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The replica-symmetric cluster expansion for the Ising spin glass is reviewed and explained. The expansion
allows computation of various quantities and correlations directly in finite dimensions, without recourse to the
mean-field theory or the saddle point. The expansion for the free energy is recovered with the use of external
fields that couple to the replica-symmetric Edwards-Anderson order parameter. The expansion scheme is
applied to the Edwards-Anderson susceptibility. The expansion diverges in the mean-field@infinite dimension-
ality# limit. The divergent expansion, when naively summed, yields the negative replicon mass of the mean-
field theory. This so-called Almeida-Thouless instability of the replica-symmetric mean-field theory is argued
to be absent in finite dimensions. The argument, similar to the one already reported for the entropy, depends on
the low-temperature behavior of terms in the expansion at finite dimensions.@S0163-1829~96!00634-0#

I. OVERVIEW OF STUDIES AT FINITE d

The accepted starting point for understanding the spin-
glass phase in finite dimensions is the Edwards-Anderson
model for Ising spins.1 The long-range Ruderman-Kittel-
Kasuya-Yoshida interaction between spins in the spin-glass
alloy is represented in the model by a random interaction
between nearest-neighbor spins placed on the sites of a
d-dimensional hypercubic lattice. The probability distribu-
tion for the random interaction is symmetric when studying
the paramagnet–spin-glass transition or the spin-glass phase.

It has been indisputably established for several years now
that the Ising spin-glass model has a phase transition at finite
d, and even atd53. Evidence from one of the primary
methods for studying an equilibrium phase transition, the
high-temperature series expansion, was reviewed in an ear-
lier comment.2 The evidence from numerical simulations is
reviewed in Binder and Young.3

The most extensive study of the spin-glass phase in the
finite-dimensional Ising spin-glass model is the one pio-
neered by De Dominicis and Kondor.4 Their approach is
similar to that of Wilson-Fisher 4-e expansion for the ferro-
magnetic transition: De Dominicis and Kondor start from
Parisi’s mean-field solution5 and study the role of finite di-
mensionality by a loop expansion. This loop expansion is
difficult to carry out beyond the first few orders, because the
spectrum of Gaussian fluctuations about Parisi’s mean-field
solution, which determines the bare propagators, is infinitely
degenerate and extremely singular. The main result from the
loop expansion is that the Ising spin-glass phase in finite
dimensions has broken replica symmetry of the form dis-
cussed by Parisi in the mean-field theory. The precise from
of Parisi’s order parameterq(x), however, may change be-
low some critical dimension.6 A 1/d expansion for the coef-
ficients of the Landau-Ginzburg free-energy functional for
the spin-glass phase, carried out as in Ref. 7, corroborates the
results of the loop expansion.

There have also been phenomenological studies of the
spin-glass phase.8–10 These find that the Ising spin glass in
finite dimensions has at most a finite number of pure states,
so that a description of it in the replica formalism might not

require the replica-symmetry breaking discovered in the
mean-field theory. One of the fundamental quantities in these
studies, however, is not the order parameter but the energy
cost of creating a defect of linear sizeL in the spin-glass
ground state. The energy cost varies asL2y; the exponenty
is estimated to be less than (d21)/2, and numerical simula-
tions give a value of around 0.25 for it in three
dimensions.11,12

By contrast, a Monte Carlo study of the order-parameter
distribution P(q), in d54, finds that the weight for small
q accumulates to a nonzero value as the system
size increases,13 in agreement with the behavior expected
in Parisi’s mean-field theory. The order-parameter distribu-
tion is a measure; it is the probability for obtaining a given
value of pairwise overlapq. It is given by the derivative of
x(q), the probability of obtaining a value up toq for the
overlap.

