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We consider the existence of high-Tc superconductivity and the symmetry of the gap function when elec-
trons are scattered from tunneling units that interact via an elastic strainlike potential. We examine the conse-
quences of conduction electron scattering for the specific case of tunneling units found in experiments on the
high-Tc superconductors YBa2Cu3O61x , Bi2CaSr2Cu2O8, Tl2CaBa2Cu2O8, Tl2Ca2Ba2Cu3O10, and
Tl2CaBa2CuO6. Our calculations give~i! a strongly anisotropic scattering of the conduction electrons,~ii ! a
strongly anisotropic superconducting gap ink space,~iii ! an isotope effect different from that associated with
phonon scattering in the BCS theory,~iv! a high transition temperature, and~v! a gap function with nodes and
a combination of ans-wave and adx22y2-wave symmetry. Thedx22y2 symmetry arises from the directionally
dependent scattering of electrons by the tunneling units which have a well-defined orientation with respect to
the crystal axis.@S0163-1829~96!03033-0#

I. INTRODUCTION

There has been a great deal of interest in high-Tc super-
conductivity ~SC! ever since it was discovered by Bednorz
and Mueller.1 The literature on high-Tc superconductivity is
quite extensive2–5 and therefore we only quote here a few
review articles and books. Several theoretical explanations
were proposed for high-Tc SC.

6–8 One of these ideas,6 the
resonance valence bond method, was used to explain high-
Tc SC. Another7–9 suggested that antiferromagnetic~AF!
spin fluctuations are the cause of high-Tc SC. The theory of
AF spin fluctuations gives an anisotropic gap function and
nodes in the gap, which seems to have been confirmed in
experiments.10–12 Other models proposed were extended
van Hove singularities,13 anisotropic electron-phonon
interactions,14 and electron scattering from two-level tunnel-
ing units.15,16

The purpose of this paper is to propose an approach to the
theory of high-Tc superconductivity.

17 We use the idea that
the conduction electrons are scattered by atoms in a two-
level ~or multilevel! potential, denoted here as a tunneling
unit ~TU!. The TU’s interact with each other via a strainlike
interaction. The orientation of the two-level TU, defined by
the vector from one potential well to the other, has a well-
defined direction with respect to the crystal axis. This idea is
central to the understanding of our model.

For the high-Tc materials we consider, in Sec. II we re-
view experimental evidence showing~a! the existence of
tunneling units and~b! that the TU’s are indeed aligned in a
specific direction of orientation with respect to the crystal
axis.

The idea that~noninteracting! double-well potentials may
cause high-Tc superconductivity was discussed
previously,15,16 however, has not been widely accepted. For
this reason it is important to elucidate the differences be-
tween our model and previous ones. Previous derivations15,16

~i! did not consider interactions between tunneling units,~ii !
relied on the concept that superconductivity is caused by

anharmonic phonons arising when electrons are scattered
from atoms in double-well potentials,~iii ! did not give a
d-wave-like symmetry for the gap function, which by now
appears to be confirmed by experiments,10–12 and ~iv! gave
an inverse~negativea) isotope effect.18

In our model electron pairing arises directly from scatter-
ing by the interacting tunneling units with no phonons in-
volved; i.e., we assume that the phonon contribution is not
the important one. Because of the experimentally observed
direction of orientation of the TU’s, we get an anisotropic
scattering of the electrons and a combination ofs-wave and
d-wave symmetries in the gap functionD(k…. This s-wave
and d-wave combination may be important in experiments
on c-axis tunneling of pairs discussed in Sec. IX. Because of
the interaction between the TU, we get asymmetric wells and
obtain a usual isotope effect~positivea).

For the sake of clarity, we next discuss the physical ideas
in more detail. Consider a single particle~i.e., an atom or a
molecule! in a double-well potential at sitei . Because the
particle can tunnel from one well to the other, we denote this
as a two-level tunneling unit TU(i ) at site i . For simplicity
we deal with a two-level TU; however, the principles de-
rived, but not necessarily the details of the calculation, apply
to multilevel TU’s also. In fact we show later on that in a
certain approximation the two-level and four-level TU’s give
the same symmetry of the gap functionD(k…. Tunneling
units with elastic interactions were extensively discussed in
connection with amorphous and glassy materials.19–23 Here
we explore the possibility of high-Tc superconductivity aris-
ing from electron scattering by tunneling units.24

The tunneling units are assumed to interact with other
TU’s as well as with nontunneling atoms or molecules in the
high-Tc solid via a strainlike interaction.

