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The tight-binding approach has become one of the most common and useful methods for incorporating
band-structure effects into the calculation of the tunneling resonances of resonant tunneling diodes, the energy
levels of quantum wells, and other heterostructure properties. For several years now, numerical stabilization
methods have allowed the use of tight-binding models for even very long structures (;3000 Å!. These
methods still, however, suffer from a common deficiency: the reliance on a transfer-matrix calculation to
determine the boundary conditions. The difficulty is rooted in the fact that the mere generation of a transfer
matrix requires a matrix inversion which may not always be possible. Recently, we have shown how to obtain
the complex band structure in the case of singular coupling matrices, for which a transfer matrix does not exist.
Here we study a simple model, deliberately constructed in such a way that a transfer matrix does not exist, and
demonstrate that its tunneling properties are exactly what one anticipates from the bulk bands.
@S0163-1829~96!00836-3#

Empirical tight-binding techniques have been employed
for a number of years now in tunneling calculations for
quantum heterostructures such as resonant tunneling diodes.
They can provide a much more complete description of the
bulk band structures of the constituent materials than can
effective-mass approaches and they are well suited to han-
dling heterointerfaces. Numerical stabilization methods1–3

have permitted their use in modeling structures in excess of
3000 Å long. Despite these impressive achievements, tight-
binding approaches still have one significant remaining prob-
lem, perhaps not as widely recognized as it should be: the
reliance on transfer matrices.4 In these methods a transfer-
matrix equation yields the basis states in terms of which the
boundary conditions are expressed. Furthermore, in Refs. 1
and 3, transfer matrices are used in the solution of the Schro¨-
dinger equation itself. The problem is quite simply that gen-
erating a transfer matrix requires inverting one or more sub-
matrices which couple the various atomic planes to one
another, and in many cases of interest these submatrices be-
come singular, so that a transfer matrix does not exist. For
example, in an@001#-oriented zinc-blende crystal described
with the second-near-neighborsp3 model ~which can cor-
rectly reproduce theX-valley transverse effective mass!, at
the interfacial wave vectorki52p/aex ~lattice constant is
a), the transfer matrix does not exist.5 This is a potentially
fatal difficulty for the tight-binding method, since the above
procedure is obviously of little use in treating indirect semi-
conductors having conduction-band minima which occur at
theX points. Using this procedure as the starting point in a
calculation incorporating inelastic processes~which mix
states of differingki) is likewise problematic. Difficulties
will also arise when a set of tight-binding parameters renders
the coupling matrices which one inverts to obtain the transfer
matrix singular. Furthermore, the transfer matrix is most of-
ten computed numerically, so that even near-singular cou-
pling matrices will result in a transfer matrix of poor quality,
having inaccurate eigenvalues and eigenvectors. Thus one
must determine the expansion states with a method appli-
cable in the case of singular coupling matrices.

Because the real bands of a material are always available
from the ~well-behaved! bulk Hamiltonian, it seems more
likely that the nonexistence of a transfer matrix under certain
conditions is a defect of the method itself rather than an
inherent physical property of the system. This is not to say
that the nonexistence of a transfer matrix is without physical
consequences: in our recent study of the complex bands of
GaAs and AlAs in the second-near-neighborsp3s* model,5

we have seen that it is indicative of evanescent states which
grow and decay infinitely quickly. States with such proper-
ties obviously must be calculated by something other than
the transfer-matrix method.4 here we extend our previous
work,5 showing how it may be employed in tunneling calcu-
lations. To demonstrate its utility, we present a tunneling
calculation for a single barrier/well heterostructure described
using a second-near-neighbor two-band model having pa-
rameters deliberately chosen to give singular coupling matri-
ces, so that a transfer matrix does not exist.

Our method is most easily introduced using a simple di-
atomic tight-binding model: one having ans-like orbital on
each cation site and apz-like orbital on each anion site.

6,7 In
order to illustrate the method in the case of singular coupling
matrices, we include interactions up to second-near-
neighbor; eventually we will setone of the second-near-
neighbor parameters to zero in order to obtain singular cou-
pling matrices.~Setting both to zero merely reduces the
problem to the nearest-neighbor calculation, at which point
the equations are easily rewritten in terms of nonsingular
coupling matrices.! Because this model lackspx- and
py-like orbitals, there is little point in including the depen-
dence onki5kxex1kyey ; therefore, we restrictki50. The
Schrödinger equation in either the Bloch~now with
k5kez) or planar-orbital bases~with ki50) may be written
down directly from its second-near-neighborsp3 form. It is,
however, easier to recognize that forki50 the problem re-
duces to that of a linear chain of atoms and that the various
interactions may be combined into intra- and inter-atomic
layer couplings~Fig. 1!. Taking the chain along thez axis,
with anion layers at positionsna/2, cation layers at
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(na/21a/4), nPJ, the bulk Hamiltonian is

H~k!5F Es12VscosS ka2 D i2VspsinS ka4 D
2 i2VspsinS ka4 D Ep12VpcosS ka2 D G , ~1!

whereEs andEp are the same-layer interactions,Vsp is the
nearest-neighbor atomic layer interaction, andVs andVp are
the second-near-neighbor atomic layer interactions. In this
scheme theLth monolayer consists of the anion atomic layer
at La/2 together with the cation atomic layer at
(La/21a/4).

