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Linewidth of c-axis plasma resonance in Josephson-coupled superconductors
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We derive equations which describe the interaction of the phase collective mode with vortex oscillations in
multilayer superconductors with Josephson interlayer coupling. Using these dynamic equations for the phase
difference between neighboring layers and pancake coordinates we calculate the linewidttrakithplasma
resonance in the vortex glass phase when a magnetic field is applied alongatti® Three mechanisms
contribute to the linewidth: interlayer tunneling of quasiparticles, inhomogeneous Josephson interaction in the
presence of randomly positioned vortic@shomogeneous broadeningnd dissipation of the plasma mode
into vortex oscillations. The phase collective mode is mixed with vortex oscillations in the linear approxima-
tion via the Josephson interaction when pancakes are positioned randomly alengxikelue to pinning and
thermal fluctuations. Analyzing experimental data for the plasma resonance linewidth in a Bi-2:2:1:2 super-
conductor we conclude that in magnetic fields beld T the linewidth is determined mainly by inhomoge-
neous broadening. This leads to a nearly temperature-independent linewidth which is inversly proportional to
the magnetic field. At higher fields or lower pinning the dissipation of the plasmon into vortex oscillations may
become the dominant mechanism of line broadening. In this case the linewidth weakly depends on the mag-
netic field.[S0163-182606)05334-9

[. INTRODUCTION nance is indeed the-axis Josephson plasmon. A resonance
with similar behavior was also observed in the Bi-2:2:0:1
The highly anisotropic high-, superconductors may be superconductor by Maedat al*® Thus, the plasma reso-
considered as a stack of superconducting gul@yers nance found in Bi-2:2:1:2 and Bi-2:2:0:1 superconductors is
coupled by Josephson interactidns.The novel properties the extension of the Josephson plasmon discovered in the
of these materials as compared with a single Josephson junsingle Josephson junction by Daten al® to the multilay-
tion are associated with their multilayer structure and withered system with Josephson interlayer coupling.
the presence of pancake vortiteghen a magnetic field is In a single Josephson junction the plasma mode is the
applied along the axis. It was shown previously that Abri- charge oscillation between two superconductors forming the
kosov vortices induced by such a field strongly suppress thginction, with the current between the superconductors being
interlayer maximum superconducting current by inducingthe Josephson tunneling current. In layered superconductors,
random phase differences between layers in the presence ibfe plasma mode is a charge oscillation between the top and
disorder in pancake positions along thexis>® It was pre-  bottom layers of the sample, and the corresponding currents
dicted in Ref. 7 that this effect leads to a decrease of thdlow between all layers forming the crystal. For a single Jo-
c-axis Josephson plasmon frequency with a magnetic fiel¢ephson junction the effect of magnetic field on the plasma
applied along thec axis because the plasma frequencyfrequency has been observed for an orientation of the mag-
squared is proportional to the maximum Josephson currentetic field parallel to the junction. However, plasma reso-
Recently, a sharp magnetoabsorption resonance was obance was not studied in the situation when Abrikosov vor-
served in the vortex state of the highly anisotropic layeredices penetrate through the junction. For this case only the
superconductor Bi-2:2:1:2 by Tseit al®'%'*and Matsuda effect of vortices on the critical current of junction was
et al? in the frequency range 30 — 90 GHz depending on theliscussed®™*® The interplay between Abrikosov vortices
magnetic field and temperature. The field behavior of thisand Josephson properties is an important new effect in mul-
resonancédecrease of frequency with the magnetic field ap-tilayered superconductors: The coexistence of Abrikosov
plied along thec axis as well as its angular dependence vortices and Josephson plasmon allows us to study the struc-
(sharp decrease of the resonance frequency near orientatioitse and dynamics of pancake vortex lattices in systems like
of the strong magnetic field parallel to layemas found to  Bi-2:2:1:2 by plasma resonance measurements.
be in agreement with predictions of Refs. 7 and 12 for the The experimental studi&s' have established the follow-
Josephson plasmon in layered superconductors. Matsudiag properties of the-axis plasma resonance.
et al® and Tsut! confirmed that this resonance is maximum  (a) Below the irreversibility line in the B,T) plane the
when an ac electric field is oriented along thexis. This dependence of the plasma frequefityn the magnetic field
observation provides strong evidence that the observed resBl/c and the temperatur€ has the form
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Q%(B,T)=A,B *exp(T/Ty), (1)  Heres s the interlayer spacing ang is the high-frequency

) ) . dielectric function for an electric field along tleeaxis. Equa-
whereA, is a constanty~0.7-0.8 is temperature indepen- i, (2) corresponds to averaging over the Josephson inter-
dent, aerTo~12.5 K in fields 0.3-7 T and at temperatures , .ion. In this mean-field approach, pancake vortices are as-
:’.’_16 K; see Refs. 8 10, and 11. Above the_lrrever5|bllltysumed to be fixed and effects of the inhomogeneity of
line the power—l_aw field dependence _holds w;mvo'.g—% Josephson interactions are not accounted for. The tempera-
and £} drops with temperature at a fixed magnetic freld. ture dependence of the plasma frequency was explained in
Ref. 19 by accounting for the effect of low-frequency ther-
mal fluctuations of the phase differen@ thermally excited
phase collective modgsThese smooth out rapid changes of
o . "~ the phase difference produced by disordered pancake vorti-
anglesQ> 1.0 only '_[he perpendwular component O_f the f'eld'ces and result in an increase of the average Josephson inter-
B,=Bsing, is effective, and Eq1) with B=B, describes the  ,i5 and plasma frequency with temperature at low tem-
data. At¢ smaller than 5° the plasma frequency decrease§q aiures. Their effect on the plasma frequency may be
sharply asy approaches zero in high magnetic fields above 2Eompared with the effect of spin waves on the magnetic sus-

T, see Refs. 10 and 1,1' . . ceptibility of an antiferromagnet below the Blaemperature:
~ (©) In a magnetic field|c and below the irreversibility \jagnetic susceptibility increases because spin waves make
line, the relative resonance linewidtt () is at most a weak hq antiferromagnet softer.
function of magnetic field whereT is the half width at half The strong angular dependence of the plasma resonance
maximum. ) in high magnetic fields was predicted in Ref. 12 as a result of
Experimentally, the sample is glued to one end of thepneractions of pancake vortices, produced by Byeompo-
sapphire substrate and protrudes into the waveguide. A bQjent of the field, with the dense lattice of Josephson vortices,
lometer is glued to the other end of the substrate to monitof,4,,ced by the field component parallel to tb plane. In
the temperature change in the sample due to microwavis case pancake vortices form an almost hexagonal struc-
absorpth - With both temperature a_nd microwave fre- ture in theab plane and a zigzag structure along thexis.
quency fixed, thg bolometric S|gn_al, which is propomonql O1he zigzag structure of pancakes minimizes the Josephson
the absorbed microwave power, is measured as a function @feqv"and induces pinning for Josephson vortices. This re-
the applied field. For each field sweep, the resonance field ,;s'in a sharp enhancement of the plasma frequency when
By is determined at the position of maximum absorption andy ;~reases from zero and pancake vortices appear.
A_Bo denotes the linewidth at hal_f absorption maximum rela-  1he relatively large linewidth of the-axis plasmon ob-
tive to thg background. According to EqL), the relgtlw_a served in Refs. 8-11 is surprising. In a single Josephson
linewidth is1'/€2 = nAB,/2B,. For the data published in Fig. ;nction the linewidth of the Josephson plasmon is associ-
2 of Ref. 8 atT=4.2 K, I'/€) is weakly dependent on field 3ieq with incoherent dissipative tunneling of quasiparticles.
and is 0.130.023 for}/2m=30 — 50 GHz. The linewidth |, 3 syperconductor with a gap in the quasiparticle spec-

exhibits a cusp at the irreversibility line.
(b) At low temperatures, when the magnetic fiddis
tited by an angled with respect to theab plane, at high

H 9
dependent in the vortex glass statMatsudaet al” found 1 o 4 ave superconductors. Abrikosov vortices increase
the relative linewidth~0.15-0.2 below the irreversibility o number of quasiparticles linearly wih in s-wave su-
line and they observed its increase with temperature abovﬁerconductors and &2

