
ac susceptibility of high-temperature superconductors

M. J. Qin and X. X. Yao
Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Center for Advanced Studies in

Science and Technology of Microstructures, Nanjing 210093, People’s Republic of China
~Received 20 November 1995; revised manuscript received 11 April 1996!

By numerically solving the flux creep equation, we have investigated the temporal and spatial evolution of
the field profiles in a high-temperature superconducting slab immersed in an ac magnetic field together with a
dc bias magnetic field, for the situation where the flux creep activation barrierU depends explicitly on current
density j as U( j )5(U0/m)[( j c/ j )

m21]. The fundamental ac susceptibilities of the slab as a function of
temperature for different dc bias magnetic fieldsBd , ac magnetic field amplitudesBac, and frequenciesf have
been derived in a unified picture, which reproduce many of the features exhibited by experiments. We have
shown that the frequency-independent critical-state model breaks down in explaining these results, which
however, can be well described by means of flux creep. We have also shown that part of the loss in the high-
temperature superconductors is due to flux creep.@S0163-1829~96!07933-7#

I. INTRODUCTION

Magnetic measurements using alternating fields have long
been recognized as an important tool in the verification of
models for pinning and motion of vortices in the mixed state
of type-II superconductors.1–4 The complex ac susceptibility
(xn5xn82 ixn9) of the high-temperature superconductors in
connection with flux motion has also attracted much atten-
tion in literature.5–12 It has been well known that a measure-
ment of the fundamental ac susceptibility~x15x182 ix19 , de-
noted as x5x82ix9 in the following! of the high-
temperature superconductors as a function of temperature
typically shows, just below the critical temperatureTc , a
sharp decrease in the real part of the susceptibilityx8, a
consequence of diamagnetic shielding, and a peak in the
imaginary part of the susceptibilityx9, representing losses.
Also, x8(T) andx9(T) curves have been found to depend on
the dc magnetic field, on the frequency of the ac magnetic
field, and on the ac field amplitude. However, the physical
model to calculate the real partx8 and the imaginary partx9
still remains controversial at present. Among the proposed
interpretations, the critical state model2,13 may be the most
used one for explaining the temperature-dependent character-
istics of x8 andx9 up to date, especially the Anderson-Kim
model,13 which is probably most used for comparison with
experimental data in terms of the temperature and field de-
pendence of critical current densityj c(T,B).

14–18 However,
it should be noted that although the critical-state model has
successfully explained a broad range of experimental results,
as a static hysteretic model, it is incapable of explaining the
frequency-dependent ac susceptibility of the high-
temperature superconductors. Unfortunately, frequency may
be the most important variable in the study of vortex dynam-
ics using ac susceptibility measurements.

Furthermore, it has been pointed out19 that for the use of
the critical-state model, the following conditions should be
satisfied:~1! the sample is homogeneous and isotropic;~2!
the sample has dimensions consistent with the model;~3! the
field at which magnetizationM is taken should be large
enough such thatj c is not a strong function of the field;~4!

flux lines are well pinned, that is, there is no flux creep. In
the high-temperature superconductors at low temperature,
this is generally true;~5! there is little contribution from
surface barrier and reversible magnetization. Obviously, in
ac susceptibility measurements, all these conditions for use
of the critical-state model are seldom satisfied simulta-
neously, especially at high temperature which is mostly the
case in ac susceptibility measurements and at low frequency,
the flux creep effects cannot be ignored. Moreover, the fre-
quency effects on the ac susceptibility can also be explained
by flux creep.

The response of the high-temperature superconductors to
the ac magnetic field can be either a linear one or a nonlinear
one. The response of the system to the ac magnetic field is
always linear at small enough ac field amplitude, which has
been extensively studied in Refs. 20–22. In the vortex liquid
state, the linear response regime can be divided into three
different frequency regimes.21 At high frequency, the re-
sponse is characteristic of viscous motion of the vortex lat-
tice ~flux-flow regime! and one can neglect the pinning po-
tential. At smaller frequencies, the ac response is carried by
reversible vortex oscillations near their equilibrium positions
~Campbell regime!,4 in this case, the ac response is essen-
tially London-like: The sample behaves like a true supercon-
ductor, but with a larger penetration depth.21 In the region of
extremely low frequency, thermally activated vortex jumps
between most favorable metastable states of the vortex lattice
come into play~TAFF regime! and contribute to the ac re-
sponse.