Writing the state in the planar orbital basis,

uC&5(
n8

HCn8
p Uza; n8a

2 L 1Cn8
s Usc; n8a

2
1
a

4L J , ~2!

the Schro¨dinger equation yields pairwise equations:

VpCn21
p 1VspCn21

s 1@Ep2E#Cn
p2VspCn

s1VpCn11
p 50,

~3!

VsCn21
s 2VspCn

p1@Es2E#Cn
s1VspCn11

p 1VsCn11
s 50,

~4!

where~3! and~4! are shown for bulk. As discussed in Ref. 5,
the bulk eigenstates representing propagating~Bloch! and
evanescent states are found for the solutions of the forward,
~5!, and reverse,~6!, eigenproblems:

l1M1Xn5M2Xn , ~5!

M1Xn5l2M2Xn , ~6!

where

M1[F Vp 0 0 0

Vsp Vs 0 0

0 0 1 0

0 0 0 1

G ,

M2[F2@Ep2E# Vsp 2Vp 2Vsp

Vsp 2@Es2E# 0 2Vs

1 0 0 0

0 1 0 0

G , ~7!

Xm[F Cm

Cm21
G , Cm[FCm

p

Cm
s G . ~8!

The eigenstates of~5! or ~6! become the basis states in terms
of which the boundary conditions in the left- and right-semi-
infinite regions are expressed in the heterostructure tunneling
problem. In Ref. 5 it is shown that although there appear to
be two eigenproblems~for singular M6 , l65` can be
considered eignevalues, as well as the obviousl650), an
implementation usingEISPACK~Ref. 8! routines yields all ei-
genvalues in one diagonalization; we follow that procedure
here. In addition, as expected from the discussion in Ref. 5,
the characteristic polynomials of~5! and ~6! are identical,

l6
4 VpVs1l6

3 @~Es2E!Vp1Vsp
2 1~Ep2E!Vs#

1l6
2 @~Es2E!~Ep2E!12VpVs22Vsp

2 #

1l6@~Es2E!Vp1Vsp
2 1~Ep2E!Vs#1VpVs50, ~9!

and it is seen that in the singular case~say Vs50,
VpÞ0), ~9! becomes a third-degree polynomial of the form
l6p(l6) , where p(l6) is a polynomial of degree 2 of
which l650 is not a root.

We consider the simple single well/barrier tunneling
problem depicted in Fig. 2; four monolayers of material B
are sandwiched between two semi-infinite regions of mate-
rial A. We take the structure to be unbiased and compute the
transmission probability as a function of the energy of the
incident particle. The eigenstates of the left-and right-semi-
infinite regions, A, are thus identical. We express the bound-
ary conditions in terms of the eigenstates of~5!, ~6!, arrang-
ing the vectors as columns of a 434 matrix, P, which we
write in terms of 232 blocks,Pi , j :

P[@s~ f !ub~ f !us~r !ub~r !#5FP1,1 P1,2

P2,1 P2,2
G , ~10!

wheres( f ) and s(r ) are, respectively, forward- and reverse-
decaying~surface! states andb( f ) andb(r ) are, respectively,

FIG. 1. Linear chain of atoms showing effective inter-atomic-
layer matrix elements. Anions are large and shaded, cations are
small and striped. A monolayer isa/2 long; monolayerL is shown,
along with the nearest-neighbor atoms ofL61.

FIG. 2. Heterostructure for the tunneling problem.
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forward- and reverse- propagating~Bloch! states. Note that
in the case of singularM6 , s(r )PKer(M1) and s( f )

PKer(M2).
The most natural method for solving the tunneling prob-

lem without generating a transfer matrix~except to obtain the
basis states! is that of Ting, Yu, and McGill;2 we employ it
here, but modify it by obtaining the basis states from the
generalized eigenproblem~5! or ~6! instead of computing
and diagonalizing a transfer matrix. Since these states are
used in formulating the boundary conditions, we discuss only
that part of the method of Ref. 2 here. In the left-semi-
infinite region that total state consists of a unit amount of the
forward-propagating eigenstate and as yet unknown amounts
of reverse-decaying and reverse-propagating eigenstates:

F C0

C21
G5FP1,1 P1,2

P2,1 P2,2
G F Ir G , I5F01G , r5F r sr bG , ~11!

where the reflection coefficient isur bu2 and, from~11!,

r5P1,2
21@C02P1.1I # , ~12!

C212P2,2P1,2
21C05@P2,12P2,2P1,2

21P1,1# I . ~13!

