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We derive equations which describe the interaction of the phase collective mode with vortex oscillations in
multilayer superconductors with Josephson interlayer coupling. Using these dynamic equations for the phase
difference between neighboring layers and pancake coordinates we calculate the linewidth of thec-axis plasma
resonance in the vortex glass phase when a magnetic field is applied along thec axis. Three mechanisms
contribute to the linewidth: interlayer tunneling of quasiparticles, inhomogeneous Josephson interaction in the
presence of randomly positioned vortices~inhomogeneous broadening!, and dissipation of the plasma mode
into vortex oscillations. The phase collective mode is mixed with vortex oscillations in the linear approxima-
tion via the Josephson interaction when pancakes are positioned randomly along thec axis due to pinning and
thermal fluctuations. Analyzing experimental data for the plasma resonance linewidth in a Bi-2:2:1:2 super-
conductor we conclude that in magnetic fields below 7 T the linewidth is determined mainly by inhomoge-
neous broadening. This leads to a nearly temperature-independent linewidth which is inversly proportional to
the magnetic field. At higher fields or lower pinning the dissipation of the plasmon into vortex oscillations may
become the dominant mechanism of line broadening. In this case the linewidth weakly depends on the mag-
netic field.@S0163-1829~96!05334-9#

I. INTRODUCTION

The highly anisotropic high-Tc superconductors may be
considered as a stack of superconducting CuO2 layers
coupled by Josephson interactions.1–3 The novel properties
of these materials as compared with a single Josephson junc-
tion are associated with their multilayer structure and with
the presence of pancake vortices4 when a magnetic field is
applied along thec axis. It was shown previously that Abri-
kosov vortices induced by such a field strongly suppress the
interlayer maximum superconducting current by inducing
random phase differences between layers in the presence of
disorder in pancake positions along thec axis.5,6 It was pre-
dicted in Ref. 7 that this effect leads to a decrease of the
c-axis Josephson plasmon frequency with a magnetic field
applied along thec axis because the plasma frequency
squared is proportional to the maximum Josephson current.
Recently, a sharp magnetoabsorption resonance was ob-
served in the vortex state of the highly anisotropic layered
superconductor Bi-2:2:1:2 by Tsuiet al.8,10,11 and Matsuda
et al.9 in the frequency range 30 – 90 GHz depending on the
magnetic field and temperature. The field behavior of this
resonance~decrease of frequency with the magnetic field ap-
plied along thec axis! as well as its angular dependence
~sharp decrease of the resonance frequency near orientations
of the strong magnetic field parallel to layers! was found to
be in agreement with predictions of Refs. 7 and 12 for the
Josephson plasmon in layered superconductors. Matsuda
et al.9 and Tsui11 confirmed that this resonance is maximum
when an ac electric field is oriented along thec axis. This
observation provides strong evidence that the observed reso-

nance is indeed thec-axis Josephson plasmon. A resonance
with similar behavior was also observed in the Bi-2:2:0:1
superconductor by Maedaet al.13 Thus, the plasma reso-
nance found in Bi-2:2:1:2 and Bi-2:2:0:1 superconductors is
the extension of the Josephson plasmon discovered in the
single Josephson junction by Dahmet al.15 to the multilay-
ered system with Josephson interlayer coupling.

In a single Josephson junction the plasma mode is the
charge oscillation between two superconductors forming the
junction, with the current between the superconductors being
the Josephson tunneling current. In layered superconductors,
the plasma mode is a charge oscillation between the top and
bottom layers of the sample, and the corresponding currents
flow between all layers forming the crystal. For a single Jo-
sephson junction the effect of magnetic field on the plasma
frequency has been observed for an orientation of the mag-
netic field parallel to the junction. However, plasma reso-
nance was not studied in the situation when Abrikosov vor-
tices penetrate through the junction. For this case only the
effect of vortices on the critical current of junction was
discussed.16–18 The interplay between Abrikosov vortices
and Josephson properties is an important new effect in mul-
tilayered superconductors: The coexistence of Abrikosov
vortices and Josephson plasmon allows us to study the struc-
ture and dynamics of pancake vortex lattices in systems like
Bi-2:2:1:2 by plasma resonance measurements.

The experimental studies8–11 have established the follow-
ing properties of thec-axis plasma resonance.

~a! Below the irreversibility line in the (B,T) plane the
dependence of the plasma frequencyV on the magnetic field
Bic and the temperatureT has the form
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V2~B,T!5A1B
2mexp~T/T0!, ~1!

whereA1 is a constant,m'0.7–0.8 is temperature indepen-
dent, andT0'12.5 K in fields 0.3–7 T and at temperatures
3–16 K; see Refs. 8, 10, and 11. Above the irreversibility
line the power-law field dependence holds withm'0.9–1
and V drops with temperature at a fixed magnetic field.9

Thus the temperature dependence of the plasma frequency
exhibits a cusp at the irreversibility line.

~b! At low temperatures, when the magnetic fieldB is
tilted by an angleu with respect to theab plane, at high
anglesu.10° only the perpendicular component of the field,
Bz5Bsinu, is effective, and Eq.~1! with B5Bz describes the
data. Atu smaller than 5° the plasma frequency decreases
sharply asu approaches zero in high magnetic fields above 2
T; see Refs. 10 and 11.

~c! In a magnetic fieldBic and below the irreversibility
line, the relative resonance linewidthG/V is at most a weak
function of magnetic field,8 whereG is the half width at half
maximum.

Experimentally, the sample is glued to one end of the
sapphire substrate and protrudes into the waveguide. A bo-
lometer is glued to the other end of the substrate to monitor
the temperature change in the sample due to microwave
absorption.8 With both temperature and microwave fre-
quency fixed, the bolometric signal, which is proportional to
the absorbed microwave power, is measured as a function of
the applied field. For each field sweep, the resonance field
B0 is determined at the position of maximum absorption and
DB0 denotes the linewidth at half absorption maximum rela-
tive to the background. According to Eq.~1!, the relative
linewidth isG/V5mDB0/2B0. For the data published in Fig.
2 of Ref. 8 atT54.2 K, G/V is weakly dependent on field
and is 0.1360.023 forV/2p530 – 50 GHz. The linewidth
of the resonance with respect to a variable magnetic field at
constant frequency was found to be almost temperature in-
dependent in the vortex glass state.8 Matsudaet al.9 found
the relative linewidth'0.15–0.2 below the irreversibility
line and they observed its increase with temperature above
the irreversibility line in the vortex liquid state up to 0.5 at
T563 K. As for the resonance frequency, the relaxation rate
has a cusp at the irreversibility line.8

The power law dependence of the plasma frequency on
B at Bic was explained in Ref. 19 assuming that the vortex
lattice is strongly disordered along thec axis due to pinning
in the vortex glass state or by thermal fluctuations in the
liquid vortex state. Deviations of the pancake vortices from
straight lines in equilibrium induce a nonzero phase differ-
encewn,n11(r ) between neighboring layersn and n11 at
coordinater5(x,y). This phase difference suppresses the
average interlayer Josephson energy and maximum possible
interlayer superconducting current,Jm5J0^coswn,n11(r )&.
HereJ0 is the parameter which characterizes the strength of
interlayer Josephson coupling, and^•••& means averaging
over space and disorder. The suppression of the plasma fre-
quencyV by pancake vortices was described in Refs. 7 and
19 assuming that the plasma frequency is proportional to the
maximum interlayer current:

V25
8p2cs

ecF0
Jm5

8p2cs

ecF0
J0^coswn,n11~r !&. ~2!

Heres is the interlayer spacing andec is the high-frequency
dielectric function for an electric field along thec axis. Equa-
tion ~2! corresponds to averaging over the Josephson inter-
action. In this mean-field approach, pancake vortices are as-
sumed to be fixed and effects of the inhomogeneity of
Josephson interactions are not accounted for. The tempera-
ture dependence of the plasma frequency was explained in
Ref. 19 by accounting for the effect of low-frequency ther-
mal fluctuations of the phase difference~of thermally excited
phase collective modes!. These smooth out rapid changes of
the phase difference produced by disordered pancake vorti-
ces and result in an increase of the average Josephson inter-
action and plasma frequency with temperature at low tem-
peratures. Their effect on the plasma frequency may be
compared with the effect of spin waves on the magnetic sus-
ceptibility of an antiferromagnet below the Ne´el temperature:
Magnetic susceptibility increases because spin waves make
the antiferromagnet softer.

The strong angular dependence of the plasma resonance
in high magnetic fields was predicted in Ref. 12 as a result of
interactions of pancake vortices, produced by theBz compo-
nent of the field, with the dense lattice of Josephson vortices,
induced by the field component parallel to theab plane. In
this case pancake vortices form an almost hexagonal struc-
ture in theab plane and a zigzag structure along thec axis.
The zigzag structure of pancakes minimizes the Josephson
energy and induces pinning for Josephson vortices. This re-
sults in a sharp enhancement of the plasma frequency when
u increases from zero and pancake vortices appear.