. =Y FUSEIVE - in d-wave superconductofté Thus
the irreversibility line in the vortex liquid state up to 0.5 at o 4 imagine that a relatively large linewidth with a weak
T=63 K. As for the resonance frequency,

. S the relaxation rat‘?emperature and field dependence cannot be explained by an
has a cusp at the irreversibility liffe.

h | f the ol ; interlayer current of normal quasiparticles. Rather, it may be
The power law dependence of the plasma frequency 0 sed by the effect of pancake vortices on the Josephson
B atB|c was explained in Ref. 19 assuming that the VOrt€Xinterlayer interaction; randomly positioned, they induce in-
lattice is strongly disordered along teeaxis due to pinning  smogeneity of the Josephson interaction which may lead to
in the vortex glass state or by thermal fluctuations in the, gignificant broadening of the Josephson plasma resonance.
liquid vortex state. Deviations of the pancake vortices fromi, 5qdition, plasma oscillations may mix with vortex oscil-
straight lines in equmbrlum. mduc_e a nonzero phase differ-5tions and this effect also results in a broadening of the
ence e, n+1(r) between neighboring layers andn+1 at plasma resonance.

coordinater=(x,y). This phase difference suppresses thé The main goal of this paper is to describe the phase col-
average interlayer Josephson energy and maximum possibjg:tive mode in the presence of vortices beyond the mean-
interlayer superconductlng.currenﬂm:Jp<003Pn,n+1(r)>- field approach to take into account the inhomogeneity of
HereJ, is the parameter which characterizes the strength ofosephson coupling and dynamic interaction between pan-
interlayer Josephson coupling, afd--) means averaging cake vortices and the-axis plasmon.

over space and disorder. The suppression of Fhe plasma fre- 1o study the dynamic effects of vortices we derive in
quency() by pancake vortices was described in Refs. 7 andsecs. |1 and 11l the equations for pancake coordinates and
19 assuming that the plasma frequency is proportional to thghase difference in the presence of vortices in the London

maximum interlayer current: regime, B<H,, and below the irreversibility line. These
2 2 equations allow us to study all dynamic effects associated
8m“cs 8mcs X : o .
02= Jn= Jo{CoSpp ni1(1)). (2)  With phase difference variations in the presence of pancakes,
ePo ePo ’ including the field dependence of plasma resonance and
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c-axis resistivity in the superconducting state. In Sec. IV we 1 2 2
consider the effect of inhomogeneous Josephson interactions f{¢n(r),A(R)}:Eo; f dr| 5| Vént (}TOAn
caused by randomly positioned vortices on the plasmon line-

width and formulate the condition when E@) is valid. In 1 B2
Sec. V we show that the phase collective mode and vortex + F(l—COSPn,nH) +f ng,
oscillations around equilibrium positions are coupled in a J

linear approximation via a Josephson interaction if pancakes 5

at equilibrium are displaced from straight lines due to pin- E— UES 3
ning and thermal fluctuations. As a result, true collective 0_16773)\§b'

modes in this case are mixed plasmon-vortex oscillations.
This effect leads to additional line broadening of txaxis Here R=(r,z)—the z axis is perpendicular to the layers—
plasma resonance. In Sec. VI we discuss the experimentédyers are positioned at=ns, V=4/dr, A, is the London
data and show that in the fields studied the inhomogeneousenetration depth for currents in thd plane,\ ;= ys is the
broadening is dominant and it describes well the experimenJosephson length, angl is the anisotropy ratio. Further,
tal data for the plasma resonance line shape. However, w8n= (Anx,Any) =[Ay(r,z=ns),Ay(r,z=ns)], B=curlA,
argue that at higher fields, or in samples with weaker pinand the gauge-invariant phase difference between layers
ning, plasmon dissipation into vortex oscillations may be-andn+1 is
come more important than inhomogeneous broadening.

2 ((n+1)s

@nn+1(F) = @n(r) = dnia(r) - D) s dzA(r,z).

4
Il. STATIC EQUATION FOR THE PHASE DIFFERENCE @
AND FUNCTIONAL FOR PANCAKE COORDINATES Minimization of F with respect tog,(r) and A(R) yields
the system of equations for phases and fields in equilibrium
In this section, starting from the Lawrence-Donigtd)  at given vortex positions. Varying” with respect toA, we
functionaf for the superconducting order parameter phase@btain
we present derivations which lead to the equation for the
phase difference between neighboring layers at equilibrium
in the presence of vorticé$,and then we obtain the free
energy functional with respect to vortex positions and phase
differences. This allows us in the following to generalize Pos 2

4
(curlcurIA)az?Ja

these results to obtain a time-dependent equation for the a 277)\§b n

phase difference, and the Lagrangian for pancake coordinates ®)

which accounts for the time-dependent phase difference. For

a multilayered system without Josephson coupling the func- 4 ®

tional for pancake positions was obtained by Buzdin and T 0S ;
. . . curlcurA),=—j,=— ———2 f sin ,

Feinberd® and by Clenf Such a functional in the presence (curleuriA),=--1. 277)\§b'y2; nn+1(2)8INenn+ 1

of Josephson interlayer interaction was derived in Refs. 21 (6)

and 22 for the case of a single tilted vortex, and in the fol- _

lowing we present such a functional for arbitrary positions ofwherea=x,y and the factoff, ;. 1(z) vanishes everywhere

pancakes. except forns<z<(n+1)s, where it is unity. Minimization
In the framework of the LD functional for the supercon- Of 7 with respect tog, yields

ducting order paramete¥ ,(r)=|¥.(r)|exdi¢y(r)] in the

layern, we assume the amplitude of the order parameter to 2 2 _ . .

be constant in space. Such an approach is invalid only in v ¢“+EOVA”_)\?(S'”‘PW““_S'n‘P“‘lv”)' @)

small areas inside the normal cores of the vortices. The ra-

dius of _these cores is of the orQer _of the supergonducting From Egs.(5)—(7) the equation for the phase difference
correlation .Iengthgab. In magnetic f|eId_sB<H92_(|n the ©nn+1 Was obtained in Refs. 21 and 23:

London regimgthe area of normal cores is negligible and an

approximation of constant amplitude is adequate. We will

show in the following those effects that are sensitive to spa- -> LomV2@mme1+ )\J_Zsingon,nH:O, (8
tial variation of the order parameter amplitude. In the ap- m

proach of a fixed amplitude, the pancakes are pointlike “par- ) i

ticles” which induce variation of the phase,(r) in the where the mutual inductance of layets,, is
surrounding space. The total change #f(r) should be

24 along any closed contour in the layer surrounding a pan-,  _ f”ﬂ coyn—m)q ﬁ)( B i) =
cake vortex. The corresponding LD functional in terms of "™ Jo 27 2(1—coq)+s?/\3, S Nab '
¢n(r) and vector potentiah(R) is 9)

[vans o
V¢”+$OA” 8(z—ns),

a
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Boundary conditions for Eq8) are determined by positions expressed in terms @, 4+ 1(r) and the coordinates of pan-
of topological singularitiegvortices. The phasesp,(r) are  cakes as a sum of the contribution due to pancakes in the
singular at the position of each pancakg,: absence of Josephson coupling and that induced by the Jo-
sephson currents. The free energy functional of the system,
(VV,—V Vx)¢>n(r)=2772 S(r—r,.). (10) Eq. (_16), is a sum of these two contriputions. Finally we
v obtain the functional for pancake coordinates as

Then the boundary condition fas, . (r) is

fv(rnv):fen{rnv)+fJ(rnv)+~7:pin(rnu)- (17)
(vay_vyvx)@n,n+1(r)
Here Fo(rn,) is the functional which accounts for the two-
= 2772 [8(r—rn)—8(r—rpi1,)]. (1D dimensional energy of pancakes and includes also their elec-

tromagnetic interaction in different layetg?

