PHYSICAL REVIEW B VOLUME 54, NUMBER 10 1 SEPTEMBER 1996-1

Ising spin glass: Replica-symmetric cluster expansion in finite dimensions
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The replica-symmetric cluster expansion for the Ising spin glass is reviewed and explained. The expansion
allows computation of various quantities and correlations directly in finite dimensions, without recourse to the
mean-field theory or the saddle point. The expansion for the free energy is recovered with the use of external
fields that couple to the replica-symmetric Edwards-Anderson order parameter. The expansion scheme is
applied to the Edwards-Anderson susceptibility. The expansion diverges in the medinfieite dimension-
ality] limit. The divergent expansion, when naively summed, yields the negative replicon mass of the mean-
field theory. This so-called Almeida-Thouless instability of the replica-symmetric mean-field theory is argued
to be absent in finite dimensions. The argument, similar to the one already reported for the entropy, depends on
the low-temperature behavior of terms in the expansion at finite dimen$®d$63-18206)00634-(

I. OVERVIEW OF STUDIES AT FINITE d require the replica-symmetry breaking discovered in the
mean-field theory. One of the fundamental quantities in these
The accepted starting point for understanding the spinstudies, however, is not the order parameter but the energy
glass phase in finite dimensions is the Edwards-Andersonost of creating a defect of linear sitein the spin-glass
model for Ising spind. The long-range Ruderman-Kittel- ground state. The energy cost varied ad; the exponeny
Kasuya-Yoshida interaction between spins in the spin-glass estimated to be less thad{ 1)/2, and numerical simula-
alloy is represented in the model by a random interactionions give a value of around 0.25 for it in three
between nearest-neighbor spins placed on the sites of gimensiongl2
d-dimensional hypercubic lattice. The probability distribu- By contrast, a Monte Carlo study of the order-parameter
tion for the random interaction is symmetric when studyingdistribution P(q), in d=4, finds that the weight for small
the paramagnet—spin-glass transition or the spin-glass phasg. accumulates to a nonzero value as the system
It has been indisputably established for several years noWize increase!® in agreement with the behavior expected
that the Ising spin-glass model has a phase transition at finitg, payisi's mean-field theory. The order-parameter distribu-

d, and even ad=3. Evidence from one of the primary yjon js a measure: it is the probability for obtaining a given
methods for studying an equilibrium phase transition, the\/alue of pairwise overlap. It is given by the derivative of

high-temperature series expansion, was reviewed in an eay " .
. . ’ . . . . , the probability of obtaining a value u for th
lier comment The evidence from numerical simulations is (@) e probability of obtaining ue up tp for the

reviewed in Binder and Yound overlap.
The most extensive study of the spin-glass phase in the Another approach to understanding the effect of finite di-

finite-dimensional Ising spin-glass model is the one pio_mepgionality Is th? Stfdy of the sp_in glass on a Bethe Iqttice
neered by De Dominicis and KondrTheir approach is of finite connect_lwtyl. These studies also fmt_j that reph.ca
similar to that of Wilson-Fisher 4-expansion for the ferro- Symmetry breaking persists when the phase is studied in an
magnetic transition: De Dominicis and Kondor start from &Xpansion in the reciprocal of the connectivity param&er.
Parisi's mean-field solutiGnand study the role of finite di- Finally, there now exists a cluster expansion for the Ising
mensionality by a loop expansion. This loop expansion isSPin glass. The expansion is most conveniently generated
difficult to carry out beyond the first few orders, because theising the replica method. The cluster expansion for the free
spectrum of Gaussian fluctuations about Parisi’'s mean-fiel@nergy in the replica-symmetric phase showed that the low-
solution, which determines the bare propagators, is infinitelfemperature behavior is different at finite from that at
degenerate and extremely singular. The main result from thd— e, the mean-field limit. In particular, the negative value
loop expansion is that the Ising spin-glass phase in finitof the zero-temperature entrobyan unphysical feature of
dimensions has broken replica symmetry of the form disthe replica-symmetric mean-field theory that prompted at-
cussed by Parisi in the mean-field theory. The precise fronempts to break the replica symmetAcould be recoveréd
of Parisi’s order parametey(x), however, may change be- from the expansions when the lindt—o was taken before
low some critical dimensioR A 1/d expansion for the coef- the limit T—0.
ficients of the Landau-Ginzburg free-energy functional for The formalism for studying the replica-symmetric phase
the spin-glass phase, carried out as in Ref. 7, corroborates tlo the Ising spin glass directly in finite dimensions, using the
results of the loop expansion. cluster expansion noted above, is developed here. The ex-
There have also been phenomenological studies of thpansion for the free energy in the replica-symmetric phase,
spin-glass phas&l® These find that the Ising spin glass in which was discussed in Ref. 18, is rederived in Sec. Il below
finite dimensions has at most a finite number of pure statesjsing an external field that couples to the replica-symmetric
so that a description of it in the replica formalism might notorder parameter. The Edwards-Anderson susceptibility is
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discussed in Sec. lll. The outlook for various methods used The first of the peculiarities noted above says merely that

to study the spin glass is presented in Sec. IV. the expansion is not about the true spin-glass ground state,
because the ground-state energy is nonzero. The second,

