carriers alone, but that of the ions that they occupy. In
many transition-metal-oxide perovskites there is, in addition
to this spin degeneracy, more than one energetically degen-
eratespatial orbital that should similarly be considered. In
LaCrO3 and LaMnO3, e.g., the orbital degeneracy at the
B-site transition-metal cations is determined by the octahe-

dral crystal field that splits the five transition-metal 3d elec-
tronic orbitals into a set of lower-energy threefold-
degeneratet2g states and a set of doubly degenerateeg
states,14,21,22 higher in energy than thet2g manifold by an
amount equal to the crystal field splitting parameter
10Dq;2 eV. Thus a prerequisite to the correct extraction of
carrier concentrations~and carrier mobilities! in these sys-
tems is a theory of the thermoelectric power that properly
takes into account both the spin and spatial degeneracies im-
plied by the electronic structure of the material under con-
sideration.

In this paper theoretical expressions for the Seebeck co-
efficient are derived appropriate to small polaron conduction
occurring among the 3d transition-metalB-site manifold as-
sociated with materials of this kind. We focus in this paper
on those transition-metal oxides in which electronic occupa-
tion is confined to the lower energyt2g states of the 3d
transition-metalB-site manifold, deferring to a future paper
the modifications to our theory that arise for those materials
in which electronic occupation also includes the higher-
energy eg states of the transition-metal cations. Thus the
analysis of the current paper should be applicable to
transition-metal cations in a valence state withn<3 elec-
trons in the 3d manifold, such as homogeneous systems con-
taining Cr31, Cr41, and Cr51, or containing V21, V 31,
and V41 cations at theB sites. The present analysis would
not be expected to apply to systems in which hopping is
associated with Mn31 and Mn41, or with Co cations, in
which there can be unpaired electrons in both thet2g and
eg levels. The different feature of the present calculation, we
believe, is the manner in which the spatial and spin degen-
eracies associated with electronic occupation of the 3d levels
are explicitly treated.

The rest of the paper is laid out as follows. In Sec. II we
present basic relations for the Seebeck coefficient along with
a particular model of electronic conduction appropriate to
transition-metal oxides of this type. In Sec. III high- and
low-temperature limiting forms for the Seebeck coefficient
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are derived for the cases in which magnetic coupling to
neighboring cations is strong and weak, respectively. In Sec.
IV we illustrate the use of these high- and low-temperature
formulas in a brief analysis of existing thermopower data for
the La12xSrxCrO3 system. Section V concludes with a brief
summary.

II. MODEL

Our goal is a calculation of the Seebeck coefficient or
thermoelectric powerS, operationally defined as the electro-
chemical potential difference per unit temperature difference
that develops across an electrically isolated sample with an
imposed temperature gradient. The Onsager-Casimer theory
of irreversible processes23–26 allows derivation of expres-
sions that relate the Seebeck coefficient to transport quanti-
ties that are defined in the absence of a temperature gradient.
Domenicali,23 e.g., shows that the Seebeck coefficient can be
written in the form

S52
k

e SQ*kT 2
m

kTD , ~1!

where k is Boltzmann’s constant,e the electronic charge,
m the chemical potential,T the absolute temperature, and
Q* the ‘‘transport heat per particle,’’ defined as the ratio

Q*5S uJqu
uJeu

D
¹T50

~2!

of energy currentJq to particle currentJe associated with the
flow of electrons in the presence of a weak electric field and
a vanishing temperature gradient. ThusQ* can also be ex-
pressed as a ratio of transport coefficients

Q*5
ej

s
, ~3!

wheres is the usual isothermal electrical conductivity and
j represents the resulting energy flow per unit of applied
electric field under the same conditions. As a consequence,
~1! may be expressed in the form

S52
k

e F 1kT S ej

s D2
m

kTG . ~4!

Thus, from an appropriate microscopic Hamiltonian, the
transport coefficients appearing in these expressions may be
evaluated, using, e.g., linear-response theory,27,28 and com-
bined with a calculation of the chemical potential to obtain
the Seebeck coefficient. We have recently adopted this strat-
egy in developing a numerical approach for calculating the
temperature dependence of the Seebeck coefficient for sub-
stitutionally mixed perovskites containing differentB-site
cations.29 In the present paper, which is primarily concerned
with the derivation of temperature-independent limiting
forms for the Seebeck coefficient for homogeneous systems,
we are able to employ physical arguments that allow us to
avoid some of the cumbersome mathematics that is neces-
sary in the general case.

