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ac susceptibility of high-temperature superconductors
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By numerically solving the flux creep equation, we have investigated the temporal and spatial evolution of
the field profiles in a high-temperature superconducting slab immersed in an ac magnetic field together with a
dc bias magnetic field, for the situation where the flux creep activation batré@pends explicitly on current
densityj asU(j)=(Ug/w)[(j/i)*—1]. The fundamental ac susceptibilities of the slab as a function of
temperature for different dc bias magnetic fieRls, ac magnetic field amplitudds, ., and frequencie$ have
been derived in a unified picture, which reproduce many of the features exhibited by experiments. We have
shown that the frequency-independent critical-state model breaks down in explaining these results, which
however, can be well described by means of flux creep. We have also shown that part of the loss in the high-
temperature superconductors is due to flux cré8p163-18206)07933-1

[. INTRODUCTION flux lines are well pinned, that is, there is no flux creep. In
the high-temperature superconductors at low temperature,
Magnetic measurements using alternating fields have lonthis is generally truej5) there is little contribution from
been recognized as an important tool in the verification okurface barrier and reversible magnetization. Obviously, in
models for pinning and motion of vortices in the mixed stateac susceptibility measurements, all these conditions for use
of type-Il superconductors* The complex ac susceptibility of the critical-state model are seldom satisfied simulta-
(xn=xn—1xp) of the high-temperature superconductors inneously, especially at high temperature which is mostly the
connection with flux motion has also attracted much attenease in ac susceptibility measurements and at low frequency,
tion in literature>~*2 1t has been well known that a measure- the flux creep effects cannot be ignored. Moreover, the fre-
ment of the fundamental ac susceptibilify, = x;—ix], de-  quency effects on the ac susceptibility can also be explained
noted as y=x'—ix” in the following of the high- by flux creep.
temperature superconductors as a function of temperature The response of the high-temperature superconductors to
typically shows, just below the critical temperatufe, a  the ac magnetic field can be either a linear one or a nonlinear
sharp decrease in the real part of the susceptibjitya one. The response of the system to the ac magnetic field is
consequence of diamagnetic shielding, and a peak in thalways linear at small enough ac field amplitude, which has
imaginary part of the susceptibility”, representing losses. been extensively studied in Refs. 20—-22. In the vortex liquid
Also, x'(T) andx"(T) curves have been found to depend onstate, the linear response regime can be divided into three
the dc magnetic field, on the frequency of the ac magnetidifferent frequency regimes. At high frequency, the re-
field, and on the ac field amplitude. However, the physicalsponse is characteristic of viscous motion of the vortex lat-
model to calculate the real payt and the imaginary pary”  tice (flux-flow regime and one can neglect the pinning po-
still remains controversial at present. Among the proposedential. At smaller frequencies, the ac response is carried by
interpretations, the critical state moti&l may be the most reversible vortex oscillations near their equilibrium positions
used one for explaining the temperature-dependent charactdEampbell regimg® in this case, the ac response is essen-
istics of ' and x¥” up to date, especially the Anderson-Kim tially London-like: The sample behaves like a true supercon-
model® which is probably most used for comparison with ductor, but with a larger penetration degttn the region of
experimental data in terms of the temperature and field deextremely low frequency, thermally activated vortex jumps
pendence of critical current density(T,B).*"*® However, between most favorable metastable states of the vortex lattice
it should be noted that although the critical-state model hasome into play(TAFF regimg and contribute to the ac re-
successfully explained a broad range of experimental resultsponse.
as a static hysteretic model, it is incapable of explaining the The linear response in the TAFF regime, as shown in
frequency-dependent ac susceptibility of the high-Refs. 20—-22, results from an Ohmic resistive statepj in
temperature superconductors. Unfortunately, frequency maine sample, wherg(T,H), independent of, is the thermally
be the most important variable in the study of vortex dynam-activated flux-flow resistivity. Therefore, the electrodynam-
ics using ac susceptibility measurements. ics of a high-temperature superconductor in the TAFF re-
Furthermore, it has been pointed buthat for the use of gime whereE=pj is valid is nothing but the electrodynam-
the critical-state model, the following conditions should beics of a normal metal, albeit with an exponentially small
satisfied:(1) the sample is homogeneous and isotrof®);  resistivity p.2° It is well known that the electrodynamics of a
the sample has dimensions consistent with the md@gthe  normal metal in an ac field is governed by the skin effect.
field at which magnetizatioM is taken should be large Accordingly, the ac susceptibility of a high-temperature su-
enough such that. is not a strong function of the field4) perconductor in the TAFF regime can be easily obtainédl as
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1 sink(u) + sin(u) tions are needed in order to elucidate the loss mechanism in
4 = _ g
X T4 coshiu)+coqu) the high temperature superconductors_. _ .
Usually, in the critical-state model, it is more convenient
; . to presenty’ and y' as a function of the temperature-
1 sinK(u)—sin(u) , '
4oy = (1)  dependent penetration degthrather than as a function of