The relatively large linewidth of thec-axis plasmon ob-
served in Refs. 8–11 is surprising. In a single Josephson
junction the linewidth of the Josephson plasmon is associ-
ated with incoherent dissipative tunneling of quasiparticles.
In a superconductor with a gapD in the quasiparticle spec-
trum the concentration of quasiparticles is exponentially
small at low temperaturesT!D and vanishes linearly with
T for d-wave superconductors. Abrikosov vortices increase
the number of quasiparticles linearly withB in s-wave su-
perconductors and asB1/2 in d-wave superconductors.14 Thus
we can imagine that a relatively large linewidth with a weak
temperature and field dependence cannot be explained by an
interlayer current of normal quasiparticles. Rather, it may be
caused by the effect of pancake vortices on the Josephson
interlayer interaction; randomly positioned, they induce in-
homogeneity of the Josephson interaction which may lead to
a significant broadening of the Josephson plasma resonance.
In addition, plasma oscillations may mix with vortex oscil-
lations and this effect also results in a broadening of the
plasma resonance.

The main goal of this paper is to describe the phase col-
lective mode in the presence of vortices beyond the mean-
field approach to take into account the inhomogeneity of
Josephson coupling and dynamic interaction between pan-
cake vortices and thec-axis plasmon.

To study the dynamic effects of vortices we derive in
Secs. II and III the equations for pancake coordinates and
phase difference in the presence of vortices in the London
regime,B!Hc2, and below the irreversibility line. These
equations allow us to study all dynamic effects associated
with phase difference variations in the presence of pancakes,
including the field dependence of plasma resonance and
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c-axis resistivity in the superconducting state. In Sec. IV we
consider the effect of inhomogeneous Josephson interactions
caused by randomly positioned vortices on the plasmon line-
width and formulate the condition when Eq.~2! is valid. In
Sec. V we show that the phase collective mode and vortex
oscillations around equilibrium positions are coupled in a
linear approximation via a Josephson interaction if pancakes
at equilibrium are displaced from straight lines due to pin-
ning and thermal fluctuations. As a result, true collective
modes in this case are mixed plasmon-vortex oscillations.
This effect leads to additional line broadening of thec-axis
plasma resonance. In Sec. VI we discuss the experimental
data and show that in the fields studied the inhomogeneous
broadening is dominant and it describes well the experimen-
tal data for the plasma resonance line shape. However, we
argue that at higher fields, or in samples with weaker pin-
ning, plasmon dissipation into vortex oscillations may be-
come more important than inhomogeneous broadening.

II. STATIC EQUATION FOR THE PHASE DIFFERENCE
AND FUNCTIONAL FOR PANCAKE COORDINATES

In this section, starting from the Lawrence-Doniach~LD!
functional1 for the superconducting order parameter phase,
we present derivations which lead to the equation for the
phase difference between neighboring layers at equilibrium
in the presence of vortices,21 and then we obtain the free
energy functional with respect to vortex positions and phase
differences. This allows us in the following to generalize
these results to obtain a time-dependent equation for the
phase difference, and the Lagrangian for pancake coordinates
which accounts for the time-dependent phase difference. For
a multilayered system without Josephson coupling the func-
tional for pancake positions was obtained by Buzdin and
Feinberg20 and by Clem.4 Such a functional in the presence
of Josephson interlayer interaction was derived in Refs. 21
and 22 for the case of a single tilted vortex, and in the fol-
lowing we present such a functional for arbitrary positions of
pancakes.

In the framework of the LD functional for the supercon-
ducting order parameterCn(r )5uCn(r )uexp@ifn(r )# in the
layer n, we assume the amplitude of the order parameter to
be constant in space. Such an approach is invalid only in
small areas inside the normal cores of the vortices. The ra-
dius of these cores is of the order of the superconducting
correlation lengthjab . In magnetic fieldsB!Hc2 ~in the
London regime! the area of normal cores is negligible and an
approximation of constant amplitude is adequate. We will
show in the following those effects that are sensitive to spa-
tial variation of the order parameter amplitude. In the ap-
proach of a fixed amplitude, the pancakes are pointlike ‘‘par-
ticles’’ which induce variation of the phasefn(r ) in the
surrounding space. The total change offn(r ) should be
2p along any closed contour in the layer surrounding a pan-
cake vortex. The corresponding LD functional in terms of
fn(r ) and vector potentialA(R) is

F$fn~r !,A~R!%5E0(
n
E dr F12 S ¹fn1

2p

F0
AnD 2

1
1

lJ
2 ~12coswn,n11!G1E dR

B2

8p
,

E05
F0

2s

16p3lab
2 . ~3!

HereR5(r ,z)—the z axis is perpendicular to the layers—
layers are positioned atz5ns, ¹5]/]r , lab is the London
penetration depth for currents in theab plane,lJ5gs is the
Josephson length, andg is the anisotropy ratio. Further,
An5(Anx ,Any)5@Ax(r ,z5ns),Ay(r ,z5ns)#, B5curlA,
and the gauge-invariant phase difference between layersn
andn11 is

wn,n11~r !5fn~r !2fn11~r !2
2p

F0
E
ns

~n11!s
dzAz~r ,z!.

~4!

Minimization of F with respect tofn(r ) andA(R) yields
the system of equations for phases and fields in equilibrium
at given vortex positions. VaryingF with respect toA, we
obtain

~curlcurlA!a5
4p

c
j a

52
F0s

2plab
2 (

n
S ¹fn1

2p

F0
AnD

a

d~z2ns!,

~5!

~curlcurlA!z5
4p

c
j z52

F0s

2plab
2 g2(

n
f n,n11~z!sinwn,n11 ,

~6!

wherea5x,y and the factorf n,n11(z) vanishes everywhere
except forns,z,(n11)s, where it is unity. Minimization
of F with respect tofn yields

¹2fn1
2p

F0
¹An5

1

lJ
2 ~sinwn,n112sinwn21,n!. ~7!

From Eqs.~5!–~7! the equation for the phase difference
wn,n11 was obtained in Refs. 21 and 23:

2(
m

Lnm¹2wm,m111lJ
22sinwn,n1150, ~8!

where the mutual inductance of layers,Lnm , is

Lnm5E
0

2p dq

2p

cos~n2m!q

2~12cosq!1s2/lab
2 5

lab

s S 12
s

lab
D un2mu

.

~9!
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Boundary conditions for Eq.~8! are determined by positions
of topological singularities~vortices!. The phasesfn(r ) are
singular at the position of each pancake,rnn :

~¹x¹y2¹y¹x!fn~r !52p(
n

d~r2rnn!. ~10!

Then the boundary condition forwn,n11(r ) is

~¹x¹y2¹y¹x!wn,n11~r !

52p(
n

@d~r2rnn!2d~r2rn11,n!#. ~11!

Note that for vortices placed along straight lines along the
c axis (rnn5rn11,n) the singularities in the phase difference
are absent. To satisfy the boundary condition, Eq.~11!, we
present the phase difference as

wn,n11~r !5wn,n11
~v ! ~r !1wn,n11

~r ! ~r !, ~12!

wherewn,n11
(v) (r ,rnn) is the phase difference induced by pan-

cakes at positionsrnn in the absence of a Josephson interac-
tion ~with infinite lJ):

wn,n11
~v ! ~r ,rnn!5(

n
@ f ~r2rnn!2 f ~r2rn11,n!#,

f ~r !5arctan~x/y!. ~13!

The functionwn,n11
(v) (r ) is singular at vortex positionsrnn ,

while the functionwn,n11
(r ) (r ) is regular everywhere and de-

scribes the effect of three-dimensional screening caused by
interlayer Josephson currents.21,22 Then Eq. ~8! with the
boundary condition~11! is equivalent to the equation

2(
m

Lnm¹2wm,m11
~r ! 1lJ

22sin@wn,n11
~v ! 1wn,n11

~r ! #50.

~14!

It is valid outside of vortex cores. Inside vortex cores we
should take account that the Josephson parameterJ0}lJ

22

}uCn(r )uuCn11(r )u vanishes at the center of pancake, i.e., at
r5rnn or r5rn11,n . This removes the singularity induced by
wn,n11 in the second term on the left-hand side. The solution
of Eq. ~14! for wn,n11

(r ) (r ) provides a minimum to the func-
tional

Fw5E0E dr H 12(mn
Lnm¹wn,n11

~r !
•¹wm,m11

~r !

1
1

lJ
2 @12cos~wn,n11

~v ! 1wn,n11
~r ! !#J . ~15!