Our starting point is a microscopic model of electron
transport among the triply degeneratet2g states of the 3d
transition-metal levels. We consider, therefore, a simplified
model Hamiltonian

H52 (
l ,l 8,d,d8

Jll 8
dd8cld

† cl 8d81e0(
l
nl1

1

2 (
l ,d,d8

Ul
dd8nldnld8

1v0(
l
bl
†bl2lv0(

l
nl~bl

†1bl !, ~5!

which focuses on conduction electrons occupying the
transition-metalB sites of the perovskite structure. In this
expression,e0 is the bare energy associated with an electron
occupying one of the triply degeneratet2g states at sitel and
the operatorscld

† cld , andnld create, annihilate, and count,
respectively, electrons in stated at sitel , while nl5(dnld is
the total number ofd electrons at that site. The labeld is
intended to represent both orbital and spin indices associated
with the 3d states in the lower-energyt2g manifold. The
matrix element~superexchange, double exchange, etc.! for
electron transitions between statesd at B site l and state

d8 at the neighboringB site l 8 is Jll 8
dd8. We also include

repulsive Coulomb interactionsUl
dd8 between 3d electrons at

the same site. In principle, these interaction energies may be
separated into three types. First there is the~Hubbard! energy
U0 between electrons with opposite spin in the samed or-
bital. With multiple orbitals at each site, however, there is
also a Coulomb energyU1 between electrons of opposite
spin in different spatial orbitals. Finally, there is the Cou-
lomb repulsion energyU2 between electrons having the
same spin in differentd orbitals at the same site. Hund’s
rules, which tend to favor configurations in which all elec-
trons at a site have their spins aligned as much as possible,
arise because interactions between electrons in different spin
states are larger than those between electrons in the same
spin state by an exchange energyDex;U02U2; U12U2 ,
so that typicallyU0;U1@U2 . In what follows we assume
that kT!U0;U1 , so that any site configurations of interest
only involve electrons with the same spin orientation. By
precluding other configurations and processes, therefore, we
can ignore the energiesU0 and U1 and take as our main
focus an understanding of the role played by the Coulomb
energyU2[U associated with electrons in different spatial
orbitals at the same site. We do not explicitly include in our
Hamiltonian interactions between electrons on neighboring
sites, i.e., terms that could lead to a collective ferromagnetic
or antiferromagnetic alignment of the spins. These exchange
terms have previously been treated for a single-orbital model
within mean-field theory.30 In the multiple-orbital model
considered in the present paper, a self-consistent treatment
becomes complicated by the increased number and type of
such interactions. Of course, the magnitude of interatomic
Coulomb interactions, which involve integrals associated
with orbitals on different sites, are generally expected to be
smaller in magnitude than corresponding interactions associ-
ated with electrons on the same cation. It is difficult, how-
ever, to comparea priori the interaction energy associated
with electrons of opposite spin on neighboring sites to that
associated with electrons of the same spin at the same site. In
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what follows we take a simple approach that phenomeno-
logically treats exchange interactions between electrons on
neighboring sites through a modification of the relevant spin
degeneracies at each site. This restriction of the spin degen-
eracies is discussed more fully in Sec. III.

In keeping with the polaronic nature of conduction in
these materials, we have also included in our Hamiltonian
~5! a coupling to a narrow band of optical phonons. In the
last two terms, therefore,bl

† and bl create and annihilate,
respectively, vibrational excitations of the lattice at sitel .
The strength of the coupling term~linear in the oscillator
displacements! is governed by the electron-phonon coupling
constantl and the total number of 3d electrons at a site.
This electron-phonon part of the Hamiltonian can be diago-
nalized by a well-known unitary transformation31–33

u5exp@l(lnl(bl2bl
†)#, that preserves fermion number opera-

tors and commutation relations and gives rise to ‘‘displaced’’
phonon operatorsb̃l5bl2lnl and ‘‘dressed’’ electron op-
eratorsc̃ld5cldexp@lnl(bl2bl

†)# describing the polarons. The
total Hamiltonian, when expressed in terms of the new set of
operators, takes the form

H52 (
l ,l 8,d,d8

J̃ l l 8
dd8c̃ld

† c̃l 8d81 ẽ0(
l
nl1

1

2 (
l ,d,d8

Ũdd8nldnld8

1v0(
l
b̃ l
†b̃l , ~6!

in which the dressed matrix element J̃ l l 8
dd8

5Jll 8
dd8exp@l(bl2bl

†2bl81bl8
† )# is now a function of the new

phonon operators, while the renormalized site energies

ẽ 05e02l2v0 and interaction energiesŨ l
dd85Ul

dd8

2l2v0 are reduced from their bare values due to the inter-
action with the lattice. In what follows, we work in the lo-
calized site basis, assuming that the mean value of the trans-

fer term ^J̃l l 8
dd8& is small, an assumption that is, again, in

keeping with the polaronic nature of transport in these mate-
rials.

