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We present an analytical model based on scalar-wave approximation to study the stop bands of face-
centered-cubic photonic crystals with dielectric spheres at lattice sites. An analytical expression is obtained for
the normalized stop band widths along fie1] and[100Q] directions as a function of volume fraction and
relative dielectric contrast. These calculations enable us to map out the dielectric constants and volume frac-
tions which results iroverlapping Land X stop bands. From this map, it is possible to extract the optimum
volume fraction that results in the widest overlapping stop band for a given dielectric contrast. We find that the
relation between the optimum volume fraction and the dielectric contrast can be approximated by a simple
power-law behavior for fcc photonic crysta[$0163-18206)01036-3

Photonic band gafPBG) crystals belong to an interesting tures, there has been a shortage of simple and less time-
class of materials that are characterized by strong periodiconsuming tools for investigating photonic crystals. To fill
modulations in the dielectric constant, preferably in all threethis gap, we have developed an analytical model for optimiz-
dimensions. In such a crystal, propagation of electromagnetitlg optical stop bandsf fcc photonic crystals with a spheri-
waves is forbidden for a certain frequency range regardleséal basis based on scalar-wave approximatton
of the incident direction of photons; thus spontaneous emis- 1he electric field in a photonic crystal, comprised of lin-
sion can be controlled, opening up the possibility of many€ar lossless material, can be obtained from Maxwell's equa-
device applications, especially in the optical regimghe  tONs
concept of three-dimensional photonic crystals was intro-
duced by Yablonovitchin 1987, and also independently by
Johr? in the context of photon localization.

Although most applications of PBG materials will be in
the optical regime, fabrication of a three-dimensionalwhere the dielectric constant is separated into two parts:
photonic crystal with a complete PBG for this regime has not
been possible yet. We recently reported experimental mea- e(r)=€'(r)+e,.
surements of the optical-photonic band structure of three-
dimensional photonic crystals, formed by polystyrene micro-¢, is the average and' is the fluctuating or periodic part of
spheres suspended in water arranged in a fcc ldtfice; the dielectric constant. The average dielectric constant is
however, an overall overlap in the stop bands along differentaken as
directions was not achieved, owing to the low dielectric con-
trast e,=1.43. Although various computational tools such e=Te,+(1-fey=[(e.—1)f+1]ep, 2
as vector-wav&® and transmission matrix method
calculation$!~*have been introduced to study the photonicwheref is the volume fraction of the dielectric spheres in the
band structure of two- or three-dimensional dielectric struccrystal, e, (€p,) is the dielectric constant of the microspheres

2 2
_V2E(r —%e'(r)E(r)=eo%E(r), (1)
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FIG. 2. Dependence of the normalized fdd 1] stop bands on
the volume fraction. Note that as— 1, the stop band width stays
almost constant for most values of the volume fraction.

1 ‘
UGZGJ(EC—l)Eb; 6(Rs—|r—R|)e "¢ 'd%, (6)

where(} is the volume of the primitive unit cell of the crys-
tal. From Eq.(6), the Fourier coefficients for a fcc lattice
with spherical “atoms” are found as

167

Ug=— W(GC_1)Eb[5in(GRs)_GRsCOS{GRs)]-

()

The electric fieldE(r) is treated here as scalar, and ex-
panded into Bloch states

E<r>=§ ; Cy_ce'* @, (8)

FIG. 1. Dependence of the normalized fcc symmetry directionwhereX, is summed over the first Brillouin zone. Near the
stop bandwidths on the volume fraction and the dielectric contraspoint (k=G,/2), Bloch scattering due g, dominates

along(a) [111] L-point and(b) [100] X-point directions.