The free energy functional for pancake coordinates, for
the gaugeAz50, is21

Fv~rnn!5(
n
E dr F2

F0s

4pc
jn•¹fn1

E0

lJ
2 ~12coswn,n11!G ,

~16!

wherewn,n11(r ) is determined by Eq.~14! while ¹fn and
jn are the solutions of Eqs.~5!-~7! with boundary condition
~10!. The solutions of the linear equations~5!–~7! can be

expressed in terms ofwn,n11(r ) and the coordinates of pan-
cakes as a sum of the contribution due to pancakes in the
absence of Josephson coupling and that induced by the Jo-
sephson currents. The free energy functional of the system,
Eq. ~16!, is a sum of these two contributions. Finally we
obtain the functional for pancake coordinates as

Fv~rnn!5Fem~rnn!1FJ~rnn!1Fpin~rnn!. ~17!

HereFem(rnn) is the functional which accounts for the two-
dimensional energy of pancakes and includes also their elec-
tromagnetic interaction in different layers:4,20

Fem~rnn!5
1

2
E0E dkdq

3 (
n,m,n,n8

exp@ ik•~rnn2rmn8!1 iq~n2m!#

k2@11lab
22~k21Q2!21#

,

~18!

whereQ25(12cosq)/s2. The functionalFJ(rnn) accounts
for the Josephson interaction of pancakes:

FJ~rnn!5
E0

lJ
2E dr @12coswn,n11~r !#1

E0

8p2lJ
2

3E dkdq
11lab

2 Q2

lab
2 g2k2

u@sinwn,n11~r !#kqu2,

@sinwn,n11~r !#kq5(
n
E drsinwn,n11~r !

3exp@2~ ik•r1 iqn!#, ~19!

where the functionwn,n11(r ,rnn) is the solution of Eq.~14!.
The contributionFpin(rnn) accounts for pinning:

Fpin~rnn!5(
n,n

E drVpin~r !d~r2rnn!, ~20!

whereVpin(r ) is the pinning potential for vortices; see Ref.
24.

The functionalFv can be obtained by minimization of the
following total functional in terms of the variables
wn,n11(r ) and rnn :

F$rnn ,wn,n11
~r ! ~r !%5Fem~rnn!1Fpin~rnn!

1Fw$rnn ,wn,n11
~r ! ~r !%, ~21!

where the last term is defined by Eq.~15!. This functional
will be used in the following sections to obtain the Lagrang-
ian of the system in terms ofrnn andwn,n11

(r ) (r ). Below the
irreversibility line ~in the vortex glass state! the equilibrium
positions of vortices,rnn

(0) , are determined by the condition
that this functional is minimum with respect to both vari-
ables.
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III. TIME-DEPENDENT EQUATION
FOR THE PHASE DIFFERENCE IN THE PRESENCE

OF PANCAKE VORTICES

A. General equations

In our consideration of the dynamic effect of pancake
vortices we follow the same procedure as for the static case.
We generalize Eq.~14! to a time-dependent equation for
wn,n11(r ,t) which is similar to the sine-Gordon equation for
a single junction but takes into account the presence of many
layers as well as moving pancakes. Then we derive the La-
grangian for pancake coordinates which accounts for the
time-dependent phase difference and provides the equation
of motion for pancakes in the layered system with Josephson
coupling. The equation for the time-dependent phase differ-
ence and equation of motion for pancakes form the coupled
set of equations which describe the phase collective modes
interacting with moving pancakes.

The time-dependent equation for the phase difference in
the absence of pancake vortices and without accounting for
relaxation of the superconducting order parameter was ob-
tained in Refs. 25–27. This equation was derived by use of
the Maxwell equations

eab¹•En1
ec
s

~Ez,n2Ez,n11!54prn , ~22!

curlB~r ,z,t !5
ê

c

]E~r ,z,t !

]t
1
4p

c
j ~r ,z,t !, ~23!

whereEn is the electric field in the layern, Ez;n,n11(r ,t) is
the averagez component of the electric field between layers
n and n11, ê is the high-frequency dielectric tensor with
componentseab andec for electric fields along theab plane
and along thec axis, respectively, andrn(r ) is the average
charge density in the layern. Then the Maxwell equations
are complemented by the constitutive equations for the cur-
rent densityj . For the interlayer currents we have

Jz,n,n115Jz,n,n11
~s! 1Jz,n,n11

~n! 5J0sinwn,n111scEz,n,n11 ,
~24!

with J052pcE0 /F0lJ
2 being the maximum Josephson su-

percurrent,wn,n11 is the gauge-invariant phase difference
given by Eq.~4!, andsc is the c axis conductivity due to
quasiparticles. For the in-plane current we have

Jn5Jn
~s!1Jn

~n!5
cF0

8p2lab
2 Qn1sabEn , ~25!

with the gauge-invariant phase gradientQn5
2@“fn1(2p/F0)An# andsab is the in-plane conductivity
due to quasiparticles. From Eqs.~22! and~23! the continuity
equation follows:

]rn
]t

2¹•Jn
~s!2¹•Jn

~n!2
J0
s

~sinwn,n112sinwn21,n!

2
1

s
~Jz;n,n11

~n! 2Jz;n21,n
~n! !50. ~26!

The Josephson relation

]wn,n11~r ,t !

]t
5
2es

\
Ez;n,n11~r ,t ! ~27!

was used in Refs. 25–27. Equation~27! is valid at equilib-
rium when]fn(r ,t)/]t52(2e/\)Vn(r ,t); see Refs. 28 and
29 for more details. HereVn(r ,t) is the scalar potential in the
layern.

From Eq.~26!, for dynamic processes with characteristic
frequencies v!vab(sc /sab)

1/2'vab /g, the time-
dependent equation for the phase difference is

1

c0
2 T̂c

]

]t
wn,n111

1

lJ
2sinwn,n112(

m
Lnm¹2wm,m1150,

T̂c5
]

]t
1Gc , ~28!

wherec05cs/labAec plays the role of the Swihart velocity,
vab5c/Aeablab is the in-plane plasma frequency, and
Gc54psc /ec . The dissipation of the phase collective mode
in this approach is caused only by the interlayer current of
normal quasiparticles as described bysc . The dissipation
due to the in-plane current of quasiparticles is smaller by the
parameter (v/vab)(sab /sc)

1/2. Equation ~28! generalizes
the sine-Gordon equation for a single junction to a multilayer
system. It is valid if the relaxation time of the order param-
eter amplitude is much smaller than the characteristic time of
the processes described by this equation. The Lagrangian
Lw and the dissipation functionRw for the phase difference
are

Lw5
E0

2c0
2(

n
E dr S ]wn,n11

]t D 22Fw ,

Rw5
E0Gc

2c0
2 (

n
E dr S ]wn,n11

]t D 2. ~29!

The kinetic part of this Lagrangian is the energy of electric
field in the system. The equation of motion~28! is obtained
from the Lagrangian and the dissipation function as

d

dt

]Lw

]ẇn,n11

2
]Lw

]wn,n11
1

]Rw

]ẇn,n11

50. ~30!

A general equation, which accounts for relaxation of the
superconducting order parameter in the framework of the
time-dependent Ginzburg-Landau~TDGL! equation modi-
fied for the LD model, was derived in Ref. 32 in the absence
of pancakes. In this approach the Josephson relation, Eq.
~27!, is replaced by the general relation

]wn,n11~r ,t !

]t
5
2es

\
Ez;n,n11~r ,t !1gn,n11~r ,t !. ~31!

Heregn,n11(r ,t) is the gauge-invariant time derivative of the
phase difference:

gn,n11~r ,t !5Gn~r ,t !2Gn11~r ,t !,

Gn~r ,t !5
]fn~r ,t !

]t
2
2e

\
Vn~r ,t !. ~32!
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The functionGn can be determined by use of the TDGL
equation for the superconducting phase:

4egGLGnuCnu25¹•Jn
~s!1

J0
s

~sinwn,n112sinwn21,n!,

~33!

where the parametergGL characterizes the relaxation of the
superconducting order parameter; see Refs. 32, 29, and 30
for more details. The second TDGL equation for the time
evolution of uCn(r ,t)u is neglected in this London regime
approach. The full dynamics can be derived, in terms of the
gauge-invariant quantitieswn,n11, Gn , andQn , from Eqs.
~22!–~25! and ~31!–~33!. We obtain

T̂c
c0
2 S ]wn,n11

]t
2gn,n11D1

1

lJ
2sinwn,n112(

m
Lnm¹2wm,m11

5(
m

LnmWm$Qm ,gm,m11%, ~34!

2g̃GL~Gn11uCn11u22GnuCnu2!

5Wn$Qn ,gn,n11%1
T̂c
c0
2 d̂2S ]wn,n11

]t
2gn,n11D ,

~35!