u cost(u) +cogu)’ the temperature, especially when the Anderson-Kim model,

whereu=d/ 8,=[(w/p)(27d?c?)]*2 8= (pc¥2mw)¥?is  in which the flux density profile inside the sample is not a
the skin depthe is angular frequency of the ac field,is the ~ straight line, is invoked. Furthermore, the critical-state model
thickness of the superconducting slab, ani$ the velocity ~ cannot account for the observed increas# pfthe tempera-
of light. ture corresponding to thg’' peak, with the frequency of the

In the opposite case of a large ac field amplitude whereac field. Effects of frequency on the ac response have also
the response of the system is highly nonlinear, the sample &een analyzed by Mier,"* he explained the frequency de-
taken through a complete hysteresis loop at a ratgendence on the basis of the critical-state model, taking into
B=wB,cos(wt). A similar situation can be found in dc account the flux-creep effect. However, the results are not
magnetization measurements where the sample responds té@nclusive, becausg’(T) and x'(T) for different frequen-
field ramp at a constant rate bf. The changing magnitude cies have not been presented, and the assumptionthat
of the magnetic field at the surface results in an electric field 7 is a factor of 16-10, f is the frequency of the ac fields
gradient, which in turn induces a shielding current of mag-hot convincing. On the other hand, although expressions for
nitudej <j, in the sample interior. The spatial variationjof x’ andy” have been derived in the linear response regime, to
is determined by the actual form of the activation energyour best knowledge, no theoreticgl(T) and x"(T) curves
U(j). If U(j) is a strong nonlinear function gf the current have been presented in the nonlinear response regime, espe-
density remains constant within a shell of thicknesscially in a unified picture up to date. The present paper at-
xg=H,dj. The flux density profile in the region of penetra- tempts to take all these points into account by starting from
tion can thus be approximated by a straight line. The magnithe flux-creep equation.
tude ofj depends on the magnitude of the local electric field This paper is organized as follows. In Sec. II, we formu-

U[j(H)]=KgT In

. (3

and therefore on the field sweep r&teand is given implic- late the flux-creep problem in terms of a partial difference
itly by the relation equation. This equation serves as a basis for our numerical
calculation discussed in Sec. lll. By using the numerical re-
Poi sults, we discuss in Sec. IV the followingt) The features of
Ox (2 the flux and current density profiles inside the sample, ac-
Ko 7B cording to which we will show that the straight-line approxi-
and the resistivityp can be written as mation for the field profiles inside the sample works well
_ through most of the sample regiof®) x'(T) and x'(T)
_ u(j) curves at different dc bias magnetic fields, frequencies and ac
P=PoSXR T QT field amplitudes, which reproduce many experimental obser-
vations in ac susceptibility measurements. The discussions of
The ac susceptibility measurement just corresponds to pehe ac loss mechanism in the high-temperature superconduct-
riodically ramping the field up and down between the valuesprs will be presented in Sec. V. Finally, Sec. VI is attributed
By* By at the rateB~wB,.. The current density should to a summary of this work.
therefore behave in the same way as in the field ramp experi-
ment. In the case of strong nonlinearity, the current density
at wt=7/2 is constant over a surface shell of thickness . THE FLUX-CREEP EQUATION
xg=Had]. The thickness is actually the Bean ac penetra-  The flux-creep equation, which governs the penetrating
tion length, but withj; replaced byj (w). With the replace-  process of the flux from two surfaces into the sample can be
mentH— wH,. in Eq. (2), van der Beelet al™" derived obtained as follows. Since the electric field induced by the
flux motion is E=BXv, by using the Maxwell equation
, (4)  VXE=-4Bldt, one obtains the equation describing flux mo-
tion

