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An implementation of the multiple-scattering approach to x-ray magnetic circular dichroism~XMCD! in
K edge x-ray absorption spectroscopy is presented. The convergence problems due to the cluster size and the
relativistic corrections are solved using an expansion of the Dirac Green function for complex energies up to
second order in 1/c. The Fermi energy is dealt with via a complex plane integration. Numerical methods used
to obtain the semirelativistic Green function in the whole complex plane are explained. We present a calcula-
tion of the magnetic circular dichroism at theK edge of bcc iron including the core hole effect. A good
agreement is found at high energy. The physical origins of the XMCD spectrum near the edge and far from the
edge are analyzed. The influence of the core hole, the possibility of a multiple-scattering expansion, and the
relation of XMCD with the spin polarized density of states are discussed. A simple interpretation of XMCD at
theK edge is presented in terms of a rigid-band model.@S0163-1829~96!02733-6#

I. INTRODUCTION

X-ray magnetic circular dichroism~XMCD! in a magnetic
sample is the difference between absorption spectra obtained
from right- and left-circularly polarized x rays. This experi-
mental technique was discovered in 1987,1 and gives infor-
mation on the magnetic contribution of each orbital and of
each atomic species in a sample. Still, currently, the detailed
mechanisms that give rise to XMCD at theK edge are not
entirely clear near the edge and are unknown far from it. The
purpose of the present paper is to understand XMCD at the
K edge over the whole energy range used in experiments.
Our main tool is a semirelativistic equation which is very
useful from a computational point of view, and which can be
used to calculate other relativistic properties, such as mag-
netic anisotropy.

In a previous paper, we described a preliminary approach
to the calculation of the x ray magnetic circular dichroism
effect in x-ray absorption spectroscopy, within the frame-
work of the multiple-scattering theory.2 We assumed that
XMCD at the L II,III edges of rare earths and 5d transition
metals has a simple interpretation and that XMCD at theK
edge was the most difficult case, because the spin orbit acts
on the photoelectron, which makes a physical picture diffi-
cult to build. From the experience that was gained in the
intervening years,3 we know now that theL II,III edges of rare
earths are more complicated than expected, and some
progress has been made towards a reliable practical use of
the experimental results4,5 at theK edge of transition metals.

Although fully relativistic calculations of XMCD at the

K edge are numerous,6–19we believe that the use of a semi-
relativistic approach is still justified. Ebert and collaborators.
have shown20 that MCD effects are proportional to the spin
orbit interaction, so that our first-order~in 1/c2) semirelativ-
istic treatment is quantitatively correct. Its main advantage is
that spin and space variables are uncoupled at zeroth order.
This enables us to use the full local cluster symmetry to build
a clearer physical picture and to make orientation averages.
The smaller scattering-matrix dimension of the semirelativ-
istic approach allows for the calculation of larger clusters
and broader energy ranges. Finally, the existing multiple-
scattering numerical programs can be extended to calculate
the XMCD. For instance, Ankudinov and Rehr have adapted
their FEFF program21 to calculate the extended structure in
XMCD at the L II,III edge of rare earths and 5d transition
metals. They obtained good agreement for gadolinium. A
similar adaptation is possible, although more complex, for
K edge spectra.

Here we report on the calculation of theK-absorption
spectra and the XMCD of Fe in the presence and absence of
a static core hole in the 1s state. The influence of the core
hole was taken into account by the final-state rule which
assumes that the final-state energies of the x-ray absorption
process are measured in the presence of a static core hole;
i.e., the dynamics of the excitation process is neglected.22

This rule has been used with success to explain satellite
structures on the high-energy side of the emission spectra of
simple metals.22,23 In particular, for Na and Al theL II,III
emission satellites on the high-energy side of the main lines
due to the double ionization of the 2p core level are well
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reproduced by the calculations if the excited atom is treated
as an impurity and the static electron hole interaction is in-
cluded in the calculation.22,23 The final-state rule was also
used to calculate theL III edge of 3d transition metal
ferromagnetics,24 and the effect of the core hole is found to
be very important. The determination of the self-consistent
potentials is carried out within the local density approxima-
tion with a linear muffin-tin orbital~LMTO! basis set.25 We
use a supercell geometry and treat the excited atom with a
core hole as a single impurity atom in a lattice. A 1s electron
is added to the conduction states in the supercell, and we let
the system ofN11 electrons relax self-consistently. We have
found that the photoelectron localizes on the excited atom,
providing an efficient screening of the core hole. As in the
case of theL II,III edge24 up to 80% of the photoelectron
polarizes as a minority spin. Thus, the electronic structure of
the excited Fe atom is very close to that of a cobalt metal.
However, in this calculation we have found that the effect of
the core hole on theK-absorption edge and the XMCD is
small, and this is because thep states of Fe are less affected
by the presence of the core hole.

In this paper, the determination of the absorption spectra
and the XMCD is carried out within the multiple-scattering
theory. During the implementation of our early formalism we
encountered several difficulties that convinced us that the
naive approach used in Ref. 2 to take spin orbit effect into
account is mathematically not sound. In the present paper,
we use a different mathematical framework for the calcula-
tion of XMCD, which can be generalized to take relativistic
effects in the valenced shell forL II,III edges. This approach
gives a direct expansion of the Dirac Green function in pow-
ers of 1/c, it overcomes the divergence of the Foldy-
Wouthuysen transformation through the use of complex en-
ergies, and it leads to results in reasonable agreement with
experiment.

Some of our results are useful only for x-ray absorption
spectroscopy, but others can have wider applications, such as
the convergence of the semirelativistic limit and the proper-
ties of the Green function at complex energies.

The remainder of the paper is organized as follows. In
Sec. II we point out the limitation of the Foldy-Wouthuysen
transformation and give a method for the determination of
the relativistic effects within the Green function approach.
We then apply the Green function framework to the calcula-
tion of the XMCD signal. In Sec. III the use of complex
energies is discussed, and a complex plane integration is
used to take the Fermi energy into account. In Sec. IV we
present the numerical implementation that we used, and give
the XMCD cross section formula at theK edge. Finally, we
present a calculation that was carried out on a reasonably
large Fe cluster of 259 atoms near the edge and a cluster of
51 atoms up to 500 eV. Good agreement with experiment is
found in the high-energy region. Various issues, such as the
influence of the relativistic core hole, the origin of XMCD at
the edge and far from it, and the possibility of a multiple-
scattering expansion, are discussed. The spectra are related to
the density of states through a simple rule, and the rigid-band
model is found to be correct at high energy. An appendix
showing how symmetrized bases were used to calculate

XMCD faster and to understand some aspects of the experi-
mental spectra closes the paper.

