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A two-dimensional planar Josephson junction of an arbitrary cross section is considered. Electrodes are
assumed to have a cross section identical with that of the junction. This configuration, which is correct from the
physical point of view, allows the boundary conditions for the two-dimensional sine-Gordon equation to be
determined uniquely through a distribution of a surface electrode current. The resulting problem, with this
surface current distribution induced by the bias and/or external magnetic field, is trivial since it is a linear one.
Square and rectangular cases are considered. The numerically derived results concerning the static and dy-
namic regimes differ significantly from the one-dimensional model because of a nonuniform transversal phase
distribution. Moreover, a degeneration of static modes in the absence of an external magnetic field also
appears.@S0163-1829~96!08533-5#

I. INTRODUCTION

Considerable effort has already been devoted to the solu-
tion of the problem of a two-dimensional~2D! flat Josephson
junction in a static or dynamic regime. The problem has a
long history and the majority of authors accept as correct the
natural generalization of the sine-Gordon equation~SGE!
with a 2D Laplace operator. Essential differences exist, how-
ever, because of the applied boundary conditions.

Let us confine ourselves to a rectangular, flat Josephson
junction biased by a time-independent~i.e., dc! current I b
and embedded in a homogeneous external magnetic field
He . Usually the boundary conditions are imposed as a re-
quirement that the normal derivative of the order parameter
on the boundary edge be equal to a linear combination of
I b andHe . As a rule, this derivative is chosen as to be a
constant along each side of the rectangle and applied to the
linearized version of the sine-Gordon equation.1 This ap-
proach is rather typical,2–4 and in fact it means that assumed
boundary conditions are given in the form of a piecewise
constant function of the point on an edge of a junction. It is
a natural extrapolation of boundary conditions imposed in
the 1D case, e.g., in Ref. 5. If such a choice has a deep
justification in the 1D case, there is no basis for the assump-
tion that the considered expression is constant along each
side of a 2D junction. The inflowing current depends on the
electrode configuration and thus indirectly on the local mag-
netic field produced by the biasing current whose distribution
is in fact unknown. Moreover, one can suppose that the den-
sity of an injected current has singularities at the sharp cor-
ners of a junction.4

There are a few exceptions to this general assertion. Since
the problem is important from the applied point of view, in
Ref. 3 it was investigated by making use of a water tank
model or proposing some boundary conditions on the basis
of the 1D configuration.6 Another way was chosen in Refs. 7
and 8 where the 2D junction is considered there as a tunnel-
ing ‘‘window’’ in a uniform strip line configuration. A com-
pletely different approach was proposed in Ref. 9. The ex-
tremalization of some functional, in this case the maximum

of the total current, was chosen for the determination of an
internal current distribution.

One feels, however, the lack of a model which would be
correct from both the mathematical and physical points of
view. This is the motivation of the present paper.

II. BASIC CONCEPTS

We propose a model which, while being correct with re-
spect to the physical aspects and relatively simple from the
mathematical point of view, remains sufficiently general so
that the conclusions seem to be applicable to other configu-
rations. We assume the junction to be an infinitesimally thin
region cutting perpendicularly through an infinitely long
~along thez direction! and uniform superconducting cylin-
der, which represents the junction electrodes on both sides of
the junction plane. The cross section of the electrodes and
thus the junction shape can be arbitrary, e.g., circular, rect-
angular, or of any other form.

The whole structure is therefore homogeneous in thez
direction, with the exception of the thin junction, as shown in
Fig. 1.

Since the junction constitutes only a relatively small per-
turbation in the structure, the boundary conditions are deter-
mined by the surface current distribution in an infinitely
long, perfectly superconducting slab. This also follows from
energetic considerations. Hence the solution of the problem
can be decomposed into two steps. In the first, the current on
the surface of an infinite superconducting slab is determined
~including also the effect of an external magnetic field!. This
distribution imposes boundary conditions for the junction
whose nonlinear SGE is solved in the second step. Thus the
role of electrodes is taken into account, although we are
aware that the geometry is chosen in some particular manner.
Nevertheless, the problem is now well posed from the physi-
cal point of view, since it excludes an arbitrariness in the bias
current distribution.

The most important feature is, however, that the first step
leads to a linear problem and hence it can be easily and
effectively solved. The determination of the surface current
distribution follows from the requirement that the normal
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derivative of the total magnetic field~i.e., including the ex-
ternal one, if it exists! vanishes on the surface of the slab.
This first, linear problem can be decomposed in turn into two
additive subproblems:

~ i! He50, I bÞ0 and~ii ! HeÞ0, I b50, ~1!

each one accompanied by the condition that the normal de-
rivative of the magnetic field vanish on the superconducting
slab surface.