The linear response in the TAFF regime, as shown in
Refs. 20–22, results from an Ohmic resistive stateE5r j in
the sample, wherer(T,H), independent ofj , is the thermally
activated flux-flow resistivity. Therefore, the electrodynam-
ics of a high-temperature superconductor in the TAFF re-
gime whereE5r j is valid is nothing but the electrodynam-
ics of a normal metal, albeit with an exponentially small
resistivityr.20 It is well known that the electrodynamics of a
normal metal in an ac field is governed by the skin effect.
Accordingly, the ac susceptibility of a high-temperature su-
perconductor in the TAFF regime can be easily obtained as20
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4px85
1 sinh~u!1sin~u!

u cosh~u!1cos~u!
21,

4px95
1 sinh~u!2sin~u!

u cosh~u!1cos~u!
, ~1!

whereu5d/ds5[(v/r)(2pd2/c2)] 1/2, ds5(rc2/2pv)1/2 is
the skin depth,v is angular frequency of the ac field,d is the
thickness of the superconducting slab, andc is the velocity
of light.

In the opposite case of a large ac field amplitude where
the response of the system is highly nonlinear, the sample is
taken through a complete hysteresis loop at a rate
Ḃ5vBaccos(vt). A similar situation can be found in dc
magnetization measurements where the sample responds to a
field ramp at a constant rate ofḢ. The changing magnitude
of the magnetic field at the surface results in an electric field
gradient, which in turn induces a shielding current of mag-
nitude j, j c in the sample interior. The spatial variation ofj
is determined by the actual form of the activation energy
U( j ). If U( j ) is a strong nonlinear function ofj , the current
density remains constant within a shell of thickness
xB5Hac/j . The flux density profile in the region of penetra-
tion can thus be approximated by a straight line. The magni-
tude of j depends on the magnitude of the local electric field
and therefore on the field sweep rateḢ, and is given implic-
itly by the relation

U@ j ~Ḣ !#5kBT lnF r0 j

m0ḢxB
G ~2!

and the resistivityr can be written as

r5r0expF2
U~ j !

kBT
G . ~3!

The ac susceptibility measurement just corresponds to pe-
riodically ramping the field up and down between the values
Bd6Bac at the rateḂ'vBac. The current density should
therefore behave in the same way as in the field ramp experi-
ment. In the case of strong nonlinearity, the current density
at vt5p/2 is constant over a surface shell of thickness
xB5Hac/j . The thicknessxB is actually the Bean ac penetra-
tion length, but withj c replaced byj ~v!. With the replace-
ment Ḣ→vHac in Eq. ~2!, van der Beeket al.21 derived

U@ j ~v!#5kBT lnF 1

vt0
G , ~4!

where the relaxation timet05m0H ac
2 /r0j

2~v!. Therefore, in
the analysis of van der Beeket al.,21 the important point is
that the straight-line approximation provides a good descrip-
tion of the field profile inside the sample, thus their discus-
sion proceeds along the same lines as the Bean analysis of
the critical state, except that the screening current density
instead of being the critical current densityj c now is reduced
to j ~v! depending on the frequency due to creep. However,
whether the straight-line approximation can be used or to
what extent it can be used is still an open question.

Besides, other loss mechanisms, such as the superconduc-
tor glass model23 and vortex lattice viscosity and viscous
damping24 are also presented. Therefore, further investiga-

tions are needed in order to elucidate the loss mechanism in
the high-temperature superconductors.