Another approach to understanding the effect of finite di-
mensionality is the study of the spin glass on a Bethe lattice
of finite connectivity.14 These studies also find that replica
symmetry breaking persists when the phase is studied in an
expansion in the reciprocal of the connectivity parameter.15

Finally, there now exists a cluster expansion for the Ising
spin glass. The expansion is most conveniently generated
using the replica method. The cluster expansion for the free
energy in the replica-symmetric phase showed that the low-
temperature behavior is different at finited from that at
d→`, the mean-field limit. In particular, the negative value
of the zero-temperature entropy,16 an unphysical feature of
the replica-symmetric mean-field theory that prompted at-
tempts to break the replica symmetry,17 could be recovered18

from the expansions when the limitd→` was taken before
the limit T→0.

The formalism for studying the replica-symmetric phase
of the Ising spin glass directly in finite dimensions, using the
cluster expansion noted above, is developed here. The ex-
pansion for the free energy in the replica-symmetric phase,
which was discussed in Ref. 18, is rederived in Sec. II below
using an external field that couples to the replica-symmetric
order parameter. The Edwards-Anderson susceptibility is
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discussed in Sec. III. The outlook for various methods used
to study the spin glass is presented in Sec. IV.

II. FREE ENERGY

The Ising spin glass is defined by the Hamiltonian

H52(
~ i j !

Ji j sisj , ~2.1!

wheresi561 are Ising spins on the sites of ad-dimensional
lattice andJi j is the exchange interaction between nearest-
neighbor spins. The replica method allows the thermody-
namics of a quenched random system to be derived as a
certain limit of the statistical mechanics of an effective ho-
mogeneous one. The effective Hamiltonian is obtained from
the average of thenth power of the partition function of the
quenched random system. For a Gaussian distribution of ex-
change interactions:
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When studying the replica-symmetric phase one may regard
the right-hand side of~2.3! as an effective Hamiltonian forn
Ising spins and not worry about the fact that the limitn→0
must be taken at the end, just as is done in the replica for-
malism for Anderson localization.19 For the statistical prob-
lem defined by~2.2! and~2.3! a starting configuration about
which a cluster expansion may be built is then the one that
maximizes2bHn. The 2n states in which each replica is
independently ferromagnetically aligned throughout the sys-
tem do maximize2bHn . These states may be written as
(p, n2p), that is, the spins point down in the firstp replicas
at each site and they point up in the remainingn2p replicas.

The above choice for the initial configuration, although it
seems obvious, raises a simple question: What does one do
with the variablep? Since the thermodynamics must not de-
pend on it, one must sum over all possible values ofp,
0<p<n, using binomial weights for the number of configu-
rations for a givenp.20

The initial configuration has two further peculiar proper-
ties. First, it does not contribute to the free energy because in
it Hn is O(n

2). Second, the Edwards-Anderson~EA! order
parameter vanishes: Following De Dominicis and Young,21

the EA order parameterq may be defined as
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In the state (p, n2p) it is given by

q5 lim
n→0

1

n~n21! K (
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~n22p!22nL 50 ~2.4!

The average here means a sum overp with binomial weights
and a Boltzmann factor that is the exponential ofb 2 times
n2, the overlap between spins at neighboring sites.

The first of the peculiarities noted above says merely that
the expansion is not about the true spin-glass ground state,
because the ground-state energy is nonzero. The second,
however, is more tricky. Since ordered phases are described
by the values of their order parameters, might not one require
that the initial configuration at least has the value expected
for q atT50, which isq51? Is something wrong about the
choice~p, n2p! for the initial state?