Denoting by j b the surface density of the current on the
slab surface and byhb the magnetic field produced by this
current, both problems reduce to the determination of either
j b8 or j b9 such that

~i! R j b8~P!dG5I b , hb8•nzG50, ~2!

~ii ! R j b9~P!dG50, ~hb91He!•nzG50, ~3!

whereG represents a flat contour of the slab cross section
andn is a unit vector normal to the slab. As a consequence
both subproblems lead to the Laplace equation with specified
boundary conditions and numerous methods of its solution
can be found in any textbook.

A sum of the results for both subcases~i! and ~ii ! solves
the problem, since we deal with a linear problem and

R @ j b8~P!1 j b9~P!#dG5I b , ~4!

while

~hb81hb91He!•nzG50. ~5!

In the next, this time a nonlinear step, the tangential com-
ponent of the magnetic field will be used as a boundary
condition for the phase order parameterw through the equa-
tion

w,n5~hb81hb91He! t , ~6!

wherew,n denotes a normal derivative and (•) t a tangential
component.

The problem is complicated somewhat when the contour
G forms an irregular curve with edges. For some particular
contour shapes a complete solution can be obtained by using
the methods of conformal transformation.

One can easily show that if the edge forms an angle
a52p/s, wheres is an integer, the tangential magnetic field
is given by

Ht;mrm21cos~mw!uG with m5
ks

2~s21!
, ~7!

wherek is a second integer andr is a distance from the edge.
For a rectangular junction the field has a singularity at the
edge sinceHt;r21/3, as shown in the Appendix. Field en-
ergy and integrated current are of course finite.

III. METHODS AND RESULTS

Instead of solving the Laplace equation, we adopted the
following procedure, both for regular and irregular contours.

FIG. 2. Distribution of the surface current density on the surface
of superconducting electrodes~uniform in the z direction!: ~a!
He50, ~b! and ~c! I b50 ~i.e., screening current only!, magnetic
field parallel to the junction side and to the diagonal, respectively,
~d! and~e! I bÞ0,HeÞ0, magnetic field parallel to the junction side
and to the diagonal, respectively.

FIG. 1. Geometrical configuration of the junction~uniform in
the z direction!.
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N equidistant points were chosen along the contour with ini-
tial currents j k , such that(k51

N j k5I b . At each point l
(1< l<N), there was then calculated the component of the
magnetic field normal to the contour~including an external
field but excluding the contribution ofj l) and the currents
were corrected to minimize the sum of the absolute values of
normal components, i.e., the quantityq5(k51

N uhk•nku,
where nk is the normal vector at pointk. This procedure
allows the determination of the surface current distribution
relatively quickly, without the troublesome process of solv-
ing a partial differential equation. Edge points were always
excluded from the calculations. The error, arising from the
fact that an infinite current density at the edge is not in-
cluded, does not influence the current distribution but only
the total current value and it is relatively small. Indeed, as
the current close to the edges or a rectangular junction has
the form j (x)5 j 1@Dx/(2x)#1/3, whereDx is the distance
between two adjacent points andj 1 is the surface current
density at the point closest to the edge, the total error~per
one edge! is D j52*0

Dx/2j (x)dx2 j 1Dx5 j 1Dx/2, and thus it
decreases with increasing mesh density.

As the first step, the initial current distribution was chosen
to be uniform for case~i! and antisymmetric for case~ii !. As
seen in Fig. 2, the final current distribution is far from uni-
form in both cases, justifying the need of this analysis. More-
over, in the case of a rectangular and relatively long junction
~side ratio 10:1! the current density distribution along the
longer side of the rectangle, although relatively small, gives
as the result that total currents flowing over longer and
shorter sides are of the same range. This means of course that
the practically realized 2D junctions~with side ratio less than
5:1! can hardly be considered as 1D ones, since the lateral
current cannot be assumed to be negligibly small.

The distribution of the surface current density, without the
presence of external magnetic field, has of course fourfold

symmetry@Fig. 2~a!#. In contrast, an application of the ex-
ternal magnetic field produces an antisymmetric pattern of
the screening current, as can be seen in Fig. 2~b! for different
orientations of the magnetic field with respect to the square
junction. Since, at this level, the problem is linear, the pat-
tern in the simultaneous presence of bias current and mag-
netic field can be obtained as the sum of the previous, inde-
pendent patterns. This is shown in Figs. 2~d! and 2~e! and it
can be written symbolically as Fig. 2~d! 5 Fig. 2~a! 1 Fig.
2~b! or Fig. 2~e! 5 Fig. 2~a! 1 Fig. 2~c!. These patterns will
serve as boundary conditions according to Eq.~6!.

