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The paramagnetic insulator to ferromagnetic metal transition in lanthanum manganites and the associated
magnetoresistive phenomena is treated by considering the localization due to random hopping induced by
slowly fluctuating spin configurations and electron-electron interactions. The transition temperature and its
variation with composition is derived. The primary effect of the magnetic field on transport is to alter the
localization length, an effect which is enhanced as the magnetic susceptibility increases. Expressions for the
conductivity, its variation with magnetic field, and its connection with magnetic susceptibility in the paramag-
netic phase are given, and can be tested with further experiments.@S0163-1829~96!09034-0#

I. INTRODUCTION

Interest in mixed-valent compounds of the form
A 12x

31 B x
21Mn x

31Mn12x
41 O3, whose fascinating properties

were discovered1 about 50 years ago, has revived recently.
The phase diagram as a function ofx for various trivalent
atomsA and divalent atomsB, as well as magnetotransport
properties, have been determined.2,3 For 0.1&x&0.3, an in-
sulating or very high resistance phase at high temperatures is
followed at lower temperatures with a metallic phase accom-
panied by ferromagnetic order. The basic physical point4

made by Zener in 1951 is that the elementary electron con-
duction process, given that valence states other than 31 and
41 are disallowed due to strong local correlations, in which
two Mn ions of different valence interchange their valence
states~Mn31Mn41→Mn41Mn31!, is proportional to the one-
electron transfer integralt only when the initial and final
states are degenerate. This requires that the Hund’s-rule-
coupled spins of Mn31 ~S53

2! and Mn41 ~S52! are aligned.
Otherwise, the transfer integral is ofO(t2/J), whereJ is the
Hund’s rule coupling energy, which for Mn31 is several eV
and assumed to be much larger thant. An appropriate model
Hamiltonian is

H5t(̂
i j &
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1 cja1J(

i
Si•ci

1sci2m(
i
ni , ~1!

where the electrons hop only between nearest-neighbor sites
of different valences. ForuJu@t the spin of the conduction
electron is always parallel to thelocal Si . Projecting to such
states,

Heff5(
i j

t@Si ,~Sj1s!max#ci
1cj , ~2!

i.e., the transfer integral, is a function of the relative orien-
tation of the Mn41 ~Si5

3
2! spin and Mn31 ~S52!, i.e.,

~Sj1s!max.
In a pairwise hopping process the conserved value of the

spin is uSi1Sj1su, so we expect the hopping to depend on
this function. Semiclassically the angleu between two spins
S1 andS2 is given by

cos
u

2
5

uS11S2u
2S

, ~3!

so that semiclassically the effective hopping Hamiltonian is

Heff5(
~ i j !

8 t cos
u i j
2

ci
1cj . ~4!

This result was first derived by Anderson and Hasegawa.5 If
one considers pairwise hopping only, one can specify the
relative orientation byui j alone. More generally,6 one must
introduce also the azimuthal anglefi j to specify the relative
orientations of spins ati and j , so that a more appropriate
form is

Heff5(
~ i j !

8 teif i j cos
u i j
2

ci
1cj . ~5!

fi j is a Berry phase. This may have some interesting conse-
quences, which we hope to discuss in the future.

Since ferromagnetism is accompanied in these materials
by metallicity, one may expect that magnetic polarization by
an external field will cause a large drop in resistivity. The
discovery2,3 of such a large magnetoresistance has led to
much interest in these materials.

In Sec. II I describe how an adiabatic approximation may
be introduced by first freezing the spin configuration and
calculating the electronic states. It is argued that the chemical
potential passes from a region of localized states to delocal-
ized states asx is increased. Spin polaron effects as correc-
tions to the adiabatic approximation are considered next, as
are electron-electron interaction effects, which are expected
to produce a gap in the excitation spectra and in one-electron
states near the chemical potential. In Sec. III I calculate the
variation of the ferromagnetic transition temperature withx.

II. GENERAL CONSIDERATIONS

I am primarily interested in the paramagnetic regime
where the spins$Si% are randomly oriented and fluctuate at
frequencies related only to the temperaturekBT. Any spin-
spin correlation only reduces the characteristic frequency.
Further assume thatkBT!t. Then the core-spin fluctuations
may be treated in the adiabatic approximation, in which we
first freeze the spins in a random configuration$Si% and cal-
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culate the electronic statescn($Si%) in the random configu-
ration. We can then perturbatively couple the thermal fluc-
tuations of spins to find corrections to the electronic wave
functions. Simultaneously the potential energy of the spin
configurations is given bySnEn($Si%) f (En), where f is the
Fermi function. This procedure is quite analogous to the
Born-Oppenheimer approximation in electron-phonon prob-
lems, except that no independent inertia exists for the spins.
One can also investigate the paramagnetic to ferromagnetic
transition by this method.