U[j(w)]=kgT In

ot

where the relaxation timQ)=MoH§Jp0j %(w). Therefore, in

the analysis of van der Beekt al.*! the important point is
that the straight-line approximation provides a good descrip-
tion of the field profile inside the sample, thus their discus-

sion proceeds along the same lines as the Bean analysis of Generally, for the study of flux motion, one starts with the

fche critical state, except that the scree_ning current denSit?ﬁne-dimensional case: considering a slab geometry with the
instead of being the critical current densjtynow is reduced sample to be located between the plares—d andx=d

0 j(w) dependmg on _the frequency dye to creep. Howeverand the external fieldBllz parallel to the surface of the
whether the straight-line approximation can be used or t%ample Then Eq(5) is reduced to
what extent it can be used is still an open question. ' ‘
Besides, other loss mechanisms, such as the superconduc-
tor glass modéf and vortex lattice viscosity and viscous 9B J 6)

. . . —=——(Bv).
damping* are also presented. Therefore, further investiga- at &x( v)

V><(B><v):—§. 5)
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The thermally activated flux velocity is given by B j X . Bac
v=vo(j/j)exp[-U(j)/kgT], where vo=uw,, U is the b=g- J=, X=gq, t=fol, ba=5— (7)
hopping distancegw,, is the microscopic attempt frequency, d 0 d
and the factofj/j is introduced to provide a gradual cross- whered, andf is the space and time scale, respectively. By
over to the viscous flow regimeoj at kgT>U(j). The using the Maxwell equation
emphasis will be on the current densjydependent activa-
tion energyU, showing the divergence fgr—0, character- db Mojcdo

istic of the vortex-glass—collective-creep mod@té® namely i By '
U(j)=Uo/)[(i/])*—1]. The commonly used logarith-

mic dependencé&J(j)=U,In(j./j) and linear dependence one gets

U(j)=Uqy(1—j/j.) will be considered elsewhere. The solu-

tion of the nonlinear flux-creep equation constitutes an intri-  db d db o By odb\™#
cate task even for the linear Anderson-Kim-type dependence E_C IX [ Ix ex;{ o ( 1o cdo 5)
U(j)=Uy(1-j/j.) if attempted analytically. Therefore, in

|-

the following, we will present numerical solutions of the
flux-creep equation and the results will be compared with the b( X= T 1] =1+b,sin(27ft),
experimental data presented in the literatures. 0
. METHOD FOR NUMERICAL CALCULATION @ (x=04)=0
ax L) L)

Because of the symmetry of the problem, only the region
x=0 is considered. Then the boundary conditions are b(x,t=0)=1, 8
B(x=d,t)=B4+B,.sin(2wft) and (@B/dx)(x=0;t)=0,
whereBy is the applied dc bias magnetic fieB,. is the ac  where o=Uy(T,H)/kgT and C=[Vexplo/w)/fyde](Bg/
magnetic field amplitude, anfl is the frequency of the ac ugjcdo). In Eq. (8), we have omitted the tildes over the
magnetic field. The initial condition iB(x,t=0)=B,. We  dimensionless coordinate and time variabfeandt.
must mention here that the present calculation, like those in The numerical integration of Eq8) is carried out by
the literature, is for a homogeneous hard superconductassing a simple single-step method. The discrete version of
with H,=0. By introducing dimensionless variables Eq.(8) is

|
b(x+28x,t)—b(x,t) r{ 0'( By b(x+25x,t)—b(x,t))‘“
ex

cot
b(x,t+ 6t)=b(x,t)+ 2 ox b(x+ 6x,t)