The transport coefficientss andj required for evaluating
the Seebeck coefficient characterize charge and energy flow
in the presence of a weak electric field. In order to obtain
expressions for these, we begin with a microscopic version
of the continuity equation for charge flow

e
]nl
]t

5(
l 8

~ j l l 82 j l 8 l !. ~7!

Using the Heisenberg relationi ]nl /]t5@nl ,H# along with
the Hamiltonian~6!, it is straightforward to obtain an expres-
sion for the operator representing the microscopic charge
current

j l l 852 i(
d,d8

e~ J̃l l 8
dd8c̃ld

† c̃ l 8d82 J̃l 8 l
d8dc̃ l 8d8

† c̃ld!, ~8!

which flows between a typical sitel and its neighbor atl 8. A
calculation of the operator describing energy flow proceeds
in an analogous fashion. First, we express the total Hamil-
tonian ~6! as a sumH5( lHl of local terms

Hl52 (
l 8,d,d8

~ J̃l l 8
dd8c̃ld

† c̃l 8d81 J̃l 8 l
d8dc̃l 8d8

† c̃ld!

1
1

2 (
d,d8

Ũ l
dd8nldnld81 ẽ0(

d
nld1v0b̃l

†b̃l ,

~9!

each representing the energy associated with a single site.
Conservation of energy then leads, as in the case of particle
number, to a microscopic continuity equation

]Hl

]t
5(

l 8
~qll 82ql 8 l ! ~10!

involving energy flow. Using the Heisenberg equations of
motion for the operatorsHl , we obtain an expression for the
energy current operator

qll 85 i(
d,d8

ẽ0~ J̃l l 8
dd8c̃ ld

† c̃l 8d82 J̃ l 8 l
d8dc̃l 8d8

† c̃ld!

1 i (
d,d8,d9

Ũ l
dd9nld9~ J̃l l 8

dd8c̃ ld
† c̃l 8d82 J̃l 8 l

d8dc̃l 8d8
† c̃ld!

5qll 8
e

1qll 8
U . ~11!

In the last line we have implicitly separated the energy cur-
rent into two terms, the first corresponding to the flowqll 8

e of
site energy and the second to the flowqll 8

U of interaction
energy, and neglected a term associated with the flow of
kinetic energy, which is of second order in the polaron band-
width.

We now note that the three operatorsj l l 8, qll 8
e , andqll 8

U

are nearly identical in form, in that they all appear as sums
over the different transfer events that can occur, weighted by
that which is transferred for each event. For example, the

term eJ̃ll 8
dd8c̃ld

† c̃l 8d8 appearing in the charge current operator
corresponds to the transition of an electron from stated8 at
site l 8 to a stated at site l , which carries with it chargee.

Similarly, the termẽ0J̃l l 8
dd8c̃ld

† c̃l 8d8 appearing in the energy
current operator represents the same type of event, but de-
scribes one unit of site energyẽ0 being carried to sitel . The

term ((d9Ũ
dd9ñld9) J̃l l 8

dd8c̃ld
† c̃l 8d8 in ~ 11! represents again the

same event, but characterizes the increase at sitel of the
interaction energy, a quantity that depends upon the popula-
tion of electrons already at that site. It is reasonable, in view
of this similarity of structure, to expect the particle current
and energy current associated with such events to be, on
average, proportional to one another. In what follows we
explore this idea further for specific parameter regimes.

III. LIMITING FORMS

In keeping with the picture that we have developed, we
focus on the situation where the average numberr5^nl& of
3d electrons per site~which in general will depend upon the
A-site doping level! is restricted to lie in the range
3>r>0. This, along with our assumption that
kT!U0;U1, allows us to ignore any configurations with
electrons of opposite spin at the same site. Even with this
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restriction, to properly account for the degeneracy of a given
configuration, we note that the total spin associated withn
electrons with the same spin alignment is

s5ns5
n

2
. ~12!

If the coupling between spins on neighboring cations is suf-
ficiently weak ~or the temperature sufficiently high!, then
there will be a maximum spin degeneracy

Gn
s52s115n11 ~13!

associated with a weakly coupled site configuration having
n aligned electrons. In many transition-metal oxides, how-
ever, there is significant ferromagnetic or antiferromagnetic
coupling between cation spins at neighboring sites, so that at
sufficiently low temperatures the spin orientation at a given
site is fixed relative to that of its neighbors. In this strong-
coupling limit, therefore, the effective spin degeneraciesgs

of each electron, andGn
s of the configuration as a whole, are

reduced to unity, i.e.,Gn
s51, since there is only one ener-

getically favorable spin state associated with the electrons in
that configuration. In what follows we explicitly consider
both limiting cases, which we will refer to as the limit of
weak and strong magnetic coupling, respectively.

