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We investigate the freezing of a low-density electron liquid for a two-dimensional electron layer in the
presence of low levels of defects typical of a high-quality semiconductor interface. We use a memory function
approach with mode-coupling approximation and include the effect of strong electron-electron correlations,
which we find are crucial for the transition. For a range of low impurity concentrations we find a stable frozen
solid with a liquidlike short-range order. At higher impurity concentrations the electrons localize separately and
there is no short-range order. Our electron-density vs peak-mobility phase diagram at zero temperature is in
agreement with recent metal-insulator transition experiments in silicon heterostructures.
@S0163-1829~96!08935-7#

Numerical simulation studies of a two-dimensional elec-
tron liquid predict that it would only condense into a Wigner
crystal at exceedingly low densitiesr s*3765.1 However,
the energy differences between the liquid and crystalline
states are already very small for densitiesr s*10. This sug-
gests that low levels of defects might be sufficient to induce
a transition to a solid phase at a much higher density than
r s537. Pudalovet al.2 working with electron inversion lay-
ers at silicon metal-oxide-semiconductor field-effect transis-
tor ~MOSFET! interfaces, observed a collective metal-
insulator transition at densities as high asr s.8. The nature
of the coherent insulating state is still not fully clear.

We have found that low levels of disorder typical of those
in state-of-the-art semiconductor substrates acting in concert
with strong correlations between electrons can cause a tran-
sition to a coherent solid of localized electrons at densities as
high asr s.7. The levels of disorder needed for this typically
correspond to far fewer impurities than electrons.

The solid is not a Wigner crystal but a frozen macroscopi-
cally coherent state withliquidlike short-range order. It is
quite different from another frozen state obtained from local-
ized electrons interacting with a disordered medium which
has been termed an electron glass.3–5 The vanishing of a soft
Coulomb gap in the single-particle density of states or a
nonzero value of the Edwards-Anderson–like order param-
eter provides the signature in that case.

Our mechanism for electron localization is also different
from the mechanism discussed earlier for free-electron scat-
tering from randomly distributed impurities.6 There localiza-
tion was obtained by increasing the strength of the impurity-
potential fluctuations~see also the discussion in Ref. 7!.

Our localization, in contrast, is mainly driven by the
strong effect of electron correlations at larger s . The mecha-
nism for the transition is associated with the increasing rela-
tive size of the correlation hole surrounding each electron as
r s increases. From Ref. 1 we know that forr s*10 the ex-
change correlation hole excludes all other electrons from a
central region surrounding it as if the electron had a hard
core. Forr s*10 the electrons with their exchange correla-

tion holes resemble hard disks. With decreasing electron
density the fraction of the total area occupied by excluded
regions approaches the close packing limit8 and at this stage
it becomes increasingly difficult for electrons to pass by each
other. A small amount of impurity disorder introduces pin-
ning centers and breaks the translational invariance of the
system. The localization is quasiclassical because it is driven
by the increasing size of the exchange-correlation hole. We
find that with a small amount of disorder included the elec-
trons can freeze forr s*7.

We investigate the transition to a nonergodic phase using
a model of the glass transition originally constructed to ac-
count for the freezing of dense classical systems.9,10We have
adapted this to a quantum system.

We study the limiting behavior of the Kubo relaxation
function limt→`$F(q,t)[„N(q,t) zN(q,0)…%, defined on the
normalized density fluctuation basis, N(q,t)5
r(q,t)/Ax(q), wherex(q) is the electron liquid static sus-
ceptibility. At lower electron densities the density fluctuation
operatorsr(q,t) are an appropriate choice for the dynamical
variables of the system rather than single-electron wave
functions since the shape of the exchange correlation hole is
determined mainly by the strong repulsive interactions. Ex-
change effects play only a secondary role here and interfer-
ence effects between single-electron waves are not expected
to produce solidification.

In the liquid phaseF(q,t) tends to zero for times greater
than the macroscopic relaxation time of the system. When a
freezing point is approached the time decay inF(q,t) be-
comes very slow and eventually stops, implying a complete
arrest of density fluctuations. We use a memory function
approach with mode-coupling approximation to investigate
the existence of the transition.9 Being a quantum system we
are not able to look at dynamic properties of the liquid as the
transition is approached since, unlike the classical case, there
exists no unique relation between the dynamic structure fac-
tor and response function. However, even in the quantum
case the relation does exist if the frequency is first set equal
to zero, which enables one to write quantum-correlation
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functions in terms of the relaxation function in the memory
function. Thus by directly searching for a singularity in
F(q,z) at z50 we can use the approach to search for the
transition in a quantum system.