Usually, in the critical-state model, it is more convenient
to presentx8 and x9 as a function of the temperature-
dependent penetration depth,17 rather than as a function of
the temperature, especially when the Anderson-Kim model,
in which the flux density profile inside the sample is not a
straight line, is invoked. Furthermore, the critical-state model
cannot account for the observed increase ofTp , the tempera-
ture corresponding to thex9 peak, with the frequency of the
ac field. Effects of frequency on the ac response have also
been analyzed by Mu¨ller,14 he explained the frequency de-
pendence on the basis of the critical-state model, taking into
account the flux-creep effect. However, the results are not
conclusive, becausex8(T) andx9(T) for different frequen-
cies have not been presented, and the assumption thatn5h f
~h is a factor of 103–105, f is the frequency of the ac field! is
not convincing. On the other hand, although expressions for
x8 andx9 have been derived in the linear response regime, to
our best knowledge, no theoreticalx8(T) andx9(T) curves
have been presented in the nonlinear response regime, espe-
cially in a unified picture up to date. The present paper at-
tempts to take all these points into account by starting from
the flux-creep equation.

This paper is organized as follows. In Sec. II, we formu-
late the flux-creep problem in terms of a partial difference
equation. This equation serves as a basis for our numerical
calculation discussed in Sec. III. By using the numerical re-
sults, we discuss in Sec. IV the following:~1! The features of
the flux and current density profiles inside the sample, ac-
cording to which we will show that the straight-line approxi-
mation for the field profiles inside the sample works well
through most of the sample region,~2! x8(T) and x9(T)
curves at different dc bias magnetic fields, frequencies and ac
field amplitudes, which reproduce many experimental obser-
vations in ac susceptibility measurements. The discussions of
the ac loss mechanism in the high-temperature superconduct-
ors will be presented in Sec. V. Finally, Sec. VI is attributed
to a summary of this work.

II. THE FLUX-CREEP EQUATION

The flux-creep equation, which governs the penetrating
process of the flux from two surfaces into the sample can be
obtained as follows. Since the electric field induced by the
flux motion is E5B3v, by using the Maxwell equation
¹3E52]B/]t, one obtains the equation describing flux mo-
tion

¹3~B3v!52
]B

]t
. ~5!

Generally, for the study of flux motion, one starts with the
one-dimensional case: considering a slab geometry with the
sample to be located between the planesx52d and x5d,
and the external fieldBiz parallel to the surface of the
sample. Then Eq.~5! is reduced to

]B

]t
52

]

]x
~Bv !. ~6!
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The thermally activated flux velocityv is given by
v5v0( j / j c)exp[2U( j )/kBT], where v05uvm , u is the
hopping distance,vm is the microscopic attempt frequency,
and the factorj / j c is introduced to provide a gradual cross-
over to the viscous flow regimev} j at kBT@U( j ). The
emphasis will be on the current densityj -dependent activa-
tion energyU, showing the divergence forj→0, character-
istic of the vortex-glass–collective-creep models,25,26namely
U( j )5(U0/m)[( j c/ j )

m21]. The commonly used logarith-
mic dependenceU( j )5U0 ln( j c/ j ) and linear dependence
U( j )5U0(12 j / j c) will be considered elsewhere. The solu-
tion of the nonlinear flux-creep equation constitutes an intri-
cate task even for the linear Anderson-Kim-type dependence
U( j )5U0(12 j / j c) if attempted analytically. Therefore, in
the following, we will present numerical solutions of the
flux-creep equation and the results will be compared with the
experimental data presented in the literatures.

III. METHOD FOR NUMERICAL CALCULATION

Because of the symmetry of the problem, only the region
x>0 is considered. Then the boundary conditions are
B(x5d,t)5Bd1Bac sin(2p f t) and (]B/]x)(x50,t)50,
whereBd is the applied dc bias magnetic field,Bac is the ac
magnetic field amplitude, andf is the frequency of the ac
magnetic field. The initial condition isB(x,t50)5Bd . We
must mention here that the present calculation, like those in
the literature, is for a homogeneous hard superconductor
with Hcl50. By introducing dimensionless variables

b5
B

Bd
, J5

j

j c
, x̃5

x

d0
, t̂5 f 0t, bac5

Bac

Bd
, ~7!

whered0 and f 0 is the space and time scale, respectively. By
using the Maxwell equation

]b

] x̃
52

m0 j cd0
Bd

J,

one gets

]b

]t
2C

]

]x H b ]b

]x
expF2

s

m S 2
Bd

m0 j cd0

]b

]xD
2mG J 50,

bS x5
d

d0
,t D511bacsin~2p f t !,

]b

]x
~x50,t !50,

b~x,t50!51, ~8!

where s5U0(T,H)/kBT and C5[V0exp~s/m!/f 0d0](Bd/
m0 j cd0). In Eq. ~8!, we have omitted the tildes over the
dimensionless coordinate and time variablesx̃ and t̃.