19–23The excitations
arising from the long-range strainlike interactions20–23 thus
play an essential role in pairing and superconductivity. In
Sec. VI we discuss that both the strain interaction and the
single-electron–TU coupling are sufficiently strong to cause
high-temperature superconductivity. The conduction elec-
trons are scattered by the TU and excite it to a higher-

PHYSICAL REVIEW B 1 SEPTEMBER 1996-IIVOLUME 54, NUMBER 10

540163-1829/96/54~10!/7430~11!/$10.00 7430 © 1996 The American Physical Society



energy level, creating elastic excitations. A second electron
deexcites the TU via a virtual process. This process can cre-
ate an attractive electron-electron interaction, pairing, and
SC. Furthermore, if the TU’s in the high-Tc superconductor
are oriented in a certain well-defined direction with respect
to the crystal axis as is found in experiments on a number of
high-Tc materials, the scattering results in an anisotropic
electron–tunneling-unit potential. This anisotropic potential
gives an anisotropic gap function with a combination ofs
anddx22y2 symmetry. Thus the anisotropy in the gap func-
tion comes out naturally from our calculations without any
assumptions other than the existence of TU’s which are ori-
ented along a certain well-defined direction relative to the
crystal axis.

TU’s were found in experiments on a number of
high-Tc materials. Experiments on YBa2Cu3O61x showed
that there are Cu-O chains along theb axis,25,26,27 and
that the oxygen atoms are displaced 0.08 Å perpendicular
to the chain axis. For YBa2Cu3O61x the direction of the
TU’s is in the a direction. TU’s were also found in
experiments on26 Bi2Ca1Sr2Cu2O8 where the oxygen atom
occupies, and can tunnel between, one of the four possible
sites, hence representing a four-level TU. Similarly26

there are TU’s in Tl2Ca1Ba2Cu2O8, Tl2Ca2Ba2Cu3O10, and
Tl2Ca0Ba2Cu1O6. Experiments thus show that TU’s are
present in a number of high-Tc materials. Are they present in
all high-Tc materials? We cannot say at this time.

In Sec. VIII we discuss that in a certain approximation the
two-level and four-level TU’s give the same symmetry of the
gap function D(k…. Therefore we treat the case of
YBa2Cu3O61x , which has two-level TU’s on the chain, to
obtain the symmetry ofD(k….

II. TUNNELING-UNIT MODEL

We discuss the case of YBa2Cu3O61x as a specific ex-
ample of a high-Tc superconductor to which our derivations
may apply. We assume the validity of the charge transfer
model discussed by Jorgensen28 and by Cavaet al.29,30 As
was discussed by Jorgensen,28 in YBa2Cu3O61x the charge
transfer layer has Cu-O chains along theb axis.30 From neu-
tron diffraction experiments Francois and co-workers25–27re-
ported that in YBa2Cu3O61x the oxygen atoms~in the charge
transfer layer! on the Cu-O chains~along theb axis! are
located in potential minima at a distanced50.08 Å perpen-
dicular to the chain axis~i.e., along thea axis! at tempera-
tures from 5 to 250 K. Thus the oxygen atoms along the
chains have two minimum positions perpendicular to the
chain axis and are displaced from the chain axis by a well-
defined distance in thea direction. A zigzag motion of the
O~1! oxygens on the copper oxygen chains was also ob-
served in Mo¨ssbauer experiments in the temperature region
from 80 K to about27 400 K. The two positions seem to be
occupied with equal probability at high temperatures.
However, as the temperature is lowered the oxygen
atoms move preferentially into one or the other of the
two positions.26 As stated in the Introduction, in a certain
approximation the symmetry ofD(k… for the chains
in YBa2Cu3O61x is the same as that for the TU’s in
the planes for Tl2Ca1Ba2Cu2O8, Tl2Ca2Ba2Cu3O10, and
Tl2Ca0Ba2Cu1O6.

Consider the left~right! potential wells for the oxygen.
For simplicity we assume that with interactions the two po-
tential wells have unequal depth. This idea is in qualitative
agreement with the experiments that at high temperaturesT
the two potential minima are occupied equally likely; how-
ever, below someT5T0 the oxygen atom prefers to be in
one of the wells only.25

III. ZEROTH-ORDER HAMILTONIAN

To make a comparison between BCS theory31 and our
model, we write the zeroth-order HamiltonianH0 for both
cases. Letck* andck be the electron creation and annihilation
operators~with the electron-spin index suppressed!. Let bq*
and bq be the phonon creation and annihilation operators
with wave vector q. The zeroth-order Hamiltonian
H0(BCS) for the BCS theory is H0(BCS)
5(kekck* ck1(q\vqbq* bq .

The zeroth-order TU Hamiltonian19,20 H0( TU)
5Hce1Hst, where Hst is the strain Hamiltonian,
Hst52( i, j Ji js i

zs j
z2( ij is i

z whereJi j is the interaction po-
tential between pairs of TU’s at sitesi and j , ands i

z is the
z component of Pauli pseudospin operator.j i is a local field
at sitei which acts as an external field.20 j i is related to the
strain energy arising from nontunneling atoms and
molecules.20 Thus

H0~TU!5(
k

ekck* ck2(
i, j

Ji js i
zs j

z2(
i

j is i
z . ~1!

In Eq. ~1! the electron-spin index is again suppressed and
only the pseudospin operatorssz appear. Equation~1! for the
tunneling units is the analog ofH0(BCS) for the BCS model.
We have not included the phonon contribution to the above
Hamiltonian since we consider a physical situation in which
the phonon excitations are much less important and negli-
gible compared to the TU excitations. Instead of the phonon
term inH0(BCS) we have the interaction term between the
tunneling units,2( i, j Ji js i

zs j
z2( ij is i

z . Thus instead of the
phonon energies in the BCS theory, the TU energies enter in
our derivations.

