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Since the magnetic moments of transition-metal antiferromagnets are created by electron-hole pairs, the spin
dynamics of Cr alloys are associated with quasiparticle transitions. In this paper, we use the random-phase
approximation to investigate the spin dynamics about the two different spin-density(8BW) states of
incommensuratel§ alloys with wave vector®', =(2=/a)(0,0,1==4"). Because of their more complex qua-
siparticle energied, alloys have a richer spectrum of collective excitations than the commens@gatdi¢ys
studied in the previous paper. Associated with the free energy’s rotational invariance are transverse spin-wave
(SW) modes which evolve from each satellite wave ve€dr with the same temperature-independent mode
velocity c=vg/v3 as in theC regime. The translational invariance of the ISDW state is responsible for
longitudinal phason modes which evolve from the satellite wave vectors and are damped for any nonzero
frequency. AsT— Ty, the phason mode velocity approactesogether with a related longitudinal damped
excitation, the phason modes tilt the SW cones tow&#=(27/a) (0,0,) and produce a peak in thg/2
cross section at 60 meV, as observed experimentally. High-frequency amplitude modes, both transverse and
longitudinal, lie near the pair-breaking edge for each satellite, which is about 40% lower thanGnctiee.
Undamped collective modes called wavons are associated with fluctuations of the SDW wave @éctors
about their equilibrium values. Wavon modes were recently observed as peaks in the satellite cross sections
between 15 and 20 meV. Our model predicts the temperature and doping dependences of the phason and
wavon peaks[S0163-182606)06934-7

[. INTRODUCTION can lie along any of the three crystal axis. For pure Cr,
d~0.05, so that the hole Fermi surface is slightly larger than
Of the known transition-metal antiferromagnets, only Crthe electron Fermi surfacein order to minimize the nesting
alloys have been observeih an incommensuratd Y phase  free energy on both sides of the electron and hole Fermi
where the wavelength of the spin-density wa8®W) is not  surfaced;’ the SDW wave vector®', =(G/2)(1+4') are
a multiple of the lattice constant. Unlike the single SDW closer toG/2 than the nesting wave vectors. The periodicity
state of commensurateCf alloys with wave vector of the SDW can be controlled by doping Cr with another
G/2=2m/a and perioda, the SDW state of alloys super-  transiton metal. With Mn doping, the electron surface
imposes two different SDW’s with wave vecto@, on ei-  grows,dandd decrease, and the Nitemperature increases.
ther side ofG/2. Each ISDW with wave vectd®’. consists When the Mn concentration exceédabout 0.3%, the
of spin-triplet pairs of electronsa) and holes(b+) sepa- CSDW state is stabilized witsl =0. With V doping, the hole
rated by a wave vectd®’. . Because the condensate containssurface growsg and ¢’ increase, and the & temperature
an equal number odib+ andab— electron-hole paird, Cr  decreases. Pure Cr and CrV alloys are in an ISDW state with
alloys are unique among magnetic and superconducting syg=d'=0. Another useful measure of the commensurability of
tems. The coupling between tlad+ andab— condensates the SDW is the energy mismatehy= (vg/v3)4mdla, which
is responsible for many of the interesting dynamical properdirectly affects the quasiparticle energies.

ties of | Cr alloys. While much is known experimentaiiy The three different domains for the SDW wave vectors
about the spin dynamics df alloys, very little is known along any crystal axis correspond to the three possible ways
theoretically. Most previous theoretical studie$ of the | of nesting the electron and hole Fermi surfaces. Wheh an

dynamics relied on a simplistic two-band model only appro-alloy is cooled in a magnetic field, the SDW wave vectors
priate in theC phase. In this paper, we use the random-phasare aligned parallel to the field direction. Here we study the
approximation (RPA) developed in the preceding wdfk spin excitations about the two SDW wave vectors along the
(paper ) to study thel spin dynamics of Cr alloys within a Z axis. In units of Zr/a, the SDW wave vectors can then be
three-band model for tha electrons ando= holes. This  written as(0,0,1+d").
permits a systematic investigation of the longitudinal and As discussed in paper I, the spin dynamics of itinerant
transverse excitations about the two SDW states of aR  antiferromagnets are produced by quasiparticle transitions.
loy. Consequently, the spin dynamics sensitively depends on the
The electron and hole Fermi surfaces of Cr alloys areband structure. The simplest model for the quasiparticle en-
nearly nested by the wave vectds =(G/2)(1=9), which  ergies ofl Cr alloys is the two-band model introduced by
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Fedders and Martift Each ISDW is then independently the average phasé,, is arbitrary, the overall SDW ampli-
generated by the Coulomb attractiorn>0 between electrons tude 2x.g cosg,, is not determined by our model.

and holes separated Wy’ . Within the three-band model Associated with the rotational invariance of the free en-
introduced by Young and Sokolo¥f,the nesting of the elec- ergy about theh direction, the transverse spin-way@W)
trons andb =+ holes is directly affected by the mismatch be- modes evolve from the satellites &’ with the same

tween the electrons anloi+ holes on the same side of the temperature-independent mode velocityv /v3 as in theC
SDW order parameteg couples the two ISDW's. many striking similarities to SW’s in local-moment rare-

_The "canonical” free energy is obtained upon integrating earth antiferromagnets. For example, the dynamical suscep-
this self-consistent equapon. Because there is only a sing ility associated with SW's in Cr has precisely the same
CSDW, theC free energies constructed from the two- andfunctional form as in a local-moment antiferromagnet with

three-band models are identical. But in thphase, bpth the nearest-neighbor coupling. This and other evidence suggests
self-consistent equation and the free energy are different for . I : X
the two- and three-band modéfs. that SW; in C_r correspond to the rigid rotation of the spin at
While the first harmonics of the SDW with wave vectors €V€"Y lattice site.
Q.. drive the antiferromagnetic transition, other harmonics In theC, phase_, the only GO'dStor.‘e r_nodes are the trans-
have also been observed. The second harmonic of the SDWF'>¢ SW.S' But n thd phase, _Ionglt.udlna.ll phason modes
corresponds to a charge-density wHveCDW) with wave ~ &'€ associated with the translational invariance of the ISDW
vectors 2, on either side ofs=47%/a. Because it is cre- State under changes in the phase differedcBy contrast,
ated by the coupling between the two ISDW's the CDW carS/fting the average phasg,, would affect the SDW ampli-
only be generated within the three-band model. The thirdUd€9’ =9 coSba,. _
harmonid® of the SDW, with wave vectors @, , flattens At low frgquen_mes, the phaspns evoI_ve !mearly from the
the peaks of the total spin density. Experimentally, theSDW satellites with mode velocity,,, which is always less
weight of the third harmonic is about 3% of the fundamentaithan the SW velocit. We find thatc,, approaches asT
for pure Cr, and decreases with V doping. Neither of thesé@PProachedy, or as the wave-vector mismatétincreases.
higher harmonics are included in the “canonical” free en-Unlike the SW modes, the phasons are damped for any non-
ergy. zero frequency. As the frequency increases, the half-width of
Spin excitations with wavevectay and frequencyw are  the phasons grows, and the inner phason modes bend to-
associated with quasiparticle transitions between energiesards theH point G/2=(27/a)(0,0,1) midway between the
e(k) and € (k+q)=€(k)+w. Within the two-band model, two satellites. At low frequencies below 10 meV, phasons
each ISDW is generated independently, so quasiparticle tramvere observetin the longitudinally polarized ISDW phase
sitions about the ISDW dp’. are not affected by the ISDW below 120 K in pure Cr. At about 60 meV, the inner phasons
atQ_ . Previous predictiorifor thel dynamics based on the intersect theH point and their cross section reaches a maxi-
two-band model were inconsistent with many experimentsmum. This effect was recently observed in neutron-scattering
By contrast, the coupling between ISDW’s within the three-measurements by Fukuds al® Above 60 meV, the inner
band model allows quasiparticle transitions from one ISDWphasons become overdamped and disappear.
state to the other. We shall show that this dynamical cou- Since the magnetic moments are produced by electron-
pling has profound consequences. Unlike the two-banthole pairs, oscillations of the SDW amplitugé=g’'m are
model, the three-band model also permits the formation of allowed above a pair-breaking energy. We find that degener-
cbw. . ) ate transversand longitudinal amplitude modes lie above
Possible transitions among the thiebands of quasipar- - each satellite, but at a lower frequency than in @ehase.

ticles produce a rich spectrum of collective excitations. njike oscillations of the CSDW amplitude, oscillations of
Each collective mode can be associated with some quctua}he ISDW amplitude do not decay with time.

tion of the SDW. Using the inverse Green’s function of Eq.
(9) in paper | with arbitrary phaseg.. for the two SDW'’s,
and neglecting the spatial extension of thband electrons,
the equilibrium spin at sit&® can be written

A class of collective excitations called wavons is associ-
ated with oscillations of SDW wave vecto@. about their
equilibrium values. Undamped wavon modes lie near the
first and third harmonics of the SDW. Wavons are respon-
sible for the strong peak in the satellite cross sections re-
SH(R) =S+ (R)+S-(R) cently observed by Endoét al.” between 15 and 20 meV.