Within the Mori-Zwanzig formalism11 the exact equations
of motion for the density-relaxation function can be ex-
pressed in terms of the relaxation function of the fluctuating
forcesM (q,z). In thez→0 limit the expression reduces to,

lim
z→0

$2zF~q,z!%[ f ~q!5F11
V~q!

M ~q!G
21

. ~1!

V(q)5q2/@m!x(q)# and M (q)[2 limz→0zM(q,z). Non-
zero values of the order parameterf (q) signify that sponta-
neous fluctuations remain for an infinite time.

We approximateM (q,z) using mode-coupling theory.12

The contribution to the memory function from electrons in-
teracting with the disorder is

Mde~q!5
1

m* q2(q8
@niWie

2 ~q8!Si~q8!1Wsf
2 ~q8!#~ q̇q8!2

3x~ uq2q8u! f ~ uq2q8u!, ~2!

whereni is the density of impurities andSi(q) the impurity
structure factor. The electron-impurity potential isWie(q)
5@(2pZe2)/(euqu)#Fi(q) and the surface roughness scatter-
ing at the interface isWsf(q)5ApDLG(q)exp@2(qL)2/4#.
For the form factorFi(q) we use Eq. 4.28 in Ref. 13. Values
for the surface roughness parametersL50.37 nm and
D52.0 nm are taken from experiments on silicon
MOSFET’s.14 The expression forG(q) is taken from Ref. 15.
Götze6 used an expression similar to Eq.~2! for the total
memory functionM (q), taking for the electron-impurity in-
teraction a model potential.

The contribution to the memory function from the mutual
interaction between the electrons contains higher-order cor-
relation functions, which we approximate by two indepen-
dently propagating density fluctuation modes. We take the
lowest-order coupling between these modes, which is the
bare Coulomb interactionV(q),

Mee~q!5
1

2m* q2(q8
†V~q8!~ q̇q8!1V~ uq2q8u!@ q̇~q2q8!#‡2

3x~q8!x~ uq2q8u! f ~q8! f ~ uq2q8u!. ~3!

The memory functionM (q) is the sum of the contribu-
tions Meh(q) and Mee(q). The quantum effects of the
exchange-correlation hole enter our calculation through the
static susceptibilityx(q). This is determined from numerical
simulation data for the static structure factor1 S(q) which
contains information on the structure of the exchange-
correlation hole. We obtainx(q) using the fluctuation-
dissipation theorem and a static local-field approximation.16

The nonergodicity parameterf (q) couplesMde(q) and
Mee(q). This leads to an interdependence between the
electron-disorder scattering and electron-electron correla-
tions. Equations~1!–~3! are solved self-consistently for
f (q). Nonzero solutions of these equations forf (q) are
shown in Fig. 1 for a range of impurity densities. We assume
the impurities have no short-range order soSi(q)51.

At the higher electron density (r s57) shown in Fig. 1~a!,
the peak inf (q) centered atq50 steadily broadens and its
overall shape evolves into a Gaussian-like function that does
not show evidence of short-range or long-range order.@The
cusp in f (q) at uqu/kF52 only reflects the well-known cusp
in the Lindhard functionx0(q).# We find thatf (q) continu-
ously diminishes as the disorder is decreased. However it
remains nonzero down to the smallest disorder strengths. We
conclude at this moderate electron density that the localiza-
tion is noncoherent and that it is driven by the impurities.
Noncoherent localization is the type to be expected at higher
electron densities where electron-disorder scattering domi-
nates over many-body electron-electron correlations. Recent
electric transport experiments on Si MOSFET’s~Ref. 17!
have found non-coherent localization in the range of electron
densities 5&r s&9.