IV. INTERACTION WITH THE CONDUCTION
ELECTRONS

In BCS theory, the electron-phonon interaction Hamil-
tonian H int(ep) between the conduction electrons and the
phonons is given byH int(ep)5(k,qVqck* ck1q(bq*1b2q).
We next obtain the conduction electron TU interaction
HamiltonianHel,TU, which is analogous toH int(ep) for the
BCS case.

Let r andRi be the position of the electron and of the TU
site i , respectively. Let theV0(r2Ri) be the Coulomb po-
tential between the TU and the electron. The oxygen atom
experiences a double-well potential and can jump~or tunnel!
between the two wells. The conduction electron which scat-
ters the oxygen atom feels a potential which has a certain
magnitude but whose center varies as a result of the jump of
the atom. When the atom jumps from the left well into the
right one or vice versa, the wave function of the conduction
electron follows it. A similar problem was treated by
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Kondo32 and we follow Kondo’s approach.
The electron wave function is assumed to be of the free

electron type exp(ik•r ). V0(r2Ri) is assumed to depend
only on the relative coordinates (r2Ri). The oxygen atom
has two localized states located at sites1a/2 or 2a/2 from
the center. The distancea/2 is a vector distance chosen to be
along thex direction, wherea/2 is measured from the chain
axis.

Let CR(R) andCL(R) be the wave functions when the
particle is in the ground and excited states, respectively.
These states are localized preferentially in the right~left!
wells of the double-well potential. For clarity the indexi is
suppressed. Then we have32

Hel,TU5(
k8k

~Lk8k1M k8ks
z1Nk8ks

x!ck8
* ck , ~2!

where s is the Pauli pseudospin matrix expressed in the
basis functionsCL andCR (sx

25sy
25sz

251) and32

Lk8k5V0~k82k!E ei ~k2k8!•R
CL~R!21CR~R!2

2
d3R,

~3!

M k8k5V0~k82k!E ei ~k2k8!•R
CR~R!22CL~R!2

2
d3R,

~4!

Nk8k5V0~k82k!

3E ei ~k2k8!•R
CL* ~R!CR~R!1CR* ~R!CL~R!

2
d3R.

~5!

Hel,TU is the Hamiltonian for electron scattering by a
single TU. The momentum due to the scattering is taken up
by the excitation of the system of interacting TU’s and will
be discussed later on. TheLk8k ~renormalization of the Fermi

energy! andM k8k ~renormalization of the TU energy! terms
do not produce virtual excitations of the TU and therefore
are not relevant to the pairing of electrons and superconduc-
tivity. The third term in Eq.~2! represents the physical pro-
cess in which an incoming electron with wave vectork is
annihilated ~scattered! by a TU which has an electron–
tunneling-unit interaction potentialV0(k82k). Another elec-
tron is created with wave vectork85k1q. In this process
the particle in one state of the TU is flipped to the other state
as is indicated by thesx operator. Thus, theNk8k term rep-
resents the electron scattering followed by an excitation of
the tunneling unit from the ground state to the excited state at
site i . The total Hamiltonian is given by summing over all
tunneling sitesi in the solid. The effective Hamiltonian
H int(el,TU) is

H int~el,TU!5 (
k8k,i

Nk8k,is i
xck8
* ck , ~6!

where

Nk8k,i5V0~k82k!E ei ~k2k8!•Ri@CL* ~Ri !CR~Ri !

1H.c.#
d3Ri

2
. ~7!

Equation~6! is the electron-TU interaction term, analo-
gous to the electron-phonon term in for the BCS supercon-
ductor and H.c. denotes the Hermitian conjugate.

V. ANISOTROPY IN THE SCATTERING POTENTIAL

We now show that for the YBa2Cu3O61x chains Eq.~7!
gives an anisotropic potential which results in an anisotropic
gap function D(k… with a combination of s-wave and
d-wave symmetries.33,34 Each TU is directed in thea direc-
tion, denoted as thex direction. The major contribution to

FIG. 1. A model potential for calculating the
overlap integral given by Eq.~7!. The figure also
shows the wave functions for the two lowest en-
ergies of the tunneling unit.Ubarrier andU right are
measured from the bottom of the left well, taken
to be zero.
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tunneling occurs for large overlap integrals, i.e., between the
two minimum positions for the oxygen on the same site.33

This is so, since the overlap integral between wells on the
opposite side of the copper atom in the chain is very small
due to the large distance between wells. We approximate the
overlap in Eq.~7! by the delta functionsd(y) andd(z) in the
y and z directions. Thus the scattering potential is strongly
directional.