(background mediuim and e.= €,/ ¢, is the dielectric con-
trast. The volume fraction for a fcc crystébur spherical
atoms in one unit céllis given as

4/3) 7R3
f_4( ) TR

= a3 ,

3

wherea is the lattice constant, and is the radius of the

(similarly Ug, for the X point), thus the scalar-wave ap-
proximation in Eq.(8) is reasonable. By rewriting Edq1),
and approximatings= Gy (x for bands neat (X) the pho-

tonic dispersion relatiok(w) can be obtained in the follow-
ing form:!8

k=G/2+ JF(w), 9)

where

atom. The periodic part of the dielectric constant of the pho-

tonic crystal, €'(r), can be represented by the following
equation:

e’(r)=(ec—1)eb; O(Rs—|r—RY]), (4)
where 6(x) is the unit step function, wher@(x)=1 for
x=0 and zero otherwis® the summation is over all the
dielectric spheres centered Rtwith radiusR;. Also, €’ (r)
can be expanded in the usual way as

e’(r)=§ Uge'®T, (5)
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FIG. 3. Comparison of the analytical modelashed with the

whereG is a reciprocal-lattice vector. Thus the Fourier co-vector-wave calculationsolid) taken from Ref. 16. The gap widths

efficientsU are given by

are normalized by the central frequency of eoint gap.



54 BRIEF REPORTS 7595

—
e
st
o
8 -
N
g
o

F(w)=(G?/4)+ ey 0?/c?) — G?ey( w?c?) + U (w?/c?).
(10 \\ Lo.zo

Positive F(w) corresponds to band modes whérés real,  =§§§\

, . E-HiM\ 015 &
and negative-(w) to gap modes wherk is complex. For ,i.:g W\ \3
gap modes, ;:iis.i&&w 010 <

k=G/2%iq, WM\\\

whereqg= |F(w)|. Note that the imaginary part of the wave \W\\\\\ﬁ 005
vector exists only for the modes which are in the band gap. \'%A\\\\\

These gap modes exist only at the surface or interfaces; oth-
erwise the amplitude of the field would grow exponentially,

an unphysical situatiotf It is possible to find the frequen- =17 .'.',. .~_==_5== 6
cies for whichF () =0, and thus the boundaries of the fre- 0.5 ~"-'~'-'~..-'_=5=55___.{§=§_55§5§-= 4
quency window in which the gap modes exist: B 2 X By
1 <cG 1)
W=7 ——.
B 2 \ eoi UG

We define the width of the photonic stop band as
Aw=|w_—w,.|, and the gap center frequency as
w.=(w_+ w,)/2 such that the normalized stop band width
Awlw. is given as

Ao |o_—w|

Ug

et Veg—Ug

. (12

w¢ w_tow,

To calculate the normalized stop band width for fcc sym-
metry directions, the reciprocal-lattice vector is taken as
G=2mala, where a=+3 (a=2) is used forI'—L
(I'—=X) stop bands. Equatiof¥) can be written as

2 .
U=~ a3ﬂ-2(56°)6b(smg_§cof)’ (13 FIG. 4. Region of overlap foX andL stop bands. The center

. frequency w, is the frequency at theenter of the overlapping
3_4.3 2 - _ ¢
whereé®=3a°7°f/2 and .= e.— 1. Thus the normalized 5,45 (3) Surface plot.(b) Contour plot in thef — e, plane. The
stop band is calculated as dashed line is the optimum volume fractidiy _ o for the widest
stop band. Values d w/w, are labeled.
|

A_w_ 45e.(SinE— £ co)
wc | m2a%(f Sec+ 1)+ almH(fdect 1)2— 45€2(Siné— £ COKE)2 |

(14)

Note that Eq.(14) depends only on the relative dielectric  Several cross sections in tHe- (Aw/w.) plane of Fig.
contraste, and volume fractionf (through &). Since the 1(a) taken at particular dielectric contrast values are shown
close-packed volume fraction for fcc is 0.74, Ef4) is ex-  in Fig. 2. The interesting feature here is the location of the
pected to be valid fof <0.74. Forf >0.74, the atoms start to maximum stop band width. Note that as the dielectric con-
overlap, and become connected losing their spherical shap&ast increases ec>1), f, oy shifts to lower values