— agM{cog Q' - R+, )+cogQ" -R+ )} Excitations about each satellite are prohibited inside th_e

s + * - - wedge of(q,w) phase space bordered by the SW and ampli-

R 27 0 tude modes. However, since the wedges centered at each

=2agi(—1)%R/2 CO%aﬁOS(? 9'R,+ 5): satellite do not overlap, every point ify,») space corre-

sponds to a quasiparticle transition about one ISDW or the
1) other. So, unlike th€ cross sections, thiecross sections do

not vanish for any frequency or wave vector.
where ¢,,=(¢,+¢_)2 is the average phase, and This paper is divided into four main sections. Section Il

0=¢,—¢_ is the phase difference. Herg=—2#V/UN is  applies the formalism developed in the previous paper to the
the constant of proportionality for a system withatoms in | regime. Section Ill describes the resultihgdynamics, and

volumeV, andm is the spin polarization direction. Because Sec. IV contains a discussion and conclusion. The Appen-
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N / mentum changeg=qz corresponds to a change in of
‘3\\0_,.7 a Az=ven-g=cqsgnk,), which is the origin of the factor3

N / < 7 in the SW velocityc=vg/V3.
\/ N\ X In the absence of a magnetic field, all dixsatellites
Z /N aroundG/2 or (0,0,2 will be occupied with equal weight. So
e N ______ e - besides the domain with wave vect@fs0,1+¢'), two other
//./<>-\\,O % b- domains will develop with wave vectors+xs',0,1) and
% \. / N (0,%£¢',1). The contribution of these other four satellites to
@ ®) the cross sections along tteaxis is difficult to evaluate

because it involves fluctuations with wave vectors at all pos-
FIG. 1. Paramagnetitdashedl and hybridizedsolid) quasipar-  sible angles to the SDW wave vectors. Those contributions
ticle energiese vs z for the (@ C and (b) | phases. The markers are neglected in this paper. So when all three domains are
indicate the quasiparticle transitions discussed in the text, and thgresent, our quantitative predictions for the transverse and
horizontal dashed line denotes the chemical potential. longitudinal cross sections along th@xis would be inaccu-
rate but the same spectrum of collective modes would appear
dix summarizes our results for thesusceptibilities. Many of around all six magnetic satellites. If aralloy is cooled in a
the lengthy expressions refered to in the text are contained imagnetic field parallel t@, then only thez domain will be
paper |. occupied and the cross sections evaluated in this paper
should be valid.
The transverse and longitudinal susceptibilities contain
two sets of contributions centered around each of the two
Following the method of Young and Sokoldffwe shift  ordering wave vectorg’, :
the hole energies by the SDW wave vectarg: (k) = e,(k

1. INCOMMENSURATE FORMALISM

—Q). Above the Nel temperature, the two linearized hole xt(0,0)=2[x-(q—W,0) +x_(—q=W,0)], (2
energies plotted by the dashed lines in Fig) are separated
by the energy =z,d'/4. In the C regime,x=0, and theb =+ xi(G,@)=x+(q=w,0)+ x+(-q-w,0), 3)

hole energies plotted in Fig(d coincide. For simplicity, we — - _
assume that the electrons and holes have the same effectiveX (% @)= x1(d, @)+ x2(0,0) £[ x(0, @) + xg(d, ®)].
mass and the same Fermi velocity . Different effective (4
masses and Fermi velocities would weaken the SDW ordefin Egs. (2) and (3), q=qz is measured fronG/2, midway
ing. between the two satellites, amd=(2#/a)(0,04’) is the wave
Below the Nel temperature, gaps appear whenever thesector fromG/2 to Q’, . While the first terms in Eqg2) and
paramagnetic electron and hole energies cross. In the soli@) produce the satellite a®’, , the reflected terms with
curves of Figs. (@ and Xb), the hybridized electron and q— —q produce the satellite &' . Just as in the€ regime,

hole energies are plotted VerSUSUF(k'n_kF) nearan oc-  he difference in sign between the transverse and longitudi-
tahedral face of the electron Fermi surface with normal -, susceptibilities arises from the relaticmgl) _ —Gig
— + = ab+

The chemical potentigl is denoted by a dashed line. We patveen “anomalous” Green’s functions.

have indexed the hybridizedenergies in Fig. ®) so that The notation used in E¢4) is a shorthand for the suscep-
€€, €6, and o6 In the paramagnetic imit g oo o Xi(j‘glp‘“)(q,w) defined by Eqs(158—(15b) of paper |

g—0. . T
In the C regime, the lower band in Fig(@ is filled with and represented graphically in Fig. 3 of paper I. The barred
are obtained from the unbarred quantities

electron-hole pairs. The minimum energy required to brealetSceptibilitiesy; E
apart an electron-hole pair is the gap energ@@® which X With mthe change bx—b=. TTFor example,
joins the empty circles in Fig. (&). In the | regime, two  X1(3:@)=Xaapp+(G,®) and x1(0,®)=xaap-p-(q,w). Be-
identical gaps appear symmetrically above and below th&3US€ t’heb+ and,b— energies are translated by wave vec-
middle band in Fig. (b). For small wave vectors withAz] ~ tors Q- and Q. , the crystal momentum carried by
<k, a minimum energy is still required to traverse each enX1(d:@)=xlkp:b+(9,0) is p=q—Q_ and the crystal mo-
ergy gap. But for larger wavevectors withz|=«, quasipar- mentum carried byy;(d,®)=x}ap-b-(q.0) is p=0—Q, .
ticle transitions are allowed at all frequencies and electronThe momenta of the susceptibilities in E¢R) and(3) are
hole pairs can be broken with no energy cost. shifted by +w, so that each term transfers the same crystal
Both theC and| condensates of electron-hole pairs carrymomentum.
zero net momentum with respect to the crystal. Since €ch  Finally, the transverse and longitudinal cross sectiens
electron-hole pair carries momentu&i2, theC condensate ando; are defined by
must contain an even numberal pairs. On the other hand, 5
the | condensate must contain the same numbertof and o=U"N(0)(n+1)Imx,(q,w), (53
ab— pairs with total momentum equal to a multiple @f, 2
+ Q' =G. Correspondingly, the SDW's &', andQ’ are o =UN(0)(n+1)Imx(q, @), (50)
superposed with equal weight, as assumed in(Ex. where n=1/[exp(Bw)—1] is the Boltzmann function and
As in paper |, we restrict consideration to fluctuationsN(0) is the single-spin density of states of either the electron
with wavevectorsy parallel to the SDW wave vecto®', or hole Fermi surfacdassumed identical Above Ty, the
=(G/2)(0,0,1=4"). So a quasiparticle transition with mo- susceptibilities xg(q,w) and xg(g,w) vanish so that
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b % FIG. 2. Graphical representa-
- + b b+ b- b+ b+  b- b- b+ b- a b+ b- a b+

tion of the coupled equations for
x1(0.0), x4(0,0), x7(q,w), and

bt a bt a b+ a a b+ a a b+ b+ a b+ b- a
- xs(d,).
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X+(0,0)=x_(q,0). Hence x(q,0)=2x,(q,0), 0y=20;, and X1=)(§LO)+X(10)U)(1+;SO)U)(4+ XgO)U)ﬁ-I—;gO)UX_S,
the spin fluctuations are isotropic. (63

Each susceptibility in Eq(4) can be described by the
quasiparticles which enter or leave a vertex. Whilend y,
correspond t@b+ or ab— pairs passing through the vertex, — x,=x{2+ x2U x,+ xPU x4+ xQU x7+ x2Uxs,

X6 and yg correspond to botlab+ andab— pairs entering (6b)
the vertex and joining the condensate. Since edth pair

carries momentumQ.=G—-Q., these susceptibilities 0. o o o) —
change the momentum of the condensate by a multip@. of x7=Xxs5 txs Uxitxe Uxatxz Uxztxs Uxs,

In other words, the momentum entering each of these corre- (60)
lation functions from the right of Fig. 3 in paper | equals the

momentum exiting from the left, to within a multiple &. — _

Other correlation functions change the momentum of the Xs= X8+ X8 Uxa+ x5 Uxa+ x5 Uxz+ x5 Uxe,
condensate by a nontrivial amount. For example, the suscep- (6d)
tibility x4(q,0)=x1Lp_p+ (0,w) corresponds to aab+ pair
entering the vertex from the right and ah— pair exiting  which uses the relationgy =y and y'”=x between the
from the left. So the momentum entering(q,») from the  Hartree-FockHF) susceptibilitiesy(®)(q,w). The second set
the right isp=q—Q_ while the momentum exiting from the of coupled equations is obtained with the transformations
left is p=gq—Q. . In theC regime, these momenta are equal 1«2, 3«4, 5-7, and 6-8.
and x,(g,w) enters the susceptibilities of EqR6) and (27) The first set of equations is represented graphically in Fig.
in paper |. But in thd phasex.(q,@) must gain momentum 2, where the Coulomb interactidth>0 is drawn as a wiggly
Q. —Q’ =—-2w from the condensate in order to transform line, the full susceptibilitiey; as circles, and the HF suscep-
an incomingab+ pair into an outgoingab— pair. As im- tibilites x(®) as squares. Although terms likg” and
plied by the definition of the spin-spin correlation function in ng” enter Eqs(6a) and(6d) for y; andyg, contributions such
Eq. (12) of paper I, only terms with the same incoming andas x 2 ’Ux ) and x DU x ?) maintain the same incoming
outgoing momenta may contribute to the transverse and lorand outgoing momenta and do not change the momentum of
gitudinal susceptibilities. So correlation functiong(q,w),  the condensate. The solutions fgq(qg,») and x;(q,w) are
X4(0,0), x5(q,0), and x-(g,w) must be omitted from Eq¢2)  summarized in the Appendix. As in tt@ phase, the imagi-
and (3) for the | susceptibilities. nary susceptibilities are proportional to the factdd N (0),