When, by lowering the electron density, we increase the
importance of the many-body electron-electron correlations
we find that the nature of the localization changes. This is
illustrated in Fig. 1~b!. At ni51.203109 cm22 f (q) under-
goes a discontinuous transition. Forni.1.203109 cm22

f (q) is nonzero for allq. For ni,1.203109 cm22 f (q) is

FIG. 1. Nonergodicity parameterf (q) for electron densities
r s57 andr s512. The labels are the impurity densityni in units of
109 cm22.
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only nonzero in the immediate vicinity ofq50. This is as-
sociated with weak localization which is expected in low-
dimensional systems for low disorder. We use the discon-
tinuous jump in f (q) as the criterion to distinguish this
transition from the noncoherent localization in Fig. 1~a!.

In Fig. 1~b! the new structure inf (q) centered around
uqu/kF'2.4 reflects a buildup of short-range order. The
short-range order resembles the short-range order existing
for the electron liquid at the same density. For this reason we
identify this frozen phase with coherent localization. The
electron-electron correlations are crucial for this phase. If we
neglect them by using a Hubbard-like expression forx(q) in
Eqs. ~2! and ~3! we do not get the discontinuous jump in
f (q).
This phase persists until aboutni51.831010 cm22. By

then the peak inf (q) arounduqu/kF'2.4 has practically dis-
appeared which indicates loss of short-range order. This is to
be expected when the impurity density is of the order of
electron density since for such high impurity concentrations
the localization should be incoherent.

The Lindemann ratio at the melting transition can be cal-
culated from the probability distribution function
P(r )52pr f (r ) where f (r )5(2p)22*dqeiq•r f (q). For
r s512 P(r ) at the melting point has a maximum for
r /r 050.29. This is in good agreement with the melting of
the Wigner lattice.18

Our coherent state is different from the electron solid dis-
cussed by Chui and Tanatar.19 They found for a fixed ran-
dom distribution of impurities that the lowest-energy state
was a crystalline solid at densityr s.7.5. Their state became
increasingly amorphous if the electron density was lowered
further. The solid state discussed in Ref. 19 is a ground state
and is thus different from our metastable frozen state. Our
frozen electrons are in a nonequilibrium state. A hysteresis
experiment could distinguish between these states.

In recent experimental work Pudalovet al.2 observed a
metal-insulator transition in silicon MOSFET inversion lay-
ers in the presence of weak disorder. This transition cannot
be understood in terms of single-particle localization. For
example,~i! the longitudinal resistanceRxx grows exponen-
tially, ~ii ! the conductivity above and below the threshold
does not fit with the variable range hopping model and~iii !
capacitive measurements do not show a decrease in the ef-
fective conducting area. Their measurements on nonlinear dc
transport, thermal activation energies for conductivity and
threshold electric fields all indicate that the insulator state
they observe is a some sort of collective state. They looked
at pinned Wigner solids or charge density waves as possible
candidates but could draw no definitive conclusions. The ex-
act nature of the collective insulator state remains unclear.

Based on their experimental measurements Pudalovet al.
presented a metal-insulator phase diagram as a function of
the electron densityns and the peak mobilitym

peak. The role
of disorder in the sample can be characterized bympeak. To
compare with their phase diagram we calculatempeak at the
critical values of impurity concentration20 nci using self-
consistent mode-coupling theory.21 The local field factor
G(q) used in Ref. 21 was approximated by a Hubbard ex-
pression for exchange only and this leads to higher peak
mobilities than with ourG(q), which includes both exchange
and correlations.

Figure 2 shows our calculated ergodic to nonergodic tran-
sition line. We also show the position of the metal-insulator
transition~circles! for three silicon samples taken from Ref.
2. Their position is in good agreement with our line.

Pudalovet al. found with decreasing density or increasing
disorder that the correlation lengthLD ~the domain size! de-
creases. This drives the coherent insulating state into a
single-particle localization in whichLD becomes of the order
of r 0. The crossover from coherent insulating state to single-
particle localization is not precisely determined in the experi-
ment. The criterion they decided upon for the crossover was
thatLD52r 0. The three triangles mark these points in Fig. 2.

Near the transition our calculated electron-electron
memory function Mee(q)@Mde(q), the defect-electron
memory function. If we decreasempeakwhile holdingr s fixed
thenMde(q) gets bigger. It is clear from Fig. 1~b! that f (q)
eventually evolves to a Gaussian-like function characteristic
of single-particle localization. As in the experimental case
the boundary between the two different types of localization
is not precise and we take as our criterion for the cross-over
thatMee(q).Mde(q). The region bounded by the thick solid
and dashed lines then depicts the phase region where the
system is in the coherent localized state. The region below
the dashed line is the noncoherent localized phase.