Note that for vortices placed along straight lines along the

c axis (r,,=rn+1,) the singularities in the phase difference

are absent. To satisfy the boundary condition, @), we FerTny) = EOJ dkdq
present the phase difference as

E exp[ik-(rnV—rm,,,)+iq(n—m)]

Enn+1(N=@Rhe 1N+ @ pea(r), (12 N E RS ST DR I
WherEQon nJrl(r r,) is the phase difference induced by pan- (18)
cakes at positions,, in the absence of a Josephson interac-
tion (with infinite A ;): where Q2= (1—cogy)/s’. The functional F;(r,,) accounts

for the Josephson interaction of pancakes:
ehnea(rrn) =2 [F(r=rn,) = F(r=roi1,)],

J(rnv)_ _Zf dr[l COSpp, n+l(r)]

f(r)=arctarix/y). (13 )\
The functioncpg‘fgﬂ(r) is singular at vortex positions,,,
while the functione(,, (r) is regular everywhere and de- f dkdq 2k2 |[S'”¢n n+1(1) gl

scribes the effect of three-dimensional screening caused by
interlayer Josephson currefts? Then Eq. (8) with the

boundary condition(11) is equivalent to the equation [Sinen s 1()] ZE f drsingr, s 1(r)
n,n q n,n

2 I—nmV <Pmm+1+)\] SIr{(Pn n+1 nn+l] 0. ><exp[—(ik-r+iqn)], (19)
(14

It is valid outside of vortex cores. Inside vortex cores we
should take account that the Josephson pararrj@tze)&;2

o | W, ()| ¥, 1(r)| vanishes at the center of pancake, i.e., at

r=rn, Orr=ry.,,. This removes the singularity induced by j:pm(rny)ZE J drVpin(n) 8(r—ry,), (20)
¢n.n+1 in the second term on the left-hand side. The solution n,v

of Eq. (14) for ¢{{), 1(r) provides a minimum to the func-
tional whereV,;,(r) is the pinning potential for vortices; see Ref.

where the functiorp,, 1(r,ry,) is the solution of Eq(14).
The contribution,(r,,,) accounts for pinning:

The functionalF, can be obtained by minimization of the
= (r) v
Fo EoJ [ E LomV eine1 Vomme1 following total functional in terms of the variables

(Pn,n+1(r) and Myt

1
+_2[1 COS(‘Pn n+1+‘P§1r,21+1)]+- (15
f{rnvv()pn n+1(r)} ferﬂ(rnv)"_}—pln(rm)

The free energy functional for pancake coordinates, for +‘F¢{rnvi@n LD, (22)
the gaugeA,=0, ist ’

where the last term is defined by E@.5). This functional

Fo(lny)= 2 f dr[ ]n Vo,+ _2(1 COSPn n+1) s will be used in the following sections to obtain the Lagrang-
ian of the system in terms af,, and "), ,(r). Below the
(16) n,n+1

irreversibility line (in the vortex glass statehe equilibrium
where ¢, 1, 1(r) is determined by Eq(14) while V¢, and  positions of vorticesr(?), are determined by the condition
in are the solutions of Eq$5)-(7) with boundary condition that this functional is minimum with respect to both vari-
(10). The solutions of the linear equatiois)—(7) can be ables.
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lIl. TIME-DEPENDENT EQUATION Ionnia(r)  2es
FOR THE PHASE DIFFERENCE IN THE PRESENCE T: TEZ;n‘nJrl(r,t) (27
OF PANCAKE VORTICES

was used in Refs. 25-27. Equati®y) is valid at equilib-

rium whenda,(r,t)/dt=—(2e/h)V,4(r,t); see Refs. 28 and
In our consideration of the dynamic effect of pancake29 for more details. Her¥,(r,t) is the scalar potential in the

vortices we follow the same procedure as for the static casgayern.

We generalize Eq(14) to a time-dependent equation for  From Eq.(26), for dynamic processes with characteristic

®n,n+1(r,t) which is similar to the sine-Gordon equation for frequencies w<wgap(0¢/oap)2~wap/y, the  time-

a single junction but takes into account the presence of mangependent equation for the phase difference is
layers as well as moving pancakes. Then we derive the La-

grangian for pancake coordinates which accounts for the 1 .~ ¢ 1 ) _
time-dependent phase difference and provides the equation C_STCE‘PH,HH“L )\_gs'n%,nﬂ_% LomV“@mm+1=0,
of motion for pancakes in the layered system with Josephson

coupling. The equation for the time-dependent phase differ-

A. General equations

~ J
ence and equation of motion for pancakes form the coupled TC:E‘FFC, (29
set of equations which describe the phase collective modes
interacting with moving pancakes. wherecy=cs/\ €. plays the role of the Swihart velocity,

The time-dependent equation for the phase difference ila,ab: C/\/:ab)\ab is the in-plane plasma frequency, and
the ab:?‘ence of pancake vorticgs and without accounting fqﬁc=4770-c/6c- The dissipation of the phase collective mode
relaxation of the superconducting order parameter was olin this approach is caused only by the interlayer current of
tained in Refs. 25-27. This equation was derived by use Gfiormal quasiparticles as described &y. The dissipation
the Maxwell equations due to the in-plane current of quasiparticles is smaller by the

. parameter @/w,p)(oa,/0c)Y% Equation (28) generalizes
€V - E+ gc(Ez,n— Enns1)=47pn, (22)  the sine-Gordon equation for a single junction to a multilayer
system. It is valid if the relaxation time of the order param-
2 9E( ) 4 eter amplitude is much smaller than the characteristic time of
€ JE(r,z,t ™. the processes described by this equation. The Lagrangian
curlB(r,z,t)= c at * Tj(r'z’t)' 23 L, and the dissipation functioR, for the phase difference

are
whereE, is the electric field in the layem, E,., n.1(r,t) is

the average component of the electric field between layers Eo IPnns1)|?
n andn+1, € is the high-frequency dielectric tensor with E¢=522 f df( pr ) -
components,, and e, for electric fields along thab plane on
and along thec axis, respectively, and,(r) is the average

charge density in the layar. Then the Maxwell equations R,=
are complemented by the constitutive equations for the cur-

rent densityj. For the interlayer currents we have The kinetic part of this Lagrangian is the energy of electric
(s M e field in the system. The equation of motiG28) is obtained
Jzynvn+1_‘Jz,n,n+1+‘Jz,n,n+1_JOS'”‘annHJr"CEz,nvnﬁéAf) from the Lagrangian and the dissipation function as

F

@

Eol'¢ 5‘Pn,n+l 2
2032 fdr(—at . (29)

n

with J0=27TCEO/<DO)\§ being the maximum Josephson su- i IL, _ IL, n IR -0 (30)
percurrent, ¢, o4+ IS the gauge-invariant phase difference dt 9o, i1 9Pnn+1 d@n et '
given by Eq.(4), and o, is the ¢ axis conductivity due to ' ’
guasiparticles. For the in-plane current we have A general equation, which accounts for relaxation of the
superconducting order parameter in the framework of the
d time-dependent Ginzburg-Landg@iDGL) equation modi-
— 19 () _ 0 p g q
Jn=Jn" _8W2)\§bQ“+‘TabE“’ (29 fied for the LD model, was derived in Ref. 32 in the absence
_ _ _ _ of pancakes. In this approach the Josephson relation, Eq.
with  the gauge-invariant phase gradientQ,= (27), is replaced by the general relation
—[Vo,+ 27w/ dPy)A,] and oy, is the in-plane conductivity
due to quasiparticles. From Eq22) and(23) the continuity d@nn+1(rit) 2es
equation follows: T: TEz;n,n+1(ryt)+gn,n+1(rat)- (32)
ap NI . Hereg, n+1(r,t) is the gauge-invariant time derivative of the
&_tn ~V- -V~ < (SINen 1= SiN@n—1 ) phase difference:
1 gr‘l,n+l(r!t):Gn(rlt)_Gn+1(r1t)i
— (1= -1 =0. (26
G, (r,t)= Gn(r.Y) 2ev t 32
The Josephson relation (1= at h n(1,0)- (32)
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The functionG,, can be determined by use of the TDGL Note that the functiorgﬁjr)wl(r,t) with singularities cancels

equation for the superconducting phase:

4eVGLGn|\I}n|2:V"]§18) Sin‘Pn—l,n)v

(33

Jo .
+ g(sm‘Pn,n+l_

where the parameteyg, characterizes the relaxation of the

when all the pancakes move with the same velocities. Equa-
tions (34)—(36), (11), and (38) have to be complemented
with a set of equations providing the dynamics for
{rn,(t)}. Or, alternatively, the full microscopic dynamics of
Q,(r,t) has to be given.