II. RELATIVISTIC EXPANSION

A. Foldy-Wouthuysen transformation

The relativistic corrections to physical phenomena are
usually treated using a perturbation approach developed in
1950 by Foldy and Wouthuysen~FW!,26 who made a unitary
transformation to eliminate the coupling of the large and
small components from the Dirac equation and obtained, to
zeroth order, the Pauli Hamiltonian and, to first-order in
(1/c2), the spin orbit, Darwin, and kinetic energy correc-
tions. Later, this Hamiltonian was taken as a starting point
for the calculation of many physical properties, such as mag-
netic anisotropy, XMCD, or magneto-optic effects. Some-
times, the spin orbit term is used in a second-order perturba-
tion theory, overlooking that the FW transformation must
then also be made up to second order (1/c4) to achieve for-
mal consistency. However, when carrying out higher-order
transformations, strongly divergent terms are found even for
the simple case of a hydrogen atom:27 The second-order
‘‘correction’’ is a sum of infinite terms. Additional informa-
tion concerning the convergence properties of the FW trans-
formation can be found in Ref. 28.

Even at the 1/c2 order, the behavior of the Hamiltonian
obtained by adding the kinetic energy correction to the non-
relativistic Hamiltonian is so bad that all negative eigenval-
ues ~bound-states! disappear, and a continuum of states is
obtained between2` and mc2/4, however smallc may
be.29 In some cases,2,30 only the spin orbit interaction is
added to the nonrelativistic Hamiltonian. For a Coulomb po-
tential, the negative spin orbit term pulls the particle into the
singularity and the resulting Hamiltonian is not essentially
self-adjoint ~it can have any eigenvalue, depending on the
chosen self-adjoint extension!.31–33Physically reasonable re-
sults could be obtained by choosing the boundary condition
where the wave function is zero atr50 but this process is
mathematically ambiguous.33

To summarize, the series obtained from the FW transfor-
mation exhibits three kinds of divergence:~i! The series it-
self diverges, which is usually not a problem since most
perturbation series used in quantum mechanics are divergent
~e.g., Zeeman effect, Stark effect, anharmonic oscillator!;34

~ii ! from the second-order term (1/c4), each term of the se-
ries is a sum of infinite terms that should add to a finite term,
but no procedure is known to carry out this summation;27 and
~iii ! the first-order term of the series~spin orbit coupling!
diverges as the cluster size increases.

Recently, all these problems of the semirelativistic limit
were solved using modern mathematical methods, and we
propose to use this formulation for the calculation of XMCD.
Other approaches to the semirelativistic limit of the Dirac
equation were proposed by quantum chemists.35,36

B. Semirelativistic „1/c… expansion of the Green function

The standard method to calculate relativistic effects
within the Green function approach is to consider the spin
orbit and other terms as a perturbation of the Hamiltonian,
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and to use the Lippmann-Schwinger equation corresponding
to that perturbation.2,30 This procedure is not mathematically
safe and leads to divergences. Another approach to XMCD
was proposed by Natoli37 where the Schro¨dinger equation
including spin orbit was solved for each muffin-tin sphere.

Here, we start from the retarded Green functionGD(z)
corresponding to the Dirac Hamiltonian with potentialV ~the
Dirac Green function! and we use a slight modification of the
analytic 1/c expansion ofGD(z) that was obtained in Ref. 28
~see Ref. 38 for a detailed proof!:

GD~z!5@12T~z!#21S G~z! G~z!A†/~2mc!

AG~z!/~2mc! @AG~z!A†12m#/~2mc!2
D , ~1!

where

T~z!5S 0 G~z!A†~V2z!/~2mc!

0 @AG~z!A†12m#~V2z!/~2mc!2
D . ~2!

All matrix entries are 232 matrices.A52 i\s•¹ ands are
the Pauli matrices, andG(z) is the Green function for the
Pauli Hamiltonian with potentialV. V is generally a 232
matrix that describes the potential experienced by the elec-
trons with up and down spins. In the simplest case,V is a
diagonal matrix made up ofV↑ andV↓. The successive terms
of the relativistic expansion are obtained by the series
@12T(z)#21511T(z)1T2(z)1••• . This expansion gives
a very compact formulation of the correction terms. For in-
stance, the first-order correction to a nondegenerate bound-
state eigenvalueE0 corresponding to the eigenstateuc& is
given byDE5^cuA†(V2E0)Auc&,39 which contains the ki-
netic energy correction, the Darwin correction, and the spin
orbit correction. Because of this simplicity, formal manipu-
lation can be carried out much further, for instance, to obtain
a consistent second-order expansion of the spin orbit inter-
action. Another aspect of this expansion is that the small
components are not eliminated, which will be useful for
x-ray absorption spectroscopy.

It was shown that expansion~1! is analytic,28 but its actual
radius of convergence was investigated only recently. Pre-
liminary results40,41 for the Dirac Green function without a
potential showed that the radius of convergence was a func-
tion of the imaginary part of the energy. For a Dirac equation
with a potential, the Green function expansion could be
shown42 to be convergent only when the imaginary part of
the energy is greater thanmc2 ~a very bad resolution indeed!.
However, the convergence can be much better when a physi-
cal property is calculated instead of the general Green func-
tion. For instance, the convergence of the bound-state energy
expansion is fast.40,43Physically, the idea that can be drawn
from these mathematical results is that the use of complex
energies makes the semirelativistic expansion converge,
whereas it diverges on the real axis. This idea will be de-
tailed in the next section.

From the formal point of view fully relativistic programs
require a coupling of an infinity of differentl values due to
the magnetic field.44 Up to now, the coupling betweenl and
l62 was neglected, which limits the maximum possible

value of l .45 In our approach, this coupling is made consis-
tently with 1/c through the expansion process.

C. Application to XMCD

In x-ray absorption spectroscopy, the spin orbit parameter
for the core hole has a magnitude of several hundreds of eV
and cannot be considereda priori small. Furthermore, rela-
tivistic effects in x-ray absorption have been shown to be
considerable both theoretically46 and experimentally.47

Therefore, a fully relativistic core hole wave function must
be used. This is not easy within the standard semirelativistic
approach. In the electric dipole approximation, the relativis-
tic formula for the x-ray absorption cross section is

s~ê !524pa0\v^ i u~ ê* •r !Im@GD~r ,r 8;z!#~ ê•r 8!u i &,
~3!

where z5\v1Ei1 i0, Ei is the energy of the core level
u i &, andê is the x-ray polarization vector. The calculation of
the fully relativistic initial stateu i & presents no difficulty,
thanks to the availability of Desclaux’ program.48 In Ref. 2
we supposed that the relativistic effects on the valence and
continuum states are weak. We show in the present section
that this supposition is not always true.

The influence of relativistic effects on the photoelectron is
obtained by the series expansion of the Dirac Green function.
The Dirac Green function in Eq.~1! is expanded up to sec-
ond order in 1/c:49

^ i u ê*–rGDê–r 8u i &

.^fu ê*–rGê–r 8uf&

1
1

2mc
^fu ê*–rGA†ê–r 8uc&

1
1

2mc
^cu ê*–rAGê–r 8uf&

1
1

~2mc!2
^fu ê*–rGA†~V2z!AGê–r 8uf&

1
1

~2mc!2
^cu ê*–r ~2m1AGA†!ê–r 8uc&, ~4!

where the two-component spinorsuf& and uc& are the large
and small components of the Dirac spinoru i &. In our previ-
ous approach2 we have neglected the relativistic nature of the
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core state, and used only the spin orbit interaction; as a con-
sequence we had obtained only the first and a part of the
fourth term. Formula~4! is valid for a non-muffin-tin poten-
tial; the use of non-muffin-tin potentials is probably required
to achieve a quantitative estimate of XMCD. In all the terms
of Eq. ~4! only the fourth term yields magnetic circular di-
chroism for a powder sample. Therefore, in the following,
we calls0 the spectrum obtained from the first term,

s0~ ê !524pa0\v(
s

^fsu~ ê* •r !Im@G~r ,r 8;z!#

3~ ê•r 8!ufs&, ~5!

where the sum overs is the sum over initial states~two spin
states for aK edge!. For a powder,s0 does not depend on
ê. We calls1 the spectrum obtained from the fourth term of
Eq. ~4!,

s1~ ê !524pa0\v(
s

^fsu~ ê* •r !

