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Green’s function of a two-dimensional interacting electron gas in a perpendicular magnetic field
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It is rigorously proved that the Green'’s function of a uniform two-dimensiamtaractingelectron gas in a
perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The impli-
cation of this theorem is briefly discuss¢80163-182896)02635-3

A system of two-dimensiondRD) interacting electrons in  cause the theorem is applicable to systems containing inter-
the presence of a perpendicular magnetic field displays margction and disorder, two key ingredients, with arbitrary
fascinating properties, for example, the integer and fractionadtrengths. The usefulness of the Green’s function need not be
quantum Hall effectd.It is believed that those peculiar prop- emphasized. It is well known that the Green’s function char-
erties result from the interaction between electrons, and thgcterizes the propagation of a system with one particle more
interplay between the interaction and disortiér. or less, and provides the energy and lifetime of excitations of

Although great advances have been made in understanghe systen?:* Furthermore, many system properties can be
ing the systen;? like most other interacting systems, few oyaiuated with the aid of the Green’s functivh.
system properties could be calculated exactly, because the | he following, | first prove the theorem, then discuss its
dimensionality of the system is higher thaftiThus exact implications. For clarity, the theorem will be proved for a

relations, e.g., sum rules, are always desired. These eXa5hEG containing electron-electron and electron-phonon in-

r_elat|ons not only prpwde criteria for making approxima- . - ctions. If the electrons also interact with randomly dis-
tions, but also may give insight into the underlying phySICS'tributed impurities(disordey, one can easily verify that the
In thi r, | present rigor roof of the followin . T ; . .
this paper, | present rigorous proof of the following theorem still holds for the impurity-configuration-averaged

theorem: the Green’s function of a uniform 2bBteracting G s f ion. The el 2L d it d
electron gagEG) in a perpendicular magnetic field is diag- G/€€N'S function. The electron spin Is ignored, as it does not

onal with respect to the single-particle states in the Landa@ffect the validity of the theorem, and can be included
gauge. This theorem should contribute significantly to ourStraightforwardly. o o
understanding of the physics of an interacting 2DEG, be- Let us start by considering the model Hamiltoriigh
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where V(r) is the electron-electron interaction potential, G(r,r’,t) can be defined agvithout the loss of generality,
#(r) is the electron field operator[¢(r)¢'(r')  only the case of=0 needs to be considene(Refs. 3 and %
+yt(r')y(r)=6(r—r')], a} is the phonon creation opera-

tor [akal,—al,akz Sk k'], wi is the phonon frequency, and G(r,r' . t)y=—iTrpy(r,t) " (r',0)], 2
V, is the electron-phonon coupling matrix elemént.

The Cartesian coordinate of the system is chosen suchhere p=ef?® s the density  matrix;
thatr = (x,y) is in thexy plane. The vector potentidl pro-  ¥(r,t) =" y(r)e K%, K=H-uN;

duces a magnetic field in the direction. In the Landau N=/dr lﬂ_T(f)iﬁ(f), the total number of particles; and is
gauge,A=(0,Bx,0); the single-particle statesvave func- the chemical potentidl. .

tions are given by ¢ (r)=e* a2 (ax+kla), with Let us consider a unitary transformation
(pn(X)Z(\/EZnn!)71/267XZ/2Hn(X); a:(mwc/h)llz; Hn(x)
is the Hermite polynomial,w.=eB/mc; and n is the

i
= — —a. T el t
Landau-level index:® Us exp[ 7S f dr " (r)pe(r) exp[ is ; kala,
BecauseH is time independent, the Green’s function ©)]
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One can verify thal=U7?, U yg(r)U;t=y(r+s), and
U,aU; *=a.e'*"S. Applying this transformation té4, one
finds thatleulHUIl differs from H only in the vector
potential, i.e., inH,, A=[0,B(x—s,),0].

Let us examine another unitary transformation

UzzeXF{—f dryf(Dlia®sylu(r)|, 4

with s, the x component ofs. One can verify that
US=U51, Uy(r)Uyt=ele®sdy(r), and UyaU; t=a.
Applying this transformation toH,;, one finds that
U,H,U, *=H exactly. Note that);NU; *=U,NU, *=N.
Inserting 1=U U (U denotesJ; andU,, respectively

into the trace defining the Green'’s function, since the value

of the trace does not change, one obtains
G(r,r' t)=—iTref KKy g e KAy Ty
+9)]el sy, (5)
Choosings=—(r+r’)/2, and denotingz=r—r’, one ob-
tains
G(r,r' 1) =G(z2,— 2/2,t)e 1<’ xxy=y2. (g

Next, let us consider unitary transformation

u3=exp[—f dryt(r)[ —ia®xyl2]y(r)|. 7

One can verify thatl]=U3 !, Ugp(r)Uz t=e 1 @™2y(r),

andUja,U; '=a,. Note thatUsNU;*=N. Applying this
transformation toH, one finds thatHS=U3HU§l differs

from H only in the vector potential. IHg, the vector po-
tential isA=B(—Y,x,0)/2, the symmetrical gauge.