To simulate the experimental results25 for the oxygen tun-
neling between two positions located perpendicular to the
copper-oxygen chain we use the model potential shown in
Fig. 1. The potential of the left well was assumed to be 50
meV above that of the right well and the height of the barrier
was assumed to be 70 meV. We calculated35 the wave func-
tions CL(Ri) andCR(Ri) and plotted them in Fig. 1. The
width of the two wells and the width of the barrier were each
assumed to be 0.1 Å. For this potential the ground-state wave
function is mostly localized in the right well; in the next
lowest state the oxygen is mostly in the left well. The next
excited state is no longer localized~its energy is above the
barrier!. The two lowest energies corresponding to the two
wave functions shown in Fig. 1 are 17 meV and 59 meV.
The overlap integralNkk8 /V0(k2k8) was calculated and
plotted as a function of the angles,u andu8 between thex
axis and the wave vectorsk and k8. Our calculations give
that the overlap integral is proportional to cosu2cosu8,
showing that

Nkk8}V0~k2k8!~cosu2cosu8!e2A2mUDx/\, ~8!

whereU in Eq. ~8! is some average potential barrier and
Dx is the distance between the wells. Assuming the isotropic
Coulomb interactionV0(k2k8) we have

Nkk85Ni~cosu2cosu8!, ~9!

whereNi is an isotropic coefficient which incorporates the
Gamow factor from Eq.~8!. Equation~9! will be used to
solve the tunneling problem.

It is important to note that the interaction of a pair of
two-level TU’s via the conduction electron scattering was
discussed in a number of articles related to the Kondo
effect.36,37 Let this interaction potential be denoted by
V(TU,TU) . V(TU,TU) is somewhat similar to the interaction po-
tential arising between localized magnetic impurities in the
presence of ans•d scattering of the conduction electrons by
the localized magnetic impurities. Thiss•d scattering leads
to the well-known Ruderman-Kittel38 potential between the
localized spins.

It was found that the interaction between pairs of two-
level TU’s, V(TU,TU) , arising purely from conduction elec-
tron scattering is quite weak.37 It is important to understand
that the indirect interaction between TU’s,V(TU,TU) , arising
from conduction electron scattering is not relevant to our
problem, and thus it does not matter thatV(TU,TU) is weak,
since we assume that the interaction potential between the
TU’s arises from the strain interaction. We discuss astrongly
interactingsystem39 in which the coupling due to strain in-
teraction is much greater thanV(TU,TU) . Hence in our prob-
lem V(TU,TU) can be neglected compared to the strain inter-
action.

VI. EXCITATION ENERGY
FOR THE TUNNELING UNITS

In weak-coupling BCS theory one obtains an attractive
electron-electron interaction and the transition temperature
using second-order perturbation theory, whereas in the
strong-coupling case one has to use the Eliashberg40 equa-
tions. We treat the electron-TU scattering problem in the
weak-coupling approximation.41

In the BCS Hamiltonian the electron-phonon scattering
results in superconducting pairing. The excitation energy
\vq is found from the equation of motion of the electron-
phonon interaction term withH0~BCS!

To obtain the effective interaction between pairs of elec-
trons scattered by TU’s we have to derive the excitation
spectrum of the interacting TU system. What range of exci-
tation energies are we interested in? From treating the inter-
acting random quadrupole system20–22 it was found that for
the random amorphous system there are very-low-energy ex-
citations of the order of 1 K and other excitations which arise
from the frozen-in system of TU’s that have much higher
energies. The largest energy is determined by the total strain
energy of the TU with its surrounding. In the high-Tc super-
conductor we are not dealing with a random system and we
are concerned here primarily with the high-energy excitation
of the system because these excitations will give the major
contribution to the attractive interaction and the high transi-
tion temperature~there may still be some low-energy excita-
tions!.

The algebra here is very similar to the one in the case of
the phonons.42 Nkk8 replaces theD(q) for the phonons, and
\vq for the phonons is replaced by the TU excitation energy
Js5(2( iJsi2js) derived in the Appendix. In our calculation
we use J ave, the average value ofJs . We obtain the
expression42 for the electron-electron interaction Hamil-
tonianHel,el,

Hel,el5(
k,q

N~q!N~2q!

3
Jave

~ek2ek1q!
22J ave

2 ck1q* c2k2q* c2kck . ~10!

We find that for (ek2ek1q)
2,Jave

2 Hel,el is attractive, and
causes pairing. The interacting tunneling system takes up the
momentum when the particle is scattered from one well to
the other. When there are no phonons excited, all the mo-
mentum is taken up by the interacting tunneling system. In
principle, however, part of the momentum could be trans-
ferred to phonon excitations, in which case the interacting
system will take up onlypart of the momentum imparted to
the TU.

It is important to estimate the strength of the average
strain-interaction potentialJave. Whereas calculations by
Brown39 show the presence of relatively large strains, we
could not estimate the strain energy for the high-Tc super-
conductors from Brown’s paper39 directly. However, experi-
ments on the insulating strain-interacting TU’s of CN2 dis-
solved in KBr ~Refs. 43 and 44! show that estimates of the
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near-neighbor strain interactionJNN are large and vary some-
what in different experiments. Experiments by Ensset al.43

obtain the strength of the near-neighbor strain interaction
JNN from the low-energy excitations of CN2 in KBr, and
find that JNN is about 300 K.44 Dobbs et al.45 obtain JNN
from low-temperature specific heat experiments and find that
JNN may be as high as 1000 K.