A. Temperatures large compared to the Coulomb energies

We consider first the high-temperature limit in which the
thermal energykT is much greater than the Coulomb energy
U between electrons in differentt2g orbitals at the same site,
i.e., kT@U. We will see that, in this limit, the Seebeck co-
efficient is dominated by contributions from the chemical
potential. Physically, this occurs because the energy carried
per particle is bounded by an amount on the order ofU, so
that the ratioj/s appearing in~4! approaches a constant,
while the chemical potential grows with temperature, even-
tually dominating the energy current.

To see this in more detail, we break the coefficient
j5je1jU into two parts, the firstje describing the flow of
site energyqll 8

e and the secondjU describing the flow of
interaction energyqll 8

U . @From this point on, in the interest of
notational simplicity, we drop all tildes with the understand-
ing that symbols refer to the dressed quantities appearing in
Eq. ~6!.# From ~11! it is clear that, with the site energy of all
t2g orbitals the same, we can writeje5e0s/e, so that there
is a fixed amount of site energy per charge carried along by
the particle current. Such a strict proportionality does not
occur for the interaction energy operatorqll 8

U in ~11!, but it is
clear that there is a maximum amount of interaction energy
Ū that will be carried per charge. In this problem, the maxi-
mum interaction energy is transferred, e.g., when an electron
hops onto a neighboring site in which there are electrons
already occupying two of the three degeneratet2g orbitals at
that site. Thus there exists an energyŪ;U for which we can
write ^qll 8

U &<(Ū/e)^ j l l 8&, so that, quite generally,

jU<
Ū

e
s. ~14!

Thus the quantity appearing in~4! for the Seebeck coefficient
separates into two terms

1

kT S ej

s D5
e~jU1je!

skT
;

Ū

kT
1

e0
kT

;
e0
kT

, ~15!

where in the last step we have neglected the termŪ/kT,
which is assumed to be small in the limit of interest. The
second term in~15! involving the site energy, it turns out,
will exactly cancel an equal and opposite term obtained from
the chemical potential. We therefore make no assumption at
this point about the magnitude of this second term, which
also decreases with increasing temperature, but may or may
not remain large.

Having established the high-temperature limiting form for
the ratio of transport coefficients~15!, it remains to evaluate
the chemical potential in order to produce a corresponding
limiting expression for the Seebeck coefficient. In keeping
with the physics of the problem, it suffices to evaluate the
chemical potential to lowest~i.e., zeroth order! in the transfer

matrix elementJ̃l l 8
dd8, whose expectation valuêJ̃l l 8

dd8& is that
of the greatly reduced polaron bandwidth. Neglect of the
transfer term in~6! decouples the phonon and polaron sub-
systems and also decouples from one another the electrons at
different sites. We proceed, therefore, by calculating the
grand partition function

Q5Tr$e2b~Hl2mnl !% ~16!

for the electrons at each site, where the decoupled site
Hamiltonian

Hl5e0nl1
1

2(d,d8
Unldnld8 ~17!

is the same for each site in the system and the trace in~16! is
only over configurations with aligned electrons. In the high-
temperature limit of interest, exponentials ofU/kT approach
unity and each term in the partition function is largely deter-
mined by those parts of the exponential involving the chemi-
cal potentialm and the site energye0 . Taking spin degen-
eracy into account we find that

Q5 (
n50

3 3!Gn
s

~32n!!n!
enb~m2e0!, ~18!

where the combinatorial factor gives the number of distinct
configurations in which there are carriers occupyingn of the
3 distinct single-particle states available at this site and, in
keeping with our previous discussion, the spin degeneracy

Gn
s5H n11 for weak magnetic coupling

1 for strong magnetic coupling
~19!

is that of a configuration ofn aligned electrons, the form of
which we take to depend, in a simple way, upon the strength
of exchange interactions between electron spins on nearest-
neighbor lattice sites~terms, as we have noted, that have
been left out of the Hamiltonian!. As suggested in~18!, we
separately treat the two limiting cases in which nearest-
neighbor interactions are small compared to thermal energies
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~weak magnetic coupling! and large compared to thermal
energies~strong magnetic coupling!.

We consider first the case of strong magnetic coupling,
for which Gn

s51 and for which the sum~18! can be identi-
fied as the binomial expansion of

Q5@11eb~m2e0!#3. ~20!

The average number of 3d electrons per siter, as a function
of the chemical potential and temperature, can then be ob-
tained in this limit from the site partition function through
the relation

r5
1

bQ

]Q

]m
5

3

11e2b~m2e0! , ~21!

which is simply the total number of degenerate orbitals per
site multiplied by the Fermi-Dirac distribution function for
degenerate states of energye0. Inverting Eq.~21! yields an
expression for the chemical potential

m

kT
5

e0
kT

2 lnF32r

r G . ~22!

Combining this with~15!, we find that for strong magnetic
coupling andkT@U, the Seebeck coefficient can be written

S52
k

e
lnS 32r

r D . ~23!