Calculations of the surface current distribution on a lateral
surface of a rectangular slab of ratio 10:1 show that the cur-
rent density along a shorter side of the rectangle is slightly
higher than along a longer side. The relevant patterns are
presented in Figs. 3~a! and 4~a! without and with an external
magnetic field~applied perpendicularly to a longer side of a
junction!, respectively. However, the partial currents, inte-
grated along longer and shorter sides, have comparable val-
ues and this means that the 1D model needs to be applied
with caution.

Having determined boundary conditions, we solved the
2D attenuated sine-Gordon equation

w ,xx1w ,yy2w ,tt2sw ,t5 j csinw ~8!

using the scheme10,11

FIG. 3. Long rectangular junction:~a! surface current distribu-
tion on supeconducting rectangular electrodes, and~b!, ~c! the two
lowest current modes corresponding to different bias currents.

FIG. 4. Long rectangular junction:~a! screening surface current
distribution on superconducting rectangular electrodes, and~b!–~d!
the four lowest magnetic modes (Heix).
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~11sdt/2!w00
1 52~122dt

2/dx
2!w00

0 2~12sdt/2!w00
21

1~w10
0 1w210

0 1w01
0 1w021

0 !dt
2/dx

2

2 j cdt
2sin@~w10

0 1w210
0 1w01

0 1w021
0 !/4#,

~9!

wheres is an attenuation coefficient,j c the junction critical
current, anddt anddx time and space steps, respectively. A
shorthand notationw00

0 [wxy
t is here adopted. We are aware

that the above scheme can be simplified by a proper choice
of dt /dx , but because of the singularity in the boundary
conditions, we preferred, to be on safe side, a very small time
stepdt!dx . As the argument of the sine function, the quan-
tity w00

0 was sometimes substituted for simplicity during cal-
culations.

The qualitative results in principle follow those known
from the analysis of 1D junctions; i.e., when the bias current
is below some threshold value, the solution is represented by
a static pattern, which can be degenerate in the presence of
the external magnetic field. When the biasing current ex-
ceeds this threshold, a static solution does not exist at all and,
after some transient interval, the dynamic state periodic in
time is reached.

In the 2D junction the main features are the same, al-
though there are some differences in the static state degen-
eracy since one has additional free parameters: the second
space coordinate and the orientation of the external electro-
magnetic field. This leads to a degeneracy of static states also
in the absence of an external magnetic field. Moreover, the
distribution of Josephson current density rather strongly de-
pends on the transversal coordinate, even when a long rect-
angular junction is considered. As a result, the behavior of a
square or near-square junction is considerably different from
predictions of the 1D model. The same observations relate
also to dynamic states. Often a flux creep starts from the
corners of the junction and it is highly dependent on the
direction and magnitude of an external magnetic field.

We first considered a square junction. In the absence of a
magnetic field we have found a few static modes presented
in Fig. 5. With the increase of the bias current the patterns of
the Josephson current develop stronger and stronger oscilla-
tions close to the corners. These patterns we call the~static!
current modes. Total phasew differences are of course 2p,
4p, and 6p, respectively.

In the presence of a magnetic field only~no bias current!
applied either parallel to the side of square junction or to its
diagonal, another, rather antisymmetric pattern of the screen-
ing current appears, as seen in Fig. 6. We deal with loop
currents~vortices! perpendicular to the plane of the junction,
since the net current through the junction vanishes. These
types of patterns we denote as the~static! magnetic modes.

For a rectangular junction some lowest current and mag-
netic modes are shown in Figs. 3~b!, 3~c!, and 4~b!–4~e!. The
current distribution is evidently two dimensional and the de-
pendence on the ‘‘transversal’’ coordinate cannot be ne-
glected, since the density of the Josephson current close to a
longer side is greater than in the junction center giving a
non-negligible contribution to the total bias current. In other
words a local current exceeds the critical current density.
This means indirectly that the 2D model gives smaller criti-
cal ~maximal! currents than follow from the 1D model. One
can say that the 1D model is more ‘‘optimistic.’’

As has already been mentioned, when the bias current is
greater than some threshold current, which depends on the
junction geometry and on the magnitude and direction of

FIG. 5. The three lowest static current modes in a square junc-
tion (He50).

FIG. 6. The lowest static magnetic modes in a square junction
(I b50) for different orientations of external magnetic field.
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magnetic field, the time evolution according to Eq.~9! does
not reach a static state, but after some transient period, it
becomes periodic in time.

In the case of a 1D junction with a sufficiently high cur-
rent, the periodic solutions exist with traveling fluxons origi-
nating at the junction ends; see, e.g., Ref. 3. This feature is
retained by the 2D junction~10:1!, but the process is some-
what more complex. For a small bias current the process
evolves into a classical single fluxon-antifluxon solution, but
with some subtle structure in the transversal direction. For
slightly higher currents two objects, a fluxon and antifluxon,
are generated at both ends and annihilate in the middle of the
junction.