Consequently, th€ dynamicscannotbe recovered from which is canceled by the prefactors to the cross sections in
the '—0 limit of the | dynamics. In theC phase, any fluc- Egs.(53 and(5b). . '
tuation which changes the number of electron-hole pairs by The HF susceptibilities(i(o)(q.w)=¢(1')(q'w)+i¢(2')(q,w)
an even number is permitted. But in thephase, spin fluc- were evaluated in Appendixes B and C of pag)er I. As shown

tuations must maintain the same numberadfH andab— in Appendix C of paper |, the imaginary paﬁtg (q,w) sums
pairs. So a fluctuations which transforms abh+ into an  all quasiparticle transitions between branchemdk, satis-
ab— pair through a process likg,(g,) is prohibited. fying the momentum-conservation condition

Nonetheless, the ladder diagrams fgi(q,w), x»(0,w),
xs(9,0), and xg(g,w) do involve these forbidden suscepti-
bilities. After expanding each susceptibility in a series of
ladder diagrams, we find that the two subsgs, xa, x7.
xs} and{x,, x3. xs. xef do not couple to each other. The For every allowed quasiparticle transition, each imaginary
first set of four coupled equations are susceptibility contains an integral of the form

Az=zj(v*)—z(v* —w)=cq. (7)
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midway between the two satellites. On the other hand, the
crystal momentunp is given byq+G/2.

After the two wedges centered @, andQ’ are super-
imposed as in Fig. 3, each point iig,w) phase space is
associated with an excitation about at least one of the two
ordering wave vectors. Points lying outside both wedges are
associated with excitations about both ISDW’s. So in con-
trast to theC regime, the neutron-scattering cross sections
are nonzero for all frequencies and wave vectors. Abye
the wedges collapse and the incoherent spin excitations pro-
duce the paramagnetic background predicted theoretfiélly
and observed experimentafly??

By adding the contributions from each SDW, E3.and
(3) allow us to distinguish the collective modes about one
SDW from the collective modes about the other. Using the

FIG. 3. The collectve modes ofl Cr with results of the Appendix, the longitudinél-) or transverse
cW/T 5= /T }~1.903 are plotted in the bold lines wilg/Ty=4.7  (—) collective modes abou®’, are given by the poles of
andT/Ty=0.5. Excitations about each SDW are only allowed out-

*

o/

side the hashed region. Damped longitudinal excitations are plotted 2 1
in the dashed lines. The dynamics of individual spins are pictured X=(q—W,0)=— U+ 12 (=W, @) Filys (G—W, )’
for the SW and amplitude modes. (9)
F(v) wheret, . +it,. =U?D/N. . Both the denominatob and
f dv F(U)a[zj(v)_zk(v_w)_CQJ:W , the numeratordN. =N2 + N2 are evaluated in the Appen-
U*

®) dix. The excitations abou®’ are given by the same expres-
sion as Eq(9) with g——q.

where gj(v)=2j(v) —z(v— ). The frequencies* and Collective modes about either ISDW state are determined
energies; satisfying Eq.(7) were solved analytically in Ap-  py the zeros of the denominatbr(¢,w). Unlike the numera-
pendix A of paper I. torsN. (¢£w), D(&,w)=D(— & w) is an even function of the

When quasiparticle trg?sitions join energies with the sameelative wave vectot. So if the numerators are nonzero, the
slope, dgj,/dv =0 and ¢3’(d,w)=*. Such a transition is  collective modes will be symmetric about each SDW wave
called enhancedFor example, an enhanced transition joinsyector. Since the same denominator appears in both the
the filled circles of Fig. {a). An enhanced quasiparticle tran- transverse and longitudinal susceptibilities, the collective
sition may be associated with either a zero or a divergence ihodes will also be degenerate unless one set of numerators
the full transverse and longitudinal susceptibilities. In manyygnishes.
instances, a divergence in one susceptibility is accompanied Because y; (0,w) sums the contributions about each
by a zero in the other. Because nearby transitions also haygpyw, the collective modes abo@’, are not affected by
very small denominatorsig;,/dv, the most important en-  he quasiparticle transitions aba@t. . This does not imply,
hanced transitions are between quasiparticle energies W"ilfbwever that the dynamics of the two SDW's are indepen-
zero slopede/dz=0, such as between the empty Circles in yone \within the three-band model, quasiparticle transitions

Fig. 1(a). o . are allowed from one condensate to the other. For example,
A spin excitation with wave vectog and frequencyw theﬂo)uxff’) term in y, involves the transfer of a hole from

about theQ’, SDW corresponds to quasiparticle transitionsihaap— to theab+ condensates and then back to tie—
with wave-vector changé.=c(q+w) and energy change condensate with no net change in momentum. In the two-
. Incoherent spin excitations about each SDW are only possang model, such processes are forbidden, and the dynamical
sible outside the wedge dfj,) phase space centered at oo pling between the two SDW's is lost.
eitherQ}, or Q_, and bordered by the hashed marks in Fig. f t,, vanishes faster that., then the transverse or lon-
3. In this figure,T {~80 meV is thg fictitious_NeI tempera-  gjtydinal collective mode about the SDW @, (a==) is
ture of a perfectly nested alloy with=0. Inside the left or  a55ociated with & function in the imaginary susceptibility
right wedge of Fig. 3, fluctuations aboQ( or Q' are pro-  |my. (aq—w,w). As discussed in paper I, the integrated
hibited and the imaginary HF susceptibiliti¢g’(q=w,»)  strength s of this collective mode is proportional to
vanish. For example, a spin excitation with wave vector(dw/dqg) . So the weight of any collective mode diverges
g=w about theQ!, SDW corresponds to a vertical quasipar- when the slop&w/dq vanishes. The same conclusion holds
ticle transition with&, =0. This transition is only possible for damped excitations with,.<<0. The half-width of a
when w exceeds the gap energy of 1T4] in Fig. 3. For  damped excitation is given hyq«t,./|dw/dg|, which van-
sufficiently large|£|/T =« beyond the sides of the wedge, ishes ad,.—0 but diverges asw/dq—0.
guasiparticle transitions are possible at all frequencies. The cross sections; and o defined by Eqs(5a and

For the remainder of this paper, we reserve the notatiori5b), include both the incoherent background of spin fluctua-
&lc for the momentung=w measured relative to one of the tions and the collective modes. To distinguish those two sets
two SDW wave vectors. In the transverse or longitudinalof contributions, we define the incoherent cross sectigps
susceptibilities, the wave vectay is measured fronG/2, and o; by subtracting thes-function contributions of the
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modes may be associated with fluctuations of the SDW po-
larization directionm, amplitudeg’, phase difference, and
wave vector)’. . While the SW and amplitude modes were
also present in th€ phase, the phason and wavon modes
have no analog in th€ dynamics.

10*

A. Spin-wave modes

-

—T10° The invariance of the free energy under rotations of the

spin-polarization directiorm is associated with transverse
Goldstone modes evolving from each satellite. These SW
modes have a linear dispersioh=cq with the same
temperature-independent mode velo@ityv /v3 as in theC
phase. Each SW mode borders the side of a wedge inside of
which quasiparticle transitions about that satellite are forbid-
den. Along the side of the wedge, each imaginary HF sus-
ceptibility ¢$)(¢£,w) vanishes at the frequenay=|£. Inside

" the quasiparticle continuum above the top of the wedge, the
O)/TN individual imaginary HF susceptibilities become nonzero,
but Im(x;+x>— xs— xs) Still vanishes atw=|¢, so the SW
mode remains undamped.

These results disagree sharply with previous authdfts,
who neglected the coupling between the two condensates of
electron-hole pairs. Using a two-band model, Sato and Maki
found that the SW velocity vanishes at théeNe&emperature
and at the triple point. Starting with a one-dimensional array
of local moments with long-range exchange interactions,
Wolfram and Elliatiogld® obtained a spectrum of multiple
branches and energy gaps with modes originating fgend®
as well as from the SDW ordering wave vectors.

Unfortunately, experimental fits to the twin “chimneys”
evolving from thel satellites are even more difficult than fits

. INCOMMENSURATE DYNAMICS to the single “chimney” of theC phase. Measurements by
Mikke and JankowsKaon a CrRe alloy indicated a SW ve-

Because the summation over thequasiparticle transi- locity of 500 meV A, about half of th€ valué*2*and one
tions cannot be performed exactly, the imaginary susceptitird of the theoretical value~1500 meV A. We shall re-
bilities ¢{*)(q,w) are more complicated than thercounter-  tym to this discrepancy in Sec. IV.
parts. Evaluating the real susceptibili#yt*)(q,w) using the As discussed in paper I, the strength 32rg?(n+1)/w
Kramers-Kronig relation requires a numerical integrationgf egch SW in theS phase has precisely the same form as for
over the imaginary susceptibility, with some attached nu- Hejsenberg antiferromagrf@tMotivated by this relation,
merical uncertainty. So thlecross sections are more difficult \ye have searched for a similar resultliralloys. While an

to evaluate, and contain greater numerical errors tharCthe analytic expression has eluded us, the ISW strength is given

10O.O 05 10 15 20 25 30 35

FIG. 4. The incoherent background;=1;+1; vs normalized
frequency /Ty for T=0.5Ty (starg, 0.9 (triangles, 0.975
(square or 1 (solid line) and zy/ T x=4.7.