3ImFG~z!
A†~V2z!A

~2mc!2
G~z!G~ ê•r 8!ufs&, ~6!

andsMCD5s1( ê
2)2s1( ê

1) for an external magnetic field
aligned with the x-ray wave vector.

More precisely, we have in the fourth term39

A†~V2z!A52\2@~¹V•¹!1~V2z!D1 is•~¹V3¹!#.
~7!

On the right-hand side of the above equation, only the third
term contributes to XMCD at theK edge, because the first
two terms do not connect space and spin variables. In the
case of spherical potentials, one obtains the usual formula for
the spin orbit interaction:50

2 i
\2

~2mc!2
s•~¹V3¹!5

a0
2a0

2

4

1

r

dV

dr
l •s5j~r !l •s.

~8!

We took this formula for convenience51 to make contact with
Ref. 2, but it is also possible to act withA andA† directly on
the Green function. This would be much simpler if all rela-
tivistic effects~and not only XMCD! were investigated.46,47

In principle,s1( ê
2)1s1( ê

1) contributes also to the normal
absorption spectrum, but this relativistic contribution was as-
sumed to be small as compared tos0.

Finally, to obtain the influence of all sites, the potential
V must be written as a sum over all sites plus an interstitial
potential. Because the operatorA is translation invariant,
each site can be taken as the origin when making the trans-
formation~8!. In the muffin-tin case, it can be shown that the
interstitial region does not contribute to XMCD.

For real energies, XMCD calculated within the present
approach is formally identical with the results of Ref. 2.
Therefore, we can use the latter to understand the real energy
behavior of the former. For small clusters, the calculation of
XMCD was easy,52 but as the cluster size increased, we met
difficulties. Figure 1 showss0 andsMCD for a cluster of 259
atoms of bcc Fe. Both spectra exhibit a very sharp resonance
~width' 0.005 eV!. This resonance is due to the fact that, as

the cluster size increases, one comes close to the singularities
of the crystal scattering matrix.53 The second point is that
sMCD is larger thans0. This unphysical result proves that the
spin orbit effect is not a small perturbation of the system in
that energy range. This illustrates the fact, discussed in the
previous section, that the relativistic expansion is generally
not convergent at real energies. It may be worthwhile notic-
ing that this divergence of the relativistic expansion is not
due to theZ/r 3 singularity of the spin orbit interaction in a
Coulomb potential.

Moreover, the experimental resolution at theK edge of
transition metals is of the order of 1 eV whereas Fig. 1 shows
much sharper structure. Therefore, the usual method of con-
voluting the theoretical spectrum with a Lorentzian profile
for comparison with experiment would mean calculating
much more points than actually needed.

For real potentials, the singularities of the multiple-
scattering matrix are on the real axis, and the use of a com-
plex energy smooths the sharp structure ofs0 linked with the
cluster size. We show in the next section that the conver-
gence problem of the relativistic expansion is also solved by
calculating the Green function at complex energies.

Finally, we work within a real-space multiple-scattering
approach, so that the cluster is assumed to be of finite size.
The relativistic expansion of the Green function for an infi-
nite crystal was studied in Ref. 54.

III. COMPLEX ENERGIES

In this section, we justify the use of complex energies,
and we show how this simplifies the calculation of physical
quantities. We assume that the potentialV is a diagonal
232 matrix made up ofV↑ andV↓, which are the potentials
experienced by up and down spins. These potentials are as-
sumed to be real. The generalization to complex potentials is
a nontrivial task,55 and the use of an energy-dependent width
G(E), which can be considered to be the imaginary part of
the potential~constant over space!, was found to be sufficient

FIG. 1. CalculatedK-edge absorption spectrum~thick line! and
x-ray magnetic circular dichroism~thin line! of a cluster of 259
atoms of bcc Fe near a singularity at the vicinity of Fermi level.
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to reproduce experimental spectra.56

A. Green function

The link between the wave function and the Green func-
tion formulas for the x-ray absorption cross section is estab-
lished through the identity57

(
f

u f &^ f ud~E2Ef !5d~E2H !

52
1

2p i
@G1~E!2G2~E!#, ~9!

whereG6(E)5G(E6 i e), ande is a positive number that is
taken to tend to zero at the end of the calculation~this is just
a notation to designate an integration path in the complex
plane!.

Because of the finite core hole lifetime, the calculated
spectrum must be convoluted by a Lorentzian with a half
width at half maximum~HWHM! G ~which may ultimately
depend on the photoelectron energy!. In the Green function
formalism, the convolution with a Lorentzian is obtained by
calculating the Green function for a complex energy.58 This
can be shown from the formula

E
2`

1`

de
G

p

G1~e!2G2~e!

~E2e!21G2 5G~E1 iG!2G~E2 iG!.

~10!

Since G(r ,r 8;z)5G(r 8,r ;z) ~Ref. 55! and
G(r ,r 8;z)*5G(r 8,r ;z* ) for Hermitian potentialsV, we
haveG(E2 iG)5G(E1 iG)* .

Moreover, the term\v5e2Ei of the absorption cross
section can be taken care of by noticing that
zG(z)5HG(z)11. Thus eG6(e)5HG6(e)11, which
gives, after convolution,HG(E1 iG)115(E1 iG)G(E
1 iG).

Therefore,

s0~ ê !524pa0^ i u~ ê* •r !Im@~E1 iG2Ei !G~r ,r 8;E1 iG!#

3~ ê•r 8!u i &. ~11!

In other words, the convoluted spectrum is obtained by
calculating the Green function for an energy with an imagi-
nary partG.

B. Fermi energy

In the previous section, we did not take into account that
all one-electron states up to the Fermi energyEF are occu-
pied. To yield physical results, integral~10! must be carried
out fromEF instead of from2`. This modifies our expres-
sion in an interesting way. We must now evaluate

1

2i EEF
1`

de
G

p

~e2Ei !@G
1~e!2G2~e!#

~E2e!21G2

5
1

4pEEF
1`

de~e2Ei !@G
1~e!2G2~e!#

3F 1

E2e1 iG
2

1

E2e2 iG G . ~12!

This integral can be calculated by a complex plane inte-
gration technique:59 Since the self-consistent potentialV is
Hermitian, the poles ofG1(e) are ate5r2 i e, wherer is a
real number. Therefore, we can choose the contour of Fig. 2
to apply Cauchy’s integral formula.60 The contribution of the
Jordan contour at infinity is zero61 and we obtain

1

2i EEF
1`

de
G

p

~e2Ei !G
1~e!

