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We present an analytical model based on scalar-wave approximation to study the stop bands of face-
centered-cubic photonic crystals with dielectric spheres at lattice sites. An analytical expression is obtained for
the normalized stop band widths along the@111# and @100# directions as a function of volume fraction and
relative dielectric contrast. These calculations enable us to map out the dielectric constants and volume frac-
tions which results inoverlapping LandX stop bands. From this map, it is possible to extract the optimum
volume fraction that results in the widest overlapping stop band for a given dielectric contrast. We find that the
relation between the optimum volume fraction and the dielectric contrast can be approximated by a simple
power-law behavior for fcc photonic crystals.@S0163-1829~96!01036-3#

Photonic band gap~PBG! crystals belong to an interesting
class of materials that are characterized by strong periodic
modulations in the dielectric constant, preferably in all three
dimensions. In such a crystal, propagation of electromagnetic
waves is forbidden for a certain frequency range regardless
of the incident direction of photons; thus spontaneous emis-
sion can be controlled, opening up the possibility of many
device applications, especially in the optical regime.1 The
concept of three-dimensional photonic crystals was intro-
duced by Yablonovitch2 in 1987, and also independently by
John3 in the context of photon localization.

Although most applications of PBG materials will be in
the optical regime, fabrication of a three-dimensional
photonic crystal with a complete PBG for this regime has not
been possible yet. We recently reported experimental mea-
surements of the optical-photonic band structure of three-
dimensional photonic crystals, formed by polystyrene micro-
spheres suspended in water arranged in a fcc lattice;4,5

however, an overall overlap in the stop bands along different
directions was not achieved, owing to the low dielectric con-
trast ec51.43. Although various computational tools such
as vector-wave6–10 and transmission matrix method
calculations11–14have been introduced to study the photonic
band structure of two- or three-dimensional dielectric struc-

tures, there has been a shortage of simple and less time-
consuming tools for investigating photonic crystals. To fill
this gap, we have developed an analytical model for optimiz-
ing optical stop bandsof fcc photonic crystals with a spheri-
cal basis based on scalar-wave approximation.15–17

The electric field in a photonic crystal, comprised of lin-
ear, lossless material, can be obtained from Maxwell’s equa-
tions

2¹2E~r !2
v2

c2
e8~r !E~r !5eo

v2

c2
E~r !, ~1!

where the dielectric constant is separated into two parts:

e~r !5e8~r !1eo .

eo is the average ande8 is the fluctuating or periodic part of
the dielectric constant. The average dielectric constant is
taken as

eo5 f ea1~12 f !eb5@~ec21! f11#eb , ~2!

wheref is the volume fraction of the dielectric spheres in the
crystal,ea (eb) is the dielectric constant of the microspheres
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~background medium!, andec5ea /eb is the dielectric con-
trast. The volume fraction for a fcc crystal~four spherical
atoms in one unit cell! is given as

f54
~4/3!pRs

3

a3
, ~3!

wherea is the lattice constant, andRs is the radius of the
atom. The periodic part of the dielectric constant of the pho-
tonic crystal, e8(r ), can be represented by the following
equation:

e8~r !5~ec21!eb(
R

u~Rs2ur2Ru!, ~4!

where u(x) is the unit step function, whereu(x)51 for
x>0 and zero otherwise;15 the summation is over all the
dielectric spheres centered atR with radiusRs . Also, e8(r )
can be expanded in the usual way as

e8~r !5(
G

UGe
iG•r, ~5!

whereG is a reciprocal-lattice vector. Thus the Fourier co-
efficientsUG are given by

UG5
1

VE ~ec21!eb(
R

u~Rs2ur2Ru!e2 iG•rd3r , ~6!

whereV is the volume of the primitive unit cell of the crys-
tal. From Eq.~6!, the Fourier coefficients for a fcc lattice
with spherical ‘‘atoms’’ are found as

UG52
16p

~aG!3
~ec21!eb@sin~GRs!2GRscos~GRs!#. ~7!

The electric fieldE(r ) is treated here as scalar, and ex-
panded into Bloch states

E~r !5(
G

(
k
Ck2Ge

i ~k2G!•r, ~8!

where(k is summed over the first Brillouin zone. Near theL
point (k5GL/2), Bloch scattering due toUGL

dominates

~similarly UGX
for the X point!, thus the scalar-wave ap-

proximation in Eq.~8! is reasonable. By rewriting Eq.~1!,
and approximatingG5GL(X) for bands nearL(X) the pho-
tonic dispersion relationk(v) can be obtained in the follow-
ing form:18

k5G/26AF~v!, ~9!

where

FIG. 1. Dependence of the normalized fcc symmetry direction
stop bandwidths on the volume fraction and the dielectric contrast
along ~a! @111# L-point and~b! @100# X-point directions.

FIG. 2. Dependence of the normalized fcc@111# stop bands on
the volume fraction. Note that asec→ 1, the stop band width stays
almost constant for most values of the volume fraction.

FIG. 3. Comparison of the analytical model~dashed! with the
vector-wave calculations~solid! taken from Ref. 16. The gap widths
are normalized by the central frequency of theX-point gap.
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F~v!5~G2/4!1eo~v2/c2!2AG2eo~v2/c2!1UG
2 ~v4/c4!.

~10!

PositiveF(v) corresponds to band modes wherek is real,
and negativeF(v) to gap modes wherek is complex. For
gap modes,

k5G/26 iq,

whereq5AuF(v)u. Note that the imaginary part of the wave
vector exists only for the modes which are in the band gap.
These gap modes exist only at the surface or interfaces; oth-
erwise the amplitude of the field would grow exponentially,
an unphysical situation.18 It is possible to find the frequen-
cies for whichF(v)50, and thus the boundaries of the fre-
quency window in which the gap modes exist:

v65
1

2

cG

Aeo6UG

. ~11!