26x M - Hojcdo 20x
b(x,t) —b(x—28x,t) o By b(x,t)—b(x—24,t)| *
—b(x—x,1) 55 exp[—;(—ﬂojddo o~ ) } . (9)
(o3

The space step is chosen to&e=4, and the time stept noted asy’ andy” in this paper has clear physical meaning,
depends on the physical parameters used in(8q. the real party’ corresponds to the dispersive magnetic re-
For obtaining the ac susceptibility, we have to calculatesponse and the imaginary paft corresponds to energy dis-

the magnetizatiorM for the applied time-dependent field sipation.
B(t)=B4+ B,.sin(2xft). For the geometry considered, the  Before calculating Eq9) numerically, we have to present
magnetization is given by the parameters used in E§), among which the temperature
B » and field dependence of the critical current dengiyl ,H)
_ Byg 0 : and the apparent activation enerhy(T,H) must be pre-
roM (1) = d/d, JO b(x)dx=[By+Bqc sif(2mf1)] sented, in order to account for the temperature and field de-
(100  pendence of the ac susceptibility. As for the temperature de-

L, pendence, we chose the following forms:
and the complex ac susceptibiligg,= x,—ix,, where

1 (e jo(T,B=0)=jeo(1+t7) Y41t}
Xn= f poM(t)sin(net)d(wt),
7TBac 0
(12) Uo(T,B=0)=Ug(1—-t%), (12)
2
Xn= 7By, |, oM (Dcodnetid(wt), which are the prediction for a single vortex resdftén Eq.

(12), t is the reduced temperatute=T/T., and T is the
can be easily derived by means of fast Fourier transforneritical temperature of the sample.
(FFT). And the fundamental ac susceptibilipf and x; (de- As for the field dependence, we chose the form
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. _ . 0 x/d
J(T=0B)=jco g—Tay a3 0 s e’ s 100
1.G0010
as suggested by Kim, Hempstead, and Stfiadsually, the
field dependence df, takes the formJ,(B)«1/B|. In this
work, in order to avoid introducing another parameter and ~ 1:099¢8
for simplicity, we chose the field dependencdiyto be the
same as that of;
- 1.00006
m
Bo ~
Uo(TZO,B):Uooﬁ- (14 <
otB] o 160004
Taking Egs.(12)—(14) into account, we have
1.00002
jo(T/B) el 1+ 211292 20
om0 B[ +Bo’
1.00000
Uo(T,B)=Ugy(1—t%) B[+ By’ (15) )
X/ do
) . -100 -50 ‘o 50 100
and the parameters,, Ugy, andB, are independent of 0.4 . - . -
andB. It must be stressed here that the above form is taken 6 (b)
only because of analytical simplicity and not because it is fB==1?<T30HZ

expected to represent the actual behavior of the high-
temperature superconductors. The actual temperature and .2
field dependence of the critical current density and the ap-

B=1G

parent activation energy can be determined by best fitting the NE
numerically calculateg/’(T) and y'(T) curves with specific ~.
form of j(T,B) andU(T,B) to the experimental data. < 00

The order of magnitude afy=uw,, can be estimated by o)
noting that whenj=j., the relevant activation energy =
U(j.)=0 and a flux-flow state is established. The corre- - ; '
sponding electric field is theE=uw,B=j.ps, Where the 5“0‘2 0
flux-flow resistivity ps~ p,B/B., according to the Bardeen- "‘ g :
Stephen theory of flux flo¥® We thus approximately obtain 6 097

Uwn=]:pn/Bez Wherep, is the normal-state resistivity and
B., is the upper critical field. Withj.=10° A/m?
pn=5%10"" Om, andB,,=100 T, one findsuw,,~5 m/s.
For all examples calculated in this work, we shall arbitrarily =~ FIG. 1. (a) The flux density profiles in the slab Bt=By+ B,
take Uw,,=1 m/s. The values for other parameters used infwt=mn/2) for f=1000 Hz,B4=1 T, andB,~=1 G at various tem-
Eq.(8) arej Co=1011 A/m2, fo=10 Hz,do=1076 m, d=10"*% peratures(b) The corresponding current density profiles in the slab.
m, UoolkBTC:lo, BO:]' T.