For low frequencies such that w(w,,)?><1 and

superconducting order parameter; see Refs. 32, 29, and 3@7ab/@ap<1 One can obtain from Eq36)
for more details. The second TDGL equation for the time

evolution of |¥,(r,t)| is neglected in this London regime
approach. The full dynamics can be derived, in terms of the d, 41~

gauge-invariant quantitie, .1, G,, andQ,, from Egs.
(22)—(25) and (31)—(33). We obtain

:l' de n+1 1
ﬁ(%_gn,mﬂ +Fsm¢’n,n+l_z anVZ‘Pm,erl
0 J m
:% anWm{Qmagm,m+1}: (39
_;GL(Gn+1l\Pn+1|2_Gn|‘I’n|2)
1— ~of 9Pnn+1
Wn{Qn-gn,n+1}+Ezc'52( r;tn _gn,n+1),
0
(35
V'(Qn+1_Qn)+Wn{Qn-gn,n+l}
L1 Tel 00 nin
+5 )\Zsm‘an—l"— 2 g—tfH gn,n+1) =O, (36)
O
with
n{Qnagnn+l} _2_ (Qn+1 Qn)_vzgn,n+1
27TCTab

Dowl, V-(Ens1—En), 37
(OPY

D
the paramgteﬁGL=4eyGL87r )\gb/CCI)O, and we define the
operators T,,=dldt+4mo,ple,, and 82a,=an,;—2a,
+a,_,. The only dependence o, is through the scalar
dnn+1=V-(Qn+1—Qp). Here Eq(34) generalizes Eq28),
while Eqg. (35) comes from the TDGL equatio33) and Eq.
(36) is another form of the continuity equatidg6). There-
fore, the full dynamics is described by E434)—(36) for the
coupled variablespp, y11, Onn+1, @and dy n;. There are
boundary conditions: For the phase variablg, ., they are

given by Eq.(11), but now with time-dependent positions of

vortices,r,,(t), and forg, +; they are given by

(vay_ Vny)gn,n-*—l(r:t)

d
=2m 2 2, 8 =ru(0) = 80 —Fni 1, (D] (39)

:rab d 2 1 -i— IPnn+1
+
(1 —z—m)[a N
Tab
_gn,n+l) - gvzgn,nJrl}a (40)
Wap

and then reduce the system of dynamical equations to Egs.
(34) and (35) with the effective

Tap| @ ~p
Wn{‘Pn,n+lvgn,n+1}%__2 5 )\ZSm‘Pn n+1
Wap
n Tc ‘9‘Pn,n+1 _
E(Z)' ot gn,n+l
+V29n,n+1}- (41)

In Ref. 32, the dynamical equations including the TDGL
equation(33) have been studied in the absence of pancakes,
where the amplitude of the superconducting order parameter
|¥,| in Eq. (35 was taken as constant. In this case, the
regular termg{), , ; was calculated from Eq35), for which
the most important contribution is the second term on the
right-hand sidgthe W, term can be neglectedAt frequen-
ciesw<wgp( 0/ o4p) Y2 the additional terms in Eq34), due
to relaxation of the superconducting order parameter, may be
neglected in comparison with that due to the interlayer cur-
rent of quasiparticles if we use the standard estimate
Yo =hw?j4e?s?| W |20l Thus Eq.(28) provides a quite
accurate description of the phase collective mode at low fre-
quencies. We note that all terms due to relaxation of the
order parameter and in-plane current of quasiparticles vanish
from the equation for a homogeneous plasma mode in the
absence of pancakes. For this case dissipation of the plasmon
is determined by the interlayer current of quasiparticles only.

B. Approximate solution

Now we analyze the time-dependent equations for the
phase difference in the presence of vortices. In principle,
besides Eqs34)—(36), we should account for spatial varia-
tions of the parametex, ? inside vortex cores. This will be
done later. Here we plan to obtain an effective expression for

To satisfy the boundary conditions we can split again thedn,n+1 in order to reduce the dynamical equations to the

total phase difference into two parts, E2), and the same
for gn no 1

Inns 2 (LD =000 110 +95 1, 4 (r,0). (39)

varlables{<pn nt1(r,t)} and{r,,(t)} only. The regular part
gn N ., was calculated in Ref. 32. In the presence of pan-
cakes, the singular pagﬁ’ +1 IS the most relevant. In this
case, the main contribution comes from g term in Eq.
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(35), i.e., the electric fieldE, induced by the moving vorti- which explicitly shows the dependence 6" on vortex
ces. In general one can write frogy), ;=G%); —G{) and  velocities. The equation fov} (p), with p=po, , is
using Eq.(32):

Jdl1l o _ _
P 26 7 ;%(PV:) +AGA(Vh 1t Vi = 2VE) = AG2Vh
GY(rh)=— o (r)— V. @2
_1 1 >, 8€%%6L, 2
The scalar potentiaV{")(r,t) can be calculated from the “ o _463’GL;|‘I’(P)| +t— o (P (p)]
TDGL equation (33) using Eg. (420 and the gauge
. (n+1)s —0N-
TabV - An(r) + ocls[iT %dzA(r,2) = 0: _Mz]]&no, 48
J
deygL aﬁv)—Vﬁw | o(r,0)]2+ 0y V 2V where A2, =% 0,,/86%yg | V.| and A2=S?0,, /0. In the

situation when the TDGL equation is valigapless super-
TC ) ©) ) conductor with paramagnetic impuritlesone obtains
+ 2 [Vaia+ Vit =2V 7] =0. (43 A_,=¢,,; see Ref. 29. The solution for the scalar potential

. ] can be written in the form
In deriving Eq.(43) we neglected terms which have an ad-

ditional small parameter proportional to the pancake veloci- ) h 9
VnU (N)=—52z 2 O(r),

ties rp,, (terms like 3V{"/4t in comparison witho V(). 26 ot
Equation(43) should be solved with the boundary condition =ty (DA g
that V()(r,t) is finite everywhere. For magnetic fields Ia(N=> J dpui_m(p), (49)
B<H,, the solution of Eq(43) may be found as a superpo- mo
sition of solutions for single vortices. Then we write where v (E):ZeAabvz(p)/ﬁ andp=p/A,p. This gives
5 26 the function g, 1 (r)=dle{)1(r) = Fnnsa(r.H)l/at,
GY(r,t)=2, Ef(r_r””) Snm— sz—n(r—rnv), where 9y, 4 1(r,t)=9,(r) — ¢4 1(r), which can be written
mv as
(44)

Ir=rmu(O1/ Aqp

where we have used EQL3) for ¢{) and Vi n(r=rn,) is 9, .1(r)=el), (1) +> 500 (P),
the voltage induced in the plame by a vortex moving in the ' mv JO

plane n. For a single pancake vortex ag, in the layer (50)
n=0 we can calculat®’,(r —ro,) as where the functiow, (p)=v? (p) — (1/p) 8, decays rapidly

at distance®>1 far away from vortices. Actually, this func-

d 2e : ~ .
deyg, Ef[r_rov(t)]gno_ 7);” |W o (r,1) |2+ 02V 2V, tion atp>1 obeys the equation

J 2

g J—
+S—2°(vn+1+vn_1—2vn):o. (45) 7

10 _
= —=(pvpn)
pdp

ab
~—Un— F(Un+1+vn—1_zvn)zo-
c

51
The equation for the scalar potential in the case of a movin ) : . . 51
vortex line in an isotropic superconductor was discussed iﬂ-he solution of this equation for the Fourier transform
Refs. 29 and 30. Equatid@5) generalizes this equation to a v(d) With respect to the integer variable is the Bessel
pancake vortex in a layered superconductor. The functiofnction Ky[x(q)p]. It provides the asymptotic solution for

|W(r,t)|2 for a single vortex at pointg,(t) in the layer vn(p):

n=0 has the form of a moving vortex, ~ _ ~ ~
J vn(P)=(w/2) "% ~ex —(L+ A2/ A |In(BAZ/AD),
@ (1, D2=] ¥ [r=ro,(D)]]%, (46) (52)