collective modes frona; andg; . For comparison with th€
results, we also define the total cross sectieno, + o and
the total incoherent cross section= o, + o, . Then the to-
tal and incoherent backgrountisand|; are obtained by in-
tegrating the total or incoherent cross sectionsr o; over
wave vectorcg.

cross sections evaluated in paper I. numerically by
In Fig. 4, we plot the total incoherent backgroundver-
sus frequency for four different temperatures. Like the Ag?
background plotted in Figs. 8 and 10 of paper I, tHeack- S=(n+1) — =, (10

ground also grows a¥ approachedy and diverges a®

approaches 0. But unlike tf@ background, which increases whereA;~16x/3 is independent of frequency, temperature,
with frequency above the energy gap, thbackground de- and mismatch energg,. This remarkable relation again un-
creases monotonically. The limiting paramagnetic backderscores the similarity between SW’s in itinerant and local-

ground withT=T is plotted in the solid curve. moment antiferromagnets. As expected, the SW strength
As revealed by Fig. 4, the integrated background divergeyanishes a3 — Ty or asw—o.

more strongly than the thermal factor-1—T/w as w—0. ComparingC and | expressions, we find that the com-

In paper I, we were able to show analytically that e bined weight of the four ISW’s evolving from the satellites

backgroundl;, diverges like i+1)/wxT/w? as w—0. Al-  at (0,0,1=4') is approximately three times smaller than the

though such an analytic result has not been verified, we beveight of the two CSW'’s evolving front0,0,1). However,
lieve that thel background also behaves in this fashion.  the intensity of the SW’s evolving from each magnetic sat-
The complex quasiparticle energies of thehase pro- ellite along thez axis may have a different angular depen-
duce a rich spectrum of collective excitations. Since Fig) 1 dence org-z than the intensity of the SW's in thé phase.
contains five segments of quasiparticle energies, there are 28 the C limit ¢'—0, the total integrated intensity of the
types ofl transitions, far greater than the four types of tran-ISW’s evolving fromQ’. must smoothly approach the inte-
sitions in theC phase. As discussed in Sec. |, the collectivegrated intensity of the CSW’s evolving fro®/2. So most of
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0.3 : : : : : : nate the SW’s, and this simple parametrization of the trans-
verse susceptibility will break down.

B. Amplitude modes

0.2 q Due to their high frequency and small weight, amplitude
modes have never been observed in an itinerant antiferro-
magnet, to our knowledge. Nonetheless, they are of great
theoretical interest due to their absence in local-moment an-
tiferromagnets. Amplitude modes about an ISDW state were
0.1 F 4 1 first predicted within a two-band model by SokoléffLater,
Lee, Rice, and Anderséhand Psaltaki€ confirmed the ex-
# 3 istence of amplitude modes for one-dimensional systems.
. * 2 4 Within the three-band model for itinerant antiferrogmag-
o a . . nets, degenerate transverse and longitudinal modes lie sym
0.0O o O”"5 1"2) 1“’5 50 25 30 35 metrically on either side of each SDW wave vector and just
: : ' ’ " ’ ' ' below the top of each wedge. N€ar2, the amplitude modes
co/TN smoothly join one of the SW modes from the far satellite. On
the other side 0., , the amplitude modes tangentially enter

FIG. 5. The relative SW strengty/I, vs /T for the same th€ quasiparticle continuum. In th@ limit '—0, the SW
parameters as in Fig. 4. cones centered &)/, and Q. merge intoG/2, and thel
amplitude modes are squeezed into a vanishing portion of
phase space. ThHe amplitude mode with frequencw2g at

=0 first appears as a large longitudinal absorption peak

etween the twd satellites(see Sec. Il G beloy So thel
amplitude modes doot evolve into theC amplitude mode
discussed in paper I.

Unlike the C amplitude mode, thé amplitude modes are
slightly displaced below the quasiparticle continuum. For the
parameters of Fig. 3, thé amplitude modes lie at a fre-
quency of about 14107 *T ¥ below the top of each wedge.
Consequently, thé amplitude modes are associated with
functions in the transverse and longitudinal susceptibilities.
So, unlike oscillations of the CSDW amplitude, oscillations
of the ISDW amplitude do not decay with time.

The weight of each amplitude mode is about ten times

SS(R,t) xSy, (R)expli(pFQ.) - R—iwt}, (11)  smaller than the weight of a SW mode with the same fre-
quency. Unlike the strengths of the SW modes, the strengths
which also yields the rigid rotation of each spin. of the transverse and longitudinal amplitude modes are dif-

Figure 5 compares the SW strength with the weight of thderent on either side of each satellite. Directly above each
transverse, incoherent background As in theC phase, the sat_ellite, the transverse weight is twice the 'Iongitudinal
relative SW strength decreases with increasing temperatul¥€ight. Close t0G/2, the transverse mode dominates; near
and vanishes af,,. Comparing Fig. 5 with Fig. 11 of paper the outside of each SW cone, the longitudinal and transverse

| reveals that the relative weights of the SW modes are ai/€ights are roughly equal. ,
order of magnitude smaller than in ti@ regime. So the In an itinerant antiferromagnet, deformations of the SDW

background contains a much larger fraction of the spin fluc@mPplitudeg’=mg cose,, can be produced by either trans-

tuations than does the background. If the incoherent back- Verse Of longitudinal fluctuations. Exactly at the satellite
ground diverges liken+1)/w as w—0, thens/l, should Wave vectorQ\ or Q_, the degeneracy of the amplitude
approach a constant in this limit. modes can be expla|_ned with a simple picture. Longitudinal
In recent work, Lorenzet al® used the form of Eq(10) ~ fluctuations of magnitude/Sy.(R)exp(iwt) cost condensa-
to fit the low-temperaturdT/Ty<0.3) and low-frequency tion energy AFo(S-S*)—Sy.- 5. =(7[So=[)*>. On the
(wlT%=<0.15 transverse susceptibility of pure Cr. At such other hand, a purely transverse excitation with crystal mo-
low frequencies and temperatures, Fig. 5 indicates that th@entum p=Q/, or Q_ and magnitudeySy. (R)exp(i wt)
combined weight of the four SW’s is somewhat larger thanwill rock all the spins back and forth with the same time-
the incoherent transverse background. Hence the observel@épendent angle. Due to the absence of any bending ener-
constancy ofwl/(n+1)~4A,g® below 100 K reflects the gies, transverse fluctuations Rtwill also cost condensation
weak temperature dependence of the order parameter belaamergy(y|Sy.|)>. Hence the longitudinal and transverse am-
about 0.7 . Since the incoherent background falls off more plitude modes are degenerate.@t or Q_, both collective
weakly with increasing frequency than does the SW strengtlexcitations are standing-wave modulations of the ISDW am-
s;~1/w, the incoherent backgrourg will eventually domi-  plitude which do not affect the nodes of the SDW.

St/ Li

=
>
=3

the ISW intensity must develop in tteg andq, directions,
perpendicular to the ordering wave vectors. Of course,
complete description of the SW “cones” evolving from each
satellite must include fluctuations with wave vectpnon-
parallel toQ', . We shall attempt such a general description
in future work.

In paper I, we argued that SW’s in@ alloy involve the
rigid rotation of each spin about its equilibrium value. Now
in thel regime, the two SW's with frequenay and crystal
momentum p==*Q,+w/c (e==*) have an identical
strengths;. This suggests that the spin deviation at $ite
should be written
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Away from the SDW ordering wave vectors, the trans- 1.00
verse amplitude modes must gain a longitudinal component
(just as the transverse SW modes have a longitudinal com- 0.95
ponenj so that the combined bending and condensation en-
ergies of the transverse mode equals the energy of the purely 0.90
longitudinal one. As a result, the standing-wave patterns will
be disrupted and the nodes of the static SDW will be dis- ¢) 0.85
turbed. S

< 0.80
C. Phason modes O

Whereas SW's are associated with the rotational invari- 075
ance of the free energy, phasons are associated with its trans- 0.70
lational invariance under a shift in the phase differemce
Phason modes of a CDW were first predicted by 0.65
Overhausef® While studied primarily in one-dimensional
organic conductor&’ phasons have also been predict&dn 0.60 Y R T NN RN N B
| Cr alloys. For the CSDW state discussed in paper |, fluc- 01 02 03 04 05 06 07 08 09 1.0
tuations of the phase differen@egenerate fluctuations of the T/TN
SDW amplitude. So the CSDW state does not support pha-
son modes.