“•~Qn112Qn!1Wn$Qn ,gn,n11%

1 d̂2F 1lJ
2sinwn,n111

T̂c
c0
2 S ]wn,n11

]t
2gn,n11D G50, ~36!

with

Wn$Qn ,gn,n11%5
T̂ab
vab
2 F ]

]t
“•~Qn112Qn!2¹2gn,n11G

5
2pcT̂ab
F0vab

2 ¹–~En112En!, ~37!

the parameterg̃GL54egGL8p2lab
2 /cF0, and we define the

operators T̂ab5]/]t14psab /eab and d̂2an5an1122an
1an21. The only dependence onQn is through the scalar
dn,n115“•(Qn112Qn). Here Eq.~34! generalizes Eq.~28!,
while Eq. ~35! comes from the TDGL equation~33! and Eq.
~36! is another form of the continuity equation~26!. There-
fore, the full dynamics is described by Eqs.~34!–~36! for the
coupled variableswn,n11, gn,n11, and dn,n11. There are
boundary conditions: For the phase variablewn,n11 they are
given by Eq.~11!, but now with time-dependent positions of
vortices,rnn(t), and forgn,n11 they are given by

~¹x¹y2¹y¹x!gn,n11~r,t !

52p
]

]t(n
@d„r2rnn~ t !…2d„r2rn11,n~ t !…#. ~38!

To satisfy the boundary conditions we can split again the
total phase difference into two parts, Eq.~12!, and the same
for gn,n11:

gn,n11~r ,t !5gn,n11
~v ! ~r ,t !1gn,n11

~r ! ~r ,t !. ~39!

Note that the functiongn,n11
(v) (r ,t) with singularities cancels

when all the pancakes move with the same velocities. Equa-
tions ~34!–~36!, ~11!, and ~38! have to be complemented
with a set of equations providing the dynamics for
$rnn(t)%. Or, alternatively, the full microscopic dynamics of
Qn(r ,t) has to be given.

For low frequencies such that (v/vab)
2!1 and

vsab /vab
2 !1 one can obtain from Eq.~36!

dn,n11'2S 12
T̂ab
vab
2

]

]t D H d̂2F 1lJ
2sinwn,n111

T̂c
c0
2 S ]wn,n11

]t

2gn,n11D G2
T̂ab
vab
2 ¹2gn,n11J , ~40!

and then reduce the system of dynamical equations to Eqs.
~34! and ~35! with the effective

Wn$wn,n11 ,gn,n11%'2
T̂ab
vab
2 H ]

]t
d̂2F 1lJ

2sinwn,n11

1
T̂c
c0
2 S ]wn,n11

]t
2gn,n11D G

1¹2gn,n11J . ~41!

In Ref. 32, the dynamical equations including the TDGL
equation~33! have been studied in the absence of pancakes,
where the amplitude of the superconducting order parameter
uCnu in Eq. ~35! was taken as constant. In this case, the
regular termgn,n11

(r ) was calculated from Eq.~35!, for which
the most important contribution is the second term on the
right-hand side~theWn term can be neglected!. At frequen-
ciesv!vab(sc /sab)

1/2 the additional terms in Eq.~34!, due
to relaxation of the superconducting order parameter, may be
neglected in comparison with that due to the interlayer cur-
rent of quasiparticles if we use the standard estimate
gGL>\vab

2 /4e2s2uCnu2sab
(n) Thus Eq.~28! provides a quite

accurate description of the phase collective mode at low fre-
quencies. We note that all terms due to relaxation of the
order parameter and in-plane current of quasiparticles vanish
from the equation for a homogeneous plasma mode in the
absence of pancakes. For this case dissipation of the plasmon
is determined by the interlayer current of quasiparticles only.

B. Approximate solution

Now we analyze the time-dependent equations for the
phase difference in the presence of vortices. In principle,
besides Eqs.~34!–~36!, we should account for spatial varia-
tions of the parameterlJ

22 inside vortex cores. This will be
done later. Here we plan to obtain an effective expression for
gn,n11 in order to reduce the dynamical equations to the
variables$wn,n11(r ,t)% and $rnn(t)% only. The regular part
gn,n11
(r ) was calculated in Ref. 32. In the presence of pan-
cakes, the singular partgn,n11

(v) is the most relevant. In this
case, the main contribution comes from theWn term in Eq.
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~35!, i.e., the electric fieldEn induced by the moving vorti-
ces. In general one can write fromgn,n11

(v) 5Gn11
(v) 2Gn

(v) and
using Eq.~32!:

Gn
~v !~r ,t !5

]

]t
fn

~v !~r ,t !2
2e

\
Vn

~v !~r ,t !. ~42!

The scalar potentialVn
(v)(r ,t) can be calculated from the

TDGL equation ~33! using Eq. ~42! and the gauge
sab¹•An(r )1sc /s*ns

(n11)sdzAz(r ,z)50:

4egGLF ]

]t
fn

~v !2Vn
~v !G uCn~r ,t !u21sab¹

2Vn
~v !

1
sc

s2
@Vn11

~v ! 1Vn21
~v ! 22Vn

~v !#50. ~43!

In deriving Eq.~43! we neglected terms which have an ad-
ditional small parameter proportional to the pancake veloci-
ties ṙnn ~terms like ]Vn

(v)/]t in comparison withscVn
(v)).

Equation~43! should be solved with the boundary condition
that Vn

(v)(r ,t) is finite everywhere. For magnetic fields
B!Hc2 the solution of Eq.~43! may be found as a superpo-
sition of solutions for single vortices. Then we write

Gn
~v !~r ,t !5(

mn

]

]t
f ~r2rnn!dnm2

2e

\
Vm2n~r2rnn!,

~44!

where we have used Eq.~13! for fn
(v) andVm2n(r2rnn) is

the voltage induced in the planem by a vortex moving in the
plane n. For a single pancake vortex atr0n in the layer
n50 we can calculateVn(r2r0n) as

4egGLH ]

]t
f @r2r0n~ t !#dn02

2e

\
VnJ uCn~r ,t !u21sab¹

2Vn

1
sc

s2
~Vn111Vn2122Vn!50. ~45!

The equation for the scalar potential in the case of a moving
vortex line in an isotropic superconductor was discussed in
Refs. 29 and 30. Equation~45! generalizes this equation to a
pancake vortex in a layered superconductor. The function
uC(r ,t)u2 for a single vortex at pointr0n(t) in the layer
n50 has the form of a moving vortex,

uCn~r ,t !u25uCn@r2r0n~ t !#u2, ~46!

to lowest order in vortex velocity. HereuCn(r )u is the
order parameter amplitude at equilibrium. It vanishes at the
center of a pancake,r50, and tends to a constant value
uC`u far from the pancake center. The characteristic scale
for this dependence is the superconducting correlation
length jab . For ] f @r2r0n(t)#/]t52 ṙ0n¹ f @r2r0n(t)#
52u ṙ0nusinu0n /r0y the solution for the scalar potential has
the formVn(r ,t)5u ṙ0nusinu0nVn* (r0y). Herer0n5r2r0n and
u0n is the polar angle for coordinater0n . With these defini-
tions we can write

Gn
~v !~r ,t !52(

y
u ṙnnusinunnF 1

rny
1
2e

\ (
m

Vm2n* ~rny!G ,
~47!

which explicitly shows the dependence ofGn
(v) on vortex

velocities. The equation forVn* (r), with r[r0n , is

]

]r F1r ]

]r
~rVn* !G1Lc

22~Vn11* 1Vn21* 22Vn* !2Lab
22Vn*

5
1

sab
H 24egGL

1

r
uC~r!u21

8e2gGL

\
V0* ~r!@ uC~r!u2

2uC`u2#J dn0 , ~48!

whereLab
2 5\sab/8e

2gGLuC`u2 andLc
25s2sab /sc . In the

situation when the TDGL equation is valid~gapless super-
conductor with paramagnetic impurities! one obtains
Lab5jab ; see Ref. 29. The solution for the scalar potential
can be written in the form

Vn
~v !~r !52

\

2e

]

]t
qn~r !,

qn~r !5(
mv

E
0

ur2rmv~ t !u/Lab
dp̃vn2m* ~ p̃!, ~49!

where vn* ( r̃)52eLabVn* (r)/\ and r̃5r/Lab . This gives
the function gn,n11

(v) (r )5]@wn,n11
(v) (r )2qn,n11(r ,t)#/]t,

whereqn,n11(r ,t)5qn(r )2qn11(r ), which can be written
as

qn,n11~r ,t !5wn,n11
~v ! ~r ,t !1(

mn
E
0

ur2rmn~ t !u/Lab
dr̃vn2m ~ r̃ !,

~50!

where the functionvn ( r̃)5vn* ( r̃)2(1/r̃)dn0 decays rapidly
at distancesr̃@1 far away from vortices. Actually, this func-
tion at r̃@1 obeys the equation

]

]r̃
F1
r̃

]

]r̃
~ r̃vn!G2vn2

Lab
2

Lc
2 ~vn111vn2122vn!50.

~51!