45 AssumingJNN is of similar
magnitude in the high-Tc materials as in CN2 in KBr, we
obtain that if strains from two or more near neighbors act on
the TU under consideration, the high-energy excitation is at
least 600 K but may be even much higher than that. The
single-electron–tunneling-unit scattering potential which en-
ters our equations can also be quite large. For one particular
case, involving the glassy metal Pd0.75Si0.165Cu0.06,

46 this po-
tential was deduced from experiments on electron relaxation
in metallic glasses and was found to be about 0.4 eV. Using
the value forJave of 600 K and the value ofN(q) to be 0.4
eV we obtain a coupling constant which gives a highTc . We
also have to consider the number of TU’s which are present
in the crystal. If the TU concentration were very low, as it is
in glasses, we would most likely not get high-Tc supercon-
ductivity. However, here we expect the concentration of the
order of one tunneling unit per unit cell, thus enabling the
possibility for highTc . There may be additional low-energy
excitations20 in the strain interacting system; however, here

Tc will be determined by the high-energy excitations present
in the system. Our estimates indeed give that the strain in-
teractions may be large enough to cause high-Tc supercon-
ductivity.

VII. EQUATIONS FOR THE GAP FUNCTION AND Tc

We next derive the expression for the gap function
D(k). We start with an effective electron-electron potential,
denoted byV(u,u8). V(u,u8) consists of two parts, a repul-
sive interactionV1 arising from the Coulomb interaction be-
tween pairs of electrons as they are scattered by the TU’s,
without the TU’s being excited, and a second part in which
the TU is virtually scattered from one state to the other,
causing an attractive electron-electron interaction given by
Eq. ~10!. Substituting Eq.~8! into Eq. ~10! we have

V~u,u8!5V11V2~cosu2cosu8!2. ~11!

We assume that the gap function can be written as

D~u!5D11D2cos
2u. ~12!

We use the standard expressionD(k)5(k8Vkk8D(k8) for the
finite-temperature integral equation for the gap function31

and obtain

D11D2cos
2u5

N0

4pE2J

J

de8E
2p

p

du8
~V11V2cos

2u81V2cos
2u!~D11D2cos

2u8!

Ae821~D11D2cos
2u8!2

tanh
bAe821~D11D2cos

2u8!2

2
,

~13!

whereJ is the maximum TU excitation energy, similar to the cutoff energy\vc in BCS calculations, andN0 is the density of
states at the Fermi surface. Equation~13! can be separated into a system of two equations forD1 andD2:

D15
N0

4pE2J

J

de8E
2p

p

du8
~V11V2cos

2u8!~D11D2cos
2u8!

Ae821~D11D2cos
2u8!2

tanh
bAe821~D11D2cos

2u8!2

2
, ~14!

D25
N0

4pE2J

J

de8E
2p

p

du8
V2~D11D2cos

2u8!

Ae821~D11D2cos
2u8!2

tanh
bAe821~D11D2cos

2u8!2

2
. ~15!

At T5Tc both D150 andD250. Let b be the limit of
D2 /D1 as T→Tc . Dividing Eqs. ~14! and ~15! by D1 we
obtain the following pair of equations forb andTc :

15
N0

2pE0
J

de8E
2p

p

du8

3
~V11V2cos

2u8!~11bcos2u8!

e8
tanh

bce8

2
, ~16!

b5
N0

2pE0
J

de8E
2p

p

du8
V2~11bcos2u8!

e8
tanh

bce8

2
.

~17!

Integrating overu8 yields

15N0SV11
V21bV1

2
1
3

8
bV2D E

0

Jde

e
tanh

bce

2
, ~18!

b5N0V2S 11
b

2D E0Jde

e
tanh

bce

2
. ~19!

Dividing Eq. ~19! by Eq. ~18! we obtain

b5
V2~110.5b!

V1~110.5b!10.5V2~110.75b!
,

05S 12V11
3

8
V2Db21V1b2V2 ,
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b5
2V16A~V11V2!

210.5V2
2

V110.75V2
. ~20!

Substituting Eq.~20! into Eq.~19! and dividing it byb gives
us the final BCS-like equation forTc :

15N0V effE
0

Jde

e
tanh

bce

2
. ~21!

We thus have

kBTc'Je21/(N0Veff), ~22!

where

Veff[V2S 1b1
1

2D 5V2S 121
V110.75V2

2V11A~V11V2!
210.5V2

2D .
~23!

We chose the plus sign in Eq.~20! because it yields a higher
effective potentialVeff for any combination ofV1 andV2. In

Eq. ~23!, V1 is negative~repulsive interaction!. Equation~12!
can be rewritten to show the explicit dependence of the gap
function upon cos2u. We have

D~u!5Ds1Ddcos2u, ~24!

whereDs5D11D2/2 andDd5D2/2. The coefficientDd of
cos2u gives the amplitude of thedx22y2 part of the gap func-
tion. The gap functionD(u) has nodes whenDd is greater
thanDs .