The numerical integration of Eq.~8! is carried out by
using a simple single-step method. The discrete version of
Eq. ~8! is

b~x,t1dt !5b~x,t !1
cdt

2dx H b~x1dx,t !
b~x12dx,t !2b~x,t !

2dx
expF2

s

m S 2
Bd

m0 j cd0

b~x12dx,t !2b~x,t !

2dx D 2mG
2b~x2dx,t !

b~x,t !2b~x22dx,t !

2dx
expF2

s

m S 2
Bd

m0 j cd0

b~x,t !2b~x22d,t !

2dx D 2mG J . ~9!

The space step is chosen to bedx54, and the time stepdt
depends on the physical parameters used in Eq.~9!.

For obtaining the ac susceptibility, we have to calculate
the magnetizationM for the applied time-dependent field
B(t)5Bd1Bac sin(2p f t). For the geometry considered, the
magnetization is given by

m0M ~ t !5
Bd

d/d0
E
0

d/d0
b~x!dx2@Bd1Bac sin~2p f t !#

~10!

and the complex ac susceptibilityxn5xn82 ixn9 , where

xn85
1

pBac
E
0

2p

m0M ~ t !sin~nvt !d~vt !,

xn95
1

pBac
E
0

2p

m0M ~ t !cos~nvt !d~vt !,

~11!

can be easily derived by means of fast Fourier transform
~FFT!. And the fundamental ac susceptibilityx18 andx19 ~de-

noted asx8 andx9 in this paper! has clear physical meaning,
the real partx8 corresponds to the dispersive magnetic re-
sponse and the imaginary partx9 corresponds to energy dis-
sipation.

Before calculating Eq.~9! numerically, we have to present
the parameters used in Eq.~9!, among which the temperature
and field dependence of the critical current densityj c(T,H)
and the apparent activation energyU0(T,H) must be pre-
sented, in order to account for the temperature and field de-
pendence of the ac susceptibility. As for the temperature de-
pendence, we chose the following forms:

j c~T,B50!5 j c0~11t2!21/2~12t2!5/2,

U0~T,B50!5U00~12t4!, ~12!

which are the prediction for a single vortex results.27 In Eq.
~12!, t is the reduced temperaturet5T/Tc , and Tc is the
critical temperature of the sample.

As for the field dependence, we chose the form
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j c~T50,B!5 j c0
B0

B01uBu
~13!

as suggested by Kim, Hempstead, and Strnad.28 Usually, the
field dependence ofU0 takes the formU0(B)}1/uBu. In this
work, in order to avoid introducing another parameter and
for simplicity, we chose the field dependence ofU0 to be the
same as that ofj c

U0~T50,B!5U00

B0

B01uBu
. ~14!

Taking Eqs.~12!–~14! into account, we have

j c~T,B!5 j c0~11t2!21/2~12t2!5/2
B0

uBu1B0
,

U0~T,B!5U00~12t4!
B0

uBu1B0
, ~15!

and the parametersj c0, U00, andB0 are independent ofT
andB. It must be stressed here that the above form is taken
only because of analytical simplicity and not because it is
expected to represent the actual behavior of the high-
temperature superconductors. The actual temperature and
field dependence of the critical current density and the ap-
parent activation energy can be determined by best fitting the
numerically calculatedx8(T) andx9(T) curves with specific
form of j c(T,B) andU0(T,B) to the experimental data.