The solution of this equation for the Fourier transform
v(q) with respect to the integer variablen is the Bessel
functionK1@l(q) r̃ #. It provides the asymptotic solution for
vn( r̃):

vn~ r̃ !5~p/2!1/2r̃ 21exp@2 r̃~11Lab
2 /Lc

2!#I n~ r̃Lab
2 /Lc

2!,
~52!

where I n(x) is the Bessel function of imaginary argument.
The functionvn ( r̃) vanishes exponentially for larger̃ and
for r̃Lab

2 /Lc
2!1 it drops with n as a power law,

I n(x)'(x/2)n for x!1. For r̃Lab
2 /Lc

2@1 the functionvn
is almost n independent. Respectively, at distances far
away from pancakes the function qn,n11(r ,t)
approacheswn,n11

(v) (r ,t) but differs from this function in the
vicinity of vortices due to retardation in the time variation of
the superconducting order parameter and superconducting
currents in comparison with the moving center of the vortex
~phase singularity!. The effect of retardation becomes negli-
gible far away from the vortex center. As a consequence, the
functions Gn

(v)(r ) and gn,n11
(v) (r ) vanish exponentially far

away from vortices. Note that the faster decrease ofGn
(v)

54 7527LINEWIDTH OF c-AXIS PLASMA RESONANCE IN . . .



3(r ) in comparison with that ofVn
(v)(r ) follows from Eq.

~43!. Here the left-hand side is proportional toGn
(v)(r ) which

includesVn
(v)(r ), while the derivatives ofVn

(v)(r ) on the
right-hand side drop faster thanVn

(v)(r ) itself. We will show
in the following that the retardation effect, leading to a dif-
ference betweenqn,n11(r ,t) andwn,n11

(v) (r ,t), gives rise to
the dynamic vortex-plasmon interaction. Although we used
the TDGL equation to obtain the functionqn,n11(r ,t), our
conclusion about the decay of the difference
qn,n11(r ,t)2wn,n11

(v) (r ,t) at large distances from vortices is
quite general, and only the scale of this decay,Lab , is model
dependent. Note that the retardation effect in the Josephson
interaction may be neglected for\]wn,n11 /]t!D.

By the use of Eqs.~31!, ~32!, and ~49! we obtain thez
component of the electric field:

Ez;n,n11~r ,t !5
\

2es

]

]t
@wn,n11

~r ! ~r ,t !1qn,n11~r ,t !#.

~53!

Using the continuity equation and Eq.~53! with the known
function gn,n11(r ,t) we obtain finally the equation for
wn,n11
(r ) (r ,t):

1

c0
2 T̂c

]

]t
@wn,n11

~r ! 1qn,n11#1
1

lJ
2sin@wn,n11

~r ! 1wn,n11
~v ! #

2(
m

Lnm¹2wm,m11
~r ! 50, ~54!

where we have neglectedgn,n11
(r ) and theWn term in Eq.~34!

which are of lower order for frequencies
v!vab(sc /sab)

1/2. This equation corresponds to the La-
grangian

Lw5
E0

2c0
2(

n
E dr H ]

]t
@wn,n11

~r ! 1qn,n11#J 22Fw , ~55!

with Fw as given in Eq.~15!. The termqn,n11 originates
from the in-plane electric field and the corresponding voltage
induced in the normal cores of pancakes. It is nonzero if
pancakes move differently in neighboring layersn and
n11.

To describe the excitation of the phase collective mode
and vortices by an external homogeneous ac electric field
Dz(t) oriented along thec axis, we add to the Lagrangian
Lw the term

Lext52E drdz
EzDz

4p

52
\

8pe(n E drDz~ t !
]

]t
@wn,n11

~r ! ~r !1qn,n11~r !#.

~56!

Such an approach is appropriate for a sample placed in a
cavity acting as a capacitor. In the presence of an external
electric field the equation forwn,n11

(r ) (r ,t) is:

1

c0
2 T̂c

]

]t
@wn,n11

~r ! 1qn,n11#2(
m

Lnm¹2wm,m11
~r !

1
1

lJ
2sin@wn,n11

~r ! 1wn,n11
~v ! #

5
\

8peE0

]

]t
Dz~ t !. ~57!

At finite temperatures the Langevin force corresponding to
the dissipation described byGc should be added to the right-
hand side. Equation~57! defineswn,n11

(r ) (r ) in the presence of
the external electric fieldDz(t) and moving vortices with
coordinatesrnn(t) as described by the termsqn,n11 and
wn,n11
(v) . This is our main equation for the time-dependent

phase difference. Note that the TDGL approach was used to
define the functionqn,n11(r ,t) in this equation. All other
terms do not depend on the derivation of the function
gn,n11. In a more general approach than the TDGL only the
expression for the functionvn(r ,t) in qn,n11(r ,t) may be
modified.

Next we determine the Lagrangian for the system in terms
of wn,n11

(r ) (r ) and rnn as

L$wn,n11
~r ! ~r !,rnn%

5L0$rnn%1
E0

2c0
2(

n
E dr

3H ]

]t
@wn,n11

~r ! ~r !1qn,n11~r ,rnn!#J 2
2F$wn,n11

~r ! ~r !,rnn%1Lext$wn,n11
~r ! ~r !,rnn%. ~58!

Here L0(rnn) is the two-dimensional dynamic part of this
functional, which includes the Magnus force dynamic term
and vortex mass term if necessary. Dissipation originating
from the in-plane electric field and from relaxation of the
order parameter induced by moving vortices is described
phenomenologically by the vortex viscosityh in the dissipa-
tion functionR0$rnn%5(h/2)(ṙnn)

2 for pancakenn.

IV. INHOMOGENEOUS BROADENING
OF THE PLASMA RESONANCE

We consider now the solution forwn,n11
(r ) (r ,t) and vortex

coordinatesrnn(t) in the presence of an oscillatory weak
external fieldDz(t). Then the phase collective modes are
excited and in addition vortices oscillate near equilibrium
positions rnn

(0) due to phase variations. Now our goal is to
obtain equations which describe small variations of the phase
difference and small amplitude vortex oscillations. We de-
note pancake deviations byunn(t)5rnn(t)2rnn

(0) and expand
wn,n11
(v) (r ,t) in unn(t):

wn,n11
~v ! ~r ,t !5(

n
@ f ~r2rnn

~0!!2 f ~r2rn11,n
~0! !#1w̃n,n11

~v ! ~r ,t !,

~59!

w̃n,n11
~v ! ~r ,t !5(

n
D~r2rnn

~0!!•unn~ t !

2D~r2rn11,n
~0! !•un11,n~ t !, ~60!
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whereD(r )5(2y/r 2,x/r 2) for a,r,lJ and D(r ) drops
much faster withr for r.lJ . We also expandqn,n11(r ,t)
in unn(t):

qn,n11~r ,t !5(
mn

Pn~r2rmn
~0!!•umn~ t !

2Pn11~r2rm11,n
~0! !um11,n~ t !. ~61!

Here for large distancesur2rmn
(0)u@Lab the function

Pn(r2rmn
(0)) deviates exponentially small from the function

D(r2rnn
(0))dnm :

Pn~r2rmn
~0!!5D~r2rmn

~0!!Fdnm1
ur2rmn

~0!u
Lab

vnS ur2rmn
~0!u

Lab
D G .
~62!

We present the phase difference as

wn,n11~r ,rnn ,t !5wn,n11
~0! ~r !1w̃n,n11

~v ! ~r ,t !1w̃n,n11
~r ! ~r ,t !,

~63!

wherewn,n11
(0) is the phase difference at equilibrium when

Dz50. It is determined by Eqs.~13! and ~14! at rnn5rnn
(0) .

The contributionw̃n,n11
(v) accounts directly for vortex motion

and is given by Eqs.~59! and~60!, while w̃n,n11
(r ) accounts for

the rest of the phase variations~it also includes a part due to
vortex motion; see below!. Both w̃n,n11

(v) andw̃n,n11
(r ) are small

in a weak external electric field. Thus we can expand in Eq.
~57! and obtain a linear equation forw̃n,n11

(r ) :

1

c0
2 T̂c

]

]t
w̃n,n11

~r ! 2(
m

Lnm¹2w̃m,m11
~r !

1
1

lJ
2 @coswn,n11

~0! ~r !#w̃n,n11
~r !

5
\

8peE0ec

]

]t
Dz~ t !2

1

lJ
2 @coswn,n11

~0! ~r !#w̃n,n11
~v !

2
1

c0
2 T̂c

]

]t
qn,n11 . ~64!