In anl alloy, phason modes are produced by the dynamics IF'G 6. The ?hason mode VE:OCi%h ”Orma”ﬁe‘j by the SW
of the phase differencé(R,t) in Eq. (1). Supposingd to be ~ Velocity vsT/Ty for 25Ty =4.7 (solid) or 7.0 (dashed
the equilibrium phase difference and settingp(R,t)

= 9(R,t)— 6, the change in spin is given by at a wave vector close 18/2, the slopeslw/dq of the inner

phasons vanish. As shown in Fig. 3, the inner phason modes

S6S(R,1)=— agm(—1)?Re/3cosp, ImSo(R, 1) then smoothly join the damped longitudinal excitations dis-
cussed in Sec. Il D. Above 0.7%,, the overdamped phason
27 0o modes disappear. With V doping, the inner phasons will sur-
xex;{ (— J'R,+ 2)] 12 yive to larger energies. For example, whefiT §=10, the

inner phasons become overdamped at a much higher energy
parallel tom. Consequently, the phasons are longitudinal ex-of 2.65T ;~212 meV. Psaltakig did not evaluate the disper-
citations which evolve from the SDW wave vectorsQit . sion of the phason modes at nonzero frequencies.
Like amplitude modes, phasons are also associated with Fitting the strength of each phason mode to the form of
the longitudinal oscillation of the spii(R,t) about its equi-  Eq. (10), we find that
librium value. While electron-hole pairs are broken on some

lattice sites, they reform on others. So a phason mode trans- A . (0)g?

fers electron-hole pairs from one atom to another down the Si==(n+1) T e (13
length of the SDW. By contrast, amplitude modes transfer

electron-hole pairs into and out of the condensate. where + refers to the innef—) or outer(+) branch. The

At zero frequency, the poles in the longitudinal suscepti-coefficientsA,. are now functions of frequency, tempera-
bility x(q,00 at g==w are undamped witht;,(0,0) ture, and mismatch. In Fig. 7, we plot the ratios
=1,,(0,0)=0. But at any nonzero frequency, the ph<’:1$0ns|+/st A, ./A~3A,./16m versus frequency fary/ T x=4.7
modes are damped with, (§,0)<0. Below about 0.%y, the  and two different temperatures. For each temperature, the
phason modes evolve linearly and symmetrically on eitheupper set of points corresponds to the inner coefficient
side of the satellites a@’, andQ” . For all values of tem- A _(w). At zero frequencyA, . (0)=A,_(0) depends mainly
perature and mismatch, the phason mode velocity,, at  on the energy mismatch, and only weakly on temperature.
zero frequency is smaller than the SW mode velocityFor the parameters of Fig. 74,.(0)~12.8, so that the
c=ve/V3. As shown in Fig. 6¢,, only approaches the SW  strength of each longitudinal phason mode is only about 0.75
velocity at the Nel temperature. Also notice that the phasontimes smaller than the strength of each transverse SW mode
velocity increases with the mismatch enemgyor, equiva-  with its two possible polarizations. As the mismaizhin-
lently, with the V concentration in CrV alloys. creasesA, . (0) decreases, so the phasons become weaker

By contrast, Psaltakié used a linear-response formalism compared to the SW’s. Whilé,_(w) monotonically in-
in one dimension to conclude thef,=c (c=vg in one di-  creases with frequency, , (w) initially decreases with fre-
mension at zero temperature. Psaltakis also found that thejuency.
electron-electron and hole-hole Coulomb repulsion enhances The (n+ 1)/w~ T/w? divergence 0§, . (w) asw—0 char-
the phason mode velocity. As discussed below, the nestingcterizes the Goldstone modes of a SDW. Other damped
and ordering wave vectors coincide in the one-dimensionalpongitudinal excitations discussed below also evolve from
single-band model used by Psaltakis. So the regpitc is  zero-frequency poles in the imaginary susceptibility. How-
recovered in thgy;—o or QL — Q- limit of our model. ever, the strengths of those excitations diverge like the Bolt-

At nonzero frequencies, the inner phasons curve outwardmann factorn+1~T/w. So the SW and phason modes
towardsG/2. At a frequency of about 0.75,~60 meV and dominate the low-frequency response of Cr alloys.
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FIG. 7. The phason mode strengtjs normalized by the SW FIG. 8. The strength of the longitudinal damped excitatipn
strengths; vs /T, for T/Ty=0.5 (stars andk’s) or 0.8 (squares  near the first harmonic®’. relative to the strength of the two
andzy/TN=4.7. The inner phaso@-) corresponds to the upper set nearby SW’s for the same parameters as Fig. 7.
of points; the outer phasoft+) to the lower set.

low about 10 meV. As discussed later, our model is not

As discussed at the end of Sec. Il, the strength of angophisticated enough to describe this low-frequency behav-
damped excitations is inversely proportional to its sldpg  ior.
dg. So the coefficiend, _ of the inner phason diverges when
it meets the damped longitudinal excitation pictured in Fig.
3. Likewise, the coefficienh, . of the outer phason also
diverges, although more weakly, as its slope vanishes. As shown in Fig. 3, the damped longitudinal excitations

Unlike the SW modes, the phasons are not associated witvhich extend beyond the phasons reach zero frequency close
& functions of the susceptibility, and form a part of the inco-to the first harmonics of the SDW. The zero-frequency pole
herent background. Hence the phason mode strength of Etf the imaginary longitudinal susceptibility at these wave
(13) is already counted as part of the longitudinal back-vectors corresponds to thie=§, quasiparticle transition be-
ground. At frequencies less than aboutTland tempera- tween the empty triangles in Fig.(ld). Translating&, by
tures below about 0T, the phason modes dominate the =cw, the longitudinal poles lie at wave vectarg=cw=§&,
rest of the incoherent longitudinal background. Since the lonand —cw=§,;, wherecw=« and§,<2x. As T— Ty, é—2x,
gitudinal amplitude modes lie at a much higher frequencyand the poles merge with the firsitw= = x and third+=3cw
the low-frequency longitudinal intensity may be approxi- =*3k harmonics of the SDW. To distinguish these longitu-
mated byl,~1;,~2(s,. +5s,_). dinal excitations from the phason modes, we label them as

Because they evolve from satellite wave vectors and havéxcitationsl 1 andl3.
velocities close ta, phason modes have been mistaken for Unlike the Goldstone modes, the strengths of excitations
SW’s. For example, the low-frequency, longitudinal excita-11 andl3 diverge liken+1~T/w asw—0. Compared to the
tions observed by Burket al® were actually phason modes phasons, their relative weights,/s,.. and s;3/s,.. vanish
rather than SW’s. Recently, Loreneo al® used the form of like » as w—0. So these longitudinal excitations become
Eq. (13) with a single coefficien®, = (A, +A,_)/2 to fitthe ~ unobservable at low frequencies.
low-temperature longitudinal susceptibility of pure Cr. For ~As w increases, the wave vector of excitatibh bends
the low frequencies and temperatures studied by LorenztpwardsG/2 and approaches the inner phason mode. The
et al.® the phason modes dominate the rest of the longitudilongitudinal excitationd1 and the inner phasons meet with
nal background. So, as expected, the scaled longitudinal irzero slopedw/dg=0. So the weights of both excitations di-
tensity verge at precisely the same frequency. Just below this fre-
guency, the strengths,; ands,_ are nearly equal.

At very low frequenciess;; is much smaller than the
i~ —— (S++5_)=4A,(0)g? (14  combined weight & of the two nearby SW's. But as shown
n+1 ntl in Fig. 8, s,4/2s, rapidly increases with frequency and even-

tually diverges as the slopgw/dq vanishes. Using the pa-
is almost independent of temperature. According to Fig. 7rameters in Fig. 3,s,;/25,=1 when «/Ty~0.4 and
the sumA, , (o) +A,_(w) is a weaklyincreasingfunction of  s;,/25,—» as /T —0.75. Consequently, the SW cones
o below about 0.253~20 meV. By contrast, Lorenzet al.  emanating from each satellite will tilt inward towar@g¢2, as
observe a dramatic falloff abl,/(n+ 1) with frequency be- first observed by Fincher and co-workérat a frequency of

D. Damped excitations near the first harmonic

w 2w
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FIG. 9. The wavon modésolid) and damped longitudinal exci- FIG. 10. The strength of the longitudinal damped excitation

tations(medium and short daskor z,=4.7T }; andT/Ty=0.5. The (meo_lium dashed line with the smaller wavevector in Fig.sQ
long dashed line corresponds to the quasiparticle transitions bd€lative to the SW strengthsgvs /Ty, for the same parameters as
tween the filled triangles in Fig.(t). Fig. 9.

30 meV. Fincher and co-workers observed that the axis ofhason poles, these poles are not associated with Goldstone
the SW’cones were 30% closer @/2 than at zero fre- Mmodes: their weights diverge like d/rather than W’ as
quency. Since the tilting angle will increase with frequency,wﬁo. At nonzero frequencies, these longitudinal excitations
their result is in good agreement with our estimate fora'® damped.

0.75T }~60 meV. As discussed below, the divergences,gf Since it lies very close to the phason pole, the damped
and s,_ near G/2 has been recently observed by Fukuda€Xcitation evolving from the first harmonic is probably im-
et al® possible to observe. The damped excitation evolving from

the third harmonic survives only at very low frequencies and
is much weaker than thi8 excitation discussed above. Its
E. Damped excitations near the third harmonic dispersion is given by the short-dashed line of Fig. 9. As

The zero-frequency quasiparticle transition between thg,_’TN’ 50_’2," and th? two zero-frequency poles near the
empty triangles in Fig. (b) also produces the damped longi- third harmonic merge into one. .
tudinal excitation 3 close to the observed third-harmortfts SO éven in the absence of a static third harmanijoys
of the SDW atcq==3«. Its frequency is plotted versus remain suscgpuble to the formation of a dynam|callly dnyen
wave vector in the medium-dashed lines of Fig. 9, where thé,h'rd h.armonlc. But unlike the Golldstone modes, this excita-
long-dashed line corresponds to the enhanced quasip<';1rtic1il'§-’n disappears a.t Iqw frequenues. Of course, a rigorous
transitions between the filled triangles of Figbll So exci-  theory for the excitations evolving fromg==*3«x must in-
tation|3 begins and terminates at an enhanced quasiparticfP"Porate the static third harmonics of the SDW. Only then
transition. For frequencies between 0.045and 0.135 4, would the excitations evolving fromt 3« be true Goldstone
the real denominator has two zeros nege+3x, sol3 has ~medes of the alloy.
two branches.