In the right semi-infinite region the state consists of as yet
unknown amounts of forward-propagating and forward-
decaying eigenstates:

FC6

C5
G5FP1,1 P1,2

P2,1 P2,2
GF t0G , t5F tstbG , ~14!

where the transmission coefficient isutbu2, and, from~14!,

t5P2,1
21C5 , ~15!

C62P1,1P2,1
21C550. ~16!

Because we consider only unbiased structures and there are
only either two~or zero! Bloch states at a given energy, the
speeds of all propagating states are identical and thus all
velocity factors become unity. Equations~13! and ~16! ex-
press the boundary conditions for the entire structure and the
Schrödinger equation as written using the method of Ref. 2
results in a 16316 banded matrix. We take the A-B interface
to occur at an anion plane; for the same-plane interface pa-
rameter we takeĒp5

1
2(Ep

(A)1EP
(B)) and for the second-near-

neighbor interactions we takeV̄p5
1
2(Vp

(A)1Vp
(B)) and V̄s

5 1
2(Vs

(A)1Vs
(B)). Since our purpose here is to demonstrate

our method rather than model a specific heterostructure, we
select the interface parameters on the basis of convenience.
With regard to equations~11!–~16!, we emphasize that we

arenot inverting coupling matrices; indeed for there to be a
basis, the columns of~10! must be linearly independent. In
addition, we stress that the eigenstates of~5!, ~6! are used in
formulating the boundary conditions inexactly the same
manner as are the transfer-matrix eigenstates in the original
method of Ting, Yu, and McGill.2 With this modification to
their method, it is no longer necessary to deal with transfer
matrices and thus the presence of eigenstates of~5!, ~6! cor-
responding to infinite or zero eigenvalues presents no prob-
lem.

As indicated in the discussion of~10!–~16! above, one
formulates the boundary conditions for the tunneling prob-
lem in terms of the eigenstates of~5!, ~6! regardless of
whether or not the matricesM6 are singular. What may
come as a surprise is that the transmission and reflection
coefficients in the case of singularM6 behaveexactly as
one would expect based on the band structures of the con-
stituent materials. We demonstrate this by constructing a de-
liberately singular case, the parameters of which are listed in
Table I. Since our purpose here is to demonstrate the utility
of this method the parameters are not chosen to mimic some
particular materials, rather they are selected to best show the
current approach. In Fig. 3, we graph the bands of A~solid
lines! and B ~dashed lines! produced by these parameters.
SinceVs50 for both materials, it is readily apparent that the

TABLE I. Tight-binding parameters for materials A and B; units
are eV.

Parameter A B

Es 0.5 0.3
Ep 20.6 20.2
Vsp 0.5 0.3
Vs 0.0 0.0
Vp 0.1 0.05

FIG. 3. Real bands of materials A~solid lines! and B ~dashed
lines! as produced by the parameters of Table I.

FIG. 4. Base-10 logarithm of the transmission-versus-energy
curve of the single well/barrier heterostructure of Fig. 2, with ma-
terials A and B described by the parameters of Table I.
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matricesM6 for both are singular. In particular, this means
that there is no transfer matrix for either material and the
eigenstates of material A used in formulating the boundary
conditions cannot be calculated in the usual manner.

We calculate the transmission-versus-energy curve of the
structure of Fig. 2 using the modified method of Ref. 2 dis-
cussed above; the results are plotted in Fig. 4. The energy
resolution for this curve is 1 meV and forall points flux
conservation was excellent:R1T51.06d, 0<d,10210.
Furthermore, Fig. 4 displays exactly the behavior we expect
from the bands of Fig. 3. There, notice that the carriers inci-
dent from the conduction band of A initially tunnelover a
quantum well made of material B, until they reach an energy
of about 0.67 eV, at which point they are above the
conduction-band maximum of B so that the well becomes a
barrier. Correspondingly in Fig. 4, we observe an initially
high transmission with two shallow resonances at about
0.543 and 0.638 eV which then falls above this final reso-
nance. The resonances, too, exhibit the proper physics: com-
paring the deBroglie wavelengths of the incident particles
(l52p/kinc), we find that at the lower-energy resonance
almost exactly two half wavelengths fit in the well while at
the higher almost exactly three half-wavelengths fit in the

well. Thus, we see that even in the case of singular coupling
matrices, we can accurately calculate heterostructure tunnel-
ing properties.

We have demonstrated that it is possible to accurately
calculate the transmission properties of a heterostructure de-
scribed with a tight-binding model even in cases in which the
matrices coupling the various atomic planes are singular. By
removing the necessity of dealing with transfer matrices in
formulating the boundary conditions, we have resolved a ma-
jor problem of tight-binging approaches. Our simple, delib-
erately singular example displays the intuitively expected
transmission behavior and we find that flux conservation is
excellent. This method should be generalizable to more com-
plete tight-binding models to enable the calculation of trans-
mission properties and energy levels of heterostructures in
situations for which a transfer matrix does not exist~e.g.,
certainki or parameter sets!. This should increase the utility
of tight-binding methods when employed as parts of calcu-
lations for indirect semiconductors and/or incorporating in-
elastic processes.
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