The last two terms on the right-hand side describe the exci-
tation of the phase collective mode due to vortex oscillations
unn(t). The equation of motion for vortex displacements
unn(t) which couple with phase oscillations, will be pre-
sented in the next section. After solving these two coupled
equations forw̃n,n11

(r ) andunn(t), we obtain the electric field
Ez;n,n11(b f r,t) by the use of Eq.~53!. From this we may
derive the inverse dielectric function

1/e~v!5^Ez~r ,v!&/Dz~v!, ~65!

which describes the plasma resonance.
In this section we solve Eq.~64! with fixed vortices, when

unn(t)50. Then the last two terms on the right-hand side of
this equation are absent. We assume that the inhomogeneous
part of w̃n,n11

(r ) , which is Qn(r ,t)5w̃n,n11
(r ) (r ,t)2Q(t),

is much smaller than the homogeneous partQ(t)

5^w̃n,n11
(r) (r ,t)&. We use here the perturbation theory in the

continuous spectrum; see Ref. 31. Averaging over space in
Eq. ~64! we obtain

1

c0
2 T̂c

]Q~ t !

]t
1

b

lJ
2Q~ t !1

1

lJ
2 ^@coswn,n11

~0! ~r !2b#Qn~r ,t !&

5
\

8peE0

]

]t
Dz~ t !, ~66!

whereb5^coswn,n11
(0) (r )&. The inhomogeneous part is deter-

mined by

F 1c02 T̂c ]

]t
1

b

lJ
2GQn~r ,t !2(

m
Lnm¹2Qm~r ,t !

52
1

lJ
2 @coswn,n11

~0! ~r !2b#Q~ t !. ~67!

The solution of this equation in the Fourier representation
v,k,q with respect tot,r ,n is

Q~v,k,q!5
V0

2@coswn,n11
~0! ~r !2b#kq

v~v2 iGc!2V2~k,q!
Q~v!, V05

c0
lJ
,

~68!

V2~k,q!5bV0
21

c0
2k2

2~12cosq!1s2/lab
2 . ~69!

Inserting this expression into Eq.~66! we obtain the solution
for Q(v):

Q~v!52
\V0

2

8peE0

iv

v~v2 iGc!2@b2w~v!#V0
2Dz~v!,

~70!

w~v!5E dkdq

~2p!3
V0

2F~k,q!

v~v2 iGc!2V2~k,q!
, ~71!

whereF(k,q) is the Fourier component of the correlation
function

F~r2r 8,n2m!5^@coswn,n11
~0! ~r !2b#@coswm,m11

~0! ~r 8!2b#&.
~72!

The dispersion relation for the phase collective mode, Eq.
~69!, is valid for frequencies\V(k,q)!D, and thus integra-
tion overk in Eq. ~71! is restricted byk,D/c0.

Our next step is the calculation of the correlation function
F(r ,n). We follow the approach used in Ref. 19 and con-
sider the zero-temperature limit. The phase difference
wn,n11
(0) (r ) given by Eq.~14! differs fromwn,n11

(v) (r ) given by
Eq. ~13! because Josephson currents provide three-
dimensional screening. The functionwn,n11

(0) (r ) induced by
given close vorticesnn andn11,n falls rapidly at distances
larger thanlJ from these two pancakes due to the Josephson
interlayer current. For smaller distances the vortex contribu-
tion to wn,n11

(0) (r ) andwn,n11
(v) (r ) is practically the same. At

high enough magnetic fieldsB@BJ5F0 /lJ
2 many vortices

contribute effectively to the phase difference at a given point
r since the phase differencewn,n11

(v) (r ) for given closern,n
and rn11,n is a slowly decreasing function ofr at distances
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smaller thanlJ from these vortices; see text after Eq.~14!.
We note that in fieldsB@BJ the intervortex distance
a5(F0 /B)

1/2!lJ . According to the central theorem of the
probability theory, the phasewn,n11

(0) (r ) obeys a Gaussian
distribution with ^wn,n11

(0) (r )&50. Therefore,

^coswn,n11
~0! ~r !coswm,m11

~0! ~0!&5b2coshanm~r !, ~73!

where

anm~r !5^wn,n11
~0! ~r !wm,m11

~0! ~0!&

5E dr1dr2K̃nm~r1r1 ,r2! f ~r1! f ~r2!, ~74!

K̃nm~r1 ,r2!5^@rn~r1!2rn11~r1!#@rm~r2!2rm11~r2!#&.
~75!

Here we introduce the pancake densityrn(r )
5(nd(r2rn,n) in the layern. Using the relations

E dr1K̃nm~r1 ,r2!5E dr2K̃nm~r1 ,r2!50 ~76!

and taking into account that for a disordered vortex state
without long-range orderK̃nm(r1 ,r2)5K̃nm(r12r2), we
write

anm~r !52
1

2E dr1dr2@ f ~r2r1!2 f ~2r2!#
2K̃nm~r12r2!.

~77!

As was mentioned in the Introduction, Tsuiet al.8,10,11 and
Matsudaet al.9 observed the power-law dependence of the
plasma frequency on the magnetic field applied along thec
axis for magnetic fields above 0.1 T. It was shown in Ref. 19
that this dependence may be explained in such a model of
strong disorder in pancake positions along thec axis. In our
model, correlations in the pancake positions in different lay-
ers are absent,̂rn(r )rm(r )&5^rn(r )&

25a22 for nÞm.
Therefore, we obtain K̃nn(r )52K(r ), K̃n,n11(r )
5K̃n21,n(r )52K(r ), and K̃n,m50 for mÞn,n11, and
n21. HereK(r )5^rn(r )rn(r )&2^rn(r )&

2. Now we obtain

ann~r !52E dr1dr2@ f ~r /21r2/21r1!

2 f ~2r /21r2/21r1!#
2K~r2!. ~78!

At a!r!lJ , within logarithmic accuracy for largelJ /r ,
we approximate

f ~r /21r2/21r1!2 f ~2r /21r2/21r1!

'@¹ f ~r1r1!1¹ f ~2r1r1!#•r2 . ~79!

Integration overr1 leads to the result

E dr1$@¹ f ~r1r1!1¹ f ~2r1r1!#•r2%
254pr 2

2ln~lJ /r !,

~80!

and we obtain

ann~r !52an,n11~r !54m ln
lJ

r
,

m5
p

4E dr r 2K~r !. ~81!

The parameterm is field independent becauseK(r ) oscillates
on the scalea in theab plane and decays withr on the same
or larger scale. In the first case~strong disorder in theab
plane!, independence ofm of B is obvious because there is
only one characteristic lengtha in the system. In the second
case, whenK(r ) oscillates more rapidly than it decays, the
relevant length in the integral is the period of oscillation
only, and the integral practically does not depend on the
length of decay. The situation here is similar to that for the
integral

E
0

`

dxx2sinkxexp~2dx!5
6

~k21d2!3/2
sinS 3arctankd D ,

~82!

which becomesd independent in the limit of smalld.
Finally F(r ,0)'b2(a/r )4m, while for r@a and

F(r ,0)'1/2 for r<a. The functionsF(r ,n) at nÞ0 are
much smaller thanF(r ,0) and may be neglected. In the same
approach the relationV2/V0

25b'(ae/lJ)
2m5(BJe

2/B)m,
wheree52.72, was obtained in Ref. 19. Now the function
F(k,q) in Eq. ~71! is

F~k,q!'a2@pm/~2m21!#, ka<1,

F~k,q!'~2p!1/2a1/2k23/2cos~ka23p/4!, ka@1.
~83!

Integration overk andq in Eq. ~71! yields

Imw~v!5
G inh
2

V0
2 '

pm

2~2m21!

a2

lJ
2'

pm

2~2m21!

BJ

B
. ~84!

The term2 i (Imw)V0
2 in the denominator in Eq.~70! for

Q describes the broadening of the plasma mode due to ran-
dom spatial variations of the Josephson interaction in the
presence of pancakes. It may be described also as a decay of
the homogeneous phase collective mode into inhomogeneous
phase collective modes. The rate of this decay is
G inh
2 /2V!V for a!lJ . Thus the use of perturbation theory

with respect to@coswn,n11(r )2^coswn,n11(r )&# is appropriate
and the plasma frequency is determined by the average value
of coswn,n11(r ) according to Eq.~2!.

The real part ofw,

Rew~v!5
m

2~2m21!

a2

lJ
2 ln

D2

GV
, ~85!

describes the shift of plasma frequency due to the inhomo-
geneity of the Josephson interaction. This shift is of the order
G inh
2 /2V. Thus, neglecting pancake oscillations, we obtain

the dielectric function

1

e~v!
5

1

ec

v2

v~v2 iGc!2V22 iG inh
2 , V25bV0

2 .

~86!
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We obtainedG inh at T50. Below the irreversibility line
G inh
2 is anticipated to be almost temperature independent be-

cause it is determined mainly by short-range correlations of
coswn,n11(r ) which depend weakly on thermal phase fluctua-
tions @F(r ,0)'1/2 at smallr #.

The origin of inhomogeneous broadening may be ex-
plained also in the following way. Equation~64! without an
external electric field is the Schro¨dinger equation for a ‘‘par-
ticle’’ moving along layers with kinetic energy determined
by the matrixLnm.0 in the random potential proportional to
coswn,n11

(0) (r ); see also Ref. 19. We denote the eigenvalues of
this equation byEa and eigenfunctions byCa,n(r ). Then the
dielectric function for an homogeneous external electric field
is

1

e~v!
5

v2

ec
(
a,m

E dr 8K Ca,m* ~r !Ca,m~r 8!

v~v2 iGc!2va
2 L , ~87!