to lowest order in vortex velocity. Heré¥ ,(r)| is the Whereln(>-<) is th~e Besgel function of i-maginary argument.
order parameter amplitude at equilibrium. It vanishes at thd he functionv,, (p) vanishes exponentially for large and
center of a pancake,=0, and tends to a constant value for pAZ/AZ<1 it drops with n as a power law,
|¥..| far from the pancake center. The characteristic scalén(X)=~(x/2)" for x<1. For pA2/AZ>1 the functionv,
for this dependence is the superconducting correlatiois almost n independent. Respectively, at distances far
length &,,. For af[r—rg,(t)]/ot=—ry, VE[r—rq,(t)] away from pancakes the function &, . 4(r,t)
= —|ro,|sindy, /po, the solution for the scalar potential has approachesoﬁ”’%+l(r,t) but differs from this function in the
the form V,(r,t)=|r,|Sin6, Vi (po,). Here pg,=r—rg, and  vicinity of vortices due to retardation in the time variation of
6o, is the polar angle for coordinaj®y, . With these defini- the superconducting order parameter and superconducting
tions we can write currents in comparison with the moving center of the vortex
_ (phase singularity The effect of retardation becomes negli-
v _ . . € " gible far away from the vortex center. As a consequence, the
G >(r,t)——Ev It o] SING,, P 7% Vm‘“(p””)}’ functions G)(r) and g{"),,(r) vanish exponentially far
(47)  away from vortices. Note that the faster decreasefj?
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X(r) in comparison with that of/(*)(r) follows from Eq. o o
(43). Here the left-hand side is proportional@’’(r) which + fgs'r{%vﬁﬁ @nn+1
includesvﬁ’)(r), while the derivatives of\/ﬁ’)(r) on the
right-hand side drop faster thaf)(r) itself. We will show
in the following that the retardation effect, leading to a dif-
ference betweerd,, . 1(r,t) and ¢{),(r,t), gives rise to

; ; ; t finite temperatures the Langevin force corresponding to
the dynamic vortex-plasmon interaction. Although we use N i :
the TDGL equation to obtain the functiody, ,.1(r,t), our he dissipation described by, should be added to the right-

conclusion about the decay of the differenceNand side. Equatio67) definese([) 1(r) in the presence of

9 rt)—o®  (r.t) at large distances from vortices is the e>_<terna| electric field)zgt) and moving vortices with
(08 = @nnea(r) g coordinatesr,,(t) as described by the terms, ,,; and

J

quite general, and only the scale of this dechy,, is model ) > i i ,

dependent. Note that the retardation effect in the Josephsdfn.n+1- ThiS is our main equation for the time-dependent

interaction may be neglected fdWe,, .1 /dt<A. pha_lse dlfference_. Note that the_ TD_GL appr(_)ach was used to
By the use of Eqs(31), (32), and'(49) we obtain thez  define the functiond, ,,4(r,t) in this equation. All other

component of the electric field: terms do not depend on the derivation of the function

On.n+1- IN @ more general approach than the TDGL only the
- expression for the functiony(r,t) in 4y, 4 4.(r,t) may be
[enn+a(Nt)+Tpnea(rt)]. modified.
(53) Next we determine the Lagrangian for the system in terms
of ¢{{h,4(r) andry, as

h d

Ez;n,n+1(r ,t) = Jes at

Using the continuity equation and E3) with the known
function g, . 1(r,t) we obtain finally the equation for (r
' E{@n,m—l(r)yrnv}

@\ ia(rt):

1.9 Q) 1 (r )
_2Tc_[‘Pn,n+1+ﬁn,n+l]+ 23|r[¢n,n+1+¢n,n+1]
cp ot AJ

Eo
=£0{rn,,}+ 2_0(%; f dr

1% 2
X4 —Lehea(D+9 M\ ]
_2 anVZ(PI(’T';,)m‘Fl:O’ (54) {at[‘Pn,n+l( ) n,n+1( n )]
m

— F o + Q) _
where we have neglecte, , ; and thew, term in Eq.(34) FlennealD) Fuud * Lo ennealf):foud 8
which are of lower order for frequencies Here Ly(r,,) is the two-dimensional dynamic part of this
w<w,(oe/oap) Y% This equation corresponds to the La- functional, which includes the Magnus force dynamic term
grangian and vortex mass term if necessary. Dissipation originating
from the in-plane electric field and from relaxation of the
order parameter induced by moving vortices is described
phenomenologically by the vortex viscosityin the dissipa-
tion function Ro{r,} = (7/2)(r,,)? for pancakenw.

Eo d 2
Lo=522 f dr(a[wﬁiaﬂwn,m] —F,. (59
0

with F, as given in Eq.(15). The termd, ., originates
from the in-plane electric field and the corresponding voltage
induced in the normal cores of pancakes. It is nonzero if
pancakes move differently in neighboring layens and

n+1. We consider now the solution fas{{), ,(r,t) and vortex

To de_scribe the excitation of the phase COHeCtive,qu%oordinatesrnv(t) in the presence of an oscillatory weak
and vortices by an external homogeneous ac electric fieldytema) fieldD,(t). Then the phase collective modes are
Dy(1) oriented along the axis, we add to the Lagrangian eycited and in addition vortices oscillate near equilibrium
L, the term positionsr(®) due to phase variations. Now our goal is to

E obtain equations which describe small variations of the phase

Low= _f drdz difference and small amplitude vortex oscillations. We de-

4 g _ _ (0
note pancake deviations by, (t)=r,,(t)—r;, and expand

@ 1(r 1) in up,(1):

IV. INHOMOGENEOUS BROADENING
OF THE PLASMA RESONANCE

h d
5D [ DL ST s+ D],
(586 ehnea(nD=2 [F(r=ril) = fr=rlly )]+ 8 a(r),

Such an approach is appropriate for a sample placed in a (59

cavity acting as a capacitor. In the presence of an external

electric field the equation fop!")., ,(r,t) is: ~
nd (1= 2 D(r=r(2)- tn, (1)

1.4 !

T 1,0 _ 2 (1)

2 Togpleinent Inneal =2 LonV*oliimia —D(r=1%,) Upsrp(D), (60
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where D(r)=(—y/r2,x/r?) for a<r<\; and D(r) drops =(<Erff,2+l(r,t)>. We use here the perturbation theory in the
much faster withr for r>X\;. We also expand}, ,;1(r,t) continuous spectrum; see Ref. 31. Averaging over space in

in u,,(t): Eq. (64) we obtain
1. d0(t) b— 1
I 2= Po(r=ri) - Un, (1) ZTem+ 3200+ 12{[cospih. 1(1) ~b1Oy(r,1)
v 0 J J
— P (r=r9 . Y (1). 61 ho 9
n+1( m+l,y) m+1, ( ) ( ) — 87TEEO E’DZ(T.), (66)

Here for large distancesr—r{®|>A,, the function o . .
P.(r—r(®) deviates exponentially small from the function Whereb=(cospyy.4(r)). The inhomogeneous part is deter-

D(r—r®) 6, m: mined by
1.0 b
(Y () 2
r—r r—r T+ —=|0,(rt)— LamVeO (1, t
Pn(r_r(O)):D(r_r(O)) 5nm+| mv|vn | myl . C(2) ot )\3 n( ) ; nm m( )
mv mv Aab Aab
(62 1 . _
_ =~ y2lcosenn.1(r) —bIO(1). (67)
We present the phase difference as J
o _ _ The solution of this equation in the Fourier representation
<Pn,n+1(F,fm,,t)=QD(n,r)Hl(r)ﬁL<Pr§,”n)+1(r,t)+<Pr§,r3+1(r,t(), ) w,k,q with respect ta,r,n is
63

Q3cosp'® (1) —blyg—
where ¢(%), ; is the phase difference at equilibrium when ©(w,k,q)= wo([w_s?oP'n)+j((l)z(k ];q(”)(w), Qo=)\—0,
D,=0. It is determined by Eqg13) and (14) atr,,=r{®. ¢ 4 J(68)
The contributiorig,?). ; accounts directly for vortex motion
and is given by Eq459) and(60), while 3" ; accounts for ) ) c2K?
the rest of the phase variatiofisalso includes a part due to 07k, q) =bQo+ 2(1—coqy) +s2N2,’

vortex motion; see belowBothg (%, ; andg (), ; are small o o . ,
in a weak external electric field. Thus we can expand in Eq/NSerting this expression into E(66) we obtain the solution