The reasonq50 in the state~p, n2p! is none other than
the one that causes the magnetization of a ferromagnet to be
zero if states with preferred magnetizations both up and
down are kept in the Gibbs average while carrying out a
low-temperature expansion. It is for this reason—the analogy
with the ferromagnet—that in discussions of the cluster ex-
pansion for the spin glass reported to date,18,20 the starting
configuration was chosen to be (n), that is, one with spins in
all replicas pointing up. This state also does not contribute to
the free energy, but in itq51. The cluster expansion about
this state yields, in the limitd→`, a low-temperature expan-
sion for the replica-symmetric Sherrington-Kirkpatrick~SK!
solution.18

But in the low-temperature expansion for the ferromagnet
the Gibbs average may be unrestricted if one adds a uniform
field. Indeed, low-temperature expansions for the ferromag-
netic phase are recovered if the uniform field is set equal to
zeroafter taking the thermodynamic limit. Similarly, to gen-
erate the low-temperature expansion for the replica-
symmetric Ising spin-glass phase, it is useful to consider
adding to the right-hand side of~2.3! a term

b2h2

2 (
i

(
aÞb

si
asi

b , ~2.5!

which has the same form as the EA order parameter. Such a
term would arise if a Gaussian random external field of vari-
anceh2 acted on the system and one was interested in the
average response to this field. In the presence of~2.5!, q in
the state~p, n2p! is

E @dy#tanh2~bhAN!→1, N→`. ~2.6!

In ~2.6! and in the following* [dy] stands for an integral
with Gaussian weight, of variance unity unless otherwise
specified.22

Having introduced the notion of an external field that
couples to the replica-symmetric order parameter, it is easy
to verify that all the results reported to date for the cluster
expansion for the replica-symmetric phase,18 which were ob-
tained using (n) as the starting configuration~i.e., spins in all
replicas point up!, can also be obtained starting from the
state~p, n2p! in the presence of~2.5! and taking the limit
h→0 after the thermodynamic limit. As an example, con-
sider the contribution to the free energy from states with one
flipped site, that is, when the spin configuration at one site in
the lattice is of the form~q, p2q; r , n2p2r ), the number
of down replicas beingq1r and of up replicas beingn2q
2r . The contribution to the free energy reads22
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2bF15NH E @dy#@dx1#@dx2# ln@4 cosh~b x̃1!cosh~b x̃2!cosh~b ỹ!14 sinh~b x̃1!sinh~b x̃2!sinh~b ỹ!#

2E @dx# ln@2 cosh~b x̃!#J , ~2.7!

where

x̃15A~N21!hx1 , x̃25Ahx2 , ỹ5A2dy,

and x̃5ANhx.

In the thermodynamic limit the external fieldh is chosen to
beO(1/AN). Thex2 integral gives unity in that limit; thex1
and y integrals factorize, so that thex1 integral cancels the
second terms on the right-hand side of~2.7!. This gives the
free energy per spin

2b f 15E @dy# ln@2 cosh~b ỹ!#, ~2.8!

which has the same form as the SK free energy when
qSK51.18,20 It would belabor the point to show how the con-
tributions listed in Ref. 18 arise when the initial configura-
tion is ~p, n2p!, rather than (n). Suffice it to say that the
contribution of a flipped cluster ofr sites when the back-
ground state is~p, n2p! and a random field of the form~2.5!
acts on every site, in some ways resembles the contribution
of a flipped cluster of (r11) sites in the background state
(n), but that this contribution reduces in the thermodynamic
limit to the one obtained for a cluster ofr flipped sites in the
background state (n). Comparing Eq.~2.7! above with Eq.
~5! in Ref. 18 might serve as a useful illustration of this
general observation.

III. EDWARDS-ANDERSON SUSCEPTIBILITY

The Almeida-Thouless~AT! instability23 ranks foremost
among the concepts and notions of spin-glass theory because
of which the theory has come to be regarded as a sort of
paradigm for ‘‘complexity.’’24 The AT instability, as it is
currently understood, means that theoretical descriptions of a
spin-glass-like phase that regard its phase space as a simple
one similar to that of a ferromagnet, rather than as one with
many almost degenerate valleys separated by barriers that
diverge in the thermodynamic limit, will be plagued by un-
stable behavior of physical quantities.5,24