Im
1

e~v!
5

pv

2ec
(
a,m

E dr 8^Ca,m* ~r !Ca,m~r 8!d~v2va!&,

~88!

whereva
25Ea and we assume thatGc is small. We see that

contributions to the plasma resonance come from those
eigenstates~phase collective modes! which may be excited
by a homogeneous external field~delocalized and weakly
localized phase modes!. Under the conditiona!lJ , the en-
ergiesEa of such modes are distributed near that determined
by the averaged potential.

V. DISSIPATION OF A c-AXIS PLASMON
INTO VORTEX OSCILLATIONS

In this section we present the equation for pancake oscil-
lations coupled with phase variations. Then we solve the
equation forQ(t) taking into account vortex motion to ob-
tain the decay of plasma modes into vortex oscillations. In
writing down the equation of motion for pancakes we will
consider the case of strong pinning centers for simplicity and
focus mainly on terms which describe the interaction of vor-
tices with phase collective modes.

Using the Lagrangian~58! we obtain the equation for pan-
cake deviations:

hu̇nn1aM@n3u̇nn#1aLunn5Fnn , ~89!

Fnn~ t !52F ddt ]~Lw1Lext!
] ṙnn

2
]Lw

]rnn
1

]Rw

] ṙnn
G . ~90!

The pancake dynamics is given by the parametersaL , h,
and aM . We replace all elastic moduli~i.e., vortex-vortex
interaction terms! and effects of pinning by the Labusch pa-
rameteraL . Such an approach is correct for strong identical
pinning centers and it gives only an order of magnitude es-
timate for typical Bi-2:2:1:2 single crystals. For details on
the Labusch parameter see Refs. 37 and 38 and references
therein. The estimate forh is the Bardeen-Stephen expres-
sion h5F0

2sab
(n)/2pjab

2 c2, where sab
(n) is the normal state

conductivity; see Refs. 26 and 33–35 for more details. Here
aM is the Magnus force coefficient which is bounded by the

hydrodynamic limitaM<p\ns , wherens is the density of
superconducting electrons.34–36

The interaction with the phase dynamics is given by the
force Fnn(t). Taking into account that all the phase depen-
dence onrnn is in wn,n11

(v) and that the dependence onṙnn is
in qn,n11, we use ]/]rnn5(]wn,n11

(v) /]rnn)]/]wn,n11
(v) and

]/] ṙnn5(]qn,n11 /]rnn)]/]q̇n,n11. We obtain from Eqs.
~55!, ~56!, and~90!

Fnn~ t !52
E0

s (
m

E dr H 1

lJ
2sinwm,m11~r ,t!

]wm,m11
~v ! ~r ,t !

]rnn

1F 1c02 T̂c ]

]t
@wm,m11

~r ! ~r ,t !1qm,m11~r ,t !#

2
\

8peE0

]Dz

]t G]qm,m11~r ,t !

]rnn
J . ~91!

The forcesFnn can be interpreted as Lorentz forces acting on
pancakes due to different interlayer currents along thec axis,
which give in-plane currents through the continuity equation
~26!. Our focus is in the forcesFnn acting on pancakenn
when the phase difference deviates from that at equilibrium.
Then, after using Eqs.~63! and ~64! we obtain

Fnn~ t !5
E0

s (
m

E dr H(
k
Lmk¹

2w̃k,k11
~r ! ~r ,t !

]qm,m11~r ,t !

]rnn

1
1

lJ
2cos@wm,m11

~0! ~r ,t !#w̃m,m11
~r ! ~r ,t !

]

]rnn

3@wm,m11
~v ! ~r ,t !2qm,m11~r ,t !#J . ~92!

With the help of Eqs.~60! and ~61! this expression may be
written as

Fnn~ t !5
E0

lJ
2s(m E dr HPm~r2rnn

~0!!(
k

~Lmk2Lm21,k!

3lJ
2¹2w̃k,k11

~r ! ~r ,t !1@D~r2rnn
~0!!dnm

2Pm~r2rnn
~0!!#@coswm,m11

~0! ~r !w̃m,m11
~r ! ~r ,t !

2coswm21,m
~0! ~r !w̃m21,m

~r ! ~r ,t !#J . ~93!

The pancake displacements caused by the forceFnn(v) are

ux;nn~v!5F2Fx;nn~v!
ivh1aL

S~v!
1Fy;nn~v!

ivaM

S~v! G ,
~94!

S~v!5~ ivh1aL!22v2aM
2 , ~95!

and the equation forux;nn follows by replacingFy for Fx and
2Fx for Fy . We use here the Fourier representation with
respect to the time,unn(t)5unn(v)exp(ivt). Next we insert
the solution for pancake displacements into the right-hand
side of Eq. ~64! and account for homogeneous collective
mode only. The first term on the right-hand side of Eq.~92!
vanishes for the homogeneous part of the plasma mode and
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thus may be omitted. The second term leads to a dynamic
vortex-plasmon interaction which originates from regions
near vortices only because the functionwm,m11

(v) (r ,t)
2qm,m11(r ,t) vanishes exponentially far away from vortex
centers. This results in the additional contribution to the left
hand side of Eq.~66!:

Q~v!
E0

lJ
4s

ivh1aL

S~v! (
nn

E dx8dy8

Lab
2 K coswn,n11

~0! ~r !

3H v0S ur2rnn
~0!u

Lab
D v0S ur 82rnn

~0!u
Lab

D @coswn,n11
~0! ~r 8!

2coswn21,n
~0! ~r 8!#2v0S ur2rn11,n

~0! u
Lab

D v0S ur 82rn11,n
~0! u

Lab
D

3@coswn11,n12
~0! ~r 8!2coswn,n11

~0! ~r 8!#J L . ~96!

We note that random valueswn,n11
(0) (r ) and rnn

(0)

are weakly correlated because many vortices con-
tribute to wn,n11

(0) (r ),as was discussed above. Then we
averagev0(ur2rnn

(0)u/Lab)v0(ur 82rnn
(0)u/Lab) and coswn,n11

(0)

3(r )coswm,m11
(0) (r 8) independently. Taking into account that

v0(ur u/Lab) is localized at distancesLab , which are much
shorter than the intervortex distancea, we obtain after sum-
mation overrnn

(0)

Lab
22(

n
v0~ ur2rnn

~0!u/Lab!v0~ ur 82rnn
~0!u/Lab!5Cd~r2r 8!,

~97!

where the numerical parameterC is of the order unity. The
variation of the Josephson parameterJ0 inside vortex cores
leads to an additional contribution to the functionv0(r).
This contribution has the same properties asv0(r): It is lo-
calized at distancesjab'Lab . This contribution results in
the renormalization of the numerical parameterC. Then the
term ~96! may be written as

Q~v!
2CE0
lJ
4sa2

ivh1aL

S~v!
E drF~r ,0!d~r !

5Q~v!
mCE0

~2m21!lJ
4s

ivh1aL

S~v!
. ~98!

This additional term in Eq.~64! has an imaginary part due to
vortex viscosity and it determines the dissipation rateGv of
plasma modes into vortex oscillations,

Gv

V
5

mCE0V0

2~2m21!slJ
2

h

aL
2 S B

BJe
2D m/2

, ~99!

and also the frequency shiftDVv ,

DVv5
aL

h

Gv

V
5

mCE0V0

2~2m21!slJ
2aL

S B

BJe
2D m/2

.

Here we assume that pinning is strong,aL /V@h,aM .
Gv depends weakly onB, and bothGv /V and relative line
shift DVv /V increase withB in contrast with inhomoge-
neous broadening.

To conclude this section we discuss the possibility of ex-
citing a plasma mode via vortex oscillations by applying an
ac magnetic field. Let us assume that vortices oscillate ho-
mogeneously,unn(t)5u(t), around their equilibrium posi-
tions under the effect of such a field. Then by the use of Eq.
~60! we obtain on the right-hand side of Eq.~64!
for w̃n,n11

(r ) the term

2
1

lJ
2 @coswn,n11

~0! ~r !#w̃n,n11
~v !

52
1

lJ
2 @coswn,n11

~0! ~r !#(
n

@D~r2rnn
~0!!

2D~r2rn11,n
~0! !#•u~ t !, ~100!

and a similar contribution originates from the term with
qn,n11 in Eq. ~64! by the use of Eq.~61!. Both terms vanish
after averaging over space. Thus homogeneous plasma
modes cannot be excited by homogeneous coherent vortex
oscillations; only inhomogeneous phase collective modes
may be excited by an ac external magnetic field. Similarly, a
plasma mode is coupled with inhomogeneous vortex oscilla-
tions only, and an ac electric field excites such vortex oscil-
lations but not homogeneous ones.