For the case of weak magnetic coupling the spin degen-
eracyGn

s5n11 takes its maximum value, and although the
resulting sum for the partition function

Q5 (
n50

3
3!~n11!

~32n!!n!
enb~m2e0! ~24!

is no longer a simple binomial expansion, it is still readily
evaluated, i.e.,

Q5@11eb~m2e0!#2@114eb~m2e0!#. ~25!

This leads then to an expression for the average 3d electron
site concentration

r5
1

bQ

]Q

]m
5

3eb~m2e0!@214eb~m2e0!#

@11eb~m2e0!#@114eb~m2e0!#
. ~26!

Multiplying through by the denominator gives a quadratic
equation forebm as a function ofr. Keeping the physical
root, we obtain an expression for the chemical potential as a
function ofr, which, when combined with~15! in ~4!, results
in an expression for the Seebeck coefficient

S52
k

e
ln

8~32r!

~5r26!2A36212r19r2
~27!

valid for weak magnetic coupling andkT@U.
Equations~23! and ~27! derived for the high-temperature

Seebeck coefficient for strong and weak magnetic coupling
can also be expressed in terms of the hole concentration
rh , a quantity that is more directly related to the level of
acceptor doping. The numberr0 of 3d electrons per site in
the end member of a particular compositional series will de-

pend upon the particular species ofA- andB-site cation as-
sociated with the material. In transition-metal lanthanides,
such as LaMnO3 and LaCrO3, e.g., theB-site transition-
metal cations are in a trivalent state. Under these circum-
stances, substitution of divalent cations such as Sr21 at the
A site removes electrons at theB sites to change the average
3d electronic site concentrationr by creating holes34 in site
concentrationrh5r02r. Thus we can rewrite~23! and~27!
in terms of the hole concentrationrh and the expected elec-
tronic site concentrationr0 of the end member. After this
substitution the strong-coupling result~23! takes the form

S52
k

e
lnS 32r01rh

r02rh
D , ~28!

while the weak-coupling result can be written

S52
k

e
ln

8~32r01rh!

5~r02rh!262A36212~r02rh!19~r02rh!
2
.

~29!

In Fig. 1 we plot values of the Seebeck coefficient pre-
dicted by Eqs.~28! and ~29! for compositional series in
which the initial~undoped! stoichiometric electronic occupa-
tion of the end member takes three different valuesr051,
2, and 3, representing, respectively, Ti31, V 31, and Cr31

cations in a perovskite with a nominally trivalentA-site end
member. In these curves the high-temperature Seebeck coef-
ficient for strong and weak magnetic coupling is shown as a
function of the dopant concentration, assumed to be equal to
the hole site concentrationrh5r02r. The strong-coupling
results are presented as solid lines and the weak-coupling
results as dashed lines. We note that the effect of orbital
degeneracy is very large, in that the Seebeck coefficient for

FIG. 1. High-temperature limit of the Seebeck coefficient as a
function of the molar dopant concentration for the case of 3d
transition-metalt2g occupation. Three systems are shown in which
the undoped end member electronic occupationr0 takes the values
of 1, 2, and 3, representing, e.g., Ti31, V 31, and Cr31 cations at
theB sites, respectively. The solid lines and dashed lines represent
the limits of weak and strong magnetic coupling between neighbor-
ing sites. The lower curves correspond tor051, with 1>r>0, the
middle curves tor052, with 2>r>1, and the upper curves to
r053, with 3>r>2.
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two series having the same number of ‘‘holes’’ depends very
strongly on the number of available hole states per site and
therefore on the particular electronic configuration of the
B-site cation.

B. Temperatures low compared to the Coulomb energies

We now consider the opposite limitkT!U in which ther-
mal energies are small compared to the Coulomb energy
between electrons in differentt2g orbitals at the same site.
We note first that in this limit electrons will avoid piling up
on the same site as much as possible in order to avoid the
energy costU associated with having multiple electrons at
the same site. Thus all sites will first fill up to the same
numbern0<2 of electrons per site, leaving some excess av-
erage site populationre5r2n0<1, which will be distrib-
uted with at most one excess electron at any given lattice
site. States will, of course, fill up according to Hund’s rules,
so that forr,3 any excess electron will go into a state
aligned with that of the 3d electrons already at that site~if
any!. Under these circumstances, the probability of any pro-
cess that would transfer an excess electron to a site already
containing an excess electron will be weighted by an expo-
nentially small Boltzmann factor of the forme2bU relative
to those processes in which the transfer takes place to a site
with the minimum filled electron populationn0. Similar ar-
guments would preclude transfers of an electron out of a site
containing the minimum numbern0 of filled electrons onto a
site already containing the minimum number.