In a square junction the processes are far more compli-
cated. Dynamic processes without magnetic field are shown
in Fig. 7. There is an interaction~annihilation! of four flux-
ons generated at the four corners. Generation starting from
the sides was never observed as far as the Josephson current
is concerned. This is not true, however, in the case of the
Ohmic current. Let us observe that the Josephson current is
accompanied by an Ohmic current caused by the damping
term in the sine-Gordon equation~8!. Since the attenuation is

small, the Ohmic current is also relatively small, but for
graphical reasons the scales in both columns of pictures are
different.

In the presence of an external magnetic field the periodic
process ceases to be symmetric.

In Fig. 8 the magnetic field is parallel to a junction side;
in Fig. 9 it is parallel to the diagonal. In both cases the fluxon
sources are located at the corners, but on inspecting the in-
termediate stages in Fig. 8, one has sometimes an impression
that a fluxon parallel to the side appears. In the configuration
presented in Fig. 9, the fluxons always started from the cor-
ners, but one of them was dominant. The profile of the flux-
ons seems to be circular, which is rather surprising in a Car-
tesian structure.

To ensure that we deal with a periodic process, the local
voltage defined by

V~x,y,T!5
s

TET0
T

w t~x,y,t !dt

5
s

T
@w~x,y,T!2w~x,y,T0!# ~10!

was determined in different points of the junction. For static
solutions this voltage vanishes. For dynamical processes, af-
ter some transient time, this voltage was constant in time and
also independent of the mesh point. This confirms the argu-
ment formulated in the past, that in a physically correct
model the dc voltage has to be independent of spatial
coordinates,12 which favors periodic processes. This obser-
vation was used to test whether a static or a truly periodic
state was reached.

IV. CONCLUSION

The idea that the current distribution on the surface of
superconducting electrodes determines boundary conditions
for the 2D SGE and the choice of junction geometry as a
uniform structure in the direction perpendicular to the junc-

FIG. 8. Dynamics of a square junction (I b550, He550, and
Heix): the density of the Josephson current. Some intermediate
stages of the time-periodic solution.

FIG. 9. Dynamics of a square junction (I b550, He550, and
Hei diagonal: the density of the Josephson current. Some interme-
diate stages of the time-periodic solution.

FIG. 7. Dynamics of a square junction (I b5100,He50): the
density of Josephson current~left column! and Ohmic current~right
column!. Some intermediate stages of the time-periodic solution.
Note the different vertical scales.
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tion plane appear to be very fruitful. Since this current dis-
tribution and in consequence the boundary conditions cease
to be constant along the sides of a rectangular junction, one
obtains, contrary to the past propositions, static and dynamic
states of the 2D Josephson junction and such a model is
closer to the physical realization. For a long 2D junction the
situation is similar qualitatively to that in a 1D one; however,
for a square junction the picture is completely different.
There appears a degeneracy of static current modes and a
flux creep starting from the corners. Moreover, due to the
strongly warped current pattern, the estimation of the maxi-
mal bias current allowed in the static regime~overall junc-
tion critical current! seems to be less optimistic than follows
from the 1D model. It can be anticipated that these conclu-
sions are valid also for other symmetric configurations.
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APPENDIX

We estimate a singularity of the magnetic field tangential
component close to the sharp edge of a uniform supercon-
ducting slab.

The solution of the Laplace equation¹2w50, in a 2D
cylindrical coordinate systemr ,c with boundary conditions

]w~r ,c!

]c
50 for H c50,

c52p2a,
~A1!

where a52p/s and s an integer, is given by
w5(C1r

m1C2r
2m)cos(mw), with

m5
kp

2p2a
5

k

2~121/s!
5

ks

2~s21!
, ~A2!

where k is the second integer. IfH5¹c, then boundary
conditions indicate that the normal component ofH vanishes
on the surfacesc50 andc52p2a. The tangential com-
ponent is then

Ht5]w/]r

5m~C1r
m212C2r

2m21!cos~mc!uc50, 2p2a .

~A3!

The requirement*0
RHtdrub.sur,` ~condition of finite sur-

face current! reduces tom.0. ThenC250, and by Eq.~A2!
s.1. Thus, due to Eq.~A2! on the superconductive surface

w;~21!krm, Ht;~21!kmrm21. ~A4!

For a5p/2, Ht is singular fork51 and then

a 5 2p/3, p/2, 2p/5, p/3,
m 5 3/4, 2/3, 5/8, 3/5,
Ht ; r21/4, r21/3, r23/8, r22/5 .

Thus the tangential component of a magnetic field close
to the a5p/2 corner of a superconducting electrode and
hence the surface current have a singularityHt;r21/3.
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