The order of magnitude ofv05uvm can be estimated by
noting that when j5 j c , the relevant activation energy
U( j c)50 and a flux-flow state is established. The corre-
sponding electric field is thenE5uvmB5 j cr f , where the
flux-flow resistivity r f'rnB/Bc2 according to the Bardeen-
Stephen theory of flux flow.29 We thus approximately obtain
uvm5 j crn/Bc2 wherern is the normal-state resistivity and
Bc2 is the upper critical field. With j c5109 A/m2,
rn5531027 Vm, andBc25100 T, one findsuvm'5 m/s.
For all examples calculated in this work, we shall arbitrarily
take uvm51 m/s. The values for other parameters used in
Eq. ~8! are j c051011 A/m2, f 0510 Hz,d051026 m, d51024

m, U00/kBTc510,B051 T.
As for the important exponent m in

U( j )5(U0/m)[( j c/ j )
m21], characteristic of the vortex-

glass–collective-pinning models,25,26 the vortex-glass theory
has no prediction for its field and temperature dependence.
Rather, it is regarded as a universal exponent with value
m<1. However, in a theoretical treatment of collective pin-
ning, Feigel’manet al.26 predicted the existence of three dif-
ferent regimes of current densityj : j! j c , m57/9; j, j c ,
m53/2; andj; j c , m51/7. Experimentally,m has also been
found to depend on both temperature and field.30 However, a
single value ofm can also well describe the experimental
data for a wide range of current densities in many
works.31–33 Recently, by ac susceptibility measurements, a
single value of m50.64 has also been found for
TISr2Ca2Cu3Oy .

34 Therefore, in this work, we choose a
single value ofm50.6, independent of temperature and field,
for the numerical calculation for simplicity.

Equations and results are expressed in SI units. Volume
susceptibility is dimensionless, with full diamagnetism cor-
responding to a susceptibility of21.

IV. RESULTS AND DISCUSSIONS

In Figs. 1~a! and 1~b!, we plot the flux and current density
profiles at the momentvt5p/2 that the applied magnetic
field reaches the maximum valueB(t)5Bd1Bac and at vari-
ous temperatures, forf51000 Hz,Bd51 T, andBac51 G,
respectively. With increasing temperature, the flux penetrates
more quickly into the sample. And interestingly, both in the
flux density profiles and in the current density profiles, there
exist some spikes at relatively low temperatures, say,
t50.97, 0.976, and 0.979. At higher temperatures, however,
the spikes disappear, see the curves att50.982, 0.985, and
0.99, which can be explained by the magnetic relaxation ef-

FIG. 1. ~a! The flux density profiles in the slab atB5Bd1Bac
~vt5p/2! for f51000 Hz,Bd51 T, andBac51 G at various tem-
peratures.~b! The corresponding current density profiles in the slab.
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fect. Because the relaxation effect tends to decrease the mag-
netization, i.e., tends to decrease the slope of the flux density
profile, and therefore, tends to eliminate the spikes. At high
temperatures, the relaxation is so quick that the spikes dis-
appear. Another direct result of flux creep is that at all tem-
peratures, the current densitiesj (T) are always smaller than
the corresponding critical current densitiesj c(T). Therefore,
in ac susceptibility measurements, flux creep should be con-
sidered.

The effect of the dc magnetic field on the ac susceptibility
can be seen clearly from Fig. 2, where the calculated curves
of x8 andx9 as a function of temperature at various dc bias
fields, for f51000 Hz andBac52 G are plotted. As the dc
field increases, the transition inx8(T) and x9(T) becomes
broad, as can be seen in bothx8(T) andx9(T) curves. The
peak height inx9 decreases appreciably with increasing dc
field at a value of 3 T and below, see Fig. 2~a!. These results
are in good agreement with experimental data of Ishida and
Goldfarb17 and have also been modeled by Mu¨ller.14 How-

ever, it can be seen from Fig. 2~b! as the dc field further
increases, the peak height inx9 remains constant up to 8 T.
Experimentally, it has also been observed that with increas-
ing dc fields, the peak height inx9 increases to a certain
value and remains constant for further increasing dc field.18

This observation may indicate that instead of Eqs.~13! and
~14!, other forms ofj c(B) andU0(B) should be taken into
account.