A static third harmonic of the SDW was not included in
the “canonical” inverse Green'’s function of E(P) of paper - )
. So, not unexpectedly, the normalized weighy/2s, van- In_addltlon to the three classes_ of collective mo(&¥/’s,
ishes aso—0. Hence, like excitatiohl, excitationl3 is not ~ amplitude modes, and phaspndiscussed above, another
a Goldstone mode, and disappears at low frequencies. But glass of collective modes is associated with oscillations of
shown in Fig. 10 for thd3 branch with the smaller wave the SDW wave vectorQ.. . Unlike the ordering wave vector
vector, the relative weighgs/2s, diverges at a frequency of Q= 2k of a one-dimensional organic conduct8the SDW
about 0.135y, where its slopedw/dq vanishes. Above wave vectorQ’. of Cr are not fixed by a nesting condition.
0.135T , excitationl 3 is overdamped and disappears. Instead,Q’. are chosen to minimize the free energy, which

Another set of poles in the longitudinal susceptibility is involves a compromise between the nesting on both sides of
induced by thew=0 quasiparticle transition between the the Fermi surfaces. The wavon modes are then produced by
empty squares in Fig.(fh). For large energies, the wave vec- oscillations of the ordering wavevectors within this potential
tor ¢ of this transition approachesk2 Translating by the well.
satellite wave vectors-cw, these poles coincide with the For the ISDW state of Eq(l), the wavon modes corre-
first and third harmonics of the SDW. But unlike the SW andspond to oscillations in the wave-vector parameteabout

F. Wavon modes
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its equilibrium value. A small change il either stretches or
contracts the SDW along thedirection. As the change il
vanishes, the original SDW is smoothly restored. By con-
trast, even a small change in the wave vector of a CSDW
state will dramatically change the spin configuration.
Whereas the equilibrium CSDW contains spins with values
SyR)=*a.g’ on different sublattices, the nonequilibrium
CSDW would contain spins with all possible values between
a0’ and—a.g’. Hence even a vanishingly small change in
the CSDW wave vector produces a very large change in free
energy. For this reason, wavon modes were not present in the
C dynamics discussed in paper |I.

As shown in Fig. 3 forw/T §~0.15, the inner wavons
(each both longitudinal and transvergein the inner SW's,
while the outer wavongpurely longitudinal lie close to the
third harmonics. Although within the quasiparticle con-
tinuum, the wavons are undamped. The wavon modes are
produced by zeros of the susceptibility denomindddg,w)
with &~=+2«. Because the longitudinal numeratdr (£,w) is
nonzero at these wave vectors and frequencies, the longitu-
dinal wavons lie symmetrically on either side of the SDW
satellites. But near the third harmonic, the zeroDif¢,w)
are canceled by zeros in the transverse numedtdg, ),
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FIG. 11. The transverse and longitudinal wavons near the first

so the outer wavons are purely longitudinal. Since the sam@btained with the operatioaq— —cq+2«.

pole is responsible for both, the transverse and longitudinal
wavons near the first harmonic are degenerate.

harmonic forzo=4.7T, and the various temperatur&sTy given.
The dispersion of the longitudinal wavon near the third harmonic is

wavons are replaced by a set of damped excitations. Excita-
While the longitudinal wavons are easy to understand, th&0ns to the left of the circles in Fig. 12 are damped.

transverse wavons near the first harmonic involve the coher- FOr any energy mismatch, the range of wave vectors of

ent oscillation of both the wave-vector parameteand the
polarization directiomm. If the change v’ is 8¢’ (R,t) and
the change in polarization direction #n(R,t) perpendicular
to m, then the transverse fluctuation of the spin on Bitean
be written

the wavon modes is always less than the differeAc@
=Q,— Q! =2m(d—d")/a between the nesting and SDW
wave vectors. Ag,—», §'—4d and the range of wave vectors
of the wavon modes vanishes. As shown in Fig. 12, the
wavon mode frequency also vanishes zgs-«. In the C

limit, ¢'—0, the wavons are again restricted to a vanishing

SS(R,t)=2ag(—1)?R'3cosp, Redm(R,t)

CSDW state does not support wavons.
The longitudinal wavon near the third harmonic is plotted

il "+ 89" (Rt R+0
?[ﬁ 3(.)]z§

p[' 2
Xexp i

(15

This combination of infinitesimals is possible because
8S(R,t) cannot be linearized idd’. As 69'/5m—0, this ex-
citation becomes a SW mode. Correspondingly, the inner
wavons terminate at a SW branch.

The transverse and longitudinal wavon modes near the
first harmonic are plotted versus wave vector for several tem-
peratures in Fig. 11. Using the symmetry Bf¢,w) about
£=0, the longitudinal wavons near the third harmonic are
obtained from Fig. 11 with the operatioog— —cqg+2«.
Since the inner wavons terminate on a SW branch, the outer
wavons terminate at the poiotj=3x—w. Figure 12 plots the
termination frequency of the inner wavons versus tempera-
ture. This termination point coincides with the onset of qua-
siparticle transitions between branches 2 and 3, such as be-
tween the open stars in Fig(d).

With increasing temperature, the range of frequencies and
wave vectors of the wavons collapses. In the lifiit Ty,
the wavon frequency vanishes and the modes disappear. As
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window in wave-vector space. As remarked above, the

T/ Ty

1.0

the temperature decreases, the wavon frequency increasesriG. 12. The intersection frequency of the wavons with the
and the undamped wavons are again confined to a shrinkinigner SW branch vs temperatuféTy for zy/T §=4.7 (solid) or 7

window of wavevectors. Below about 0.2, the undamped

(dashedl The wavons are damped to the left of the circles.
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w/ Ty w/Tx

FIG. 13. The transversgsolid) and longitudinal(dash | cross FIG. 14. Same as Fig. 13, but with=+w. The SW and am-
sections vsw/T§ for q=0. zy/TN=4.7, andT=0.5T . The SW§  plitude modes are denoted bys.
functions are denoted by at

in the solid curve of Fig. 9 foll/Ty=0.5 andz,/T y=4.7. 4,2tr*h|.gh§r' enelr)g|eti St'"’h the dlo:gnut.jt!nal bpizak net?]r
As shown, the wavon evolves tangentially from the dashej‘ N 1S driven by Ihe enhancec transition between ihe
line of enhanced quasiparticle transitions, such as betwed}|/€d circles on the top and bottom bands in Figo)l In the
the filled triangles in Fig. (). C limit, t_h|s pea!< evolves |ntlo_ th€ amplitude mpde, vyh|ch .

Remarkably, the inner wavons were recently observed bi® associated with the transition between the filled circles in
Endohet al” as a peak in the satellite intensity between 15Fig. 1(a). Above 3.4@7, no additional enhanced transitions
and 20 meV at 54 K. FoF/Ty=0.2 andz,/T ;=4.7, Fig. 12  arise, and the cross sections are smooth functions of fre-
indicates that the satellite intensity should be strongly peakeduency. In the limitw/T{— , the fluctuations become iso-
at about 0.28~23 meV. However, electron-phonon scat- tropic, and the transverse cross section is exactly twice the
tering may lower this frequency by suppressing the SDWongitudinal cross section.
order parameteg. As shown in Fig. 12, our model predicts  In Fig. 14,q=w is fixed at the right-hand satellite with
that the peak frequency will decrease rapldly with ianeaSingzrysta| momentun‘p:(G/Z)(olo,:H- (9')_ While quasipartide
temperature and with V doping. Thus future measurementgansitions about Q. have a relative wave vector
may be qble to <_:on_firm the existence of this interesting Cl_aS%Jr:c(q—w) =0, transitions abou®’_ have a relative wave
of collective ex_cnatlons. Because the strength of the Io”g't“Vectorg,=c(q+w)=2K. Because£=0 transitions are for-
dinal wavons is much smaller than that of the transvers(%idden below the top of the wedge, excitations below the
wavons, it is unlikely that the outer wavons can be detecte nergy gap of 1.4I are associated with fluctuations about
the far satellite atQ’ . Sinceq=w is an ordering wave
vector, the SW and phasanhfunctions lie atw=0.

Fixing g=0 orp=(G/2)(0,0,1), we plot the transverse and At very low frequencies, quasiparticle transitions with
longitudinal cross sections versus frequency in Fig. 13. Flucé=2« lie far from the chemical potential, and the back-
tuations about each SDW contribute equally to the excitaground cross sections are small. The low-frequency peaks in
tions atq=0. Since quasiparticle transitions with relative the satellite cross sections at=0.24T{~19 meV are pro-
wave vectorsz=c(g=w)=*« are allowed at all frequen- duced by damped excitations which evolve from the wavons
cies, the cross sections remain nonzero evew-a0. The between the two SW's. Because these damped excitations
strong longitudinal peak ab/T{~0.75 is produced by the increase in frequency as they cut across the satellite wave
phason andi1 excitations discussed in Secs. Il C and Ill D. vector, the peak frequency of OP% is larger than the
Intraband transitions across the chemical potential are reyavon frequency of 0.IF, obtained from Fig. 12 for
sponsible for the large transverse peakwdl{~1.3. Two  T/T\=0.5.