In the low-temperature limit, therefore, the flow of par-
ticle and energy current is completely dominated by pro-
cesses involving the transfer of an excess electron between
two sites that otherwise would be populated byn0 electrons.
The energy at the site to which the particle hops will then be
larger than it was before the hop occurred by an amount
equal toe01n0U, the first term being the site energy, the
second being associated with the interaction energy current.
This argument leads to the conclusion that, at low tempera-
tures, the energy current must be strictly proportional to the
particle current and in particular that

j5~e01n0U !
s

e
. ~30!

Thus, in this limit

1

kT S ej

s D5
e01n0U

kT
5

e01Ũ

kT
, ~31!

where we have introducedŨ5n0U0 as the interaction en-
ergy carried by the electronic transition in this limit. In
evaluating the chemical potentialm for large Coulomb ener-
gies and low temperatures we again neglect all contributions
to the site partition function~16! from configurations with
unaligned electrons and obtain the result

Q5e2bn0@e02m2~1/2!~n021!U#@b01b1e
2b~e01Ũ2m!#, ~32!

which is essentially a sum of two terms. The first term inside
the square brackets is associated with site configurations
having the minimum electronic occupationn0 and is associ-
ated with a degeneracy

b05
3!G0

s

~32n0!!n0!
5G0G0

s , ~33!

which is a product of the orbital degeneracy
G053!/(32n0)!n0! and the spin degeneracyG0

s , which de-
pends upon the magnetic coupling as in~19!, i.e.,

G0
s5H n011 for weak magnetic coupling

1 for strong magnetic coupling.
~34!

The second term in square brackets in~32! is associated with
configurations havingn011 electrons or one excess elec-
tron. The degeneracyb15G1G1

s of such configurations is
that obtained by replacingn0 by n011in ~33! and ~34!. We
can develop an expression that is correct for both weak- and
strong-coupling limits by formally taking derivatives of~32!
to obtain the electron densityr, as in ~21!. Inverting the
resulting expression then yields the chemical potential

m5e01Ũ1kTlnFb0

b1
S re
12re

D G , ~35!

which can be substituted along with~31! into ~4!. When this
is done the terms involving the ratio (e01Ũ)/kT cancel ex-
actly, leaving the following expression for the low-
temperature Seebeck coefficient:

S52
k

e
lnFb1

b0
S 12re

re
D G , ~36!

valid in the limit U@kT. The excess fractional electron
populationre in this expression has values lying between
zero and one. It is interesting to note that in this limit we
recover a form identical to that obtained earlier by
Doumerc,20 except for an implicit extension to include both
orbital and spin degeneracy.

As in the high-temperature limit, it is useful to represent
the Seebeck coefficient in terms of the average hole popula-
tion rh , which in the present low-temperature limit is
equivalent to the fraction of sites having theminimumfilled
electronic occupationn0 and is related to the excess elec-
tronic populationre through the relationrh512re . Thus
~36! can also be expressed in the form

S5
k

e
lnFb0

b1
S 12rh

rh
D G . ~37!

We now develop special cases of this expression appropriate
to both strong and weak magnetic coupling.

In the limit of strong magnetic coupling, the spin degen-
eracies are equal to unity, i.e.,G0

s5G1
s51, so that

b05G053!/(32n0)!n0! and b15G153!/(32n02
1)!(n011)! . Thus, for strong magnetic coupling and low
temperatures,~37! can be written

S5
k

e
lnF r0

42r0
S 12rh

rh
D G , ~38!

where, as before,r05n011 represents the undoped 3d site
population of the end member of the series to be acceptor
doped andrh5r02r is the fraction of holes that have been
introduced as a result of acceptor doping.
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In the limit of weak magnetic coupling the spin degenera-
cies G0 and G1 have their maximum values ofn011 and
n012, respectively. In this limit, of course, we are implicitly
assuming a significant separation in the scale of electron in-
teractions at the same siteUll relative to interactionsUll 8
associated with electrons at neighboring sites, so that
Ull@kT@Ull 8. In LaCrO3, for example, intersite exchange
interactions occur through overlap between the cationt2g
orbitals and the oxygenp orbitals. The strength of this inter-
action in LaCrO3 has been estimated by Goodenough

14 to be
less than 300 K. Substituting in the maximum spin degen-
eracy, we obtain

b0

b1
5

~n011!2

~32n0!~n012!
, ~39!

so that for weak magnetic coupling our general low-
temperature expression~37! for the Seebeck coefficient takes
the form

S5
k

e
lnF r0

2

~42r0!~r011!
S 12rh

rh
D G . ~40!