In Fig. 3, we plot the calculated curves ofx8 andx9 as a
function of temperature at various ac field amplitudes, for
f51000 Hz andBd5100 G. AsBac increases, the height and
breadth of the peak inx9 increases as it moves to lower
temperature, which has been experimentally well known.17

However, as the ac field amplitude further increases, the
peak height inx9 decreases slightly as shown in Fig. 3~b!.
This is understandable, considering that when the ac field
and dc field are of the same order of magnitude, the ac field
may have the same effect as that of the dc field, therefore,
similar to those shown in Fig. 2~a!, the peak height inx9
should decrease with increasing ac field amplitude. It should
be noted that the frequently used simplified Anderson-Kim
critical-state model, in which the critical current density in-
versely depends on the field, does not explain the change in
the peak height ofx9 with Bac seen experimentally.16 We
explore the effect of the ac field amplitude further in Fig.
3~c! in which the calculated curves ofx8 andx9 as a function
of temperature at various ac field amplitudes are plotted, for
f51000 Hz andBd51 T. The conditionBd@Bac is satisfied.
It can be seen from Fig. 3~c! that no changes in the peak
height ofx9 are observed. This effect is similar to that of dc
field at largeBd shown in Fig. 2~b!.

The essential feature of the present calculation is that it
can be used to study the frequency effect on the ac suscep-
tibility. Shown in Fig. 4~a! are the flux density profiles at the
momentvt5p/2 when the applied magnetic field reaches
the maximum valueB5Bd1Bac at various frequencies, for
Bd51 T, Bac5100 G, andt50.935. As the frequency de-
creases, the relaxation time for the magnetization to decay
becomes longer, resulting in a smaller current density at low
frequencies, which can be seen from the slope of the flux
profiles in Fig. 4~a!. Moreover, similar to Fig. 1~a!, there also
exist some spikes in the flux density profiles at high frequen-
cies, which is the result of the relaxation effect as discussed
in detail above.

We plot the calculated curves ofx8 andx9 as a function of
temperature at various frequencies, forBd51 T andBac5100
G in Fig. 4~b!. As the frequency decreases, the transition
temperature shifts to lower value, the peak height inx9 de-
creases and the breadth inx9 increases as it moves to lower
temperature, which is in good agreement with experimental
data.12,18 It should be noted that the calculated result in Fig.
4 is conducted at constantBd andBac, therefore, it is inde-
pendent of the chosen form ofj c(B) andU0(B) and can be
regarded as a universal behavior.

By now, we have presented ac susceptibility as a function
of temperature for different dc fieldsBd , ac field amplitudes
Bac, and frequenciesf in a unified picture, which is in good
agreement with experimental data. In the following, we will
show that flux creep can account for all these features.

When an ac magnetic field is applied to the sample sur-
face, the sample is taken through a complete hysteresis loop

FIG. 2. ~a! The calculated curves ofx8 andx9 as a function of
temperature at various dc magnetic fields, forf51000 Hz and
Bac52 G. ~b! The same as~a! except at larger dc magnetic fields.
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within the time periodt51/f , wheret instead of being the
order of hours now is of the order of;1025–10 s in this
work. In this case, the decay of the critical state competes
with the time scale imposed on the system by the external ac
magnetic field. And the decay of the magnetization is cut on
the time scalet51/f such that the screening currents flowing
in the sample are given by Eq.~4!:

U~ j !5kBT ln
1

vt0
. ~16!

The screening current density instead of being the critical
current density, now is reduced to j (v)
5U21@kBT ln~1/vt0!#, andU

21 is the inverse function of
U( j ).