~E2e!21G2

52
i

2
u~E2EF!~E1 iG2Ei !G~E1 iG!

1
G

pE0
`

dt
~EF1 i t2Ei !G~EF1 i t !

~EF1 i t2E!21G2 . ~13!

Heaviside step functionu(E2EF) is present in the expres-
sion because, whenE.EF , the poleE1 iG is inside the
contour.

The second integral in the right-hand side~RHS! of Eq.
~12! is closed on the negative imaginary side, and we obtain
finally

E
EF

1`

de
G

p

~e2Ei !Im@G1~e!#

~E2e!21G2

5u~E2EF!Im@~E1 iG2Ei !G~E1 iG!#

1
G

pE0
`

dtReF ~EF1 i t2Ei !G~EF1 i t !

~EF1 i t2E!21G2 G . ~14!

It can be shown that the right-hand side of Eq.~14! is
continuous atE5EF in spite of the step function.62 The re-
course to this contour integration is efficient, as compared to
an integration over real energies, because the Green function
is quite smooth on the linez5EF1 i t ~see Fig. 3! and only a
few points must be calculated to evaluate the integral. More-

FIG. 2. Pole structure of the integrand in theG1 term of Eq.
~12!.
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over, G(EF1 i t ) tends rapidly to the local atomic Green
function of the absorbing site, as shown in Fig. 3. Therefore,
G(EF1 i t ) can be obtained at hight just by calculating a
simple one-site Green function. The vanishing of the neigh-
bor’s influence can be understood through the form of the
structure constant matrixH ~see Sec. IV!. TheH-matrix el-
ements have the formHi j5exp(ikRij)P(1/kRi j ) whereP is a
polynomial. For large t, k5Az.At/2(11 i ), and the
H-matrix elements describing the influence of the neighbors
are damped by a factor of exp(2At/2Ri j ). The integration in
the complex plane was chosen along a straight line. This is
not a steepest descent path but was found to be sufficiently
efficient.

The above proofs are the same whetherG(z) is the non-
relativistic or the relativistic Green function~assuming that
the negative energy states are full!. To obtain the expression
for s1 after convolution, we start from the results obtained
with the Dirac Green function and use the relativistic expan-
sion ~4!. This gives an expression fors1 which is the sum of

Eq. ~6! for z5E1 iG and of an integral over the line
z5EF1 i t . The detailed form of the result will be given in
Sec. IV C.

It was observed by Rehr63 that thermal motion can also be
a convergence factor in multiple-scattering calculations. Al-
though thermal effects can be formally accounted for in full
multiple-scattering calculations,64 temperature effects were
neglected in the present study.

Finally, a characteristic of the 1/c2 relativistic term is that
spin flip is not allowed for powders. An explicit calculation
of the spin flip scattering amplitude shows that it is an order
of magnitude smaller than non-spin-flip scattering for
Nd31.65 Experiments66 confirm that elastically scattered
electrons are rarely spin flipped.

IV. NUMERICAL ASPECTS

The x-ray absorption cross section is obtained from the
cluster Green function for complex energies, which we write
as67,38

G~r i ,r j8 ;z!52 ik(
l m

t l
i
Rl
i ~r,!Yl

m~ r̂ i !

sind l
i H l

i ~r.!

3Yl
m* ~ r̂ i8!d i , j1k2 (

l ml 8m8

Rl
i ~r i !Yl

m~ r̂ i !

sind l
i

3S t l ml 8m8
i j

1
t l
i

k
d l ,l 8dm,m8d i , j D

3
Rl 8
j

~r j8!Yl 8
m8* ~ r̂ j8!

sind l 8
j , ~15!

wherek5Az, d l
i is the ~complex! phase shift for potential

Vi(r ), t l
i 5sindl

i expidl
i Rl

i (r ) is the regular solution of the
radial Schro¨dinger equation for potentialVi(r ) that matches
smoothly to cosdl

i j l (kr )2sindl
i nl (kr ) at the muffin-tin ra-

dius r i , and H l
i (r ) is the irregular solution of the radial

Schrödinger equation for potentialVi(r ) that matches
smoothly to hl

1(kr ) at the muffin-tin radius. Finally the
multiple-scattering matrix is t5@Ta

212kH#21, where
(Ta) l ml 8m8

i j
52(t l

i /k)d i , jd l ,l 8dm,m8 and H l ml 8m8
i j

5

24p i(lmi
l 1l2l 8Cl mlm

l 8m8 hl
1(kRi j )Yl

m(R̂i j ). In the last
expression, the Hankel functionhl

1 is defined as the func
tion hl

(1) of Ref. 68. This straightforward extension of the
real energy case is possible because wave functions and
phase shifts are analytical functions ofk.69

We present here the numerical methods that were used to
calculate the Green function and the ground state. First, we
describe how the radial wave functions were obtained, then
we show how the Green function singularities were avoided,
and finally we explain how the multiple-scattering matrix
was calculated.

A. Radial wave functions

The core level energy and wave function were obtained
from the Dirac self-consistent-field~SCF! program of
Desclaux.48

FIG. 3. ~a! (ss̃0a
s 1s̃0n

s and~b! (s(21)s21/2s̃1a
s 1s̃1l

s 1s̃1n
s for

complex energies along the lineEF1 i t (EF50). In each case, the
corresponding atomic quantities(ss̃0a

s and (s(21)s21/2s̃1a
s are

plotted, to show the convergence of the full Green function to the
atomic Green function.
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The photoelectron wave functions were obtained by
adapting the method of Ref. 70 to complex energies. A non-
normalized regular wave function is written as
Rl (r )5r l f l (r ) with f l (r )5 f r(r )1 i f i(r ). For the complex
energyE5Er1 iEi the radial Schro¨dinger equation is

f r95~V~r !2Er ! f r2
2~ l 11!

r
f r81Ei f i ,

f i95~V~r !2Er ! f i2
2~ l 11!

r
f i82Ei f r , ~16!

with the boundary conditions f r(0)51, f r8(0)

52Z/( l11), f i(0)50, andf i8(0)50, wheref 8 and f 9 are,
respectively, the first and second radial derivatives off . This
system of second-order differential equations is transformed
into a system of four first-order differential equations which
is solved by a forward step-adaptative fourth-order Runge-
Kutta method.71

The phase shiftsd l are deduced from the Wronskian
equation

exp~2id l !52
hl

2~kr!Rl8 ~r!2khl
28~kr!Rl ~r!

hl
1~kr!Rl8 ~r!2khl

18~kr!Rl ~r!
.

~17!

The normalized radial wave functionsRl
i (r ) are obtained

from Rl
i (r ) and the phase shifts.

The irregular wave function is written as
H l 5r2(l 11)gl (r ) with gl (r )5gr(r )1 igi(r ) and obtained
by a backward step-adaptative fourth-order Runge-Kutta
method71 from the boundary conditionsH l (r)5hl

1(kr),
andH l8 (r)5khl

18(kr).