In Fig. 2 we show results that represent the low-
temperature counterpart to those presented in Fig. 1. As we
have noted, in those systems where conduction takes place
through the 3d transition-metalt2g states ofB-site cations in
a perovskite oxide, the stoichiometric electronic occupation
r0 of the end member will depend upon the particular com-
position of the material. Cases are shown for which the ini-
tial stoichiometric electronic occupation of the undoped end
member takes the same three values,r051, 2, and 3, as
those appearing in Fig. 1. Calculations associated with weak
magnetic coupling are presented as solid lines, while those
associated with strong magnetic coupling are presented as

dashed lines. A careful inspection of Fig. 2 reveals that each
of the curves in this figure can be generated through a simple
vertical shift from a single curve. Using basic properties of
the logarithm, it is possible to separate our basic low-
temperature result~37! into two parts

S5
k

e
lnS 12rh

rh
D1DSd , ~41!

where the first part depends entirely upon the hole concen-
tration and is equivalent to Heikes’s formula, while the sec-
ond part represents the shift observed in Fig. 2. This shift can
be written

DSd5 lnS b0

b1
D 5

k

e
lnS G0

G1
D 1

k

e
lnS G0

s

G1
sD 5DSd

s1DSd
o ~42!

as a sum of two terms that contain information about the spin
and orbital degeneracy of the system. In Table I possible
configurationst2g↑

n of the 3d transition-metal orbitals are
shown for electronic occupationn51, 2, and 3, along with
the spatial degeneraciesGn , the spin degeneracies
Gn

s5n11 associated with the weak-coupling limit, and the
total degeneraciesbn5Gn3Gn

s associated with those con-
figurations, in both the weak- and strong-magnetic-coupling
limits. In Table II the information from Table I is used to
compute the shift~42! in the low-temperature Seebeck coef-
ficient, relative to Heikes’s formula, for systems with
electron-hole configurations of the form$t2g↑

n11 ,t2g↑
n % as

shown, forB-site cations in which these configurations cor-
respond to valence states of the form$M31,M41%, along
with the shifts in the Seebeck coefficient due to the degen-
eracy of each configuration for the limits of strong and weak
magnetic coupling.

FIG. 2. Seebeck coefficient shown as a function of the molar
dopant concentration for the limiting case wherekT!U. Systems
are shown in which the undoped end member electronic occupation
numberr0 takes the values 1, 2, and 3, representing, e.g., Ti31,
V 31, and Cr31 cations at theB sites, respectively. The solid lines
and dashed lines represent the limits of weak and strong magnetic
coupling between neighboring sites. The lower curves correspond
to r051, with 1>r>0, the middle curves tor052, with
2>r>1, and the upper curves tor053, with 3>r>2.

TABLE I. Electronic configurations ofB-site cations for spe-
cific electronic occupation of thet2g states. For each case the orbital
degeneracyGn and the spin degeneracyGn

s allowed by Hund’s rules
in the weak-coupling limit are shown. For strong magnetic coupling
there is no spin degeneracy. Also included is the total degeneracy
bn of each configuration for the limits of strong and weak magnetic
coupling between neighboring cations.

t2g↑
n Gn Gn

s ~weak! bn ~weak! bn ~strong!

t2g↑
0 1 1 1 1
t2g↑
1 3 2 6 3
t2g↑
2 3 3 9 3
t2g↑
3 1 4 4 1

TABLE II. Shift in the Seebeck coefficient relative to Heikes’s
formula in the strong- and weak-magnetic-coupling limits for the
specific electron-hole configurations shown. In the strong-coupling
limit DSd

s50.

Configuration Strong Weak
@electron, hole# DSd

o (mV/K ! DSd
o1DSd

s (mV/K !

@ t2g↑
1 ,t2g↑

0 # 294.7 2154.4
@ t2g↑
2 ,t2g↑

1 # 0.0 234.9
@ t2g↑
3 ,t2g↑

2 # 94.7 69.9
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IV. APPLICATION TO THE La 12xSr xCrO 3 SYSTEM

We conclude by demonstrating how expressions for the
Seebeck coefficient developed in this paper can be used to
explain existing Seebeck coefficient data for the perovskite
series La12xSrxCrO3. The undoped end member of the
La12xSrxCrO3 system, LaCrO3 hasr053 aligned electrons
filling the t2g transition-metal orbitals. Divalent Sr cations
substituted at theA site for trivalent La cations act as an
acceptor dopant, changing the carrier concentration accord-
ing to the Verwey principle.34We assume that, in spite of the
mixed cation nature of theA site in this series, it can still be
treated as a homogeneous system since allB sites in the
sample are occupied by Cr cations and thus the set of avail-
able electronic states at each site are, to lowest order, the
same.