Consider then, first, a random configuration of spins. The
transfer integrals for conduction electrons are then random
variables varying from 0 toutu. The distribution of the trans-
fer integral will be derived in Sec. III below. This random-
ness was treated recently7 in a dynamic generalization8 of the
coherent-potential approximation~CPA! to calculate the
equilibrium and transport properties. In another paper9 it was
treated perturbatively to calculate the resistivity, with the
conclusion that the insulating behavior in the paramagnetic
phase is inexplicable in purely electronic models, and sug-
gesting electron-phonon interactions. This line of thinking
has led to the suggestion10 that a Jahn-Teller distortion is
responsible for the behavior. The phenomena observed in the
manganites occurs also in mixed-valent TmSexTe12x
compounds.11 No question of Jahn-Teller distortion arises
there.

LaMnO3 is an insulator in which the Mn-O6 octahedra is
Jahn-Teller distorted. I think it is not correct to conclude that
the insulating behavior isdue to the Jahn-Teller distortion.
Most transition-metal perovskite compounds are insulators,
even LaTiO3, where effective electron-electron interactions
on Ti are smaller than in Mn due to more effectiveS-electron
screening. These are all Mott insulators. Note that the deri-
vation of the double-exchange interaction assumes correctly
that the direct electron-electron interaction is even larger
than the exchange interactionJ. If symmetry allows a Jahn-
Teller distortion in the insulating phase, such a distortion
parasitically does occur. The conditions for Jahn-Teller ef-
fects in metals are much more stringent, and in any case not
required by symmetry, and not expected to lead to insulating
phase when the metallic bandwidth isO ~2 eV!. One expects
that the Jahn-Teller distortion of LaMnO3 will appear in re-
duced magnitudes even on addition of Sr in the insulating
phase, and decrease in the low-temperature metallic phase.
More important than Jahn-Teller distortions for quantitative
purposes are the breathing mode polaronic distortions which
are different around Mn31 and Mn41 because of the large
difference in ionic size.

In a model for random hopping, one expects electronic
states to be localized at least for some energies. CPA is a
~self-consistent! single-site approximation, while localization
arises from interference among scatters. While the CPA is a
very good approximation for many purposes, it cannot cap-
ture the physics of localization. I believe the transport prop-
erties in this paramagnetic regime for most of the range of
composition, as well as the effect of magnetic field on them,
can be understood only when the localization of the single-
particle states is considered.

The present problem is one of off-diagonal randomness as
opposed to the Anderson model12 for disorder. This has not
been so thoroughly investigated. One approximate but reli-

able calculation of the nature of the wave functions in mod-
els of off-diagonal randomness is due to Economu and
Antoniu.13 Their results are sketched in Fig. 1. For a model
in which the hopping matrix elementst i j are randomly dis-
tributed over a semicircular distribution with meant0 and
edges att07t1 they find that fort1't0 , which is relevant for
our case, states in the energy region1

2 uWu&E&uWu are lo-
calized, while these in the middle are extended.W is the
bandwidth of the bulk, which CPA gives correctly as about
0.7 of the total bandwidth.

The localization length in a problem of off-diagonal dis-
order is expected to diverge both at the band edges and at the
mobility edges. The latter is familiar, and as in models of
diagonal disorder. The former arises because states at the
band edges are the exponentially rare states which travel
through the crystal through routes with identical hopping.

Unlike Ref. 13, the distribution of disorder in the present
problem is not symmetrical. It follows from Eq.~14! below
that the distributionP(t) increases linearly witht with a
cutoff at the maximum value. The higher moments of the
distribution are therefore larger than in Ref. 13. So the region
of localized states is expected to be larger than in Fig. 1.
Moreover strong correlations in the present problem~in the
presence of disorder! further favor localization. The effective
fluctuations int are further increased by different polaronic
renormalizations oft around a Mn31 ion and a Mn41 ion.