B. Multiple-scattering matrix and singularities
in the Green function

Formula~62! of Ref. 2 could not be directly applied be-
cause of possible infinite normalization factors arising from
the matching of the wave function at the muffin-tin radius to
a sum of Bessel functions.72 With the present normalization
at the muffin-tin radius, the radial wave functions cannot be
singular, but sindl

i terms arise in the denominator of the
Green function@see Eq.~15!#. Therefore, we must examine
the behavior of the scattering matrix when sindl

i becomes
small.52 We have

t5Ta@12kHTa#
215Ta1kTa@12kHTa#

21HTa .
~18!

Hence,

t l ml 8m8
i j

52
1

k
sind l

i eid l
i
$d i , jd l ,l 8dmm8

1~@12kHTa#
21H ! l ml 8m8

i j sind l 8
j eid l 8

j

%,

~19!

and we see thatt l ml m
ii /sin2dl

i is generally singular at
sindl

i 50 because of the first term. These singularities did
not appear in previous calculations of the x-ray absorption

cross section because Im(t) was used, which is regular since

an additional sindl
i factor comes fromeid l

i
. To avoid these

singularities, one can use (t l ml m
ii 1t l

i /k)/sin2dl
i which is

smooth. Therefore, all terms of the Green function~15! are
regular.

To avoid the singularities discussed in the previous sec-
tion, and to use a more symmetric equation, we use a polar
decomposition technique73 and define a modified multiple-
scattering matrixť by t5Ta1ATaťATa. Numerically, ť is
obtained from the equation

ť5@12kATaHATa#2121. ~20!

ť is a regularized multiple-scattering matrix that describes
the effect, on each atom, of the rest of the cluster (ť is zero
for a cluster of one atom!. The matrix elements of
@12kATaHATa# are calculated from the phase shifts and
from the efficient algorithm for the calculation ofH that was
proposed by Rehr and Albers74 and tested against alternative
methods.75 The form @12kATaHATa#21 combines the ad-
vantages of the two standard equationst5@Ta

212kH#21

andt5Ta@12kHTa#
21. As in the first equation, a symmet-

ric matrix is inverted~when real spherical harmonics are
used!, so that fast inversion algorithms for symmetric matri-
ces can be used.76 As in the second equation, it is regular
when (Ta) l ml 8m8

i j
50, so that spurious singularities ofTa

21

are very simply avoided.77 Moreover, asymptotic analysis64

shows that it is well behaved whenl is large and/ork is
small, whereas none of the two standard equations is. The
matrix is inverted using a standard LU decomposition
technique.71

C. Cross sections

The detailed expression of the absorption and XMCD
cross sections for a powder relies on the orientational aver-
aging technique used in Ref. 2, and more calculation steps
are given in Ref. 52. As in Eq.~14!, all cross sections are
written as the sum of a Green function term and an integral.
With our modified multiple-scattering matrix, the ‘‘Green
function’’ part of theK edge absorption cross sections at
energyE5\v1Ei with a HWHM G becomes

s05(
s
Im@s̃0a

s ~E1 iG!1s̃ 0n
s ~E1 iG!#, ~21!

where the sum overs is the sum over the two spin states~i.e.,
the sum of the cross sections calculated for potentialsV↑ and
V↓). For each spin state one definess̃0a(z)5
(4pa0/3)(z2Ei) iAzexp@id1

0(z)#DH(z), which is the atomic
contribution to x-ray absorption, and

s̃0n~z!5~4pa0/3!~z2Ei !AzD2~z!exp@ id1
0~z!#

3
ť00~11,00;z!

A3sind10~z!
, ~22!
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which describes the influence of the neighbors (i50
denotes the absorbing site!. We recall that2

ť0 j (1l ,aa;z)5(mm(21)(12m)(12ml muaa) ť1ml m
0 j (z).

The radial integrals areD(z)5*0
`r 3drf0(r )R1

0(r ;z),
wheref0(r ) is the large component of the core hole wave
function andDH(z)5*0

`r 3drf0(r )F(r ;z) whereF(r ,z) is
an auxiliary function defined as F(r ;z)5
*0

`r 83dr8f0(r 8)R1
0(r, ;z)H1

0(r. ;z) (Rl
i and H l

i are de-
fined in Sec. IV A!.

The ‘‘Green function’’ part of the magnetic circular di-
chroism cross section is written

sMCD5ImF(
s
(21)~s21/2![ s̃1a

s (E1 iG)1s̃1l
s (E1 iG)

1s̃ 1n
s (E1 iG)] G , ~23!

where s̃1a(z)5(4pa0/3)(z2Ei)zexp@2id1
0(z)#MHH(z) de-

scribes the purely atomic contribution to XMCD~the Fano
effect!,

s̃1l~z!52~4pa0/3!~z2Ei !2izexp@2id1
0~z!#D~z!MH~z!

3
ť00~11,00;z!

A3sind10~z!
~24!

is the local contribution due to the spin polarization of the
p states on the absorbing site, and

s̃1n~z!5~4pa0/3!~z2Ei !zD
2~z!(

j l

~21! l

12

3exp$ i @d1
0~z!1d l

j ~z!#%z l
j ~z!

3 (
a5ul 21u

l 11

@~ l 2a!~ l 1a11!12#(
a

~21!a2a

3
ť0 j~1l ,aa;z!ť0 j~1l ,a2a;z!

sind1
0~z!sind l

j ~z!
~25!

describes the contribution to XMCD due to the spin
orbit scattering of the photoelectron by the neighbors
and the absorber. The radial matrix elements
are MH(z)5*0

`r 2drj(r )R1
0(r ;z)F(r ;z), MHH(z)5

*0
`r 2drj(r )F2(r ;z), and z l

j (z)5*0
`r 2drj j (r )@Rl

j (r ;z)#2,
with j(r ) as defined in Eq.~8!.

The analysis of Sec. IV.B. shows thatť0 j (1l ,aa;z) can
be divided byAsind10(z)sindlj (z), and all terms of the XMCD
cross section are now regular.

For each term, the presence of the Fermi energy is taken
into account by calculating integrals along the line
e5EF1 i t as in Eq.~14!: To all Im@s(E1 iG)# terms we
add the integral

G

pE0
`

dtReF s~EF1 i t !

~EF1 i t2E!21G2G . ~26!

V. RESULTS

The converged potentials used in the multiple-scattering
formalism were obtained by means of an all-electron self-

consistent, scalar-relativistic, and spin polarized linear-
muffin-tin orbital ~LMTO! method.25We used the exchange-
correlation potential and energy in the von Barth–Hedin
approximation.78 For the Brillouin zone integration of the
density of states we used the tetrahedron method with about
300 k points in the irreducible part of the Brillouin zone.79

To simulate the effect of the core hole, we treated the excited
atom as a single impurity in a lattice using a supercell geom-
etry. We have used increasingly larger supercells to ensure
the convergence of the magnetic moment and the density of
states of the impurity site. The final calculations were done
for a simple cubic lattice of 16 atoms per unit cell, the lattice
parameter beinga52a0. The results for the magnetic mo-
ment and the density of states are close to those of the su-
percell of four atoms. To use larger clusters in the multiple-
scattering formalism we had to assume that the potentials for
distant shells are bulklike.