As for the important exponent u in Equations and results are expressed in Sl units. Volume
U(j)=Uo/w)(j/j)*—1], characteristic of the vortex- susceptibility is dimensionless, with full diamagnetism cor-
glass—collective-pinning modet3?® the vortex-glass theory responding to a susceptibility of 1.
has no prediction for its field and temperature dependence.

-0.4

Rather, it is regarded as a universal exponent with value IV. RESULTS AND DISCUSSIONS
p=<1. However, in a theoretical treatment of collective pin- '
ning, Feigel'maret al2® predicted the existence of three dif-  In Figs. 1a) and Xb), we plot the flux and current density

ferent regimes of current densify j<j., u=7/9; j<j., profiles at the momenbt=m/2 that the applied magnetic
n=3/2; andj~j., n=1/7. Experimentallyu has also been field reaches the maximum valigt) =By+ B, and at vari-
found to depend on both temperature and fi8lHowever, a  ous temperatures, fdr=1000 Hz,B,=1 T, andB,=1 G,
single value ofu can also well describe the experimental respectively. With increasing temperature, the flux penetrates
data for a wide range of current densities in manymore quickly into the sample. And interestingly, both in the
works31733 Recently, by ac susceptibility measurements, &lux density profiles and in the current density profiles, there
single value of u=0.64 has also been found for exist some spikes at relatively low temperatures, say,
TISr,CaCu0, 34 Therefore, in this work, we choose a t=0.97, 0.976, and 0.979. At higher temperatures, however,
single value ofu=0.6, independent of temperature and field,the spikes disappear, see the curves=20.982, 0.985, and

for the numerical calculation for simplicity. 0.99, which can be explained by the magnetic relaxation ef-
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ever, it can be seen from Fig(l® as the dc field further
increases, the peak height jfi remains constant up to 8 T.
Experimentally, it has also been observed that with increas-
ing dc fields, the peak height iy’ increases to a certain
value and remains constant for further increasing dc fféld.
This observation may indicate that instead of E4®) and
(14), other forms ofj.(B) and Uy(B) should be taken into
account.

In Fig. 3, we plot the calculated curves gf and ' as a
function of temperature at various ac field amplitudes, for
f=1000 Hz andB4=100 G. AsB,;increases, the height and
breadth of the peak iy’ increases as it moves to lower
temperature, which has been experimentally well knd{vn.
However, as the ac field amplitude further increases, the
peak height iny” decreases slightly as shown in FighB
This is understandable, considering that when the ac field
0.90 0.85 1.00 and dc field are of the same order of magnitude, the ac field
may have the same effect as that of the dc field, therefore,
similar to those shown in Fig.(8), the peak height iny”
should decrease with increasing ac field amplitude. It should
(b) be noted that the frequently used simplified Anderson-Kim
74 critical-state model, in which the critical current density in-
versely depends on the field, does not explain the change in
the peak height of¢’ with B,. seen experimentalff We
explore the effect of the ac field amplitude further in Fig.
3(c) in which the calculated curves gf andy” as a function
of temperature at various ac field amplitudes are plotted, for
! f=1000 Hz andB4=1 T. The conditiorB> B, is satisfied.

It can be seen from Fig.(8) that no changes in the peak
height of y" are observed. This effect is similar to that of dc
field at largeBy shown in Fig. Zb).
{ The essential feature of the present calculation is that it
can be used to study the frequency effect on the ac suscep-
/ tibility. Shown in Fig. 4a) are the flux density profiles at the
o \ momentwt=m/2 when the applied magnetic field reaches