SW modes cross ab/Ty, = /Ty~ 1.903, which is denoted Just below the energy gap, the amplitude-médenction
by anX. Because their widths are infinitesimally small, theis marked by anX. Whereas only longitudinal fluctuations
SW and amplitude-modé functions do not appear in the diverge above th€ energy gap in Fig. 12 of paper I, both
plots of the transverse and longitudinal cross sections. Th&ansverse and longitudinal fluctuations diverge abovel the
peak in the transverse cross sectionwdly=2.39 is pro- gap in Fig. 14. The SWS§ function at o/T{=2«/Ty
duced by the enhanced transition across the energy gap be-3.806 is also denoted by ak. As expected, the fluctua-
tween the filled squares in Fig(k. tions become isotropic at high frequencies with=20, .

G. Cross sections
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FIG. 15. The transverse cross sectioncggT { for /T §=0.1, FIG. 16. The longitudinal cross section gg/Ty, for the same

Zo/ Tn=4.7, andT/Ty=0.5(solid) or 1 (dashegl Each SW¢ func- parameters as Fig. 15.
tion is denoted by aiX.

with the SW modes just outside each wedge. Each phason

While each feature in Figs. 13 and 14 can be associate®ode is associated with three zerost pf(¢,«), and appears
with the onset of quasiparticle transitions, the dynamical sus@S two distinct peaks in the longitudinal cross section of Fig.
ceptibility will be dominated by the three largest peaks. At16. The largest and outermost peak was used to assign the
q=0, the other features in Fig. 13 are dwarfed by the larg?h@son mode velocity and strength in Sec. Il C. Theex-
longitudinal peak at 0.78;~60 meV and by the smaller citation discussed in Sec. Il D contributes strong peaks at

- g
transverse peak at T§~104 meV. As discussed in Sec. the wave vgctorsq/_TN_~i1.24 n F'g'_16' .
IV, the larger peak at 60 meV was recently observed by Longitudinal excitations near the third harmonic are plot-

Fukudaet al® The dominant peak in the sateilite cross sec-€d in Fig. 17, which includes an additional curve for

tion at 0.24{~19 meV is associated with the wavon T TN:rO'g' Qit ![(i)r\l/vttemplfraturesr, tth?j tl\)NO d?mpi)er(]j \?V)if[ﬂtat'r?]nsh
modes, which were recently observed by Eneolal.” Un- appear as dIStinct peaks separated by a regio a muc

fortunately, the smaller features in Figs. 13 and 14, such maller cross section. Excitatidd dis_cussed_in Sec_. Il E

: : - ies to the left of the weaker dynamically driven third har-
the onset of amplitude fluctuations at 1T4lin Fig. 13, may
be unobservable.

When =0, the SW and phason poles@aj= = cw carry
infinite weight. So the elastic cross sections are dominated
by the satellite peaks. The transverse and longitudinal cross
sections foro=0.1Ty~8 meV are plotted in Figs. 15-17. 10
In all three figures, the cross sections withT=0.5 are
plotted on the solid curve, and the paramagnetic cross sec-
tions with T=T) are plotted on the long-dashed line. If each 1
of the three magnetic domains is occupied, then Figs. 15 and
16 will underestimate the cross sections regafd or p=G/2, S 10 !
close to all six satellites. In contrast to the rather simple
paramagnetic cross sections first obtained by Sato and Maki,
the magnetic cross sections are spectroscopic fingerprints of 10
the allowed quasiparticle transitions. Notice that the mag-
netic cross sections fall off more rapidly with wave vector

10 ®

/””I LBLILARLL B AL

7

/[||||||I o vl

TTTIIn, T T T T Ty 1 1]

vl g gt/

than does the paramagnetic cross section. 107

In Fig. 15, the SW poles atg/Ty=1.903:0.1 and
—1.903+0.1 are denoted b)}(’s. As indicated by Fig. 5, the 10 * ' ' ' ' : ' '
weight of each SW pole is only about 25% the integrated 45 >0 55 " 6.0 65
weight of the incoherent background. Both the transverse Cq/TN

and longitudinal cross sections are very small in the wedge

of (q.w) phase space between the SW modes, where only FiG. 17. The longitudinal cross section eg/T}; for T/Ty=0.5
spin fluctuations about the far satellite are permitted. Thesolid), 0.9 (short dash or 1 (long dash. Other parameters as in
transverse cross section contains additional peaks associateig. 15.
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monic. As the temperature increaség~2« and the peaks of the neutron-scattering cross section is extendein)
move closer together. The peak heights decrease with irspace, the measured SW velocity would be lower than
creasing temperature and disappear in the paramagnetic=uv/v3.
limit. It is instructive to compare the spin dynamics of a
As the frequency increases, the cross sections becomeansition-metal antiferromagnet with the spin dynamics of a
more complex due to the larger number of possible quasipaene-dimensional organic conductdrFor the latter system,
ticle transitions. For a fixed frequency, each peak or valley irthe ISDW wave vectof = 2k is fixed by the nesting across
the cross sections can be associated with one of the 25 pothe Fermi surface. As mentioned previously. Psaltakis’
sible types of quasiparticle transitions. Of course, most fearesult? for the phason velocity of a one-dimensional ISDW
tures will be smoothed by quasiparticle damping. At verycan be recovered in they—o or Q. —Q. limit of our
high frequencies exceeding the gap energy between th@odel. Since the nesting and ordering wave vectors coincide,
lower and upper bands, the satellite peaks in ltheross  wavon modes are not present in a one-dimensional organic
sections disappear. In this limit, the cross sections also beronductor.
come independent of the energy mismaighand wave- Several worker®3? have studied the spin dynamics
vector parametek. about an ISDW by starting with a phenomenological expan-
sion of the free energy nedy, in powers of the spin opera-
tors S(R), which are assumed to obey the canonical commu-
tation relations for Heisenberg spins. Due to this assumption,
In this paper, we have examined the excitations about ththe SW mode velocity is found to scale like the SDW order
two ISDW states of pure Cr and CrV alloys. Spin excitationsparameterg and vanish a§ — Ty . The amplitude, phason,
with frequencyw and wave vectop=q+ G/2 about the and wavon excitations all involve the transfer of electron-
ISDW with wave vectoQ’. = =w+ G/2 are associated with hole pairs from one atomic site to another or into and out of
quasiparticle transitions with energy changeand wave- the condensate. Such processes are forbidden by the assump-
vector change+w. While the relatively simple quasiparti- tion that the spinS(R) obeys canonical commutations rules
cle energies of th&€ phase produced a simple spectrum ofand is fixed in magnitude. Hence, phenomenological ap-
collective modes which could be solved analytically, theproaches to thé spin dynamics are severely handicapped.
more complex quasiparticle energies of thghase produce a Despite the complexity of the excitation spectrum de-
richer spectrum of collective excitations which must bescribed in this paper, many important effects are missing,
solved numerically. and the resulting spin dynamics is oversimplified. As previ-
Our basic model for the spin dynamics consists of arously remarked, the “canonical” model ignores the higher
electron-hole condensate generated by the Coulomb attrabarmonics of the SDW. Both a CDW with wave vectors
tion U. In thel phase, a three-band model couples dlhe- 2Q!, and a third harmonic of the SDW with wave vectors
and ab— condensates. Although the RPA is the simplest3Q’. will generate their own unique dynamics. At=0, the
formalism to produce SW modes in a conventional antifertranslational invariance of the ICDW produces the observed
romagnet, applying the RPA to the “canonical” model of an peaks’ at the satellite wave vectors@. =G(0,0,1+4"),
itinerant antiferromagnet has been a challenging task. In thgn either side of the reciprocal-lattice vect@r The rota-
| phase, quasiparticle transitions between the three bands @bnal and translational invariance of the third harmonic pro-
energies produce a wealth of excitations about the two sateljyces peaké at 3Q’. = (G/2)(0,0,1+33’) + G. While trans-
lites Q. =(G/2)(0,0,1+4"). verse SW modes may be associated with the third harmonic,
Surprisingly, the imaginary susceptibilities contain sev-|ongitudinal phason modes may be associated with the trans-
eral poles at zero frequency. But only the SW and phasomtional invariance of both higher harmonics. By changing
poles at the first harmonics are associated with instabilities ohe quasiparticle spectrum, both the second and third har-
the alloy. While the strengths of the Goldstone modes dimonics will also affect the excitations about the first har-
verge like 162, the strengths of the other excitations divergemonic of the SDW.
more weakly like 1b. Hence the low-frequency dynamicsis  As first realized by Shibatani, Motizoki, and Nagamiya,
dominated by the SW and phason excitations. Only at frethe “canonical” model of Cr alloys assumes that the chemi-
quencies above about 0I%~12 meV does the rest of the cal potentialu=—2zy/4 is unaffected by the formation of a
incoherent background become important. SDW. Since the SDW depletes the electrons from the nested
The most disturbing discrepancy between theory and exFermi surfaces, the “canonical” model implicitly assumes
periment lies in the smaller observed value of the SW velocthat an infinite electron reservoir replenishes the electrons
ity. In the | phase, the phason modes will broaden the SWransfered to the condensate. If the reservoir is finite, then the
cones, and lower the effective mode velocity in measurechemical potential.(T) will decrease and the effective mis-
ments of the total cross section. matchzy(T) = —4u(T) will increase as the SDW grows. In
A second possibility could also explain the discrepancy inpractice, the electron reservoir contains all bands which do
the C phase: the SW mode velocity may depenq on the dinot contribute to the nested electron and hole Fermi surfaces.
rection of the wavevectaq. Fluctuations along the direc-  The reservoir powep is defined as the ratio of the reservoir
tion are probably stiffer than fluctuations which shear two ofdensity of states to the electron-hole density of states
the octahedral faces against each other. So the SW velocigy,,=4N(0) for both spins and both Fermi surfaces.
with g parallel toQ’. , which was evaluated in this and pre-  Many author$* have studied the effects of a finite reser-
vious papers, may be larger than fpparallel to an octahe- voir on the phase diagram of Cr alloys. Most receritlye
dral face of the Fermi surface. Since the resolution ellifsoidexamined the effects of a finite reservoir within the three-