A. Near edge region

Figures 4~a! and 4~b! show the results we obtained for a
converged cluster of 259 atoms of bcc iron~diameter 2.0
nm!. The convergence was investigated by checking that the
spectral shape becomes stable with respect to the cluster di-
ameter and by comparing to the results obtained with a clus-
ter of 821 atoms~diameter 2.9 nm! on a wider energy mesh.
The potentials for the initial state~without core hole! and for
the final-state~with core hole! were obtained by a self-
consistent supercell calculation as indicated above. We used
touching muffin-tin spheres without overlap. Because of the
core hole width (G52 eV!, absorption is possible at energies
lower than the Fermi level. The effect of the Fermi level is
clear, especially for the XMCD spectrum. With a Fermi level
EF52 eV, the first positive structure disappears, whereas
with EF522 eV, it is too large. Therefore, the size of the
first positive peak depends strongly on the position of the
Fermi level.

The absorption and XMCD cross sections are now smooth
and the divergences due to the cluster size and the relativistic
corrections have disappeared. We see also that the spectra
are continuous at the Fermi energy, although they are given
by two different formulas forE.EF andE,EF . This cor-
roborates the fact that our treatment of the Fermi level is
numerically sound.

Figure 5 compares our calculation with experiment for the
edge region. All experimental and theoretical spectra were
normalized so that the absorption edge jump is 1. The normal
spectrum is not well reproduced. The agreement for the
XMCD spectrum is better, although the excellent agreement
in the intensity of the first two peaks is fortuitous, because
the degree of circular polarization was not one for the ex-
perimental spectrum. For the calculated spectrum, various
contributions are presented. The solid thick line is the total
contribution, and the solid thin line is the local contribution
@s̃1l of Eq. ~24!#. In Fig. 6, s̃1n as written in Eq.~25! is
expanded into the contribution of eachl (l 51,2,3! and
j50,1,2 ~absorbing atom, first shell, second shell!. For later
use, the results are given without taking the Fermi energy
into account. No terml 50 exists becausel 50 gives no
spin orbit. For the absorbing site, the terms with evenl are
zero because of symmetry. From Fig. 6, it can be observed
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that the first positive peak~peaking at 1 eV! is not due to the
local term~24!, but to the spin polarization of thed states of
the neighbors@mainly the term corresponding tol 52 and
j51 in Eq. ~25!#. This is related to the weak ferromagnetic
nature of bcc Fe,4 and was already observed on a smaller
cluster52 and in tight-binding calculations.80,81 Both absorp-
tion and XMCD calculated structures are too large from 20
eV above the edge. This reduction, which is very common in
multiple-scattering calculations, is probably due to photo-
electrons that experience inelastic interaction with the metal.
This inelastic effect comes into play above the plasmon en-
ergy ~about 10 eV! and can be included in our calculation
through an energy-dependentG.56,82 The main failure of the
XMCD calculation is the presence of a large second positive
peak which is absent in the experiment. A similar peak can
be observed in fully relativistic6 and tight-binding
calculations,80,81although a direct comparison is difficult be-
cause of the different normalization used.

B. Core hole

Two modifications of the core hole were tested. In the
first one, the nonrelativistic~Schrödinger! equation was
solved for the core hole. The core hole energy was found to
be different, but the 1s wave function was quite similar to
the relativistic one, and the normal spectrum was a bit larger
~because the normalization of the relativistic wave function
includes the small component, which does not contribute to
the spectrum! but the XMCD spectrum was not distinguish-
able from the relativistic result. Similarly, core hole ex-
change splitting is negligible since the difference between
the core states obtained with up and down potentials did not
yield noticeable effects.

The second test was conducted to test the influence of the
core hole on the spectra. Figure 7 shows the normal and
XMCD spectra with and without core hole and with a Fermi
energyEF50 eV. The normal spectra are quite similar, ex-
cept for an overall amplitude factor. The XMCD spectra are
more different, although the position of the structure does
not move. Comparison with experiment does not enable us to
decide on a model.

FIG. 4. Calculated~a! K-edge absorption spectrum and~b! x-ray
magnetic circular dichroism~XMCD! of a cluster of 259 atoms of
bcc Fe with different values of Fermi level,EF52`,22,0,2 eV.
For the XMCD signal, the size of the first positive structure depends
strongly on the position of Fermi level, and disappears forEF above
2 eV.

FIG. 5. Comparison of the calculated~a! K-edge absorption
spectrum and~b! the x-ray magnetic circular dichroism~XMCD! of
a cluster of 259 atoms of bcc Fe with the experimental results of
Ref. 4. The Fermi level isEF50 eV.
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C. Spin-polarized extended x-ray absorption fine structure

In XMCD at theK edge spin orbit acts directly on the
photoelectron, and it is interesting to know whether the high-
energy part of the spectrum is related to the spin polarization
of the p states of the absorbing site. Using the methods de-
veloped in Ref. 83, it is possible to show that, in the single-
scattering approximation, only thep-projected term
s̃1l
↑ 2s̃1l

↓ survives at high energy. Figure 8~b! shows the
spectrum obtained with a cluster of 51 atoms, calculating all
angular momenta up tol 58, and multiplied by 1/3. The
cluster is too small to be realistic in the edge region, but
above 30 eV, the overall agreement is correct. The peak at
110 eV in the theoretical spectrum should be broadened, and
the peak at 60 eV in the experimental spectrum is probably
due to multielectronic effects, which are known to be strong
in XMCD spectra at that energy.84 The thin line represents
the contribution of thep-projected states, which is seen to be
dominant at high energy. Moreover, the calculated XMCD
spectrum is in phase with the calculated extended x-ray ab-
sorption fine structure~EXAFS! spectrum. This phase rela-
tion between dichroic and normal spectra was observed ex-
perimentally by Pizzini and collaborators.4

It is sometimes assumed that XMCD reflects the spin po-
larization of p states projected on the absorbing atom
(r↑2r↓). Figure 9 shows that the absorption spectrum is
indeed quite similar to thep density of states, but the XMCD
spectrum is quite different from the spin polarization of the
p density of states. In fact, the spin polarization is very simi-

lar to the derivative of the density of states. In other words,
the rigid-band model becomes correct at high energy~a
somewhat surprising result!, and the band splitting is about 1
eV.

From this result, a very simple approximate expression
can be derived for XMCD. Assuming a rigid-band model, we
can consider that the up and down bands are exchange split
by the energyDE. Moreover, neglecting the nondiagonal
terms of the spin orbit operator, one can consider that the
m561 components of thep band are split by spin orbit
coupling zl •s. Therefore, for transitions towards
l 51, m51 final-states~left-circularly polarized x rays!, we
have

s1↑5s~E1DE/22z!, ~27!

s1↓5s~E2DE/21z!, ~28!

s1.2s~E!1~DE/22z!2d2s/dE2, ~29!

and for transitions towardsl 51, m521 final-states~right-
circularly polarized x rays!,

FIG. 6. Contribution tos̃1n of the absorbing site and the first
two shells~from top to bottom! and forl 51,2,3. No Fermi energy
was used. The contribution of a given shell is the contribution of
one atom of the shell multiplied by the number of atoms in the
shell.