Il. FREE ENERGY however, is more tricky. Since ordered phases are described

by the values of their order parameters, might not one require

The Ising spin glass is defined by the Hamiltonian that the initial configuration at least has the value expected

for g at T=0, which isq=17? Is something wrong about the
choice(p, n—p) for the initial state?

__ e The reasormg=0 in the statgp, n—p) is none other than
H=-2 Jsis, (2.2 S

i) the one that causes the magnetization of a ferromagnet to be
_ . . . . . zero if states with preferred magnetizations both up and
wheres;= =1 are Ising spins on the sites ofladimensional . ; . .

) . . ; down are kept in the Gibbs average while carrying out a
lattice andJ;; is the exchange interaction between nearest; : . .

. | : low-temperature expansion. It is for this reason—the analogy
neighbor spins. The replica method allows the thermOdyK/vith the ferromagnet—that in discussions of the cluster ex-
namics of a quenched random system to be derived as &\ ..o ¢ the 3 in glass reported to d4t& the startin
certain limit of the statistical mechanics of an effective ho-P Pin g b ' 9

mogeneous one. The effective Hamiltonian is obtained fromconﬂguranon was chosen to ba)( that is, one with spins in

the average of thath power of the partition function of the all replicas pointing up. This state also does not contribute to

; S the free energy, but in ij=1. The cluster expansion about
guenched random system. For a Gaussian distribution of e%ﬁis state vields. in the limif e a low-temperature expan-
change interactions: y J ' p p

sion forlt?e replica-symmetric Sherrington-Kirkpatri¢gK)
[Z"]ai=Tr exp(— BHy), (2.9  solution. _
av n
s But in the low-temperature expansion for the ferromagnet
N 5 the Gibbs average may be unrestricted if one adds a uniform
2 s“s“) field. Indeed, low-temperature expansions for the ferromag-
(|

“= 2.3 netic phase are recovered if the uniform field is set equal to

zeroafter taking the thermodynamic limit. Similarly, to gen-
When studying the replica-symmetric phase one may regardrate the low-temperature expansion for the replica-
the right-hand side of2.3) as an effective Hamiltonian far ~ symmetric Ising spin-glass phase, it is useful to consider
Ising spins and not worry about the fact that the limit:0 adding to the right-hand side ¢2.3) a term

must be taken at the end, just as is done in the replica for-

malism for Anderson localizatiolY. For the statistical prob-

lem defined by(2.2) and (2.3 a starting configuration about 12

which a cluster expansion may be built is then the one that gh 2 2 N (2.5
maximizes— BH,. The 2" states in which each replica is 2 T 5 '
independently ferromagnetically aligned throughout the sys-

tem do maximize— BH,. These states may be written as hich has the same form as the EA order parameter. Such a
(p, n— p)_, that is, the spins po_mt down in _th_e f|r|strep_llcas term would arise if a Gaussian random external field of vari-
at each site and they point up in the remainmgp replicas. = gnceh2 acted on the system and one was interested in the

The above choice for the initial configuration, although it verage response to this field. In the presenc@d, q in
seems obvious, raises a simple question: What does one ¢, state(p, n—p) is

with the variablep? Since the thermodynamics must not de-
pend on it, one must sum over all possible valuespof
0=p=n, using binomial weights for the number of configu-
rations for a giverp.?°

The initial configuration has two further peculiar proper-
ties. First, it does not contribute to the free energy because i
it H, is 0O(n?). Second, the Edwards-Anders@BA) order
parameter vanishes: Following De Dominicis and Yoghg,

1
—BHn=5 B22 (
@

f [dy]Jtanf(BhyN)—1, N-—co. (2.6)

fh (2.6) and in the following[[dy] stands for an integral
with Gaussian weight, of variance unity unless otherwise