0.84 0.89 0.04 0.99 the maximum valu8=B,+ B, at various frequencies, for

t=T/T. By=1 T, B,.=100 G, andt=0.935. As the frequency de-

creases, the relaxation time for the magnetization to decay

FIG. 2. (a) The calculated curves of andy’ as a function of P€cOmes longer, resulting in a smaller current density at low
temperature at various dc magnetic fields, for1000 Hz and ~frequencies, which can be seen from the slope of the flux
B.=2 G. (b) The same aa) except at larger dc magnetic fields. Profiles in Fig. 4a). Moreover, similar to Fig. (), there also

exist some spikes in the flux density profiles at high frequen-
fect. Because the relaxation effect tends to decrease the magjes, which is the result of the relaxation effect as discussed
netization, i.e., tends to decrease the slope of the flux densitiy detail above.
profile, and therefore, tends to eliminate the spikes. At high We plot the calculated curves gf andy” as a function of
temperatures, the relaxation is so quick that the spikes digemperature at various frequencies,By=1 T andB,.=100
appear. Another direct result of flux creep is that at all tem-G in Fig. 4b). As the frequency decreases, the transition
peratures, the current densitigd) are always smaller than temperature shifts to lower value, the peak heighy/irde-
the corresponding critical current densitigéT). Therefore, creases and the breadth jfiincreases as it moves to lower
in ac susceptibility measurements, flux creep should be cortemperature, which is in good agreement with experimental
sidered. datal®*81t should be noted that the calculated result in Fig.

The effect of the dc magnetic field on the ac susceptibility4 is conducted at constaB{y and B, therefore, it is inde-
can be seen clearly from Fig. 2, where the calculated curvegendent of the chosen form ¢f(B) andUy(B) and can be
of ¥’ and ¥ as a function of temperature at various dc biasregarded as a universal behavior.
fields, for f=1000 Hz andB,.=2 G are plotted. As the dc By now, we have presented ac susceptibility as a function
field increases, the transition igf (T) and x'(T) becomes of temperature for different dc field3,, ac field amplitudes
broad, as can be seen in bofi(T) and y'(T) curves. The B, and frequencie$ in a unified picture, which is in good
peak height iny” decreases appreciably with increasing dcagreement with experimental data. In the following, we will
field at a value 63 T and below, see Fig.(8). These results show that flux creep can account for all these features.
are in good agreement with experimental data of Ishida and When an ac magnetic field is applied to the sample sur-
Goldfarb” and have also been modeled by IMu!* How-  face, the sample is taken through a complete hysteresis loop
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FIG. 3. (a) The calculated curves gf andy” as a function of temperature at various ac field amplitudesf #6000 Hz andB4=100
G. (b) The same a$a) except at larger ac field amplitudes) The same a¢a) except aBy=1 T.

within the time periodt=1/f, wheret instead of being the the frequency ranges from 0.1 to 100 000 Hz, the flux pro-
order of hours now is of the order 0£10°-10 s in this files att=t, andwt=m/2 are almost the same, which super-
work. In this case, the decay of the critical state competegnposed each other except near the center of the sample. It
with the time scale imposed on the system by the external acan be seen from Fig.(d) that in order for different frequen-
magnetic field. And the decay of the magnetization is cut orties to attain the same situation shown in Fig. 5, a lower
the time scale= 1/f such that the screening currents flowing temperature is required to overcome the relaxation effect at
in the sample are given by E@): low frequency, resulting in lowet,, which is the case
shown in Fig. 4b). For the frequency ranges from 0.1 Hz to
100 000 Hz, the corresponding changes from 0.924 to
0.96, respectively. In this case, the penetration deptiof
the ac magnetic field is of the order of the half thickness of
The screening current density instead of being the criticathe slab, that isd,~d. And the straight-line approximation
current  density, now is reduced to j(w) for the field profiles works well throughout most of the
=U’1[kBT In(1/wty)], and U1 is the inverse function of Sample region, except near the center of the sample. Then the
u(j). current density can be approximated Bhyw)=B,Ju,d.
Shown in Fig. 5 are the field profiles at= /2 when the ~ From Eq.(16), we have
applied time-dependent field reaches the maximum value
B=By+ B, for various frequencies=0.1, 1, 10, 100, 1000,
10 000, and 100 000 Hz, at temperattiet,= T,/ T, where U( B,j= ) =kgT In
X' attain the maximum values. It can be seen that although

. 1
U(j)—kBT In w_to (16)