Shown in Fig. 5 are the field profiles atvt5p/2 when the
applied time-dependent field reaches the maximum value
B5Bd1Bac for various frequenciesf50.1, 1, 10, 100, 1000,
10 000, and 100 000 Hz, at temperaturet5tp5Tp/Tc , where
x9 attain the maximum values. It can be seen that although

the frequency ranges from 0.1 to 100 000 Hz, the flux pro-
files att5tp andvt5p/2 are almost the same, which super-
imposed each other except near the center of the sample. It
can be seen from Fig. 4~a! that in order for different frequen-
cies to attain the same situation shown in Fig. 5, a lower
temperature is required to overcome the relaxation effect at
low frequency, resulting in lowertp , which is the case
shown in Fig. 4~b!. For the frequency ranges from 0.1 Hz to
100 000 Hz, the correspondingtp changes from 0.924 to
0.96, respectively. In this case, the penetration depthdp of
the ac magnetic field is of the order of the half thickness of
the slab, that is,dp'd. And the straight-line approximation
for the field profiles works well throughout most of the
sample region, except near the center of the sample. Then the
current density can be approximated byj (v)5Bac/m0d.
From Eq.~16!, we have

USB, j5 Bac

m0d
D5kBT ln

1

vpeakt0
. ~17!

FIG. 3. ~a! The calculated curves ofx8 andx9 as a function of temperature at various ac field amplitudes, forf51000 Hz andBd5100
G. ~b! The same as~a! except at larger ac field amplitudes.~c! The same as~a! except atBd51 T.
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Thus the position of the peak inx9 will strongly depend on
the ac field amplitudeBac, the dc fieldBd , and the frequency
f . With decreasingBac the activation energy is increased and
the temperature where the dissipation peak occurs is shifted
to higher values, which is the case shown in Fig. 3. Simi-
larly, with decreasingBd , the activation is also increased as
can be seen from Eq.~15! and the temperature where the
dissipation peak occurs is shifted to higher values, which is
the case shown in Fig. 2. However, with decreasing fre-
quencyf , the activation energy is decreased as can be seen
from Eq.~17! and the temperature where the dissipation peak
occurs is shifted to lower values, which is the case shown in
Fig. 4~b!.

In order to study the process more carefully, we plot the
field profiles and current density profiles in a period of the ac
field, that is, at vt50 or 2p (B5Bd), vt5p/2
~B5Bd1Bac!, vt5p (B5Bd), and vt53p/2 ~B5Bd
2Bac!, for f510 Hz, Bd51 T, Bac51 G, andt50.976, in

Figs. 6~a! and 6~b!, respectively. As the field is ramped from
Bd1Bac to Bd ~vt5p/2 to vt5p! at a sweep rate
Ḃ5vBac cos(vt), in the shell of the sample, on which the
sweep rate has effect and the current density changes sign,
the current densityu j u is larger atvt5p than that atvt5p/
2, because the sweep rateuḂu5vBac at vt5p is larger than
uḂu50 atvt5p/2. However, in the interior of the sample, on
which the sweep rate has no effect, we see that the current
density relaxes to a smaller value, clearly showing the relax-
ation effect. Similar phenomenon can also be seen when the
field is swept fromBd2Bac to Bd ~vt53p/2 to vt52p or
0!. Moreover, at lower temperatures or at higher frequencies,
where the relaxation is not so effective and the flux in the
sample interior does not relax into the center of the sample, a
spike is expected when the field is swept fromBd1Bac to
Bd2Bacandvice versa, which is the case shown in Figs. 1~a!
and 4~a!.

From Figs. 1, 4, and 6, we can see that the straight-line
approximation works well through most of the sample re-
gion. Although a minor correction may result from flux
creep, the approximation remains valid as a zero-order ap-
proximation, especially at lower temperature and at high fre-
quencies, where the relaxation rate is relatively slow.

It should be mentioned here that the linear response re-
gime is not considered in the above calculation. The basic
assumption on which the linear response relies is the finite-
ness of the activation barrierU( j ) in the small current den-
sity limit, U( j→0)5U0,`. Such a behavior of the creep
barriers is expected to be realized in the vortex liquid at high
temperaturesT.Tg , whereTg is the vortex-glass transition
temperature. However, in this work, considering the success
of the vortex-glass–collective-pinning model in describing
magnetic relaxation experiments, we choose the activation
barrierU( j )5(U0/m)[( j c/ j )

m21]. Such a barrier diverges
as j goes to zero, therefore, the linear response regime is not
expected. Fortunately, the linear response regime has been

FIG. 4. ~a! The flux density profiles in the slab atBd51 T,
Bac5100 G, andt50.935, for various frequencies.~b! The calcu-
lated curves ofx8 and x9 as a function of temperature at various
frequencies, forBd51 T andBac5100 G.