VIII. SOLUTION FOR THE ZERO-TEMPERATURE
GAP EQUATION

For zero temperature we solved the integral equations
~14! and ~15! and constructed algebraic equations which
closely approximate the computer calculated results. The co-
efficientsDs andDd for the zero-temperature gap function
were obtained as functions of the parametersN0V1 and
N0V2. Figure 2 showsDs andDd vsN0V2 for a fixed value

FIG. 2. Gap function coefficientsDs andDd

~measured in units ofJ) as functions ofN0V2 for
a fixed value ofN0V1521.8. The solid line
shows the direction of nodes in the gap function
@D(k)50# with respect to theb axis.

FIG. 3. Line of constant valueuDd /Ju50.5. The solid line
shows the best-fit parabola.

FIG. 4. Line of constant valueDs /J50.5. The solid line shows
the best-fit third-degree polynomial.
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of N0V1521.8. It also shows direction of the nodes in the
gap functionD(k).

While our model deals with repulsive~negative! N0V1
and attractive~positive! N0V2, we used a wide range of both
negative and positive potentialsN0V1 andN0V2 to examine
the mathematical properties of Eqs.~14! and ~15!. We plot-
ted isolines ofDs andDd ~lines of constantDs and of con-
stantDd) usingN0V1 andN0V2 as coordinates. For clarity
we denoteu15N0V1 andu25N0V2. Some of these plots are
shown in Figs. 3 and 4.

For 0.1J<Ds<0.5J the lines of constantDs can be ap-
proximated by third-degree polynomials inu1 and u2 with
very high accuracy as is shown in Fig. 4. Coefficients of
these polynomials can in turn be analyzed as functions of
Ds , leading to the approximate algebraic equation

u1'1.57Ds1~120.032lnDs!u21~0.041410.0716lnDs!u2
2

1~20.000 11410.001 49lnDs!u2
3 . ~25!

The lines of constantDd have somewhat different behav-
ior. In the vicinity ofu250 these isolines go almost parallel
to theN0V1 axis. The reason for this is that for a system with
spherical symmetry (N0V250) Dd50. For an assumed re-
pulsive anisotropic potential@this is a mathematical assump-
tion not within our TU model which always gives an attrac-
tive ~positive! anisotropic potential# one can derive the
important feature thatDd has always the same sign as
N0V2. The lobes of thed-wave component of the gap func-
tion change sign if one uses an~assumed! repulsive aniso-
tropic potential instead of an attractive one. When the scat-
tering is preferred to be in thex direction and the potential
N0V2 is attractive thed-wave lobes are positive in thex
direction and negative in they direction, whereas for a re-
pulsive anisotropic potentialN0V2 with the same preferred
direction of scattering (x direction!, the lobes in thex direc-
tion are negative and those in they direction are positive. To
simplify the picture let us concentrate on a sufficiently large
uu2u.u2min, whereu2 min varies from the highest value of
0.8 for uDdu50.5J to lower values for smallerd-wave com-
ponents. Then for anyuDdu both positive and negative
branches of the remaininguDdu isoline can be very accurately
approximated bythe samesecond-degree polynomial inu1
andu2. Analyzing coefficients of these polynomials as func-
tions of uDdu leads to the algebraic expression

u1'~0.25111.88uDdu!2u21~20.11810.121lnuDdu!u2
2 .
~26!

Equations~25! and~26! can be rewritten in a form which
can be easily solved forDd andDs ,

uDdu'e8.39~u11u220.25110.118u2
2
21.88uDdu!/u2

2
, ~27!

Ds'e13.9~u11u220.0414u2
2
21.57Ds!/~20.446u21u2

2
10.0207u2

3
!.

~28!

Now we return to discuss the relation between the two-
orientational tunneling units and the four-orientational ones
and show that in a certain approximation the two give the
same symmetry for the gap function.

Consider a four-well TU with well coordinates
r15(2a,0), r25(0,a), r35(0,2a), andr45(a,0). We as-
sume that in the ground state the oxygen atom is in the first
well at r1. We also assume that the wells located atr2 and
r3 have the same potential, that this potential is higher than
that of the first well, and that well number 4 has a potential
different from wells 1, 2, and 3. IfC i(R) is the wave
function of the oxygen localized in thei th well, then the
ground-state wave function isCg(R)5C1(R) and possible
excited-state wave functions are@C2(R)1C3(R)#/A2,
@C2(R)2C3(R)#/A2, andC4(R). Coupling toC4(R) is
small due to the large exponent in the Gamow factor. From
the two remaining states the symmetric one always has
lower energy; therefore we must useCe(R)5@C2(R)
1C3(R)#/A2 as the wave function for the excited state
in the coupling integral similar to Eq.~2!. Let Nq,i j be the
function Nq when the oxygen is scattered from state
i to statej . Usingq[k2k8 the resulting coupling constant
can then be expressed asNq5(Nq,121Nq,13)/A25(1/A2)
3@Nisot(qx1qy)/A21Nisot(qx2qy)/A2#5Nisotqx , where
we have used the fact thatNq,i j}Nisot@q•(r i2r j )#.