In Figs. 1a) and Xb), Eq. (14) is plotted for theL and (f~10-20%. For e.<1, this trend reverses, and for
X stop bands, respectively. Note that for both cases, ag<1: fL-op:€Xceeds the close packed limit. .
e.—1, the stop band vanishes as expected. Also, in Fig. In Fig. 3, we compare our analyncaji%results W'th. the
1(b), the stop band along th¥-point direction approaches vectorl—wavea clal((j:glatmr}s of Leung and.L .Th(lal photlc?n|% b
zero asf—0.7 as discussed in Ref. 19. At this volume frac- crystals modeled in Ref. 16 were experimentally realized by

: , - _ : ) Yablonovitch and Gmitté? by drilling air holes in a host
tion, the Fourier coefficient of the dielectric modulatio, -~ 4iim  with €,=12.25 (,=0.082). The L-point stop
changes sign due to a shift of material density from the iny4n4s show fairly good agreement with the full vector-wave
terstitial layers to the cube faces. From E#), this occurs calculation, whereaX-point stop bands display only quali-

atf=0.77, when tagi= £ thus it is independent of .. tative agreement. Specifically, tbepoint stop band goes to
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FIG. 5. Dependence of the normalized overlap of XhandL
stop bands on the volume fraction.

zero forf=0.66 (for €.=0.082 in the vector-wave calcula-
tion, in good agreement with= 0.68 with the experiment of

Yablonovitch and Gmitter, whereas the analytical case pre-

dicts f=0.77 (for 0.08<e.,<12.5). The discrepancy here

might result from the breakdown of the scalar-wave approxi- == : .
v PP Bec Y for two decades of dielectric contrast. From the param-

mation and the basic assumption of the Bloch scattering b
ing dominated by only onE ¢ in this regime where.<1 as
well as fore.>1. The sample studied in Ref. 5, polystyren
microspheres in water with=0.05 (e.=1.43 yielded a nor-
malized experimental gap of 0.0152 at thepoint?® which
is in excellent agreement with a calculated gap of 0.015
from Eq. (14).

It is also possible to calculate the region in the e,
plane that results imverlapping Land X stop bands. This
can can be obtained by using E¢1) for L andX bands. In
Fig. 4, the overlapping region is shown fe>1. For
e.<1, the overlapping region occurs for volume fractions
that exceed the close-packing limit, and thus it is not dis
played. The optimum volume fraction for maximum and
X-band overlap is shown in Fig(l) as the line crossing the
constant normalized gap contours.

Several cross sections in the- (Aw/w;) plane of Fig.
4(a) taken at particular dielectric contrast values are seen i
Fig. 5. The interesting feature here is the location of th

e

trast increasese(>1), f| x_op Shifts to lower values.

n
e
maximum stop band width. Note that as the dielectric con-
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FIG. 6. Numerical solution fof,,; as a function of the dielectric
contrast. The power-law fit t__ o, is shown with the dashed line.
The power-law fit tof  x _,q is not shown, for clarity.

In Fig. 6, the optimum volume fraction for tHe, X, and
overlapping bands are plotted in the same log-log graph. The
optimum volume fraction for thé band[Fig. 3(@] can be
approximated reasonably well by a power-law behavior

eters of the linear fit to th__,,; curve, we finds=0.41 and
v=0.41. Similarly, the optimum volume fraction for over-
lapping X andL bands shown in Fig.(4) can be approxi-
mated well by the power-law behavior, but with a coefficient

98=O.36 for 3<e,<12.5.

In conclusion, we have presented an analytical model us-
ing the scalar-wave approximatiofior calculating the stop
band widths of fcc photonic crystals with a spherical basis.
Although vector-wave calculations more accurately deter-
mine details of the photonic band structure, our scalar-wave
model is useful in predicting optimal conditions for band
overlap for this specific case. This model can be used for

calculating the characteristics of stop bands along the fcc
close-packing and cubic directions. From this expression, it
is possible to obtain the parameters that result in overlapping
L and X bands. We have found a power-law type relation

which can be used as a guide in the optimization of such
crystals.
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