The AT instability first arose in a mean-field theory for
the Ising spin glass using the replica method, but it has since
been found to appear in all mean-field treatments of that
phase: in the familiar Sherrington-Kirkpatrick~SK! model,
in which each ofN spins interacts with all the rest,16 it ap-
pears as a negative eigenvalue in the spectrum of fluctuations
about the saddle point;23 in the Landau-Ginzburg-Wilson
functional for the spin-glass phase, it appears as a negative
mass for a mode~called the replicon! when the coefficients
in the functional are approximated by their mean-field
values17,25or expanded in 1/d about the mean-field values~d
is the space dimensionality!;7 in mean-field studies of dy-
namical relaxation to auniqueequilibrium configuration, it

appears as a negative value of the kinetic coefficient,26 and is
thought to mark the onset of irreversible behavior.27 To date
Parisi’s ansatz for breaking the replica symmetry5—or con-
siderations based on what that ansatz implies for dynamical
relaxation28 or for the structure of spin-glass phase
space5—is the only known mechanism for healing the
instability.4,29

The equilibrium quantity underlying the AT instability is
the Edwards-Anderson susceptibility.17,25The EA correlation
between two sitesi and j is the average, over the distribution
of exchange bonds, of the square of the correlation between
the spins on those sites:

x i j
EA5^~^sisj&2^si&^sj&!2&J , ~3.1!

so that for a system ofN Ising spins,xEA may be defined as

xEA5
1

N (
i , j51

N

x i j
EA . ~3.2!

In the mean-field approximation, the left-hand side of~3.2!
factors into products of single-site correlations and is usually
written as30

xEA ——→
Mean-field x i i

SK

12b2x i i
SK, ~3.3!

x i i
SK~qSK!5E

2`

` dy

A2p
exp~2y2/2!@sech~ybAqSK!#4, ~3.4!

whereb, the inverse temperature, is measured in units of the
square root of the variance of the bond distribution. In Eq.
~3.4! qSK is the replica-symmetric Edwards-Anderson order
parameter in the mean-field approximation; it is given by the
self-consistent SK equation.

At low temperatures, whenqSK→1, the integral in~3.4! is
of order 1/b, so that the denominator on the left-hand side of
~3.3! is large,O(b), and negative. This negative value of
xEA—and therefore of the replicon eigenvalue or mass,23,17,25

which are inversely related toxEA—lies at the root of the AT
instability.

A cluster expansion forxEA is discussed below. Analysis
of terms in the cluster expansions ofxEA shows that at any
finite d, xEA will be given by a sum of positive terms which
are all small at low temperatures,31 but that the form~3.3!
will be recoveredonly in the limit d→`. This means that the
feature that makes the mean-fieldxEA negative, namely, that
each term is larger than the previous one by a factor ofb,
will be absent at finited. A negative value forxEA in the
replica-symmetric spin-glass phase at finited therefore
seems highly unlikely.

This behavior ofxEA at finite d was determined from
analysis of terms with up to four flipped sites in its cluster
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expansion. These terms, and especially their behavior at
d→`, are discussed next for a Gaussian distribution of
bonds.

To understand thed→` limit of the cluster expansion, it
is useful to recall a low-temperature expansion for the SK
equation of state for the EA order parameter,qSK. The result
of iterating that equation may be written as
qSK512q1T2q2T

22q3T
31•••, where q1 , q2 , etc. are

functions of T but their expansions in powers ofT have
nonzero constant terms, so that the iteration series gives a
sort of low-T expansion forqSK. In the cluster expansion,
only flipped sites contribute to the order parameter, and the
d→` limit of the contributions from one-, two-, and three-
flipped sites givesq1 , q2 , andq3 , respectively.

