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We present a method which combines the finite-element method with the adaptive curvilinear coordinates,
and the method is applied to the electronic-structure calculation of a model potential system. Comparison with
other real-space methods, such as the finite-difference method is also made, and the efficiency of our method
is examined. In addition, it has some desirable properties, and will be useful as a part of theO(N) method for
self-consistent calculations.@S0163-1829~96!06236-4#

I. INTRODUCTION

Recently, a number of real-space methods have been pro-
posed for theab initio calculation of materials.1–11 This is
mainly because they have the following desirable properties
compared with the conventional plane-wave method:12 ~i!
Orbital formulation of linear scaling algorithms13–16requires
that the wave functions are strictly localized in given regions
of space. This is easily achieved in real-space methods.~ii !
In many of the real-space methods, we can put more points
in regions where the oscillation of the wave function is rapid.
This local refinement reduces the computational effort con-
siderably.~iii ! They are suitable for parallel computers, be-
cause no Fourier transforms are necessary.

However, work in this direction is still in progress, and
there seems to be much room for improvement. In this paper,
we propose another real-space approach which combines the
finite-element method~FEM! with the adaptive curvilinear
coordinates~ACC’s!, and show that it is an efficient scheme
with a number of desirable properties. In our previous
works,6 we developed the FEM for self-consistent electronic-
structure calculations on arbitrary grids. It is advantageous,
especially for all-electron calculations of materials, because
the grid can be made to vary logarithmically near the nuclei.
However, as a compensation for this high freedom of the
grids, the smoothness of the wave function is not
guaranteed.17 This loss of smoothness is undesirable for de-
scribing the smooth pseudo-wave-functions of the valence
electrons. To improve this deficiency, we restrict the free-
dom of the grids, and instead obtain the smoothness of the
wave functions while retaining ease in describing localized
wave functions.

II. FORMALISM

A. Basis functions

First we will discuss the basis functions. In Ref. 6, we
used standard finite-element basis functions of the first and
second orders. They allowed us to work on rather arbitrary
grids, but we did not stick to this property, and limited the
grids to those that are continuously transformed from uni-
form grids. Thus, as given below, we can use smooth basis
functions whose derivatives are continuous.

For simplicity, we consider the one-dimensional case. A
pair of functions,

S0~x!5H 123x212x3,
S0~2x!,
0,

0<x<1
21<x,0
otherwise,

~1!

S1~x!5H x22x21x3,
2S1~2x!,
0,

0<x<1
21<x,0
otherwise,

~2!

whose shapes are shown in Fig. 1, have the following prop-
erties:

S0~0!51, S08~0!5S0~61!5S08~61!50, ~3!

S18~0!51, S1~0!5S1~61!5S18~61!50. ~4!

This means thatS0 corresponds to the value of the function
at x50, andS1 corresponds to the derivative atx50. Note
also that they are strictly localized in region@21,1#, and zero
elsewhere. This is an important property for linear scaling
algorithms.13–16On a three-dimensional uniform grid, the ba-
sis functions are given by the products of these functions:

HSi S x2nx
h DSj S y2ny

h DSkS z2nz
h D J , i , j ,k50,1 ~5!

wherenx , ny , andnz are the coordinates of the grid points,
andh is the spacing of the grid. Therefore, eight basis func-
tions are assigned to each grid point.18 These functions and
their similitudes are often called spline functions rather than
the FEM, and was already introduced in Refs. 1 and 8. In
particular, higher-order extensions and orthogonal basis
functions are discussed in Ref. 1, but we do not use them in
this paper.19 It is possible, and not a bad idea, to work on
uniform grids with these basis functions. But it will not be an
efficient scheme, like the plane-wave method, when the elec-
trons are localized. Thus we use these basis functions on
ACC’s, which are explained in Sec. II B.

B. Adaptive curvilinear coordinates

The concept of ACC’s for electronic-structure calcula-
tions was brought about by Gygi,20 in combination with
plane-wave basis sets. Since then, it has been used success-
fully several times,21–23 and recently combined with the
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finite-difference~FD! approach.7 The basic idea of ACC’s is
as follows. We first define a coordinate transformationj↔x,
wherex denotes the Euclidean coordinates which are usually
used, andj denotes the curvilinear coordinates. Suppose we
choose a transformation such that the projection of a uniform
grid in j space ontox space becomes dense where the po-
tential varies rapidly. Then, if we work inj space, the reso-
lution can be enhancedlocally, and the calculation will be
performed efficiently. There is no unique way to define the
mesh, so we follow the method of Ref. 7 and define the
transformation as below:

j5x1(
a

~x2Ra! f a~ ux2Rau!, ~6!

f a~r !5Aa

aa

r
tanhS r

aa
DexpF2S r

ba
D 2G , ~7!

whereRa denotes the atomic positions,Aa is the degree of
distortion, aa is the range of magnification, andba is the
range of distortion. In practice, we need to calculate the Jaco-
bian matrixJ, its derivatives, and the metric tensorgi j 24

~J! i j5
]j i
]xj

, ~J! i j ,k5
]

]jk
S ]j i
]xj

D , ~8!

gi j5~J! ik~J! jk . ~9!