We may safely assume that in the frozen-spin approxima-
tion, states at the chemical potential are localized for low
dopings, and that a mobility edge occurs so that for higher
dopings the states at the chemical potential are delocalized
although strongly scattering. CPA should be a good approxi-
mation to calculate properties in the second regime.

FIG. 1. ~a! Character of states as a function of their energy in a
tight-binding model with disorder, in whicht0 is the mean andt1
the rms width of the transfer integral. This sketch is based on
Economu and Antoniu, Ref. 13.~b! Sketch of the density of states.
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Spin-polaron formation: first correction
to the adiabatic approximation

The spins do not have any inertia. The leading correction
to the adiabatic approximation then amounts to~i! minimiz-
ing the free energyF($Si%) with respect to spin configura-
tions $Si% and ~ii ! calculating scattering between electronic
states due to fluctuations about the resulting configuration.
The first part is the same as considering spin-polaron forma-
tion.

We can easily make the first correction to the frozen ran-
dom spin configuration by the formation of a spin polaron
around an electronic state which otherwise would be highly
localized. Let there beP lattice sites which are spin polar-
ized, so that an electron can hop freely between them to
lower its kinetic energy. This is opposed by the entropy lost
by the spins. SoP is determined by minimizing

E~P!52W1
at0
P2/31PkT ln~2S11!, ~6!

wherea is a numerical factor ofO~1!, so that

P'~at0 /T!3/5. ~7!

This is an elementary generalization to finite temperature of
Nagaoka’s result14 for such models that, atT50, a single
carrier will induce ferromagnetic order. In the manganites
the effectivet ~renormalized for effect other than spin fluc-
tuations, phonons for instance! is about 0.2 eV. So at room
temperatures the size of the spin polaron is only a few bonds.
So the spin-polaron effect appears not to invalidate the adia-
batic approximations over the bulk of the band in the para-
magnetic range of temperatures of interest.

A prediction following from these considerations is that
the effective moment in susceptibility measurements even at
fairly high temperatures will be larger than that of the appro-
priate average of Mn31 and Mn41 moments. At a concentra-
tion x of the spinS1 and the restS2, one expects

Seff
2 5x~S11PS2!~S11PS211!1~12x2Px!S2~S211!.

~8!

The estimate of spin-polaron effects would be quite altered
for states in the tails of Fig. 1, or those near the mobility
edge which have a large localization length. The polaron
effects would have a major effect only on the surface of such
states leaving the bulk of it relatively unaffected. So Eq.~8!
is an overestimate. Moreover~8! is merely the first sign of
fluctuations aboveTc which increase the susceptibility over
the Curie law.

The adiabatic assumption made here is accompanied by
the ergodic hypothesis. The spin configurations change lo-
cally, changing the localization length of the electronic state
in a given small region. But averaged over the sample, the
distribution of the energies and localization lengths of the
states stays the same. This process does not invalidate the
adiabatic approximation unless the temperature is so high
that several states of energy&0(kT) larger than the chemical
potential have a spatial overlap with states at the chemical
potential. This stability argument becomes stronger due to
the role of electron-electron interactions in depleting states
near the chemical potential discussed below.

The last paragraph is only a plausibility argument. It is a
very interesting unsolved theoretical problem to ask for the
frequency scale up to which disorder can vary without delo-
calizing states.

Electron-electron interactions

The role of electron-electron interactions is always more
important for localized states where the kinetic energy has
been quenched than for Bloch states. Efros and Shklovskii15

have given convincing arguments that Coulomb interactions
create a pseudogap at the chemical potential if it lies below
the mobility edge. Therefore due to electron-electron inter-
actions the density ofone-particle statesis modified from
Fig. 1 to that depicted in Fig. 2. In three dimensions, the
density of states in the localized regime per unit volume near
the chemical potential is of the form

g~e!5e2/D3,
~9!

D5a
e2

k
,

wherea is a numerical constant, andk is the dielectric con-
stant.g~e! is independent of the localization length near the
chemical potential. Equation~9! is arrived at by considering
the stability of one-particle excitations under excitonic renor-
malizations due to the Coulomb interactions. Corrections to
it due to multiparticle excitations have not yet been estab-
lished conclusively.

The best way to test the localization idea and~9! experi-
mentally is a tunneling measurement. Density of states of
form ~9! have, however, already been observed in photo-
emission experiments.16,17 The key point is that the density
of states is zero at the chemical potential~with T/D correc-
tions!, independent of doping if the chemical potential is
below the mobility edge and the experiment is done in the
paramagnetic regime.

