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It is rigorously proved that the Green’s function of a uniform two-dimensionalinteractingelectron gas in a
perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The impli-
cation of this theorem is briefly discussed.@S0163-1829~96!02635-5#

A system of two-dimensional~2D! interacting electrons in
the presence of a perpendicular magnetic field displays many
fascinating properties, for example, the integer and fractional
quantum Hall effects.1 It is believed that those peculiar prop-
erties result from the interaction between electrons, and the
interplay between the interaction and disorder.1,2

Although great advances have been made in understand-
ing the system,1,2 like most other interacting systems, few
system properties could be calculated exactly, because the
dimensionality of the system is higher than 1.2,3 Thus exact
relations, e.g., sum rules, are always desired. These exact
relations not only provide criteria for making approxima-
tions, but also may give insight into the underlying physics.

In this paper, I present rigorous proof of the following
theorem: the Green’s function of a uniform 2Dinteracting
electron gas~EG! in a perpendicular magnetic field is diag-
onal with respect to the single-particle states in the Landau
gauge. This theorem should contribute significantly to our
understanding of the physics of an interacting 2DEG, be-

cause the theorem is applicable to systems containing inter-
action and disorder, two key ingredients, with arbitrary
strengths. The usefulness of the Green’s function need not be
emphasized. It is well known that the Green’s function char-
acterizes the propagation of a system with one particle more
or less, and provides the energy and lifetime of excitations of
the system.3,4 Furthermore, many system properties can be
evaluated with the aid of the Green’s function.3,4

In the following, I first prove the theorem, then discuss its
implications. For clarity, the theorem will be proved for a
2DEG containing electron-electron and electron-phonon in-
teractions. If the electrons also interact with randomly dis-
tributed impurities~disorder!, one can easily verify that the
theorem still holds for the impurity-configuration-averaged
Green’s function. The electron spin is ignored, as it does not
affect the validity of the theorem, and can be included
straightforwardly.

Let us start by considering the model Hamiltonian3–5
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where V(r ) is the electron-electron interaction potential,
c(r ) is the electron field operator @c(r )c†(r 8)
1c†(r 8)c(r )5d(r2r 8)#, ak

† is the phonon creation opera-
tor @akak8

†
2ak8

† ak5dk,k8#, vk is the phonon frequency, and
Vk is the electron-phonon coupling matrix element.3

The Cartesian coordinate of the system is chosen such
that r5(x,y) is in thexy plane. The vector potentialA pro-
duces a magnetic field in thez direction. In the Landau
gauge,A5(0,Bx,0); the single-particle states~wave func-
tions! are given by wnk(r )5eikya1/2wn(ax1k/a), with

wn(x)5(Ap2nn!)21/2e2x2/2Hn(x); a5(mvc /\)
1/2; Hn(x)

is the Hermite polynomial,vc5eB/mc; and n is the
Landau-level index.5,6

BecauseH is time independent, the Green’s function

G(r ,r 8,t) can be defined as~without the loss of generality,
only the case oft>0 needs to be considered! ~Refs. 3 and 4!

G~r ,r 8,t !52 iTr@rc~r ,t !c†~r 8,0!#, ~2!

where r5eb(V2K) is the density matrix;
c(r ,t)5eiKt /\c(r )e2 iKt /\; K5H2mN;
N5*dr c†(r )c(r ), the total number of particles; andm is
the chemical potential.4

Let us consider a unitary transformation
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One can verify thatU1
†5U1

21, U1c(r )U1
215c(r1s), and

U1akU1
215ake

ik•s. Applying this transformation toH, one
finds thatH15U1HU1

21 differs from H only in the vector
potential, i.e., inH1, A5@0,B(x2sx),0#.

Let us examine another unitary transformation

U25expF2E drc†~r !@ ia2sxy#c~r !G , ~4!

with sx the x component of s. One can verify that
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21, U2c(r )U2
215eia

2sxyc(r ), and U2akU2
215ak .

Applying this transformation toH1, one finds that
U2H1U2

215H exactly. Note thatU1NU1
215U2NU2

215N.
Inserting 15U21U (U denotesU1 andU2, respectively!

into the trace defining the Green’s function, since the value
of the trace does not change, one obtains
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Choosings52(r1r 8)/2, and denotingz5r2r 8, one ob-
tains

G~r ,r 8,t !5G~z/2,2z/2,t !e2 ia2~x1x8!~y2y8!/2. ~6!

Next, let us consider unitary transformation

U35expF2E drc†~r !@2 ia2xy/2#c~r !G . ~7!

One can verify thatU3
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21, U3c(r )U3
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andU3akU3
215ak . Note thatU3NU3

215N. Applying this
transformation toH, one finds thatHS5U3HU3

21 differs
from H only in the vector potential. InHS , the vector po-
tential isA5B(2y,x,0)/2, the symmetrical gauge.

Inserting 15U3
21U3 into the trace that defines

G(z/2,2z/2,t) above, one obtains G(z/2,2z/2,t)
5G(S)(z/2,2z/2,t), where the superscript emphasizes that
G(S) is calculated with the HamiltonianHS . Thus one ar-
rives at7

G~r ,r 8,t !5G~S!~z/2,2z/2,t !e2 ia2~x1x8!~y2y8!/2. ~8!