For the above argument to be valid, the lowest-energy
state of the TU should not change direction from one
site to the other, for if it did change direction, the angle
u would vary from site to site. Consider the case of
Bi 2Ca1Sr2Cu2O8. For this material there are four possible
wells in which the oxygen can be found. The microscopic
symmetry, as determined by electron beam diffraction, is
orthorhombic.26 Thus the lattice distorts, removing the te-
tragonal symmetry of the four orientations and introducing a
preferred orientation for the ground state of the oxygen. An
orthorhombicity of the order of a small percent is sufficient
to have preferred directions of orientation, since the charac-
teristic length is the distance between wells on the same site.
This results in a factor ofqx in the expression forNq,i j .

IX. POSSIBLE EXPERIMENTAL CONSIDERATIONS

Is it possible to obtain experimental verification of our
calculations? Further theoretical as well as experimental
work needs to be done to decide this question. There are,
however, two possible experiments that could shed light on
our calculations. These are~i! the pressure dependence of the
transition temperature and~ii ! the isotope effect.

If the strain interactions are important to high-Tc super-
conductors, one should be able to observe the change inTc
as the strain interaction is varied, assuming we keep the tem-
perature of the material very close toTc and apply a slowly
varying-time dependent pressure. Since the near-neighbor
strain interactions, which primarily determine the transition
temperature, are proportional tor23, as the pressure is
changed, so is the distance between the atoms, and one could
drive the material from superconducting to normal and vice
versa as the pressure is slowly varied. This is one possible
experiment which may be very relevant to our results.

A. Calculation of the isotope effect

Another possible experiment is the isotope effect. The
isotope effect arising from a particle in a double-well poten-
tial has been discussed previously.18 In these earlier calcula-
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tions the isotope effect was derived from the mass-dependent
coupling of electrons to excitations of an atom in a symmet-
ric double-well potential described in terms of anharmonic
phonons. In a similar fashion, we use the electron-TU cou-
pling term expressed in Eq.~7! to calculate the isotope effect
for our model. The major difference is that we consider
asymmetric potential wells due to the interaction between the
tunneling units. This leads to very different results.47

Here we present a brief derivation of the isotope effect
a52] lnTc /]lnm for our model. Starting from Eq.~22! we
have lnTc5ln(J/kB)2(N0V eff)

21. As seen in Eq.~23! the ef-
fective potentialV eff depends on two termsV1 andV2. We
assume that there is no isotope effect associated with
electron-electron Coulomb interactionV1 and the strain in-
teractionJ. Thus we have

a52
m

N0Veff
2

]Veff

]V2

]V2

]m
. ~29!

Because of the first partial derivative term, the isotope
effect partly depends on the relative importance of the two
termsV1 andV2 in the expression forV eff in Eq. ~23!. V2

arises from the effective electron-electron Hamiltonian, Eq.
~10!. The mass dependence ofV2 comes fromuN(q)u2 where
the electron-TU coupling termN(q) is given by Eq.~7!. This
term depends on the mass of the particle through the wave
functionsCL andCR . The final expression for the isotope
effect can therefore be written as

a52
mN0V2

~N0Veff!
2 S Veff

V2
2

1.5A~V11V2!
210.5V2

210.5~V11V2!

2A~V11V2!
210.5V2

2@V12A~V11V2!
210.5V2

2#2
V1V2D ] lnuN~q!u2

]m
. ~30!

We have evaluated the isotope effecta for a model po-
tential shown in Fig. 1 varying both the depth of the well,
U right , and the barrier heightUbarrier. We solve for the exact
eigenfunction for the oxygen atom in the double-well poten-
tial for a continuously variable oxygen mass to numerically
calculate the derivative] lnuN(q)u2/]m. We find that for a
symmetric potential~wells, of equal depth,U right50) we get
an inverse isotope effect~negativea). This is in agreement
with previous calculations18 where the isotope effect is also
derived from the coupling term. However, for our model the
wells are asymmetric. As the wells become more asymmet-
ric, a increases, approaches zero, and then changes sign with
increased asymmetry of the wells, leading to the usual posi-
tive isotope effect. In Fig. 5 we show the calculated value of
a for a barrier height of 20 meV and a variable right well

potentialU right . The asymmetry in the potential arises from
the strain interaction between the tunneling units and hence
is absent in earlier double-well models.16

As a consistency argument for our result we should men-
tion that at about 200 K, which we choose as our barrier
height, the oxygen is no longer localized in one of the wells
as was found previously.25

One of the shortcomings of this calculation is that we do
not know how the depth of the wells and, hence, how the
isotope effect are related to the oxygen concentration.

B. c-axis tunneling

We next make some qualitative remarks about experiment
on c-axis tunneling performed in Ref. 48. The tunneling of

FIG. 5. Isotope effect exponenta calculated
for N0V1521.8 and N0V251.6. The barrier
height is fixed atU barrier520 meV. The depth of
the right wellU right is used as a parameter. See
Fig. 1 for the definition ofUbarrier andU right .
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pairs along thec direction indicates ans-wave contribution
and an almost complete absence of ad-wave contribution.
Qualitatively this idea is consistent with our derivations. We
get a combination ofs-wave andd-wave solutions. Thed
waves have lobes which are 90° out of phase with each
other. Thus when the pairs tunnel along thec axis the
d-wave contributions will cancel~if the perpendicular lobes
are of the same magnitude! and one is left with ans-wave
contribution as is observed in experiments.