Resistivity

The conductivity of the localized states is expected to be
of the variable range hopping form,

s;exp@2~T0/T!1/2# ~10!

with T0'e2/k l , for T!T0 . Here l is the localization length
for states near the chemical potential. As the effective disor-
der is decreased by applying a magnetic field,l increases,

FIG. 2. Density of states with Efros-Shklovskii gap.
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leading to a decrease in the resistivity. The relationship of
the effective disorder and the magnetization is derived in
Sec. III. In the paramagnetic regime, the leading dependence
of the localization length onH is

l ~H !5 l 0@11x~T!H2/ t̄#, ~11!

where l 0 depends on the electron density, andt̄ is O(t).
Equation~10! may be combined with Eq.~11! to suggest that
magnetoresistance plotted against the magnetic susceptibility
should fall on the same curve for different temperatures and
for different compositions. A similar scaling behavior should
be observed for other transport properties as well.

Note that the leading temperature dependence of the con-
ductivity ~or magneto-conductivity! exhibited in Eq. ~10!
gives the number of carriers participating in the conduction.
Their mobility is a weakly temperature~and field-! depen-
dent prefactor of~10!. This is consistent with the recent ob-
servations of Ong18 from Hall-effect and magnetoresistance
measurements that the dominant effect of magnetic fields is
to increase the number of carriers.

The frequency-dependent conductivity should exhibit the
effects of the Efros-Shklovskii gap in the paramagnetic
phase. A gap is indeed observed.19 The low energys~v!
appears roughly;v. This is quite remarkable and needs
more detailed consideration.

When T0;T, the conductivity is no longer of the form
~10!. Now several excited states of energy<0(kT) overlap
the states at the chemical potential. The mobility may now be
calculated from

m5
eD

kT
, ~12!

where the diffusion constantD' l 2/t; l is the typical distance
between states degenerate to withinkT, which at very high
temperatures is 0(a) the lattice constant; and 1/t is the typi-
cal frequency of spin fluctuation;0(kT). So the high-
temperature conductivity approaches a constant proportional
to the carrier density.

III. ESTIMATE OF METALLIC-FERROMAGNETIC
TRANSITION TEMPERATURE

We can calculate the equilibrium properties in the para-
magnetic phase and an estimate of the ferromagnetic transi-
tion temperatureTc by a variational calculation of the free
energy ~see Fig. 3!. Let the probability distribution of the
angle between neighboring spinsu be given by

P~x!5M2d~12x!1~12M2!N expF2
A

kT
~12x!G ,

~13!

where x5cosu, M is the uniform magnetization which is
finite for T.Tc only if a magnetic fieldH is applied,A is a
variational parameter which is a function of temperature, and
N is a normalization factor.P~cosu! for A/kT→` aligns all
the spins while forA/kT→0, the spins are completely ran-
domly oriented providedM250. So it is expected that as
temperature decreases the variational calculation will lead to
A(T)/kT, changing from 0 to very large values near the fer-
romagnetic transition. To calculate the energy of the elec-

trons, we evaluate the probability distribution of the nearest-
neighbor transfer integralP(t):

P~ t !5
1

t0
E

21

1

d~cosu!P~cosu!d~ t/t02cosu/2!

5M2d~ t2t0!1~12M2!N
t

t0
2 expF2

2A

kT S t2t0221D G .
~14!

One should now calculate the electronic density of states
n(E) with P(t), and calculate the electronic energy in terms
of n(E). n(E) cannot be evaluated without a lengthy nu-
merical calculation. We will instead use the following ap-
proximate method: For a rectangular density of states with
bandwidthW, with heightW21 so that it can accommodate
at most one electron per atom, the energy atT50 for c
electrons per atom is

e~ t !52
W

2
c~12c!. ~15!

A good approximation for the electronic energy is

Ee5E dt P~ t !e~ t !. ~16!

A classical approximation to the entropy of spins in the
large-S limit, using distributions such asP(x), gives incor-
rect answers at high temperatures. To calculate the entropy
we write the quantum version ofP(x) by writing

cosu215
J224S2

2S2
, ~17!

whereS is the value of the spin of an ion~Mn31 spinS52 is
the appropriate value!, andJ ranges from 0 to 2S in integer
increments. Then define the quantum analog of the second
term of ~1!,

Z5(
J
e2~A/kT!S2~J224S2! ~18!