FIG. 7. Calculated~a! K-edge absorption spectrum and~b! x-ray
magnetic circular dichroism~XMCD! of a cluster of 259 atoms of
bcc Fe with~thick line! and without~thin line! core hole.
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s2↑5s~E1DE/21z!, ~30!

s2↓5s~E2DE/22z!, ~31!

s2.2s~E!1~DE/21z!2d2s/dE2. ~32!

Therefore, XMCD becomes

s12s2.22DEzd2s/dE2. ~33!

Since z is fairly constant at high energy, the exchange-
splitting energyDE can be deduced from experimental spec-
tra. Figure 10 shows XMCD together with the second deriva-
tive of the normal spectrum~multiplied by 10!. Because the
model is very crude, the agreement is not perfect, but good
enough to say that the image deduced from the rigid-band
model is correct. The presence of this second derivative ex-
plains also the phase relation between EXAFS and XMCD
~considering EXAFS as a sum of sines!. A more elaborate
interpretation comes from considering the expression for
s̃0n @Eq. ~22!# and s̃1l @Eq. ~24!#. Both expressions involve

the multiple-scattering matrixť00(11,00;z), but s̃1l contains
an additional factori that makes it proportional to the real
part of ť00(11,00;z), whereas the EXAFS cross section is
proportional to its imaginary part~it was checked that the
other factors do not intervene much in the phase at high
energy!. Since the real and imaginary parts of the Green
function are related by Kramers-Kronig theorem, which
transforms sine functions into cosine functions, and because
the dichroic effect is due to the difference between spin up
and spin downs̃1l , it is proportional to the derivative of the
real part of ť00(11,00;z) which, because of an additional
minus sign, is in phase with the imaginary part of the
multiple-scattering matrix@to see this, consider that, in the
EXAFS regime, the Green function can be approximated by
exp(ikR1f); the imaginary part is a sine function — the
EXAFS formula — and the derivative of the real part is a
sine function as well#. Of course, this correspondence be-
tween XMCD and EXAFS is not exact, and much interesting
information comes from the difference.

FIG. 8. Comparaison of the calculated~a! K-edge absorption
spectrum and~b! x-ray magnetic circular dichroism~XMCD! of a
cluster of 51 atoms of bcc Fe with the experimental results of Ref.
4. The Fermi level isEF50 eV, the core hole broadening isG52
eV, and the maximum scattering wave isl max58.

FIG. 9. ~a! Comparison of the calculatedK-edge absorption
spectrum with the density ofp states projected on the absorbing
atom and~b! comparison of the calculated XMCD with the spin
polarization of the density ofp states projected on the absorbing
atom. The derivative of the density of states~DOS! is also pre-
sented, to illustrate the rigid-band picture that becomes valid at high
energy.
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D. Multiple-scattering expansion

The program that we used to calculate the XMCD spec-
trum of iron is relatively heavy and slow. To make the analy-
sis of XMCD spectra as easy as that of normal absorption
spectra, it is necessary to investigate the validity of the
multiple-scattering expansion which is used by much faster
programs, such asFEFF.63 To do this, we compare the results
obtained by the full inversion of (12kTaH)

21Ta with the
single-scattering expansion (Ta1kTaHTa1k2TaHTaHTa)
and the double-scattering expansion@previous term plus
k3(TaH)

3Ta#. This comparison is shown in Fig. 11. The
overall agreement is correct but not excellent, probably be-
cause of the shadowing effect which is large in bcc struc-
tures. Notice that, in principle, the zeroth-order scattering
(Ta1kTaHTa) also contributes due to the terms̃1n . How-
ever, this contribution is very small at high energy. Higher-
order terms are considered in Ref. 85.

VI. CONCLUSION

Since the first experimental XMCD spectra,1 a number of
calculations of XMCDK-edge spectra have been carried out,
using different methods. A fully relativistic Korringa-Kohn-
Rostoker~KKR! method was used for bcc Fe,6–9,11,12 hcp
Co,9,13 Fe-Co alloys,10,14–16,18,19and fcc Ni.11 A relativistic
LMTO calculation of theK-edge XMCD spectrum of Fe in
GdFe2 was carried out in Ref. 17, a molecular orbital ap-
proach was used for Fe in tetrahedral and octahedral
environments,86 a multiplet approach for Ni in a molecular
magnet,87 and a tight-binding method for metallic Fe and
Ni80,81and Co,81 where XMCD was related to the projection
of the orbital momentum along the x-ray direction. All these
calculations were restricted to a narrow energy range around
the edge. We have developed in this paper a multiple-
scattering approach which allows for the calculation of ex-
tended structure, and includes the core hole without addi-
tional effort.

We have presented a solution of the convergence difficul-
ties associated with the one-electron calculation of physical

properties related to the spin-orbit interaction. A recourse to
Green functions with a complex energy argument led us to
smooth absorption and XMCD cross sections. The presence
of the Fermi level was accounted for through a complex
plane integration which was found to be much more stable
than on the real line. This technique can be used to calculate
other spin-orbit-influenced properties, such as anisotropy en-
ergy or spin-dependent spectroscopies.

Robust and accurate numerical methods were proposed to
evaluate the Green function in the whole complex plane, and
the smooth behavior of the cluster Green function for large
imaginary energies was explained.

We saw that the EXAFS part of XMCD at theK edge is
simply connected to the spin polarization of thep states on
the absorbing site. The high-energy part is therefore simpler
to interpret than the near-edge part, where spin orbit interac-
tions with the neighbors give strong contributions.

Our first application is encouraging, and further compari-
son with experiment, including the relation between mag-
netic and nonmagnetic fine structure,4 will be presented in a
forthcoming publication. Full multiple-scattering calcula-

FIG. 10. Comparison of the XMCD spectrum with the second
derivative of the absorption spectrum~multiplied by 10! for a clus-
ter of 51 iron atoms.

FIG. 11. ~a! Comparison of the calculatedK-edge absorption
spectrum with the single- and double-scattering expansion and~b!
comparison of the calculated XMCD with the single- and double-
scattering expansion.
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tions of XMCD at theL II,III edges of Gd are presented in
Refs. 85 and 38.

The improvements which we plan for the future are~i! the
use of non-muffin-tin potentials to have a better representa-
tion of the difference between up and down spin potentials,
~ii ! the inclusion of orbital enhancement, as reviewed in
Refs.88 and 89, which Igarashi and Hirai81 found to be im-
portant for XMCD, and~iii ! the use of an optical potential to
describe the exchange and inelastic interactions of the pho-
toelectron. As observed by Ankudinov and Rehr,21 XMCD in
the x-ray range provides a very good test of effective poten-
tials representing the exchange interaction of the photoelec-
tron with matter. An alternative exchange potential was pro-
posed by Zhogovet al.65 in their treatment of magnetic
EXAFS. In the present study, we have used the potential
provided by the ground and relaxed-excited states, but did
not include any specific exchange potential.
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APPENDIX: SYMMETRIZED BASIS

One of the advantages of the semirelativistic limit of the
Dirac Green function is that one is allowed to use the full
local point symmetry of the absorbing atom without taking
spin direction into account, since the spin and space func-
tions are not coupled. In this section, we show how symme-
trized bases were implemented to reduce the size of the prob-
lem.