IV. DISCUSSION AND SUMMARY
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band model of thd phase. Surprisingly, order parameters~55 meV. So the “commensurate diffuse” scattering can-
{gs,d4} which are saddle points of the “canonical” free en- not be explained within our basic model. Later work by
ergy with p=c may become minima of the free energy whenBurke et al® indicated that the “commensurate diffuse”
p<oo, peak might be produced by very low-velocity excitations
Since all fluctuations are infinitesimal, the spin dynamicsevolving from each satellite. Within our model, the scale for
places no additional demands on the electron reservoiill mode velocities is set by the Fermi velocity~2600
Hence the excitation spectrum is not directly affected by thenev A. However, the Fincher-Burke excitations have a ve-
size of the electron reservoir, and depends on_Iy on the ord%city of approximately 43 meV A, roughly 60 times smaller
parameterdg,d'}, the temperaturd, and the mismatch en- han the Fermi velocity and very close to the velocity of a
ergy z,. But if the reservoir is finite, then the mismateh  |ongjtudinal acoustic phondrin Cr. Clearly, the Fincher-
must be replaced by the effective mismaigy{T). So the  Byrke excitations involve a much smaller velocity scale than
temperature dependences qf the_lncoherent background, SM¥ntained in our model. It is possible, however, that the
strength, and phason velocity will be affected by the tem—rincher-Burke excitations are produced by the coupling be-
perature dependence of the effective mismatch er®y@).  tween the ISDW and the acoustic phonons mediated by a
For some values of the reservoir poweand mismatch  cpw. This will also be investigated in future work.
energyzq(T), it may be necessary to use the saddle-point \easurements by Burket al® and Lorenzoet al® indi-
solutions {gs,d¢} rather than the order parameters whichcate that the transverse and longitudinal spin fluctuations are
minimize the “canonical” free energy. With saddle-point  averaged above 10 meV. Experimental cross sections above
solutions, the peaks in the central band of quasiparticles ino meV should then be compared with the average cross
Fig. 1(b) disappear. Consequently, the damped longitudinakections,,= (o ,/2+ ¢|)/2. Two mechanisms may be respon-
excitations|1 and |3 produced by thew=0 quasiparticle sjble for this averaging. At frequencies above 10 meV, the
transition across the central band are lost.#fi@ the small- resolution e|||p50|6 of the experimenta| measurements may
est energy for a vertical quasiparticle transition, the amplihe large enough to average the transverse and longitudinal
tude mode becomes absorbed into the quasiparticle coffyctuations effectively. Alternatively, fluctuations of the
tinuum. Otherwise, two amplitude modes appear. Howeverglectron spins above 10 meV may average the susceptibili-
the spectrum of Goldstone modes evolving from each sateljeg Xi%p(q,w) andXiTj%p(q,w)- Since y. of Eq. (4) differ
lite remains fundamentally unchanged. In particular, the SWonly in the spin-dependent terms(xs+ xs), the averaged
velocity is still given byc=v¢/v3, and the phason velocity transverse or longitudinal susceptibility are both equal to
remains smaller than. We will examine this case in more (xi/2+ x,)/2. Notice that three times this average cross sec-
detail at a future date. tion 3o, differs from the total cross sectiomn=o,+ o, ex-
Because spin-orbit coupling has been neglected, our resected if the spin fluctuations are isotropic. Only at very high
sults do not depend on the angle between the spinfrequencies above 31%, does 3 ,,—o.
polarization directionm and the nesting wave vectors  Qur results for the average cross section agree well with
Q.=Q.z. However, the spin-orbit energy in pure Cr pro- the recent high-frequency measurements of Endohl.’
duces two different regimes: one transverselyT) polar-  The observed peak in the satellite intensities between 15 and
ized above 120 K and the other longitudinally)(polarized 20 meV is slightly lower than our estimate for the wavon
below 120 K. Because the neutron-scattering cross sectioffequency of 0.287~23 meV. As the temperature in-

only measure spin fluctuations perpendicular to the wavereases, we predict that the wavon frequency should decrease
vector g, experimentalists can distinguish longitudinal from and vanish ag—Ty.
transverse spin fluctuations in thephase(but not in theC Very recently, Fukudat al® observed that thg=0 in-
phasg. In the LSDW phase below 120 K, the cross sectiontensity reaches a broad maximum centered at about 60 meV.
across thep=(G/2)(0,0,1£4') satellites equals; while the  Thjs observation agrees with the predicted longitudinal peak
cross section across thpe=(G/2)(1,0,£4") satellites equals in Fig. 13 at 0.7Z ;;~59 meV, where the dampdd. exci-
o1+ 0y/2. tations intersectj=0. Although this peak will broaden with
Below about 4 meV, experiments by Burle al® and  increasing temperature, the peak frequency should change
Lorenzoet al® in the LSDW state indicate thaf|>0't. So very little in the range @:T/TN<O71 where the phason
the low-frequency excitations evolving from the satellite mode velocity is relatively constant. At higher temperatures,
wave vectors ap=(G/2)(1,0,£4') must be phasons. In the ¢  increases, and the phason peak moves to higher frequen-
TSDW state at very low frequenCies, Burkeal. find that CieS, as Suggested by F|gs 7 and 8. But as the peak width
the spin fluctuations are predominantly perpendicular to theontinues to grow, the phason eventually disappears from the
ordering wave vectors.Hence the spin-orbit energy con- averaged cross section. It may also be possible to observe the
strains the spin fluctuations to lie along the possible polarsecondary transverse peak atT;3=104 meV.
ization directions: parallel t@’. and to the magnetic mo- With V doping, the phason velocitg,, of CrV alloys
ments in the LSDW state, and transvers@foin the TSDW increases, and thkl excitations interseaj=0 at a higher
state. In future work, we will study this behavior by adding energy. So at low temperatures, the 60-meV peak irGfe
the spin-orbit coupling to our basic model. cross section should move to higher energies. As indicated
The “commensurate diffuse” scattering first observed byby Fig. 12, the wavon peak in the satellite cross section of
Fincher, Shirane, and Werreis a broad hump centered at pure Cr should move downward with V doping.
G/2 in the TSDW state at a frequency of about 4 meV. But Other predictions of our model may also be borne out by
as shown in Fig. 13, thg=0 or p=(G/2)(0,0,) cross sec- experiments. Above 10 meV but below 0T75<60 meV, it
tions remain very small until frequencies of order T{7 may be possible to distinguish the SW modes from the
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nearbyll excitation. The separation between these excitaand the factors
tions should increase with frequency. However, as indicated

by Figs. 5 and 8, the strength of the excitation may be A= x1"' C+UH{— X ¥P2—x2" X%+ 2x5 x X'}
Iarg_e gnough to obser\(e only very close ge-0. TthS (A4a)
monic 15 be observabl o low reduencies. As the tempera: B~ X"C— U~ TP~ X 10

e e e e’ T A i
Low-frequency measurements in the LSDW phase may be C=—U2( 'y + 02, (Adc)

able to observe the predicted variation of the phason mode
velocity with temperature and doping. Unlike the SW modesNotice thatB=B and C=C but A#A. The e relationships
the damping energy of the phasons should increase with frepr y, and’y, are obtained with the map-12, 3—4, 57,
quency. and 6-8. As discussed in paper ¥(q, w) X<°)(q w) and

Even the most basic theory for the spin dynamics of Cr,0(q, )=, (q,w). Also recall that;m) ©)(—q,w).
alloys produces a rich spectrum of collective modes and ex- " 5o finally putting it all together, we fmd
citations. Previous experimental work on the dynamics of Cr L
alloys was undertaken with very little theoretical guidance. X+=x1Tx2E=(x61 Xx38), (A5)
Hopefully, our work will help in the design of future experi-
ments and the development of more refined models. _ 1 1 N%
X1EXe=- gtz o (A6a)
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Our results for thel susceptibilities are summarized in

. . . . . _CO) _(“0) (0)2y  —T0)r  (0)r7(0)
this appendix. Solving the set of four coupled equations in ~ N*= XS XS X XK X
Egs.(6a)—(6d), we find o +¥(0),X X(O)_l_;('O)IX(O)Z_‘_X(O)r;('O)Z
1 1 CA-B?
TR v (A1) — 2) 00 O 07y (O T0) 5 (0), (0), (O)
B X(O);m)2+x<0>;m X(O) (A8a)
X8
N XX A R
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:_A( X2 ' Xe T X3 x5 )+B(=x2" x5+ X3 X6 ) (0)/ _CO)+ (0)2_1__(0)/ (0)2
(A2) _2X(0>X(0)X +70)’X X(O)+X80)X510)X§50)
where we define the convergent susceptibilities
9 p xR 02.4 (015 70), (0) (A8b)
0 0
X2 (q,0) = x{ )(q,w)—U, (A3a)  Notice that the Iongltudlnal and transverse susceptibilities
) differ only in the signs ofyY and x&'. Since In{1/U)=0,
(0)’(q w)= X(O)(q,w)_ 5 (A3b) ';r;itﬁ:g::tant terms in EgEA6) do not contribute to the cross
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