FIG. 3. Magnetic transition temperature vsx in Lat2xSrxMnO3
taken from Ref. 3, compared to the resultTM;x(12x) from Eq.
~25!.
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and

Sions52
]

]T
~kT lnZ!. ~19!

Strictly speaking, I should also use~18! for the calculation
of the energy, but the final answer is likely to be nearly the
same and the form ofP(x), Eq. ~13!, leads toP(t) of Eq.
~14!, which seems physically more transparent.

In my calculations I have neglected the entropy of the
orbital motion of thex/unit-cell ‘‘conduction’’ electrons
compared to that of the 1/unit-cell spins. This is a small
correction. Similarly, finite-temperature corrections to~3!
were neglected.

The free energy then is

F'Ee2TSspins2M•H. ~20!

We may write this as

F5t0@a~A,T/t0!M
21F0~A

2,T/t0!#2M•H, ~21!

so that the uniform magnetic susceptibility is given by

x2152t0a~A,T/t0!. ~22!

The ferromagnetic transition temperature is given by

a~A2,Tc /t0!50. ~23!

The result of the minimization of the free energy with re-
spect toA, not surprisingly~since this is a mean-field calcu-
lation!, is thatx(T) follows a Curie law

x~T!'
S2

T2Tc
. ~24!

The numerical minimization ofF with respect toA gives that

kBTc.0.1Ecoh
F ~c! ~25!

whereEcoh
F (c) is the electronic cohesive energy for the fer-

romagnetic case,

Ecoh
F ~x!5

W

2
c~12c!. ~26!

The numerical factor of;0.1 reflects~i! that the electronic
cohesive energy increases by only about 20% in going from
the complete random spin orientation to the ferromagnetic
configuration, and~ii ! that the entropic free energy of spins
at a temperatureT5W is about a factor of 2 larger thanW.

Mattheiss20 has calculated the conduction-electron band-
width in the local-density approximation to be'2.5 eV.
Then atx'0.3, the calculatedTc'250 which, considering

the crudeness of the calculation, is in the right range. A more
important test is the relationTc;x(12x), which is com-
pared with experimental results in Fig. 2.

The CPA is a perfectly respectable approximation to cal-
culate the energetics. Therefore Furukawa’s calculations7 for
Tc are probably better than the estimates here, although the
considerations here may be more transparent.

IV. CONCLUDING REMARKS

An attempt has been made to understand the equilibrium
and transport properties of mixed-valent magnetic com-
pounds on the basis of electronic localization due to mag-
netic disorder, and the alteration of this disorder by a mag-
netic field. A paramagnetic insulator to ferromagnetic
transition in the observed range of temperatures and with an
observed composition dependence is derived. The primary
effect of a magnetic field on transport is to alter the localiza-
tion length, an effect which is enhanced as the magnetic
susceptibility increases. Scaling of the transport properties
with the magnetic susceptibility, and tunneling experiments
to observe the Efros-Shkloveskii correlation-induced
pseudogap in the paramagnetic phase, are suggested.

In this paper the ordinary antiferromagnetic exchange be-
tween localized carriers and the effects due toA-B disorder
have been ignored. At low temperatures their effects have
been adequately treated by deGennes.21

Note added. Based on a preprint of this paper, the authors
of Ref. 10, in yet another paper on the Jahn-Teller distortion
idea @A. J. Millis, R. Mueller, and B. I. Shraiman~unpub-
lished!#, pointed out in effect that the fluctuations in hopping
estimated here using the results of Economu and Antoniu are
too small by about a factor of 2 to give the mobility edge at
x'0.3. This is picayune. The point of this work is to show an
important effect which systematically explains observations
asx is varied. Estimates of the fluctuation in hopping based
on the ‘‘one-electron approximation’’ can easily be in error
by a factor of 2 or more. As pointed out here, electron cor-
relation effects increase the tendency to localization and in-
crease the effective disorder parameter. So does the different
lattice distortion~breathing mode! around Mn31 and Mn41,
which renormalizest. The uncertainty in disorder fluctua-
tions by a factor of 2 should be compared with a general lack
of knowledge of coupling constrants in the Jahn-Teller
scheme. In any case recent neutron-scattering results strongly
disfavor Jahn-Teller effects as responsible for the insulating
to metallic crossover@M. Marezio~private communication!#.
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