Consider next the site-diagonal terms inxEA, which in-
volve averages of the second and fourth powers of the local
magnetization. Here again only flipped sites contribute. The
one-flipped site contribution gives atd→` x i i

SK for qSK51.
The two- and three-flipped sites contributions in that limit
reduce to, respectively, the next two terms in the low-T ex-
pansion obtained when the low-T expansion forqSK is sub-
stituted inx i i

SK(qSK).
Two-site correlationsx i j

EA contribute toxEA only when
both i and j belong to a cluster of 7 flipped sites. The first
such contribution arises from states with two flipped sites, 1
and 2, say, and reads

E @dy12#@dy1#@dy2#
t12
2 ~12t1

2!2~12t2
2!2

@11t1t2t12#
4 , ~3.5!

where t1,2[tanh(by1,2) and t125tanh(by12) and the inte-
grals have Gaussian weights: of variance 2d21 for y1 and
y2 , and of variance unity fory12. These variances arise be-
cause (2d21) bonds connect each of the two flipped sites to
the rest of the lattice, but only one bond connects them to
each other. To obtain the mean-field limit of this contribution
to xEA, multiply it by d—the lattice factor, which arises from
the sum on the right-hand side~rhs! of ~3.2!—scaleb2 by
1/2d, and letd→`. The denominator is then replaced by
unity, t12 in the numerator by its linear term, and the remain-
ing integrals ony1 andy2 have Gaussian weights with vari-
ance 1. In other words, it givesb2@x i i

SK#2 for qSK51. Not
unexpectedly, in view of the discussion above,x12

EA andx23
EA

from states with three flipped sites~1, 2, and 3, say! atd→`
give the first order in the low-T expansion of
b2@x i i

SK(qSK)#
2. But x13

EA for three-flipped sites reads

E @dy12#@dy23#@dy1#@dy2#
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t12
2 t23

2 ~12t1
2!2~12t2

2!2~12t3
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@11t1t2t121t2t3t231t1t3t12t23#
4 . ~3.6!

Here the variances for the Gaussian weights are 2d21 for y1
andy3 , 2d22 for y2 and 1 fory12 andy23. Using a lattice
factor of d(2d21) for a chain of three connected sites, the
d→` limit givesb4@x i i

SK(1)#3. Similarly, thed→` limit of
x14
EA for a chain of four connected sites givesb6@x i i

SK(1)#4.
The factorization ofx12

EA, x13
EA, andx14

EA noted above oc-
curs only atd→`; becausex i i

SK isO(T) at low temperatures

the factorization makes the leading temperature dependence
of the contributions to be of order unity,b andb2.

Just as in the case of free energy,18 calculations for the
contributions of small clusters discussed above immediately
lead to generalizations, and it is possible to write the contri-
bution of any cluster toxEA or to the order parameter. Fur-
thermore, just as the temperature dependence obtained by
explicit calculations of small-cluster contributions to the free
energy was argued to apply to larger clusters as well,18 the
contributions of larger clusters toxEA will be all small at low
T. In particular, it is almost impossible that the integrals
involved in the cluster contributions toxEA will yield terms
proportional to positive powers ofb, whose sum may lead to
a negativexEA at low temperatures. And what other mecha-
nism might give a negative sum for a series of non-negative
terms? It therefore seems safe to conclude thatxEA in the
replica-symmetric phase of the Ising spin glass is non-
negative at finited.

As an illustration of the calculations involved in the clus-
ter expansion forxEA, consider^^sisj&

2&J . If site i has p
flipped replicas, 1<p<n, and sitej hasr 11r 2 flipped rep-
licas, 1<r 1<p and 1<r 2<n2p, then

^^sisj&
2&J[ lim

n→0

1

n~n21! (
aÞb

^si
asj

asi
bsj

b&

5 lim
n→0

1

n~n21!
@^~n22p22r 212r 1!

2&2n#.

~3.7!

The average on the rhs means sums overp, r 1 , andr 2 with
the following weights: binomial factors for the number of
waysp, r 1 , andr 2 replicas can be chosen; a ‘‘Boltzmann’’
weight, which is the exponential ofb2 times the sum of
squares of overlaps between flipped sites and their nearest
neighbors. The other two-site correlations needed in the cal-
culation ofxEA can be similarly expressed as averages over
the numbers of flipped replicas on the two sites. Details of
the calculation will be published elsewhere.