(69

(57) and obtain a linear equation far{") ; : for 6 (w):
2 .
_ )
1. 9. - O(w)=— 0 - D(w),
?Tcﬁ%ﬁqﬂ—ﬁ LomV 2@ i1 (@) 8meE) w(w—iT)—[b—w(w)]Q} A)
0 m (70)
1 ~
+ zlc0sin (N1 eania W(e)= f dkdg  QFF(k,q) o
J (27)% w(w—iT¢)—0Q%k,q)’
h d 1 . . .
- - 7 = (0) = () where F(k,q) is the Fourier component of the correlation
8meEye, P )\ﬁ[COS‘P”'““(r)](’D“’”Jrl function
1.9 ' - (0) (0) '
-2 F(r—r’,n—m)={([cosp (r)—b][cosp (r'")y=bD).
T . 4 n+1 m+1
Cg Cz?t 19n,n+1 (6 ) n.n m,m (72)

The last two terms on the right-hand side describe the excil N€ dispersion relation for the phase collective mode, Eg.
tation of the phase collective mode due to vortex oscillationd69) is valid for frequencie# ()(k,q)<A, and thus integra-
Un,(t). The equation of motion for vortex displacementstion overk in Eq. (71) is restricted byk<A/c,. _
u,(t) which couple with phase oscillations, will be pre- Our next step is the calculation of thg correlation function
sented in the next section. After solving these two coupled (T:n)- We follow the approach used in Ref. 19 and con-
equations fo@rg,rr)l-%—l andu,(t), we obtain the electric field sider the zero-temperature limit. The phase difference

E,nni1(bfr,t) by the use of Eq(53). From this we may ¢fn+1(r) given by Eq(14) differs from¢{1) . 4(r) given by

derive the inverse dielectric function Eq. (13) because Josephson currents provide three-
dimensional screening. The functiasf’), ,(r) induced by
1/e(w)=(E,(r, )}/ Dy w), (65)  given close vorticesiv andn+ 1,v falls rapidly at distances
larger than\ ; from these two pancakes due to the Josephson
which describes the plasma resonance. interlayer current. For smaller distances the vortex contribu-

In this section we solve E¢64) with fixed vortices, when tion to ¢{%, 1(r) and ¢{}, 1(r) is practically the same. At
un,(t)=0. Then the last two terms on the right-hand side ofhigh enough magnetic fieldd> BJ=<I>0/)\§ many vortices
this equation are absent. We assume that the inhomogeneagsntribute effectively to the phase difference at a given point
part of B{).,, which is ©,(r,t)=3 1(r.t)=0O(t), r since the phase differenagl’), ,(r) for given closer,,
is much smaller than the homogeneous padt(t) andr,.,, is a slowly decreasing function of at distances
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smaller than\ ; from these vortices; see text after E@4).

We note that in fieldsB>B; the intervortex distance
a=(dy/B)Y?<\;. According to the central theorem of the
probability theory, the phase®), . (r) obeys a Gaussian

nn+1
distribution with(e{%, 1(r))=0. Therefore,

(0)

(cosp®) 1 (r)cospQ) 1(0))=b?coshr,n(r), (73)

where

(0)

A1) = <¢n,n+1(r)¢Er?,)m+1(O)>

:J'drleran(r+rlarZ)f(rl)f(rZ)v (74)
Kom(T1:F2)=([pn(11) = prs 1T ) L pm(F2) = prms 1(r2) 1)
(75)

Here we introduce the pancake density,(r)
=23,6(r—ry ) in the layern. Using the relations

| drRotrra= [ arRonirira=0 79

and taking into account that for a disordered vortex stat
without long-range orderK,u(r1,r2)=Kpm(r1—r,), we
write

1 -
(1) =— Ef drodro[ f(r—ry)—f(=r)12Knm(ri—ro).
(77

As was mentioned in the Introduction, Tsei al®'%'and

Matsudaet al® observed the power-law dependence of the

plasma frequency on the magnetic field applied alongcthe

axis for magnetic fields above 0.1 T. It was shown in Ref. 19

that this dependence may be explained in such a model
strong disorder in pancake positions along ¢haxis. In our
model, correlations in the pancake positions in different lay
ers are absent(p,(r)pm(r))=(pn(r))>=a 2 for n#m.
Therefore, we obtain K,(r)=2K(r), K .1(r)
=K,_1p(r)=—K(r), and K, =0 for m#n,n+1, and
n—1. HereK(r)={pn(r)pn(r))—{pn(r))?. Now we obtain

ann(r)=— J drdry[ f(r/2+r,/2+r,)

—f(=r/24 71,24 11)]?K(r,). (79

At a<<r<\j, within logarithmic accuracy for largea;/r,
we approximate

f(r/2+ry/2+1)—f(—=r/2+r,/2+r1)
~[VE(r+r)+Vi(=r+ry]-r,. (79

Integration overr, leads to the result

J drl{[Vf(H—r1)+Vf(—r+r1)]«r2}2=47-rr§In()\J/r),
(80)

and we obtain

L. N. BULAEVSKII et al.

A;
a'nn(r) = 2an,nJrl(r) :4M|nTa

a

’“:Zf drr2K(r). (81)
The parameter is field independent becauBér) oscillates

on the scala in theab plane and decays withon the same

or larger scale. In the first cagstrong disorder in theb
plang, independence of. of B is obvious because there is
only one characteristic lengthin the system. In the second
case, wherK(r) oscillates more rapidly than it decays, the
relevant length in the integral is the period of oscillation
only, and the integral practically does not depend on the
length of decay. The situation here is similar to that for the
integral

* . 6 _ k
fo dxxsinkxexp( — 6x) = Tl 3arctari|
(82

which becomess independent in the limit of smal.

Finally F(r,0)~b?(a/r)**, while for r>a and
F(r,0~1/2 for r<a. The functionsF(r,n) at n#0 are
$uch smaller thar(r,0) and may be neglected. In the same
approach the relatiof2?/Q3=b~ (ae/\,)?*=(B,e?/B)*,
wheree=2.72, was obtained in Ref. 19. Now the function
F(k,q) in Eq. (7D is

F(k,g)~a’[mu/(2u—1)], kasl,
F(k,q)~(27)Y2aY%%%cogka—37/4), ka>1.
(83
Integration ovelk andq in Eq. (71) yields
2 a® B
of IMw(w)= inh TR ™ J (84)

02 22u-1) N2 22p-1) B"

The term—i(Imw)Q3 in the denominator in Eq(70) for
© describes the broadening of the plasma mode due to ran-
dom spatial variations of the Josephson interaction in the
presence of pancakes. It may be described also as a decay of
the homogeneous phase collective mode into inhomogeneous
phase collective modes. The rate of this decay is
F%MZQ«Q for a<\ ;. Thus the use of perturbation theory
with respect td cospy n.1(r) —(cospnn+1(r))] is appropriate
and the plasma frequency is determined by the average value
of cosp,n+1(r) according to Eq(2).

The real part ofw,

AZ

ra:

a2|
—In
%

%

Rew(w)= —2(2,u—1)

(89
describes the shift of plasma frequency due to the inhomo-
geneity of the Josephson interaction. This shift is of the order
Fﬁ,hIZQ. Thus, neglecting pancake oscillations, we obtain
the dielectric function

w2

11
e(w) € w(w—iTy)—Q%—il3,’

02=b03.
(86)
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We obtainedl';,, at T=0. Below the irreversibility line hydrodynamic limitay=< w#ng, whereng is the density of
I'2, is anticipated to be almost temperature independent besuperconducting electrori$:®

cause it is determined mainly by short-range correlations of The interaction with the phase dynamics is given by the
cosp, n+1(r) which depend weakly on thermal phase fluctua-force Fp,,(t). Taking into account that all the phase depen-

tions[F(r,0)~1/2 at smallr]. dence orr,, is in ¢}, ; and that the dependence by, is
The origin of inhomogeneous broadening may be exin &, .1, we used/dr,,= (3¢}, /drn,)dldel),, and

plained also in the following way. Equatid64) without an 5/t = = (59, . 1/dr,,)9139, ,.1. We obtain from Egs.
external electric field is the Schdimger equation for a “par- (55, (56), and(90) '

ticle” moving along layers with kinetic energy determined

by the matrixL >0 in the random potential proportional to Eo 1 ‘9‘P(n~vu)m+ 1(r,t)
cosp®,1(r); see also Ref. 19. We denote the eigenvalues of Fnu(1)=— ?2 J dr{ 2Sinemmea(r) — ———
this equation by, and eigenfunctions by, ,(r). Then the " J "

dielectric function for an homogeneous external electric field 1. 9 "
|S + EgTCE[QDm,m+l(rrt)+ ﬁm,m+1(ryt)]
2 * ’
1 =w_2 f a4 \I’a,m(r?‘l’a,m(rz) - b 9D, |00 mea(r,t) @
€(w)  €am w(o—il'c)— 8mek, dt arn, '
1 o The forced,, can be interpreted as Lorentz forces acting on
= —E dr ’<\If§lm(r)‘1'a,m(r’)5(w— ®,)), pancakes due to different interlayer currents alongcthgis,