Pudalovet al. find when r s&8 that the metal-insulator
transition goes directly to single-particle localization. This is
again consistent with our results: forr s&7 we find only
noncoherent localization. For noncoherent localization
many-body effects are not dominant. The electrons localize
independently, analogous to single-particle localization
around impurities.

In summary the idealized~assumed zero hopping! classi-
cal glass transition method has been modified for the low-
density electron system. The driving mechanism for the tran-

FIG. 2. Phase diagram as a function of electron density and peak
mobility. Upper region is the conducting liquid phaseL. The
shaded region is our coherent insulator CI. Lower region is the
noncoherent insulator. Experimental points and dot-dashed lines
passing through them are from Ref. 2; circles, metal-insulator tran-
sition, triangles, transition from coherent localization to single-
particle localization.
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sition are the strong Coulomb correlations between electrons.
We also include the effects of electron-impurity and interface
surface-roughness scattering.

In the extreme low disorder limit our method reproduces
the well-known intrinsic weak localization characteristic of
low-dimensional systems. At small but finite disorder we get
a transition to a coherent solid phase with liquidlike short-
range order, which persists while electron-electron scattering
dominates the dynamics but it gets destroyed at higher levels
of disorder. This occurs whenMde(q) starts competing with
Mee(q). Similarly, the noncoherent localized phase replaces
the coherent phase if we decrease the strength of the
electron-electron interactions by increasing the electron den-
sity.

The agreement between our phase diagram and the recent
experiments of Pudalovet al. strongly suggest that the co-
herent insulating phase observed in Ref. 2 is aglassy phase.
Experimental evidence of electron glassy behavior has been
reported in gallium arsenide samples of much less disorder
than these silicon samples.22 The possibility of a glassy co-
herent phase should be checked against other experiments.
One possibility is a search for hysteresis which provides di-
rect evidence for metastable states of a system.

We thank J. Bosse, A. L. Efros, H. A. Fertig, and M. P.
Tosi for useful discussions. This work is supported by an
Australian Research Council grant. D.N. thanks F. Bassani
for the hospitality of the Scuola Normale Superiore.

1B. Tanatar and D.M. Ceperley, Phys. Rev. B39, 5005~1989!; G.
Senatore and F. Rapisarda, Aust. J. Phys.49, 161 ~1996!.

2V.M. Pudalov, M. D’Iorio, S.V. Kravchenko and J.W. Campbell,
Phys. Rev. Lett.70, 1866~1993!.

3G. Srinivasan, Phys. Rev. B4, 2581~1971!.
4A.L. Efros and B.I. Shklovskii, J. Phys. C8, L48 ~1975!; J.H.
Davies, P.A. Lee, and T.M. Rice, Phys. Rev. Lett.49, 754
~1982!.

5S.D. Baranovskii, A.L. Efros, B.L. Gelmont, and B.I. Shkovskii,
J. Phys. C12, 1023~1979!.

6W. Götze, Solid State Commun.27, 1393~1978!.
7D. Vollhardt and P. Wo¨lfe, Phys. Rev. Lett.45, 842 ~1980!.
8M.H. Cohen and G.S. Grest, Phys. Rev. B20, 1077~1979!.
9U. Bengtzelious, W. Go¨tze, and A. Sjo¨lander, J. Phys. C17, 5915

~1984!; J. Bosse and J.S. Thakur, Phys. Rev. Lett.59, 998
~1987!.

10S. Das, G. Mazenko, S. Ramaswami, and J. Toner, Phys. Rev.
Lett. 54, 118 ~1985!; S.P. Das and G.F. Mazenko, Phy. Rev. A
34, 2265 ~1986!; W. Götze , E. Leutheusser, and Sydney Yip,
Phys. Rev. A23, 2634~1981!.

11H. Mori, Prog. Theor. Phys.33, 423 ~1965!; R. Zwanzig, inLec-
tures in Theoretical Physics, edited by W.E. Brittin, B.W.
Downs, and J. Downs, Vol. III~Interscience, New York, 1961!.

12J. Bosse, W. Go¨tze and M. Lucke, Phys. Rev. A17, 447 ~1978!;
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