Finally, a word about the nonlinear susceptibilityxnl,
which is inversely related to the second distinct eigenvalue
~also called the longitudinal mode! in the spectrum of fluc-
tuations about the replica-symmetric saddle point.17,23 Clus-
ter contributions toxnl reduce in the limitd→` to a low-
temperature expansion of the replica-symmetric mean-field
result, just asxEA does.

IV. OUTLOOK

In 1990–1991, a value of zero was reported for the zero-
temperature entropy in the replica-symmetric phase using a
cluster expansion for the free energy.18 The unphysical
mean-field result for the replica-symmetric phase—namely,
the negative value of the zero-temperature entropy—could
be recovered from the free-energy expansion if the limit
d→` ~the mean-field limit! was taken before the limit
T→0. It was remarked at that time that the noncommutativ-
ity of the limits in the behavior of the entropy was in agree-

7298 54ANIL KHURANA



ment with an earlier result by Fisher and Huse, who have
argued that the mean-field approximation might be a singular
limit of finite-dimensional spin-glass models,8 but that noth-
ing definitive could be said about the nature of the finite-
dimensional phase untilxEA was examined for AT instabil-
ity. The unphysical behavior of thexEA expansion in the
d→` limit discussed above strengthens both the Fisher and
Huse result about singular behavior atd→`, as well as the
suggestion by them,8 by Bray and Moore,9 and by Bovier
and Fröhlich,10 that the spin-glass phase space in finite di-
mensions might be much simpler than the one with many
valleys arranged in an ultrametric hierarchy, which underlies
Parisi’s ansatz for breaking the replica symmetry to heal the
AT instability of the mean-field theory.

The non-negative value of the replica-symmetricxEA dis-
cussed here contradicts the results forxEA obtained using the
Landau-Ginzburg-Wilson free-energy functionals.6,7 The
reason for the contradiction might be that studies of the spin-
glass transition using free-energy functionals reported to date
all start from the mean-field limit, wherefore it is necessary
to implement Parisi’s replica symmetry breaking and stabi-
lize the ‘‘bare’’ replicon mass before the role of non-
Gaussian fluctuations~that is, of finite dimensionality! can be
considered, and they find that the replica-symmetry broken
phase persists in finite dimensions. The contradiction cannot
be resolved until the ground-state energies in various spin-
glass phases have been compared. But it might also be im-
portant to resolve before any such comparison is carried out

which of the two possible methods for calculating the
ground-state energies for a given value ofd will be more
reliable: the ones, such as the cluster expansion discussed
here, that do not start from thed→` limit, or the ones that
expand about that limit.

One might argue that the absence of replica-symmetry-
breaking instability in the cluster expansion arises because of
improper boundary conditions, as has been found to be the
case in studies of the spin glass on a Bethe lattice of finite
connectivity.14 Regarding this or similar criticisms, it is use-
ful to remember that the expansion does recover the instabil-
ity in d→`. In fact, it is the only method to date whereby
both the instability atd→` and its possible absence in finite
d can be derived from the same analytic expression.

Finally, it must be admitted—and especially so in light of
recent developments32—that the cluster expansion, as devel-
oped so far, may not be a suitable method for determining
the nature of the spin-glass phase in finite dimensions. It
may, however, be fruitful to develop this expansion further,
for it allows evaluation of quantities of interest directly in
finite dimensions. One obvious challenge, in developing the
expansion further, is to use it to study phases with broken
replica symmetry.

ACKNOWLEDGMENT

The author thanks Professor J. J. Quinn for support at the
University of Tennessee.

1S. F. Edwards and P. W. Anderson, J. Phys. F5, 965 ~1975!.
2R. K. P. Singh, Comments Condens. Matter Phys.13, 275~1988!.
3K. Binder and A. P. Young, Rev. Mod. Phys.13, 275 ~1988!.
4C. De Dominicis and I. Kondor, Phys. Rev. B27, 606 ~1983!.
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