(o) 2ecam which give in-plane currents through the continuity equation

(88) (26). Our focus is in the force§,, acting on pancakev
wherew?=E, and we assume thdt is small. We see that when the phase difference deviates from that at equilibrium.

contributions to the plasma resonance come from thos&hen, after using Eqg63) and(64) we obtain
eigenstategphase collective modgsvhich may be excited

; : Eo - IV mm+1(r,t)
by a homogeneous external fie{delocalized and weakly Fny(t):?% fdr{zk“ LmkV2<Pf<r,|)<+1(ryt)L

localized phase modedJnder the conditiora<<) 5, the en- e
ergiesk, of such modes are distributed near that determined 1 P
by the averaged potential. +F005{ <P§n0,)m+1(r,t)]5$,)m+1(f,t) P

J nv

V. DISSIPATION OF A c-AXIS PLASMON
INTO VORTEX OSCILLATIONS X[ ha(r,)— ﬂm,mﬂ(r,t)]] : (92

In this section we present the equation for pancake oscil- ] )
lations coupled with phase variations. Then we solve théVith the help of Eqs(60) and(61) this expression may be
equation for® (t) taking into account vortex motion to ob- written as
tain the decay of plasma modes into vortex oscillations. In E
writin_g down the equation of_ m_otion for pancakes we will ()= )\_202 f dr[ pm(r_rfgj))E (L= Lm—15)
consider the case of strong pinning centers for simplicity and J3S'm k
focus mainly on terms which describe the interaction of vor- 2o~ 0
tices with phase collective modes. X)‘JVZ‘PE')‘”U’U+[D(r_rgw))5”m
Using the Lagrangia(b8) we obtain the equation for pan- —Pu(r—r ) [cosp@. (B0, (r,1)
cake deviations: ‘ '

Upn,+ ay[NX U, ]+ e Uy, =Fny, (89 —Cospﬁf)l,m(r)?ﬁﬁ?1,m(r,t)]] . (93
d d(Lo+ Loy L, IR The pancake displacements caused by the fBfgéw) are
Fr(t)=—| & ——— = 24 —* (90) . _
dt Iy Ny arny lon+ o lway

(99

ux‘nv(w): _Fx;nv(w)—+|: ;nv(w)—
The pancake dynamics is given by the parametars 7, ' S(w) ’ S(w)
and a, . We replace all elastic moduli.e., vortex-vortex
interaction termpsand effects of pinning by the Labusch pa- e 2 22
rametera, . Such an approach is correct for strong identical Slw)=(tonta) = ay, (95)
pinning centers and it gives only an order of magnitude esand the equation fau,.,, follows by replacing=, for F, and
timate for typical Bi-2:2:1:2 single crystals. For details on —F, for Fy. We use here the Fourier representation with
the Labusch parameter see Refs. 37 and 38 and referenaggpect to the timay,,(t) =u,,(w)explot). Next we insert
therein. The estimate fop is the Bardeen-Stephen expres- the solution for pancake displacements into the right-hand
sion p=®3a{V2mwEZ c?, where o) is the normal state side of Eq.(64) and account for homogeneous collective
conductivity; see Refs. 26 and 33—35 for more details. Herenode only. The first term on the right-hand side of E2p)

ay is the Magnus force coefficient which is bounded by thevanishes for the homogeneous part of the plasma mode and
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thus may be omitted. The second term leads to a dynamic To conclude this section we discuss the possibility of ex-
vortex-plasmon interaction which originates from regionsciting a plasma mode via vortex oscillations by applying an

near vortices only because the functiop®) . (r,t)

ac magnetic field. Let us assume that vortices oscillate ho-

— 9mm+1(r,t) vanishes exponentially far away from vortex mogeneouslyu,,(t)=u(t), around their equilibrium posi-
centers. This results in the additional contribution to the lefttions under the effect of such a field. Then by the use of Eq.

hand side of Eq(66):

0
cospl 4 1(1)

Eg iont+a
@)\ s " S(w) 2

0

r—ri)

X Uo A b
a

o

dx'dy’
2

nv

|r/_ 51(31)| (0)
Vo [Cospnn41(r)
Aab

—r©@ 1\ (=1,
- (0) N n+lyv n+ipv
CoSp~1,(r")] Uo( Ao )Y Aur
X[COSPn+1n+2(rl)_COSPE%H(W)]]>- (96)
We note that random valuese(%),,(r) and rf)

(60) we obtain on the right-hand side of Eq64)
for (pn n ., the term

1 -
— A—ﬁtcosxp;?%H(r)]@?,”,%ﬂ

0
== E[COSPE r)1+1(

—D(r—rQ, )1 u(t),

and a similar contribution originates from the term with
On.n+1 in Eq. (64) by the use of Eq(61). Both terms vanish
after averaging over space. Thus homogeneous plasma
modes cannot be excited by homogeneous coherent vortex

N1 [Dr-r®)

(100

are weakly correlated because many vortices conescillations; only inhomogeneous phase collective modes
tribute to (pn n+1(r) as was discussed above. Then wemay be excited by an ac external magnetic field. Similarly, a

averagevo(|r =i/ Aapvo(lr —r{l/ALe) and copld)
X(r)cosp®, 4(r") independently. Taking into account tha
vo([r|/Ap) is localized at distances ,,, which are much
shorter than the intervortex distanagwe obtain after sum-
mation overr (%)

abE vol|r=r2 [/ Aapvo(r’ =1/ Agp) =CS(r—r"),
(97)

where the numerical paramet€ris of the order unity. The
variation of the Josephson parameigrinside vortex cores
leads to an additional contribution to the functiog(p).
This contribution has the same propertievgép): It is lo-
calized at distance§,,~A,,. This contribution results in
the renormalization of the numerical parameferThen the
term (96) may be written as

_ CE iwn+
—0(w) M B WNTap (98)

2u—1A\s  S(w)

This additional term in Eq(64) has an imaginary part due to
vortex viscosity and it determines the dissipation fajeof
plasma modes into vortex oscillations,
wl2
)

FU_ ,LLCE()QO 7’]( B
ul2

Q  2(2u-1)s\2 o?\B,e
Here we assume that pinning is strong,/Q> 75,a)y, .
I', depends weakly oB, and bothI', /) and relative line
shift AQ,/Q increase withB in contrast with inhomoge-

neous broadening.

(99

and also the frequency shikQ ,

_a,_ FU_
v_7ﬁ_

HCExQg

B
AQ
2(2u—1)s\ja ( B,e

plasma mode is coupled with inhomogeneous vortex oscilla-

¢ tions only, and an ac electric field excites such vortex oscil-

lations but not homogeneous ones.

VI. DISCUSSION AND EXPERIMENTAL DATA

First, we estimate parameters for single crystals
Bi-2:2:1:2 relevant for our discussion. The anisotropy pa-
rameter y=420 was extracted by Tsuit al'%! from the
angular dependence of the plasma frequency. The field de-
pendence Q(B)~Q,(B,e?/B)*?leads to y~250 at
Nap=1700 A ande,=20. Thusy is in the interval(200—
400 and Qy/27~200 GHz, whileB;~100 G. Note that
from recent measuremefitof the temperature variations of
Nc and \ 4, in the interval from 4.2 K toT; the anisotropy
ratio may be estimated a&s250. These measurements show
that temperature dependenceofs at best weak.