, specified??
the EA order parametey may be defined as pHaving introduced the notion of an external field that
nN couples to the replica-symmetric order parameter, it is easy
g= lim i lim ; E (s-‘"sﬁ>. to verify that all the results reported to date for the cluster
Neow N o N(N=1) Fpi= expansion for the replica-symmetric pha&eyhich were ob-

tained using ) as the starting configuratidne., spins in all
In the state p, n—p) it is given by replicas point up can also be obtained starting from the
1 N state(p, n—p) in the presence of2.5 and taking the limit
o 2 B h—0 after the thermodynamic limit. As an example, con-
q_r!'To n(n—1) < pzfo (n=2p)"~ n> =0 (249 sider the contribution to the free energy from states with one
flipped site, that is, when the spin configuration at one site in
The average here means a sum qvevith binomial weights  the lattice is of the form(q, p—q; r, n—p—r), the number
and a Boltzmann factor that is the exponential@#ftimes  of down replicas being+r and of up replicas being—q
n?, the overlap between spins at neighboring sites. —r. The contribution to the free energy re&ds
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—BF,= N[ J' [dy][dx;][dx;]In[4 costi BX;) cost X;)cosh BY) + 4 sink SXy)sinh( 5X,)sinh( BY) ]

—f [dX]In[2 coshi BX)]{, 2.9
|
where appears as a negative value of the kinetic coeffid®and is
_ _ _ thought to mark the onset of irreversible behaviof.o date
X3=V(N=1)hxy, Xp= \/ﬁxz, y= \/ﬁy, Parisi’s ansatz for breaking the replica symmetrpr con-
_ siderations based on what that ansatz implies for dynamical
and X= \Nhx. relaxatiof® or for the structure of spin-glass phase
In the thermodynamic limit the external fieldis chosen to isngigsfitli“'ztge only known mechanism for healing the

be O(1//N). Thex, integral gives unity in that limit; the,
andy integrals factorize, so that thg integral cancels the
second terms on the right-hand side(2f7). This gives the
free energy per spin

The equilibrium quantity underlying the AT instability is
the Edwards-Anderson susceptibili}?°> The EA correlation
between two sitesandj is the average, over the distribution
of exchange bonds, of the square of the correlation between
the spins on those sites:

X7=(((sis) = (s)(s1)))s, 3.0
3o that for a system dfl Ising spins,)(EA may be defined as

-1~ [ Taylnt2 coshgF) 2.8

which has the same form as the SK free energy whe
ask=1.182%It would belabor the point to show how the con-
tributions listed in Ref. 18 arise when the initial configura- 1 N

tion is (p, n—p), rather than 1§). Suffice it to say that the == Xy 3.2
contribution of a flipped cluster of sites when the back- Nij=1

ground state igp, n—p) and a random field of the for2.5 | the mean-field approximation, the left-hand side(@D)

acts on every site, in some ways resembles the contributiopyctors into products of single-site correlations and is usually
of a flipped cluster of (+1) sites in the background state |y itten as°

(n), but that this contribution reduces in the thermodynamic

limit to the one obtained for a cluster offlipped sites in the Mean-field XﬁK
background staten). Comparing Eq(2.7) above with Eq. XA 1= g2, (3.3
(5) in Ref. 18 might serve as a useful illustration of this BXii

general observation.

SK, _ * dy 2 4
xas0= | = exti-y2)secliyBasolt, (34

Ill. EDWARDS-ANDERSON SUSCEPTIBILITY —o \/E

The Almeida-Thoules$AT) instability?® ranks foremost whereg, the inverse temperature, is measured in units of the
among the concepts and notions of spin-glass theory becausquare root of the variance of the bond distribution. In Eq.
of which the theory has come to be regarded as a sort df3.4) ggk is the replica-symmetric Edwards-Anderson order
paradigm for “complexity.’®® The AT instability, as it is parameter in the mean-field approximation; it is given by the
currently understood, means that theoretical descriptions of self-consistent SK equation.
spin-glass-like phase that regard its phase space as a simpleAt low temperatures, wheggk—1, the integral in(3.4) is
one similar to that of a ferromagnet, rather than as one witlof order 183, so that the denominator on the left-hand side of
many almost degenerate valleys separated by barriers thé.3) is large, O(B), and negative. This negative value of
diverge in the thermodynamic limit, will be plagued by un- Y**—and therefore of the replicon eigenvalue or nfasg;*®
stable behavior of physical quantitieg? which are inversely related tg~*—lies at the root of the AT