C. Possible other experiments

If our model is applicable to high-Tc superconductors, the
the effective number of tunneling units is of the order one
per unit cell. Thus an experiment that could probe the num-
ber of TU’s in the high-Tc material should show this.

The coupling of the electrons to the tunneling units could
be derived from a relaxation experiment similar to the one
performed in glasses.46 It would be useful to obtain this pa-
rameter which enters into Eq.~9!.

X. CONCLUSION

We explore the consequences of electron scattering from
interacting tunneling units~TU’s! and find that it could give
high-temperature superconductivity with a gap function
D(k) which has a combination ofs-wave anddx22y2-wave
symmetries. For certain parameters we obtain nodes in the
D(k). Tunneling units were found in experiments on a num-
ber of high-Tc materials. The anisotropy inD(k) arises be-
cause the TU’s have a well-defined direction of orientation
with respect to the crystal axis as was found in experiments.
We emphasize that for our derivations of the transition tem-
peratureTc it matters little whether the oxygen atoms or the
copper atoms, or any other atoms, tunnel. As long as TU’s
are in a well-defined direction with respect to the crystal axis
we obtain a combination ofs-wave andd-wave symmetries
in the gap function. However, experimental properties, for
example, the isotope effect, will depend on the specific atom
which tunnels. In our derivation an analogy is established
between the scattering of conduction electrons by phonons in
BCS theory and the scattering of electrons by TU’s in our
model. Because the excitation energies arising from the elas-
tic interactions between TU’s are expected to be much
greater than the phonon excitation energies in BCS theory,
we obtain a higher transition temperature. Thus in our model
elastic excitations play a very important role and therefore
we expect a strong pressure dependence of the transition
temperature. We calculated the isotope effect and find that
for symmetric wells we get an inverse isotope effect~nega-
tive a). However, as the wells become asymmetric because
of the interactions between the tunneling units,a increases,
becomes zero, and for more pronounced asymmetry becomes
positive. We also comment that our model may explain why
one observes only ans-wave component inc-axis tunneling
of pairs.48

ACKNOWLEDGMENT

One of us~M.W.K.! thanks the Air Force Office of Sci-
entific Research and the Air Force Rome Laboratory for sup-

port of this work under the University Resident Research
Program.

APPENDIX: THE EXCITATION ENERGY
OF THE TUNNELING UNITS

Derivation of the equation of motion fors i
x using fermion

creation and annihilation operatorsai
† andai .

49 The interac-
tion part for the system of pseudospins which represent TU’s
is assumed to be of the form

HI52(
i, j

Ji js i
zs j

z2(
i

j is i
z ~A1!

and the tunneling part of the Hamiltonian of the form

HT52(
i

D is i
x , ~A2!

wheres i
z ands i

x are Pauli spin matrices.
We introduce the representation of spin operators in terms

of Fermi creation and annihilation operatorsai
† andai using

the form suggested by Jordan and Wigner, described in the
book of Mattis.50

We use the following definitions

s i
152ai

†Qi , s i
252Qiai , s i

z52ai
†ai21, ~A3!

where

Qi5Qi
15Qi

215)
j, i

~aj
†1aj !~aj

†2aj !. ~A4!

The operators i
x is expressed as

s i
x5

1

2
~s i

21s i
1!5~Qiai1ai

†Qi !. ~A5!

The Fermi operatorsai
† andai obey the commutation re-

lations

$ai ,aj%50, $ai
† ,aj

†%50, $ai ,aj
†%5d i j . ~A6!

Eigenvalues 0 and 1 of the Fermi number operatorai
†ai

correspond to the eigenvalues of21 and11 of the operator
s i
z

Substituting for Pauli spin operators in the expressions for
the interaction and tunneling terms of the Hamiltonian@Eqs.
~A1! and ~A2!# we obtain

HI52(
i, j

Ji j ~2ai
†ai21!~2aj

†aj21!2(
i

j i~2ai
†ai21!

~A7!

and

HT52(
i

~Qiai1ai
†Qi !. ~A8!

Consider a TU at sitei . As was stated in the text, at low
temperature the particle in the two-level state will be found
in its lowest-energy state. We denote this state as the ground
state of the particle at sitei , whereas when the particle tun-
nels to the higher-energy level it will be denoted as the ex-
cited state.
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Let u0& denote the ground state of the system. Then for
any sitei

ai u0&50u0&, ai
†ai u0&50u0&, ~A9!

s i
xu0&5u i &, ~A10!

whereu i & denotes the state withi th fermion excited.
We use the relationQi u0&5u0& and we letE0 andE1 be

the ground-state and excited-state energies, respectively. We
then obtain

@s i
x ,HI #u0&5~E02Ei !u i &52S 2(

j
Ji j2j i Dai†u0&.

~A11!

We finally have

Ei2E05S 2(
j
Ji j2j i D . ~A12!
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