17)
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FIG. 5. The flux density profiles in the slab Bt=By+ B, (wt
=m/2) for various frequencies @&3=1 T, B,.=100 G, and at the

0.2 temperatureé =t, wherey" attain the maximum values,=0.924,
0.928, 0.933, 0.938, 0.944, 0.951, and 0.96ffei0.1, 1, 10, 100,

:(n\ 1000, 10 000, and 100 000 Hz, respectively.
: —02 b By=1T x/y /// Figs. @a) and &b), respectively. As the field is ramped from
v Bee=100G [ By+B, t0 By (wt=7/2 to wt=m) at a sweep rate
_ 1 f=100kHz /,' f/ B=wB,.cos(wt), in the shell of the sample, on which the
¢ 2 f=1ouz 7] !/ sweep rate has effect and the current density changes sign,
& oo | 4 f=100Hz w7 / the current densityj| is larger atwt=1r than that atwt=n/

08 I 5 1=10Hz /f/;%/// 2, because the sweep raf{ = wB,. at wt= is larger than
> 7 i=0. 7Y |B| =0 atwt=/2. However, in the interior of the sample, on

which the sweep rate has no effect, we see that the current
density relaxes to a smaller value, clearly showing the relax-
L ation effect. Similar phenomenon can also be seen when the
0.84 0.88 _ 092 0.96 1.00 field is swept fromBy— B, to By (wt=37/2 to wt=27 or
t"T/TC 0). Moreover, at lower temperatures or at higher frequencies,
where the relaxation is not so effective and the flux in the
FIG. 4. (@ The flux density profiles in the slab &;=1 T, sample interior does not relax into the center of the sample, a
Bac=100 G, andt=0.935, for various frequencieh) The calcu-  spike is expected when the field is swept fr@dy+ B, to
lated curves ofy’ and x” as a function of temperature at various B,— B,.andvice versawhich is the case shown in Figgal
frequencies, foBy=1 T andB,.=100 G. and 4a).
From Figs. 1, 4, and 6, we can see that the straight-line
Thus the position of the peak ig’ will strongly depend on approximation works well through most of the sample re-
the ac field amplitud®,., the dc fieldB,, and the frequency gion. Although a minor correction may result from flux
f. With decreasind . the activation energy is increased and creep, the approximation remains valid as a zero-order ap-
the temperature where the dissipation peak occurs is shiftgaroximation, especially at lower temperature and at high fre-
to higher values, which is the case shown in Fig. 3. Simi-quencies, where the relaxation rate is relatively slow.
larly, with decreasind, the activation is also increased as It should be mentioned here that the linear response re-
can be seen from Ed15 and the temperature where the gime is not considered in the above calculation. The basic
dissipation peak occurs is shifted to higher values, which isssumption on which the linear response relies is the finite-
the case shown in Fig. 2. However, with decreasing freness of the activation barrié#(j) in the small current den-
guencyf, the activation energy is decreased as can be seaity limit, U(j—0)=U <. Such a behavior of the creep
from Eq.(17) and the temperature where the dissipation pealbarriers is expected to be realized in the vortex liquid at high
occurs is shifted to lower values, which is the case shown itemperature3>Tg, whereT is the vortex-glass transition
Fig. 4(b). temperature. However, in this work, considering the success
In order to study the process more carefully, we plot theof the vortex-glass—collective-pinning model in describing
field profiles and current density profiles in a period of the aomagnetic relaxation experiments, we choose the activation
field, that is, at wt=0 or 27 (B=By), wt=x/2 DbarrierU(j)=(Uy/w)[(j/j)*—1]. Such a barrier diverges
(B=B4q+B,), ot=m (B=Bg), and ot=37w/2 (B=By asj goes to zero, therefore, the linear response regime is not
—-B,J), for f=10 Hz,B4=1 T, B,.=1 G, andt=0.976, in  expected. Fortunately, the linear response regime has been
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{a) f=10Hz b
By=1T wt=n/ <
Bo=16
t=0.976
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Be=1T
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wt=3r/2
" 1} [l
099930 s e ) ' 100 0-0'9s8s5 0.995 1.005 1015
x/do B=By+Bgsin(wt) (T)
02 . .
(b) f=10H FIG. 7. The magnetization loops &+0.84,t=t,=0.938, and
) BymiT t=0.99, forf =100 Hz,B4=1 T, andB,=100 G.
Boe=1G
t=r/2 t=0.976 _ _ . .
ek "} -__‘r‘/ - associated with it ang/’>0. The losses ang attain their
T ' maximum values after supercurrents and penetrated flux
~ 1 | ! reach the center of the sampletatt,, see Fig. 5. AsT
o~ } p
e . " } , approache§ . (t=0.99, j. approaches 0, and the magneti-
} 0.0 | | "l I zation also goes to 0, the magnetization loop has collapsed,
- 1 { ! and there is no area to the loop and no hysteretic loss and
QO ! v xX'=0. This interpretation is in accordance with the expecta-
N _ . | tions of the critical state model, in which all energy losses
A e are hysteretic and frequency independent.
However, the effect of frequency can be seen clearly from
Fig. 8, where the magnetization loops at two frequencies
. ; N f=0.1 and 100000 Hz, foBy=1 T, B,.=100 G, and
=025 ) 5 50 700 t=0.935 are plotted. The area of the magnetization, which is
X / dg proportional to the hysteretic loss, is larger at low frequency