Inserting 1=U;'U; into the trace that defines

G(z/2,—z/2,t) above, one obtains G(z/2,—2z/2,t)

7641

Note that the domains af andr’ integrals are the entire
xy plane, and so are the domainsaéndR integrals. The
R integral can be done exactly &s,

|:J dRe*(R+212) oy (R—2/2) e 12X

=8(k—K')FpnHp o (a?Z2/2)e! " ~M9, (10)
where ¢ is introduced via u=zcosp, v=2z sing,
Foo=(— 1) 0o =nb2, and Hio1(X)

=(n!/(n+1)1) Y2272 | (x). Thus one obtains

z z
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= (S
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—K')FonHon — elin-me (11

SinceG(r, —r,t) is independent of the direction of the
¢ integral immediately leads to

Ghknk ()= Gn(t) (k=K") 8 . (12
Thus | have rigorously proved that the nondiagonal part of
the Green’s function is exactly zero, even in the presence of
electron-electron and electron-phonon interactf@nst
should be emphasized that it is the symmetry properties of
the system that lead to the validity of the theorem.

Next let us discuss the implications of the theorem. First,
let us make a comparison between the Green'’s function of a
free 2DEG without interaction and that of an interacting one.
For a free 2DEG, the Green'’s function is diagonal with re-
spect ton andk,* and isk independent. Equatiord1) and
(12) show that these two properties are inherited by the in-
teracting 2DEG. This of course does not mean that the inter-
action plays no role at all. As the self-enetgynust also be

=G (z/2,—z/2,t), where the superscript emphasizes thatdiagonal inn and bek independent, the correction due to

G® is calculated with the Hamiltoniakls. Thus one ar-
rives af

G(r,r',t)=G(z2,— z/2,t)e 1°xxy=y2. (g
In a symmetrical gauge, the Hamiltoni&ty is invariant

under a unitary transformation of a rotation aboutzteis®
This is because, in the model Hamiltonidry, the electron-

electron-electron interaction is applicable to a Landau level
as a whole. This could be interpreted to mean that, if one
treats the electron-electron interaction as a perturbation, then
all k states in a Landau level are equally coupled by the
interaction.

In a quantum system, the symmetry usually leads to
degeneracy.For a noninteracting 2DEG, all Landau levels
are highly degenerate and have the same degenehaltyat

electron and electron-phonon interaction terms are invariangould one say about an interacting 2DEG? From (Bjj.one
under the unitary transformation, while the kinetic-energyobserves thaG(r,r,t) is r independent. The same is true of

term (in the symmetrical gauges also invariant. Conse-

a free 2DEG. For an interacting 2DEG, this is a result much

quently, G (r,—r,t) is a function of|r| only, independent stronger than stating that the electron-density distribution is
of the direction ofr. Note that the possibility of spontaneous spatially uniform. From the definition oB,(t), one may

symmetry breaking is not considered here.
Now, let us calculateG i (t)=fdr fdr’ ¢k (r)G(r,

r'eqn e (r’). After a change of integration variables,

z=r—r'=(u,v) andR=(r+r")/2=(X,Y), one has

Z Z
Gnk,n’k’(t):f dz G(S)(E,_E,t)JdR‘P:k

X

z z —ia?Xv
R+§ Pnrk! R_E e . 9

write G(r,r,t) as= Gn(t)|enk(r)|?. As Gpi(t) is k inde-
pendent, after the sum ovédg, one is left with2,G,.(t).
Since G, (t) is believed to characterize the spectra of the
systent* one could interpret this sum ovaras a sum over

all Landau levels. Thus the number of particles allowed in
each Landau level is the sanfthe notion of a Landau level
should be still appropriate for an interacting system, if the
electron-electron interaction is treated as a perturbation
This could be viewed as a kind of degeneracy, though not
exactly.
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It is well known that, in the zero-temperature limit, the  The theorem provides a very helpful guideline for calcu-
Green’s function defined by E@2) characterizes the propa- lating the Green’s function approximately. In the theories
gation of a true ground state containing an additionalreating the interaction as perturbation, the selection of Feyn-
particle>* Let us perform an imaginary experiment: at time man diagrams must be consistent with the theorem. Practical
t=0, one first adds a particle of staté to the true ground numerical calculations should also benefit. It is interesting to
state, lets it evolve according to the full Hamiltonidinfor a point out that the so-called Strong magnetic-ﬁe|d approxima_
finite ime t>0, and then takes a particle of statek’ away tion widely used in the literatuteis actually necessary for
from it. What is the overlap between this evolved state withyoderate field strengths as well. The approach employed in
the true ground state? This overlap is precisely given by thene procedure of proving the theorem is useful for other pur-
Green'’s functionGy,q«k(t),>* and this overlap is zero, un- poses as well. For example, one can easily verify that the
lessn=n’ andk=k’, according to Eq(12). For a noninter-  gacron  density-density correlation functio®(r.r’,t)

acting 2DEG, the result of this imaginary experiment can b efs. 3 and His a function ofr—r’, though the system is

easily understood, as there is no coupling between differen . . .
not translational invariant.

nk states. For an interacting 2DEG, however, electrons are | | summary, it is rigorously proved that the Green’s func-

fr?igploegebzngdlri]rferfc;“eotnl,zggg)b:gci?ee ;Z;ﬁf;te;igﬂ \gf\g 0l(ion of an interacting 2DEG in a perpendicular magnetic field
' P is diagonal with respect to single-particle states in the Lan-

kind of “stiffness” of the true ground state, as the particle . o AT
added seems to be marked somehow by the system. It fﬁéieuOI’ge?;J%se.C?J—::’Zr:{;;//eusr:g::\ﬁ:yc’f further implications of the

interesting to note that this stiffness exists for arbitrary elec-
tron densities. This stiffness should not be confused with the This work was partly supported by the Chinese Natural
well-established notion that the quantum Hall liquid is Science Foundation. Helpful discussions with B.S. Wang are
incompressiblé:? appreciated.
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