Up to now information on the low-temperature dynamic
parameters of vorticeg), and » for Bi-2:2:1:2 is absent.
Measurements of thab resistivity by Bulaevskiiet al*°
close to the flux-flow regiméat 70 K at high magnetic field
and high currents provide the estimatep<2.3x10 '
g/cm s. This value is about an order of magnitude smaller
than the Bardeen-Stephen viscosity coefficient estimated us-
ing the normal state conductivitys{})~2.5x10*Q~*
cm™ !, extrapolated from a temperature interval abdye
and by the use of the zero-temperature correlation length
£,5=20 A. The Magnus force coefficient estimated using the
relation ay, = mhing is about 10° g/cm s. The result of Har-
ris et al>® for Y-Ba-Cu-O with T,=60 K at 13 K is that

~n~10° g/cm's with a tendency for to increase
and 7 to decrease on coolin(pbelow 13 K the data are ab-
seny. The parametes, for Bi-2:2:1:2 was estimated by van
der Beeket al3" from critical current measurements for
single crystals. Its value was found to be in the interval
(10°—1¢F) g/cm <. The critical current in samples used to
study plasma resonance is unknown.

We obtained three contributiody., I';,,, andl', to the
plasma linewidthl" as given by Eqs(84) and (99):
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=T 2+T2/20+T,/2. (101)

The contribution to the relative width'./2Q=2mo /e
due to quasiparticle interlayer tunneling is supposed to be
much smaller than that determined by the upper limit for B
o¢, given byo(" , because the concentration of quasiparti-
cles is small at low temperatures. The value
oM=0.20"1 cm™! obtained by Chcet al*! provides the i
upper limit I' /200 <0.25. Taking into account that at low
temperatures quasiparticles are formed mainly inside the nor-
mal cores, we anticipate that this contribution increases with
B linearly in the case of-wave pairing and a8/ for
d-wave pairing!* We also anticipate a strong temperature
dependence far .. Certainly, these predictions do not agree
with experimental data, and we conclude that this mecha-
nism is ineffective in comparison with other mechanisms of
line broadening when a magnetic field along thexis is
applied. However, in the absence of a magnetic field it is the
only mechanism which determines the plasma linewidth. -

The valuel';,, determines the linewidth of the plasma
resonancd’ =T'2,/2Q due to an inhomogeneous Josephson
interaction in the presence of pancake vortices. For this . ‘ ‘ ‘ ' .
mechanism, the line shape of resonance with respestdo 1 0 1 2 3 4 5 8 7 8
B is determined by the function

HoH (T)

Rs (arbitrary units)

| 1 A;?C,B7!
m = - —un2 —2~2p-21 FIG. 1. Curve fits(solid lineg to data obtained in Ref. 8 for
c(@.B) (Bo"=B#)"+A,C1B Bi-2:2:1:2 atT=4.2 K assuming inhomogeneous broadening with
Bl|c (see text Experimental data of different frequencies are rep-
C.~ TH 02B (102) resented by different symbols. The vertical scale of individual
YU 202u—1)7707Y curves has been normalized and shifted with an offset for ease of
comparison. The paramet€y extracted from the curve-fit result is
where ©~0.8, w?’=A;B,*, and Q*=A,B™*. Figure 1  3.05, 3.7, 3.3, 2.6, 2.2, 2.8, and X10* (GH2)2 T for w/2w=30,
shows a series of absorption profiles obtained by €s@il® 33, 35, 38, 41.1, 46.1, and 49.68 GHz, respectively.
for w/2w= 30 — 50 GHz afl = 4.3 K. The solid lines are
fitting curves to their data using E(LO2) for the line shape clude that this mechanism explains the experimental data
in addition to a background that is approximated by a quawell for the plasma linewidth in magnetic fiel@s<7 T and
dratic function inB: below the irreversibility line.
For the contribution”, due to dissipation of a plasmon
B! into vortex oscillations, we anticipate a significant increase
ai(BE"_ B )2+ a,B~2’ with magnetic field'/Q«B*?; see Eq(99). We anticipate
(103 also a significant temperature dependence due to that of the
viscosity coefficienty. Up to nhow we cannot estimate this
wherea;’s, ;'s, andBy are the fitting parameters. The back- contribution to the linewidth becausg is unknown. How-
ground is probably due to flux-flow resistivity. Matsuéé  ever, the predicted field and temperature dependence is in
al® show that it disappears in the zero-Lorentz-forcegbvious disagreement with experimental dat3%!! we
configurationJ|| HI| c, but is the most pronounced when conclude that this mechanism is ineffective in the range of
JL (HJl ©), which proves the idea. Figure 2 shows absorptionmagnetic fields used to study theaxis plasmon so far;
profiles obtained for a different sample &t 12.5, 16, and B<7 T. Assuming that the vortex contribution to the relative
20 K with /27 fixed at 54.4 GHz. The solid lines are fitting linewidth in this field interval is less than 20%, we obtain the
curves to the data USing Eq103) The flttlng parameters upper limit for n/aE which is about 3.& 10_18 cm HS3/g
a; and a;, are related to the line shape parame®@isand  Noting that the line shift due to this mechanism should be
Ay by a,/ai=CJ/AL. Using the dispersion relation small(otherwise the power-law dependence would be modi-
w?=A;By*, A; can be determined independently to befied) we obtain a lower limit fora, of about 18 g/cm Hs
1.16x10° GHz? T°8 Therefore one may calculat€, 2. These limits do not contradict the recent experimental data
from the curve-fit results. As Fig. 1 shows, ona, andy discussed above. We note that for higher mag-
C,~(2.95+0.75)x 10* (GH2)? T at all fields. Using Eq. netic fields or weaker pinning the coupling of the plasmon
(102, Qo=c/\ecyhap, and B;=d,/y?s®, we obtain with vortex oscillations may become more effective. If so,
v~300 in agreement with other estimates for this parameteithe plasma frequency shift will change a power law depen-
I' remains temperature independent below the irreversibilitydence ofQ2(B) and the relative linewidth will increase with
line and increases with temperature above this line. We cormagnetic field. Thus experiments in high magnetic fields can

Rs(w,B) = a0+ alB+ a282+
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of the plasma resonance: Vortices can be considered as static
during the period of plasma oscillation. In contrasgxis dc

/21 = 54.4 GHz resistivity measurements correspond to zero frequency and
they feel the dynamics of the vortex lattice over a long time
interval. Thus,c-axis plasma resonance and dc resistivity
measurements are complementary to each other and they
both provide a complete picture of the behavior of a vortex
lattice along thec axis.

In conclusion, we have obtained the Lagrangian for the
coupled phase difference variations and vortex motion. From
this Lagrangian we derived equations which describe oscil-
lations of the phase difference coupled with pancake oscilla-
tions in the vortex glass phase. Using these equations we
proved that the plasma frequency is determined by EQs.
and (2) for the orientation of a magnetic field along the
axis.

We derived also the linewidth of the plasma resonance
due to the interlayer tunneling of quasiparticles, arising from
mixing of the homogeneous plasma mode with inhomoge-
neous phase collective modes in the presence of randomly
L positioned pancake6nhomogeneous broadeningnd due
to the decay of the plasma mode into vortex oscillations.

We attributed the observed linewidth of theaxis plasma
resonance in magnetic fields belor T to inhomogeneous

uH (M broadening. The positional disorder of pancake vortices in-
duced by pinning leads to the possibility of exciting many

FIG. 2. Solid lines are fitting curves obtained by the use of Eq.Phase collective modes by an homogeneous external ac elec-
(103) Wh|Ch assumes inhomogeneous broadening_ m:tan Sym_ '[I‘IC ﬂeld ThIS meChan'Sm resu|tS |n the pract'ca”y
bols) are obtained for a different samplet= 12.5, 16, and 20 K  temperature-independent line broadening which fits experi-
with the same microwave frequency 54.4 GHz. The vertical scale ofMmental data welf,
each curve has been modified and shifted slightly for comparison. We argued that the mechanism of plasmon dissipation due
The paramete€, obtained from the curve-fit result is 1.67, 1.67, to excitation of vortex oscillations does not show up in the
and 2.00<10* (GH2)2 T for T = 12.5, 16, and 20 K, respectively. magnetic fields studied experimentally so far, but may be-
come effective at higher fields.

uncover a vortex mechanism of plasma dissipation and pro-
vide information on vortex dynamics.

The important point is that when the dynamic pancake-
plasmon interaction can be neglected, the plasma resonance This research was supported by the U.S. Department of
sees an instantaneous picture of the vortex configuration, artehergy. We thank J. R. Schrieffer, A. E. Koshelev, V. L.
its position and line shape depend on the static properties dfokrovsky, S. V. Pokrovsky, and M. V. Vinokur for useful
the vortex lattice. This occurs because of the high frequencgiscussions.

Rs (arbitrary units)
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