VI. DISCUSSION AND EXPERIMENTAL DATA

First, we estimate parameters for single crystals
Bi-2:2:1:2 relevant for our discussion. The anisotropy pa-
rameterg5420 was extracted by Tsuiet al.10,11 from the
angular dependence of the plasma frequency. The field de-
pendence V(B)'V0(BJe

2/B)m/2leads to g'250 at
lab51700 Å andec520. Thusg is in the interval~200–
400! and V0/2p'200 GHz, whileBJ'100 G. Note that
from recent measurements39 of the temperature variations of
lc andlab in the interval from 4.2 K toTc the anisotropy
ratio may be estimated as'250. These measurements show
that temperature dependence ofg is at best weak.

Up to now information on the low-temperature dynamic
parameters of vorticesaM and h for Bi-2:2:1:2 is absent.
Measurements of theab resistivity by Bulaevskiiet al.40

close to the flux-flow regime~at 70 K at high magnetic field
and high currents! provide the estimateh<2.331027

g/cm s. This value is about an order of magnitude smaller
than the Bardeen-Stephen viscosity coefficient estimated us-
ing the normal state conductivitysab

(n)'2.53104V21

cm21, extrapolated from a temperature interval aboveTc
and by the use of the zero-temperature correlation length
jab520 Å. The Magnus force coefficient estimated using the
relationaM5p\ns is about 10

25 g/cm s. The result of Har-
ris et al.35 for Y-Ba-Cu-O with Tc560 K at 13 K is that
aM'h'1025 g/cm s with a tendency foraM to increase
andh to decrease on cooling~below 13 K the data are ab-
sent!. The parameteraL for Bi-2:2:1:2 was estimated by van
der Beeket al.37,38 from critical current measurements for
single crystals. Its value was found to be in the interval
(105–106) g/cm s2. The critical current in samples used to
study plasma resonance is unknown.

We obtained three contributionsGc , G inh , andGv to the
plasma linewidthG as given by Eqs.~84! and ~99!:
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G5Gc/21G inh
2 /2V1Gv/2. ~101!

The contribution to the relative widthGc/2V52psc /ecV
due to quasiparticle interlayer tunneling is supposed to be
much smaller than that determined by the upper limit for
sc , given bysc

(n) , because the concentration of quasiparti-
cles is small at low temperatures. The value
sc
(n)50.2V21 cm21 obtained by Choet al.41 provides the

upper limit Gc/2V,0.25. Taking into account that at low
temperatures quasiparticles are formed mainly inside the nor-
mal cores, we anticipate that this contribution increases with
B linearly in the case ofs-wave pairing and asB1/2 for
d-wave pairing.14 We also anticipate a strong temperature
dependence forGc . Certainly, these predictions do not agree
with experimental data, and we conclude that this mecha-
nism is ineffective in comparison with other mechanisms of
line broadening when a magnetic field along thec axis is
applied. However, in the absence of a magnetic field it is the
only mechanism which determines the plasma linewidth.

The valueG inh determines the linewidth of the plasma
resonanceG5G inh

2 /2V due to an inhomogeneous Josephson
interaction in the presence of pancake vortices. For this
mechanism, the line shape of resonance with respect tov or
B is determined by the function

Im
1

e~v,B!
5

A1
22C1B

21

~B0
2m2B2m!21A1

22C1
2B22 ,

C1'
pm

2~2m21!
V0

2BJ , ~102!

where m'0.8, v25A1B0
2m , and V25A1B

2m. Figure 1
shows a series of absorption profiles obtained by Tsuiet al.8

for v/2p5 30 – 50 GHz atT 5 4.3 K. The solid lines are
fitting curves to their data using Eq.~102! for the line shape
in addition to a background that is approximated by a qua-
dratic function inB:

Rs~v,B!5a01a1B1a2B
21

B21

a1
2~B0

2m2B2m!21a2B
22 ,

~103!

whereai ’s, a i ’s, andB0 are the fitting parameters. The back-
ground is probably due to flux-flow resistivity. Matsudaet
al.9 show that it disappears in the zero-Lorentz-force
configurationJi Hi c, but is the most pronounced when
J'~ Hi c!, which proves the idea. Figure 2 shows absorption
profiles obtained for a different sample atT5 12.5, 16, and
20 K with v/2p fixed at 54.4 GHz. The solid lines are fitting
curves to the data using Eq.~103!. The fitting parameters
a1 anda2 are related to the line shape parametersC1 and
A1 by a2 /a1

25C1
2/A1

2. Using the dispersion relation
v25A1B0

2m , A1 can be determined independently to be
1.163105 GHz2 T0.8. Therefore one may calculateC1
from the curve-fit results. As Fig. 1 shows,
C1'(2.9560.75)3104 ~GHz! 2 T at all fields. Using Eq.
~102!, V05c/Aecglab , and BJ5F0 /g

2s2, we obtain
g'300 in agreement with other estimates for this parameter.
G remains temperature independent below the irreversibility
line and increases with temperature above this line. We con-

clude that this mechanism explains the experimental data
well for the plasma linewidth in magnetic fieldsB<7 T and
below the irreversibility line.

For the contributionGv due to dissipation of a plasmon
into vortex oscillations, we anticipate a significant increase
with magnetic field,G/V}Bm/2; see Eq.~99!. We anticipate
also a significant temperature dependence due to that of the
viscosity coefficienth. Up to now we cannot estimate this
contribution to the linewidth becauseh is unknown. How-
ever, the predicted field and temperature dependence is in
obvious disagreement with experimental data.8,10,9,11 We
conclude that this mechanism is ineffective in the range of
magnetic fields used to study thec-axis plasmon so far;
B<7 T. Assuming that the vortex contribution to the relative
linewidth in this field interval is less than 20%, we obtain the
upper limit for h/aL

2 which is about 3.6310218 cm Hs3/g.
Noting that the line shift due to this mechanism should be
small ~otherwise the power-law dependence would be modi-
fied! we obtain a lower limit foraL of about 105 g/cm Hs
2. These limits do not contradict the recent experimental data
on aL andh discussed above. We note that for higher mag-
netic fields or weaker pinning the coupling of the plasmon
with vortex oscillations may become more effective. If so,
the plasma frequency shift will change a power law depen-
dence ofV(B) and the relative linewidth will increase with
magnetic field. Thus experiments in high magnetic fields can

FIG. 1. Curve fits~solid lines! to data obtained in Ref. 8 for
Bi-2:2:1:2 atT54.2 K assuming inhomogeneous broadening with
Bic ~see text!. Experimental data of different frequencies are rep-
resented by different symbols. The vertical scale of individual
curves has been normalized and shifted with an offset for ease of
comparison. The parameterC1 extracted from the curve-fit result is
3.05, 3.7, 3.3, 2.6, 2.2, 2.8, and 2.73104 ~GHz!2 T for v/2p530,
33, 35, 38, 41.1, 46.1, and 49.68 GHz, respectively.
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uncover a vortex mechanism of plasma dissipation and pro-
vide information on vortex dynamics.

The important point is that when the dynamic pancake-
plasmon interaction can be neglected, the plasma resonance
sees an instantaneous picture of the vortex configuration, and
its position and line shape depend on the static properties of
the vortex lattice. This occurs because of the high frequency

of the plasma resonance: Vortices can be considered as static
during the period of plasma oscillation. In contrast,c-axis dc
resistivity measurements correspond to zero frequency and
they feel the dynamics of the vortex lattice over a long time
interval. Thus,c-axis plasma resonance and dc resistivity
measurements are complementary to each other and they
both provide a complete picture of the behavior of a vortex
lattice along thec axis.

In conclusion, we have obtained the Lagrangian for the
coupled phase difference variations and vortex motion. From
this Lagrangian we derived equations which describe oscil-
lations of the phase difference coupled with pancake oscilla-
tions in the vortex glass phase. Using these equations we
proved that the plasma frequency is determined by Eqs.~1!
and ~2! for the orientation of a magnetic field along thec
axis.

We derived also the linewidth of the plasma resonance
due to the interlayer tunneling of quasiparticles, arising from
mixing of the homogeneous plasma mode with inhomoge-
neous phase collective modes in the presence of randomly
positioned pancakes~inhomogeneous broadening!, and due
to the decay of the plasma mode into vortex oscillations.

We attributed the observed linewidth of thec-axis plasma
resonance in magnetic fields below 7 T to inhomogeneous
broadening. The positional disorder of pancake vortices in-
duced by pinning leads to the possibility of exciting many
phase collective modes by an homogeneous external ac elec-
tric field. This mechanism results in the practically
temperature-independent line broadening which fits experi-
mental data well.8

We argued that the mechanism of plasmon dissipation due
to excitation of vortex oscillations does not show up in the
magnetic fields studied experimentally so far, but may be-
come effective at higher fields.
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