than that at high frequency. From EG6), we can see that at

FIG. 6. (a) the flux density profiles in the slab att =0, wt=n/
2, wt=m, and wt=37/2, at f=10 Hz, B4=1 T, B,~=1 G, and
t=0.976.(b) The corresponding current density profiles in the slab.

understood relatively well, as discussed in detail in Sec. I.

The linear response regime and the crossover from the linear
response regime to the nonlinear response regime will be
considered elsewhere.

V. THE LOSS MECHANISM

Because the hysteretic loss is proportional to the area of
the magnetization loop, the peakyjfiand the changes in the
peak height ofy” can be explained by considering the mag-
netization loops at different temperatures. In Fig. 7, we plot
the magnetization loops at three temperatutes0.84,
t=1t,=0.938, andt=0.99, for =100 Hz, B4=1 T, and
B,.—=100 G. Fort<0.84, the ac field causes the shielding
currents to flow on the surface of the sample and a line to be
traced out in theM — B plane, which means there is no hys-
teresis andy’=0. For T somewhat belowT., j. has de-

0.010

0.005

M (A/m?)
g

—0.G05

By=1T
Ba.=100G
t=0.935
e 1 1
0585 0.995 1,005 1015

B(t)=By4+Bqusin(wt) (T)

creased and the shielding currents have to flow within the FIG. 8. The magnetization loops &&0.1 and 100 000 Hz, for
sample. The hysteresis loop in tMe—B plane has an area By=1 T, B,=100 G, andt=0.935.
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high enough frequency) —0, the system is very close to the with a dc bias magnetic field. The temporal and spatial evo-
critical state, and flux creep can be ignored, then;j.. lution of the flux density profiles inside the sample and the
However, as the frequency decreads§j) increases and the magnetization loops have been obtained. The calculated
system decays away from the critical state and the cujrent curves of the fundamental ac susceptibilify and y’ as a
decays to a value smaller than the critical current densityfunction of temperature for different dc magnetic fields, ac
resulting in an increase of loss. Furthermore, at a low frefield amplitudes, and frequencies reproduce many of the fea-
guency, in order to attain the same situation as at a higkures exhibited by experiments. We have shown that the
frequency, a lower temperature is required to overcome th&equency-independent critical-state model breaks down in
flux-creep effect, which can also account for the observeaxplaining these results, which however, can be well de-
decrease ofT,, the temperature corresponding to t¢  scribed by means of flux creep and the straight-line approxi-
peak, with decreasing frequency of the ac magnetic fieldnation provides a good description of the field profiles inside
shown in Fig. 4b). the slab. We have also shown that the part of the loss in the
high-temperature superconductors is due to flux creep.

VI. CONCLUSIONS
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