We define the width of the photonic stop band as
Dv5uv22v1u, and the gap center frequency as
vc5(v21v1)/2 such that the normalized stop band width
Dv/vc is given as

Dv

vc
52

uv22v1u
v21v1

52U UG

eo1Aeo
22UG

2 U . ~12!

To calculate the normalized stop band width for fcc sym-
metry directions, the reciprocal-lattice vector is taken as
G52pa/a, where a5A3 (a52) is used for G→L
(G→X) stop bands. Equation~7! can be written as

UG52
2

a3p2 ~dec!eb~sinj2j cosj!, ~13!

wherej353a3p2f /2 anddec5ec21. Thus the normalized
stop band is calculated as

Dv

vc
5U 4dec~sinj2j cosj!

p2a3~ fdec11!1Aa6p4~ fdec11!224dec
2~sinj2j cosj!2

U . ~14!

Note that Eq.~14! depends only on the relative dielectric
contrastec and volume fractionf ~through j). Since the
close-packed volume fraction for fcc is 0.74, Eq.~14! is ex-
pected to be valid forf<0.74. Forf.0.74, the atoms start to
overlap, and become connected losing their spherical shape.

In Figs. 1~a! and 1~b!, Eq. ~14! is plotted for theL and
X stop bands, respectively. Note that for both cases, as
ec→1, the stop band vanishes as expected. Also, in Fig.
1~b!, the stop band along theX-point direction approaches
zero as,f→0.7 as discussed in Ref. 19. At this volume frac-
tion, the Fourier coefficient of the dielectric modulationUG

changes sign due to a shift of material density from the in-
terstitial layers to the cube faces. From Eq.~13!, this occurs
at f50.77, when tanj5j thus it is independent ofec .

Several cross sections in thef2(Dv/vc) plane of Fig.
1~a! taken at particular dielectric contrast values are shown
in Fig. 2. The interesting feature here is the location of the
maximum stop band width. Note that as the dielectric con-
trast increases (ec.1), f L2opt shifts to lower values
( f;10–20 %!. For ec,1, this trend reverses, and for
ec!1, f L2opt exceeds the close packed limit.

In Fig. 3, we compare our analytical results with the
vector-wave calculations of Leung and Liu.16 The photonic
crystals modeled in Ref. 16 were experimentally realized by
Yablonovitch and Gmitter19 by drilling air holes in a host
medium with eb512.25 (ec50.082). The L-point stop
bands show fairly good agreement with the full vector-wave
calculation, whereasX-point stop bands display only quali-
tative agreement. Specifically, theX-point stop band goes to

FIG. 4. Region of overlap forX andL stop bands. The center
frequencyvc is the frequency at thecenter of the overlapping
bands.~a! Surface plot.~b! Contour plot in thef2ec plane. The
dashed line is the optimum volume fraction,f LX2opt for the widest
stop band. Values ofDv/vc are labeled.
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zero for f50.66 ~for ec50.082! in the vector-wave calcula-
tion, in good agreement withf50.68 with the experiment of
Yablonovitch and Gmitter, whereas the analytical case pre-
dicts f50.77 ~for 0.08,ec,12.5). The discrepancy here
might result from the breakdown of the scalar-wave approxi-
mation and the basic assumption of the Bloch scattering be-
ing dominated by only oneUG in this regime whereec!1 as
well as forec@1. The sample studied in Ref. 5, polystyrene
microspheres in water withf50.05 (ec51.43! yielded a nor-
malized experimental gap of 0.0152 at theL point,20 which
is in excellent agreement with a calculated gap of 0.0159
from Eq. ~14!.

It is also possible to calculate the region in thef2ec
plane that results inoverlapping LandX stop bands. This
can can be obtained by using Eq.~11! for L andX bands. In
Fig. 4, the overlapping region is shown forec.1. For
ec,1, the overlapping region occurs for volume fractions
that exceed the close-packing limit, and thus it is not dis-
played. The optimum volume fraction for maximumL- and
X-band overlap is shown in Fig. 4~b! as the line crossing the
constant normalized gap contours.

Several cross sections in thef2(Dv/vc) plane of Fig.
4~a! taken at particular dielectric contrast values are seen in
Fig. 5. The interesting feature here is the location of the
maximum stop band width. Note that as the dielectric con-
trast increases (ec.1), f LX2opt shifts to lower values.

In Fig. 6, the optimum volume fraction for theL, X, and
overlapping bands are plotted in the same log-log graph. The
optimum volume fraction for theL band@Fig. 3~a!# can be
approximated reasonably well by a power-law behavior
bec

2g for two decades of dielectric contrast. From the param-
eters of the linear fit to thef L2opt curve, we findb50.41 and
g50.41. Similarly, the optimum volume fraction for over-
lappingX andL bands shown in Fig. 4~a! can be approxi-
mated well by the power-law behavior, but with a coefficient
b50.36 for 3,ec,12.5.

In conclusion, we have presented an analytical model us-
ing the scalar-wave approximationfor calculating the stop
band widths of fcc photonic crystals with a spherical basis.
Although vector-wave calculations more accurately deter-
mine details of the photonic band structure, our scalar-wave
model is useful in predicting optimal conditions for band
overlap for this specific case. This model can be used for
calculating the characteristics of stop bands along the fcc
close-packing and cubic directions. From this expression, it
is possible to obtain the parameters that result in overlapping
L andX bands. We have found a power-law type relation
which can be used as a guide in the optimization of such
crystals.
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