The AT instability first arose in a mean-field theory for instability.
the Ising spin glass using the replica method, but it has since A cluster expansion fog* is discussed below. Analysis
been found to appear in all mean-field treatments of thaof terms in the cluster expansions gf* shows that at any
phase: in the familiar Sherrington-KirkpatrigK) model, finite d, x** will be given by a sum of positive terms which
in which each ofN spins interacts with all the re&tit ap-  are all small at low temperaturésput that the form(3.3)
pears as a negative eigenvalue in the spectrum of fluctuationgill be recoverednly in the limit d—oo. This means that the
about the saddle poifit; in the Landau-Ginzburg-Wilson feature that makes the mean-figi® negative, namely, that
functional for the spin-glass phase, it appears as a negativeach term is larger than the previous one by a factog,of
mass for a modécalled the repliconwhen the coefficients will be absent at finited. A negative value fony™* in the
in the functional are approximated by their mean-fieldreplica-symmetric spin-glass phase at finite therefore
values’?®or expanded in Hf about the mean-field valuégd ~ seems highly unlikely.
is the space dimensional)ty in mean-field studies of dy- This behavior ofy** at finite d was determined from
namical relaxation to ainiqueequilibrium configuration, it analysis of terms with up to four flipped sites in its cluster
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expansion. These terms, and especially their behavior dhe factorization makes the leading temperature dependence
d—oo, are discussed next for a Gaussian distribution ofof the contributions to be of order unity and 3.
bonds. Just as in the case of free enef§ycalculations for the

To understand thd— < limit of the cluster expansion, it contributions of small clusters discussed above immediately
is useful to recall a low-temperature expansion for the SKlead to generalizations, and it is possible to write the contri-
equation of state for the EA order parametgy,.. The result  bution of any cluster tg* or to the order parameter. Fur-
of iterating that equation may be written as thermore, just as the temperature dependence obtained by
Osk=1—0q;T—q,T2—qsT3+---, where q;, q,, etc. are explicit calculations of small-cluster contributions to the free
functions of T but their expansions in powers & have energy was argued to apply to larger clusters as Hehe
nonzero constant terms, so that the iteration series gives @ntributions of larger clusters g will be all small at low
sort of low-T expansion forqgk. In the cluster expansion, T. In particular, it is almost impossible that the integrals
only flipped sites contribute to the order parameter, and thévolved in the cluster contributions tg* will yield terms
d—oo limit of the contributions from one-, two-, and three- proportional to positive powers ¢f, whose sum may lead to
flipped sites givesy;, q,, andqs, respectively. a negativey=" at low temperatures. And what other mecha-

Consider next the site-diagonal terms ¥i*, which in-  nism might give a negative sum for a series of non-negative
volve averages of the second and fourth powers of the locakrms? It therefore seems safe to conclude #ftin the
magnetization. Here again only flipped sites contribute. Theeplica-symmetric phase of the Ising spin glass is non-
one-flipped site contribution gives dt-o= x;* for qgx=1.  negative at finited.
The two- and three-flipped sites contributions in that limit  As an illustration of the calculations involved in the clus-
reduce to, respectively, the next two terms in the bwex-  ter expansion fory™*, consider((sisj>2>3. If sitei hasp
pansion obtained when the lowexpansion fomgy is sub-  flipped replicas, &p=<n, and sitej hasr,+r, flipped rep-
stituted inXﬁK(qSK)_ licas, 1=r;<p and I=<r,<n-—p, then

Two-site correlationsy;* contribute tox®* only when
bothi andj belong to a cluster of 7 flipped sites. The first
such contribution arises from states with two flipped sites, 1

1
ss)%)=lim ——— s%s?sPh
and 2, say, and reads ({8151 noN(n—1) ;B< 'S'SIS])

t2 (1—t2)2(1—t2)2 o 1 _ _ L
f [dyslldy,)[dy.] = =~ (39 lim gy [(n=2p—2r5+2ry)%) —n).
_ _ . (37
where t; ,=tanh(8y, ;) and t;,=tanh(8y,,) and the inte-
grals have Gaussian weights: of varianat-21 for y; and
y,, and of variance unity foy,,. These variances arise be- The average on the rhs means sums guar,, andr, with
cause (21— 1) bonds connect each of the two flipped sites tothe following weights: binomial factors for the number of
the rest of the lattice, but only one bond connects them tevaysp, r,, andr, replicas can be chosen; a “Boltzmann”
each other. To obtain the mean-field limit of this contributionweight, which is the exponential g8* times the sum of
to x&*, multiply it by d—the lattice factor, which arises from squares of overlaps between flipped sites and their nearest
the sum on the right-hand sidehs) of (3.2—scales® by  neighbors. The other two-site correlations needed in the cal-
1/2d, and letd—. The denominator is then replaced by culation of y** can be similarly expressed as averages over
unity, t1, in the numerator by its linear term, and the remain-the numbers of flipped replicas on the two sites. Details of
ing integrals orny; andy, have Gaussian weights with vari- the calculation will be published elsewhere.
ance 1. In other words, it give8? x;i¥]? for qgx=1. Not Finally, a word about the nonlinear susceptibilig}',
unexpectedly, in view of the discussion aboy&,' and 55 Wwhich is inversely related to the second distinct eigenvalue
from states with three flipped sités, 2, and 3, sayatd—o  (also called the longitudinal moglén the spectrum of fluc-
give the first order in the loW- expansion of tuations about the replica-symmetric saddle pdirt Clus-
BZ[XS'K(QSK)]Z- But x55 for three-flipped sites reads ter contributions toX”' reduce in the limitd—~ to a low-
temperature expansion of the replica-symmetric mean-field
result, just asi™" does.