Our results of the preceding section indicate that the mag-
nitude of the Seebeck coefficient as a function of the dopant-
hole concentrationrh5r02r depends upon the temperature
and the strength of the coupling of the spins on a given
cation to those of its neighbors. Specifically, we found that in
the low-temperaturelimit the Seebeck coefficient for this
system can be written from~38! in the form

S5
k

e
lnF31 S 12rh

rh
D G ~43!

if there is strong magnetic coupling between neighboring
spins and from~40! in the form

S5
k

e
lnF94 S 12rh

rh
D G ~44!

if there is weak coupling between neighboring spins.
Similarly, we found that in thehigh-temperaturelimit, for

strong magnetic coupling, the Seebeck coefficient can be
written from Eq.~23! in the form

S5
k

e
lnS 32rh

rh
D , ~45!

whererh532r. Finally, in the limit of weak magnetic cou-
pling and high temperatures,~27! for the Seebeck coefficient
reduces withr532rh to the form

S5
k

e
ln
925rh2A9rh

2242rh181

8rh
. ~46!

In Fig. 3 we plot values of the high- and low-temperature
Seebeck coefficient as a function ofA-site substitution for
both limits of weak and strong magnetic coupling, as pre-
dicted by Eqs.~43!–~46!. These curves, which were pro-
duced with no adjustable parameters, are compared with ex-
perimental Seebeck coefficient data for the La12xSrxCrO3
series from the study of Karim and Aldred8 at both the low
~400 K! and the high~1400 K! range of temperatures for
which they obtained data. The basic trend observed in the
data, with an increased spreading between the high- and low-
temperature limits at higher doping levels, is clearly captured
by both sets of theoretical curves. Of the two, those curves
corresponding toweak magnetic couplingappear to most
closely match the experimental results. This seems to be con-
sistent with magnetic susceptibility measurements in the

study of Bansalet al.35 and Songet al.,36 which indicate that
although La12xSrxCrO3 is antiferromagnetic at low tem-
peratures, the ordering transition occurs at approximately
300 K. Our analysis, as indicated in Fig. 3, suggests that
even by 400 K the thermal destruction of short-range order is
sufficient to substantially increase the effective degeneracy
seen by electrons on theB sites of this material. It is also
interesting to note that our theoretical results provide a
simple explanation for the relative temperature independence
of the Seebeck coefficient observed in the materials of this
series. At the simplest level, the small temperature depen-
dence observed reflects a similarly small difference in the
high- and low-temperature limits resulting from our analysis
~see, e.g., Fig. 3!. Our theory would predict a larger variation
of the Seebeck coefficient with temperature at large doping
levels where a considerable difference is predicted between
the high- and low-temperature limits. In our analysis, this
small predicted difference results from the severe constraints
that are placed upon allowed configurations by the relatively
low doping levels. In these systems, the hole concentration
limits the maximum number of sites in the system that can
exist in other than trivalent states. Thus, e.g., even though at
high temperatures there is sufficient energy to create pen-
tavalent Cr cations, this would require bringing together two
tetravalent cations, which at the low doping levels consid-
ered above only exist in small concentration.

V. SUMMARY

We have derived a series of temperature-independent re-
lations for the Seebeck coefficient appropriate to transition-
metal-oxide perovskites with highest electronic occupation
lying in the transition metalt2g states. Derivation of these
relations is obtained using an approach that explicitly treats
the spin and orbital degeneracies associated with electronic
occupation of these states. Separate relations apply depend-
ing upon whether the Coulomb repulsion energyU between
aligned electrons in differentt2g orbitals at the same site is

FIG. 3. Predicted high- and low-temperature limits of the See-
beck coefficient as a function of acceptor doping calculated for the
La12xSrxCrO3 series. Experimental data are from the study of Ka-
rim and Aldred~Ref. 8! for La12xSrxCrO3 at high and low tem-
peratures as indicated. Solid lines indicate predictions for weak
magnetic coupling, dashed lines for strong magnetic coupling.
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large or small compared to typical thermal energies. These
forms are not applicable to the extreme high-temperature
limit in which the average thermal energies have values com-
parable to the true Hubbard energies, i.e., the energies be-
tween electrons of opposite spin in the same orbital. They are
valid, however, for the range of temperatures encountered in
many reported experimental Seebeck coefficient measure-
ments. In each of the limiting cases considered we have de-
rived separate expressions that apply in the limits of strong
and weak magnetic coupling between spins in adjacent sites.
Our expressions, evaluated with no adjustable parameters,
are in very good agreement with reported Seebeck coefficient
measurements for the La12xSrxCrO3 series and suggest that
at all temperatures reported the magnetic coupling is suffi-
ciently weak to allow considerable spin degeneracy in these
systems. It should be possible to extend the approach pre-

sented in this paper to allow analysis of transition-metal ox-
ides having their highest occupied electronic states lying in
the doubly degenerate higher-energyeg manifold. Compli-
cating this extension is the fact that with electronic occupa-
tion of theeg levels there is still a spin degeneracy associated
with filled t2g levels.
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