In a symmetrical gauge, the HamiltonianHS is invariant
under a unitary transformation of a rotation about thez axis.8

This is because, in the model HamiltonianHS , the electron-
electron and electron-phonon interaction terms are invariant
under the unitary transformation, while the kinetic-energy
term ~in the symmetrical gauge! is also invariant. Conse-
quently,G(S)(r ,2r ,t) is a function ofur u only, independent
of the direction ofr . Note that the possibility of spontaneous
symmetry breaking is not considered here.

Now, let us calculateGnk,n8k8(t)5*dr*dr 8wnk* (r )G(r ,
r 8,t)wn8k8(r 8). After a change of integration variables,
z5r2r 85(u,v) andR5(r1r 8)/25(X,Y), one has
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Note that the domains ofr and r 8 integrals are the entire
xy plane, and so are the domains ofz andR integrals. The
R integral can be done exactly as,9
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where f is introduced via u5z cosf, v5z sinf,
Fn,n85(21)(n82n1un82nu)/2, and Hn,n1 l(x)
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l (x). Thus one obtains
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SinceG(S)(r ,2r ,t) is independent of the direction ofr , the
f integral immediately leads to

Gnk,n8k8~ t !5Gnk~ t !d~k2k8!dn,n8. ~12!

Thus I have rigorously proved that the nondiagonal part of
the Green’s function is exactly zero, even in the presence of
electron-electron and electron-phonon interactions.10 It
should be emphasized that it is the symmetry properties of
the system that lead to the validity of the theorem.

Next let us discuss the implications of the theorem. First,
let us make a comparison between the Green’s function of a
free 2DEG without interaction and that of an interacting one.
For a free 2DEG, the Green’s function is diagonal with re-
spect ton andk,4 and isk independent. Equations~11! and
~12! show that these two properties are inherited by the in-
teracting 2DEG. This of course does not mean that the inter-
action plays no role at all. As the self-energy3,4 must also be
diagonal inn and bek independent, the correction due to
electron-electron interaction is applicable to a Landau level
as a whole. This could be interpreted to mean that, if one
treats the electron-electron interaction as a perturbation, then
all k states in a Landau level are equally coupled by the
interaction.

In a quantum system, the symmetry usually leads to
degeneracy.5 For a noninteracting 2DEG, all Landau levels
are highly degenerate and have the same degeneracy.5 What
could one say about an interacting 2DEG? From Eq.~6!, one
observes thatG(r ,r ,t) is r independent. The same is true of
a free 2DEG. For an interacting 2DEG, this is a result much
stronger than stating that the electron-density distribution is
spatially uniform. From the definition ofGnk(t), one may
write G(r ,r ,t) as(nkGnk(t)uwnk(r )u2. As Gnk(t) is k inde-
pendent, after the sum overk, one is left with(nGnk(t).
SinceGnk(t) is believed to characterize the spectra of the
system,3,4 one could interpret this sum overn as a sum over
all Landau levels. Thus the number of particles allowed in
each Landau level is the same~the notion of a Landau level
should be still appropriate for an interacting system, if the
electron-electron interaction is treated as a perturbation!.
This could be viewed as a kind of degeneracy, though not
exactly.
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It is well known that, in the zero-temperature limit, the
Green’s function defined by Eq.~2! characterizes the propa-
gation of a true ground state containing an additional
particle.3,4 Let us perform an imaginary experiment: at time
t50, one first adds a particle of statenk to the true ground
state, lets it evolve according to the full HamiltonianH for a
finite time t.0, and then takes a particle of staten8k8 away
from it. What is the overlap between this evolved state with
the true ground state? This overlap is precisely given by the
Green’s functionGnk,n8k8(t),

3,4 and this overlap is zero, un-
lessn5n8 andk5k8, according to Eq.~12!. For a noninter-
acting 2DEG, the result of this imaginary experiment can be
easily understood, as there is no coupling between different
nk states. For an interacting 2DEG, however, electrons are
coupled by the interaction, and become correlated. In view of
this, one could interpret Eq.~12! as the manifestation of a
kind of ‘‘stiffness’’ of the true ground state, as the particle
added seems to be marked somehow by the system. It is
interesting to note that this stiffness exists for arbitrary elec-
tron densities. This stiffness should not be confused with the
well-established notion that the quantum Hall liquid is
incompressible.1,2

The theorem provides a very helpful guideline for calcu-
lating the Green’s function approximately. In the theories
treating the interaction as perturbation, the selection of Feyn-
man diagrams must be consistent with the theorem. Practical
numerical calculations should also benefit. It is interesting to
point out that the so-called strong magnetic-field approxima-
tion widely used in the literature1 is actually necessary for
moderate field strengths as well. The approach employed in
the procedure of proving the theorem is useful for other pur-
poses as well. For example, one can easily verify that the
electron density-density correlation functionD(r ,r 8,t)
~Refs. 3 and 4! is a function ofr2r 8, though the system is
not translational invariant.

In summary, it is rigorously proved that the Green’s func-
tion of an interacting 2DEG in a perpendicular magnetic field
is diagonal with respect to single-particle states in the Lan-
dau gauge. The investigation of further implications of the
theorem is currently underway.
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