For each spin state, the cluster potential is written as
V(r )5( iV

i(r i) ( i runs over atomic sites!, and letPa repre-
sent the action of the symmetry operationa on the cluster. If
a belongs to the local point symmetry groupG of the absorb-
ing atom (i50), thenPa@V(r )#5V(r ). Therefore, the Green
function G(z)5(z2H02V)21 is also invariant for opera-
tions of G. This can be used to reduce the size of the
multiple-scattering matrices.90,91

In practice, we set up a symmetrized basis by the follow-
ing procedure. For an irreducible representation~irrep! a of
the symmetry group, we take a matrix realizationG (a) of
a, and we define the~pseudo! projector

Pj j 0
~a!l 5

da

g (
aPG

G j j 0
* ~a!Pl ~a!, ~A1!

where the cluster symmetry operatorPl (a) has matrix ele-
ments in theunl m& basis:

@Pl ~a!#n8m8nm5Dm8m
l

~a!dn8,a~n! . ~A2!

Here,g is the number of elements of the symmetry group
G, da is the dimension of irrepa, andDm8m

l (a) is the~even-
tually improper! Wigner rotation matrix corresponding to the
symmetry operationa of the point symmetry groupG.92 We
choose a columnj 0 of the matrix realization (j 051) and, for
eachunl m& representing a spherical harmonicsYl

m attached
to siten, we calculate the projectionPj 0 j 0

(a)l unl m&. Let p be

the set of atoms that can be obtained from a given atom by
operations ofG. For eachl and eachp one can generate a
vector spaceE(apl j 0) by calculating all the projections of
unl m&, for nPp and m52l , . . . ,l . By singular value
decomposition,71 an orthonormal basis ofE(apl j 0) is ob-
tained, which is denoted by uapl j 0s&, where
s51, . . . ,dim@E(apl j 0)#. This symmetrized basis can be
written as a function of the initial basis kets

uapl j 0s&5 (
nPp

m52l , . . . ,l

^nl muapl j 0s&unl m&. ~A3!

The partners ofuapl j 0s& are obtained by

uapl js&5Pj j 0
~a!l uapl j 0s&. ~A4!

The symmetrized basis is then used to simplify the matrix
inversion, yielding the relevant multiple-scattering matrix el-
ementstLL8

0i . It can be shown that

@Pl ~a!H#nl mn8l 8m85@HPl 8~a!#nl mn8l 8m8. ~A5!

Therefore,

^apl jsuHua8p8l 8 j 8s8&

5^apl j 0suPj 0 j
~a!l HPj 8 j 0

~a8!l 8ua8p8l 8 j 08s8& ~A6!

5^apl j 0suPj 0 j
~a!l Pj 8 j 0

~a8!l Hua8p8l 8 j 0s8& ~A7!

5da,a8d j , j 8^apl j 0suHuap8l 8 j 0s8&. ~A8!

Similarly, the atomic scattering matrix is diagonal:

^apl jsuTa
21ua8p8l 8 j 8s8&52

k

t l
p d l ,l 8dp,p8da,a8d j , j 8ds,s8,

~A9!

wheret l
p5sindl

pexp(idl
p ) andd l

p is thel th phase shift of the
atoms of typep. Because of the transformation properties of
matrices H and Ta , the full multiple-scattering matrix
t5@Ta

212kH#21 is diagonal ina and j :
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^apl jsutua8p8l 8 j 8s8&5da,a8d j , j 8tpl sp8l 8s8
~a! .

~A10!

In other words, the multiple-scattering matrix can be inverted
separately for each irrep and it repeats itself dim(G (a)) times
in each irrep. For the example of a cluster of 259 Fe atoms,
only the T1u irrep is relevant, because of dipole selection
rules, and the matrix to be inverted has dimension 288 in-
stead of 4144. Oncetpl sp8l 8s8

(a) is obtained, the matrix ele-
ments which are required for the calculation of XMCD at the
K edge are obtained through the basis change

t1el m
0i 5 (

a jss8
^01euap01 js&tp01spi l s8

~a! ^api l js8u i l m&,

~A11!

wherepi is the class of atoms to which atomi belongs.
An additional advantage of the use of a symmetrized basis

is the fact that the inverse oft is more rapidly calculated. In
practice, the matrix elements^apl jsuHuap8l 8 js8& must be

calculated from the matrix elementsH l ml 8m8
nn8 and the basis

change matrix by

^apl j 0suHuap8l 8 j 0s8&5 (
nPp
n8Pp8

(
mm8

^a j 0l psunl m&

3H l ml 8m8
nn8 ^n8l 8m8ua j 0l 8p8s8&.

~A12!

Instead of summing over all pairsnPp andn8Pp8, we can
choose a membern0 of classp and a set of membersn1 of
classp8 which span all possible nonequivalent neighbors of
n0 in classp8. In other words, for each pair (n,n8), there is
an elementa of symmetry groupG and a representativen1
such thata(n)5n0 anda(n8)5n1. Therefore,

H l ml 8m8
nn8 5 (

m,m8
Dmm
l * ~a!Dm8m8

l
~a!H

l ml 8m8

n0n1 . ~A13!

We have also

(
m

Dmm
l ~a!^nl mua j 0l ps&5(

j
G j 0 j

a ~a21!

3^n0l mua j l ps&, ~A14!

which yields, using the fact that the symmetrized matrix el-
ements ofH do not depend onj 0,

^apl j 0suHuap8l 8 j 0s8&5
1

da
(
j , j 8, j 9

(
n1 ,a

G j 9 j
a

~a!G j 9 j 8
a * ~a!

~A15!

3 (
mm8

^a j l psun0l m&H
l ml 8m8

n0n1 ^n1l 8m8ua j 8l 8p8s8&.

~A16!

From the orthogonality theorem of group
representations,91 the sum overj 9 does not depend ona, and

^apl j 0suHuap8l 8 j 0s8&5(
n1 , j

upuNn0n1

da
^a j l psun0l m&

3H
l ml 8m8

n0n1 ^n1l 8m8ua j l 8p8s8&,

~A17!

whereupu is the number of elements of classp andNn0n1
is

the number of elementsn8 of p8 such thata(n0)5n0 and
a(n1)5n8, whereaPG. Therefore, the sum is reduced to
pairs of inequivalent neighbors. Moreover,H

l ml 8m8

n0n1 depends
only on the interatomic vector joining centersn0 andn1. The
computing time is further reduced by using the fact that
many pairsn0n1 correspond to the same vector.

From these symmetry considerations, one can show that,
at theK edge of a transition metal in a cubic environment,
the spin polarization of thed shell of the absorbing atom
cannot be measured because the corresponding contribution
to s̃1n is zero (l 52 spherical harmonics do not belong to
T1u), but the spin polarization of thed shell of the neighbors
can. This was observed in the multiple-scattering approach in
Refs. 4 and 52 and in the tight-binding approach in Refs. 80
and 81.
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