| tdyarayzaray iy

2421 t3)2(1-t2)3(1-t2)? a6 IV. OUTLOOK

X[dys -
[1+1tgtotiot+totatosttatatsstag] In 1990-1991, a value of zero was reported for the zero-
temperature entropy in the replica-symmetric phase using a
Here the variances for the Gaussian weights are 2 fory;  cluster expansion for the free eneffyThe unphysical
andys, 2d—2 fory, and 1 fory;, andy,s. Using a lattice  mean-field result for the replica-symmetric phase—namely,
factor ofd(2d—1) for a chain of three connected sites, thethe negative value of the zero-temperature entropy—could
d—eo limit gives B[ x3(1)]°. Similarly, thed—c limitof  be recovered from the free-energy expansion if the limit
x4 for a chain of four connected sites givﬁg[XﬁK(l)]“. d—o (the mean-field limit was taken before the limit
The factorization ofy5y', x5%', and x5;' noted above oc- T—0. It was remarked at that time that the noncommutativ-
curs only atd—oo; because(ﬁK is O(T) at low temperatures ity of the limits in the behavior of the entropy was in agree-
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ment with an earlier result by Fisher and Huse, who havevhich of the two possible methods for calculating the
argued that the mean-field approximation might be a singulaground-state energies for a given value dfwill be more

limit of finite-dimensional spin-glass modélgut that noth-  reliable: the ones, such as the cluster expansion discussed
ing definitive could be said about the nature of the finite-here, that do not start from the—oo limit, or the ones that
dimensional phase unt}* was examined for AT instabil- expand about that limit.

ity. The unphysical behavior of thg* expansion in the One might argue that the absence of replica-symmetry-
d—<o limit discussed above strengthens both the Fisher antireaking instability in the cluster expansion arises because of
Huse result about singular behaviordat>, as well as the improper boundary conditions, as has been found to be the
suggestion by thefh by Bray and Mooré, and by Bovier case in studies of the spin glass on a Bethe lattice of finite
and Frdnlich,? that the spin-glass phase space in finite di-connectivity'* Regarding this or similar criticisms, it is use-
mensions might be much simpler than the one with manyul to remember that the expansion does recover the instabil-
valleys arranged in an ultrametric hierarchy, which underliesty in d—co. In fact, it is the only method to date whereby
Parisi’'s ansatz for breaking the replica symmetry to heal thdoth the instability a— oo and its possible absence in finite
AT instability of the mean-field theory. d can be derived from the same analytic expression.

The non-negative value of the replica-symmeyfi¢ dis- Finally, it must be admitted—and especially so in light of
cussed here contradicts the results bt obtained using the recent developments—that the cluster expansion, as devel-
Landau-Ginzburg-Wilson free-energy function@ls.The  oped so far, may not be a suitable method for determining
reason for the contradiction might be that studies of the spinthe nature of the spin-glass phase in finite dimensions. It
glass transition using free-energy functionals reported to datmay, however, be fruitful to develop this expansion further,
all start from the mean-field limit, wherefore it is necessaryfor it allows evaluation of quantities of interest directly in
to implement Parisi’'s replica symmetry breaking and stabifinite dimensions. One obvious challenge, in developing the
lize the “bare” replicon mass before the role of non- expansion further, is to use it to study phases with broken
Gaussian fluctuationghat is, of finite dimensionalifycan be  replica symmetry.
considered, and they find that the replica-symmetry broken
phase persists in finite dimensions. The contradiction cannot ACKNOWLEDGMENT
be resolved until the ground-state energies in various spin-
glass phases have been compared. But it might also be im- The author thanks Professor J. J. Quinn for support at the
portant to resolve before any such comparison is carried outiniversity of Tennessee.
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