FIG. 5. The flux density profiles in the slab atB5Bd1Bac ~vt
5p/2! for various frequencies atBd51 T, Bac5100 G, and at the
temperaturet5tp wherex9 attain the maximum values.tp50.924,
0.928, 0.933, 0.938, 0.944, 0.951, and 0.96 forf50.1, 1, 10, 100,
1000, 10 000, and 100 000 Hz, respectively.
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understood relatively well, as discussed in detail in Sec. I.
The linear response regime and the crossover from the linear
response regime to the nonlinear response regime will be
considered elsewhere.

V. THE LOSS MECHANISM

Because the hysteretic loss is proportional to the area of
the magnetization loop, the peak inx9 and the changes in the
peak height ofx9 can be explained by considering the mag-
netization loops at different temperatures. In Fig. 7, we plot
the magnetization loops at three temperaturest50.84,
t5tp50.938, andt50.99, for f5100 Hz, Bd51 T, and
Bac5100 G. For t,0.84, the ac field causes the shielding
currents to flow on the surface of the sample and a line to be
traced out in theM2B plane, which means there is no hys-
teresis andx950. For T somewhat belowTc , j c has de-
creased and the shielding currents have to flow within the
sample. The hysteresis loop in theM2B plane has an area

associated with it andx9.0. The losses andx9 attain their
maximum values after supercurrents and penetrated flux
reach the center of the sample att5tp , see Fig. 5. AsT
approachesTc ~t50.99!, j c approaches 0, and the magneti-
zation also goes to 0, the magnetization loop has collapsed,
and there is no area to the loop and no hysteretic loss and
x950. This interpretation is in accordance with the expecta-
tions of the critical state model, in which all energy losses
are hysteretic and frequency independent.

However, the effect of frequency can be seen clearly from
Fig. 8, where the magnetization loops at two frequencies
f50.1 and 100 000 Hz, forBd51 T, Bac5100 G, and
t50.935 are plotted. The area of the magnetization, which is
proportional to the hysteretic loss, is larger at low frequency
than that at high frequency. From Eq.~16!, we can see that at

FIG. 8. The magnetization loops atf50.1 and 100 000 Hz, for
Bd51 T, Bac5100 G, andt50.935.

FIG. 6. ~a! the flux density profiles in the slab atvt50, vt5p/
2, vt5p, and vt53p/2, at f510 Hz, Bd51 T, Bac51 G, and
t50.976.~b! The corresponding current density profiles in the slab.

FIG. 7. The magnetization loops att50.84, t5tp50.938, and
t50.99, for f5100 Hz,Bd51 T, andBac5100 G.
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high enough frequency,U→0, the system is very close to the
critical state, and flux creep can be ignored, thenj' j c .
However, as the frequency decreases,U( j ) increases and the
system decays away from the critical state and the currentj
decays to a value smaller than the critical current density,
resulting in an increase of loss. Furthermore, at a low fre-
quency, in order to attain the same situation as at a high
frequency, a lower temperature is required to overcome the
flux-creep effect, which can also account for the observed
decrease ofTp , the temperature corresponding to thex9
peak, with decreasing frequency of the ac magnetic field
shown in Fig. 4~b!.

VI. CONCLUSIONS

In conclusion, we have numerically solved the flux-creep
equation for the case where a high-temperature supercon-
ducting slab is immersed in an ac magnetic field together

with a dc bias magnetic field. The temporal and spatial evo-
lution of the flux density profiles inside the sample and the
magnetization loops have been obtained. The calculated
curves of the fundamental ac susceptibilityx8 and x9 as a
function of temperature for different dc magnetic fields, ac
field amplitudes, and frequencies reproduce many of the fea-
tures exhibited by experiments. We have shown that the
frequency-independent critical-state model breaks down in
explaining these results, which however, can be well de-
scribed by means of flux creep and the straight-line approxi-
mation provides a good description of the field profiles inside
the slab. We have also shown that the part of the loss in the
high-temperature superconductors is due to flux creep.
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