These quantities can be calculated analytically from~6! and
~7!. For convenience, the wave functionc(x) is written as
the product7

c~x!5uJu1/2f„j~x!…, ~10!

andf~j! is expanded by the basis functions explained in Sec.
II A in j space. In this representation, the kinetic and poten-
tial energies are expressed as follows:

Ekin5E ]c

]xi

]c

]xi
dx ~11!

5E FAi j ~j!
]f

]j i

]f

]j j
1Bj~j!

]f

]j j
f1C~j!f2Gdj,

~12!

where

Ai j[gi j , Bj[~J! jm~J! im,i , C[ 1
4 ~J!pr,p~J!qr,q

~13!

and

Epot5E V~x!c2~x!dx ~14!

5E V~j!f2~j!dj. ~15!

The derivatives are calculated analytically, and the integrals
are calculated numerically if necessary.25 In the present pa-
per, we do not consider self-consistent cases, so the total
energy is given byEtot5Ekin1Epot. To obtain the ground-
state energy and electronic density, we minimizeEtot with
respect to the expansion coefficients of the wave functions.
Unconstrained minimization14,15was employed as in Ref. 6.

III. APPLICATION

To compare the performance of our method and other
real-space methods, we calculated the ground state of the
system which was once used by Gygi.20 The potential has the
form

FIG. 1. The basis functionsS0 andS1. Note
thatS0 corresponds to the value of the function at
x50, and S1 corresponds to the derivative at
x50. For numerical reasons,S1 is multiplied by
5.0.
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V~r !5V0expF2S rr cD
2G , ~16!

with V05232 a.u., andr c50.5 a.u., and is periodically ar-
rayed at intervals of 5 a.u. in three dimensions. This system
can be regarded as a model for strongly localized systems.
The parameters of ACC’s areA51.0,a50.5 a.u., andb52.0
a.u., respectively. The projection of a uniform grid inj space
onto x space is given in Fig. 2. The calculated results are
shown in Fig. 3. Compared with the other real-space meth-
ods, the remarkable efficiency of our method can be seen.26

Note also that the energy curves of other methods on uni-
form grids oscillate as the number of variables changes. This
means that the value of the energy largely depends on
whether the peak of the potential is on the grid or between

the grid.27 Thus we must be careful about this point when we
perform molecular-dynamics simulations or optimization of
the ionic positions, and compare the energy of different con-
figurations. In comparison, the energy curve of our method
converges rapidly and monotonously as the number of vari-
ables increases.

IV. DISCUSSION

The major properties of our method are as follows:~i! We
can make the grid so that it is dense near the center of local-
ization, so strongly localized systems, such as first-row ele-
ments, can be treated without any serious difficulties. This
leads to a significant reduction in computational costs.~ii !
No Fourier transform is necessary, since all calculations are
performed in real space. This is important, especially for
massively parallel computers.~iii ! Orbitals strictly localized
in given regions of space are naturally expressed in this ap-
proach, so our method is suited to linear scaling
algorithms13–16for ab initio calculations.~iv! The variational
principle is valid in our approach, since the derivatives and
inner products of the basis functions are calculated exactly.
This is in contrast with the FD approach, in which the energy
often converges from below.~v! The matrices are generally
less sparse than in the FD approach, though the sparsity does
not depend on whether a uniform grid or an adaptive grid is
used.28 One solution to this problem is to use the orthogonal
basis functions proposed by White, Wilkins, and Teter,1 but
we have not checked their accuracies yet.~vi! Setting up
ACC’s may look like complicated and time-consuming
work, but the Jacobian, its derivatives, and the metric tensor
have high symmetry, and calculating them is in principle a
linear scaling procedure, so it will be done easily, especially
on parallel computers.

V. CONCLUSION

We have presented a method forab initio calculation of
electronic structures based on the combination of the FEM
and ACC’s. Our method has been shown to give good results
for a model system, compared with other real-space ap-

FIG. 2. The projection of a uniform grid inj space ontox space.
It is clearly seen that the grid spacing is small near the center, where
the potential is rapidly varying.

FIG. 3. The calculated results of various real
space approaches are shown. The FD approach
on adaptive grid~Ref. 7! was performed with or-
der 3, and the same parameters of ACC’s were
used as in the present work. The FD approach on
uniform grid ~Ref. 5! was performed with order
6.

7604 54BRIEF REPORTS



proaches. A straightforward extension of the present scheme
should include many electron self-consistent calculations
with nonlocal pseudopotentials.29,30However, self-consistent
calculations have already been performed with the FEM
~Ref. 6! or ACC’s,7 and there seems to be no serious ob-
stacle. The goal of the real-space approaches will be to per-
form ab initio molecular-dynamics calculations with time
proportional to the number of atoms. Our scheme can be a
promising candidate for this purpose.
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