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Since the magnetic moments of transition-metal antiferromagnets are created by electron-hole pairs, the spin
dynamics of Cr alloys are associated with quasiparticle transitions. In this paper, we use the random-phase
approximation to investigate the spin dynamics about the two different spin-density-wave~SDW! states of
incommensurate (I ) alloys with wave vectorsQ68 5(2p/a)(0,0,16]8). Because of their more complex qua-
siparticle energies,I alloys have a richer spectrum of collective excitations than the commensurate (C) alloys
studied in the previous paper. Associated with the free energy’s rotational invariance are transverse spin-wave
~SW! modes which evolve from each satellite wave vectorQ68 with the same temperature-independent mode
velocity c5vF/) as in theC regime. The translational invariance of the ISDW state is responsible for
longitudinal phason modes which evolve from the satellite wave vectors and are damped for any nonzero
frequency. AsT→TN , the phason mode velocity approachesc. Together with a related longitudinal damped
excitation, the phason modes tilt the SW cones towardsG/25~2p/a! ~0,0,1! and produce a peak in theG/2
cross section at 60 meV, as observed experimentally. High-frequency amplitude modes, both transverse and
longitudinal, lie near the pair-breaking edge for each satellite, which is about 40% lower than in theC case.
Undamped collective modes called wavons are associated with fluctuations of the SDW wave vectorsQ68
about their equilibrium values. Wavon modes were recently observed as peaks in the satellite cross sections
between 15 and 20 meV. Our model predicts the temperature and doping dependences of the phason and
wavon peaks.@S0163-1829~96!06934-2#

I. INTRODUCTION

Of the known transition-metal antiferromagnets, only Cr
alloys have been observed1 in an incommensurate (I ) phase
where the wavelength of the spin-density wave~SDW! is not
a multiple of the lattice constant. Unlike the single SDW
state of commensurate (C) alloys with wave vector
G/2[2p/a and perioda, the SDW state ofI alloys super-
imposes two different SDW’s with wave vectorsQ68 on ei-
ther side ofG/2. Each ISDW with wave vectorQ68 consists
of spin-triplet pairs of electrons (a) and holes~b6! sepa-
rated by a wave vectorQ68 . Because the condensate contains
an equal number ofab1 andab2 electron-hole pairs,I Cr
alloys are unique among magnetic and superconducting sys-
tems. The coupling between theab1 andab2 condensates
is responsible for many of the interesting dynamical proper-
ties of I Cr alloys. While much is known experimentally2–8

about the spin dynamics ofI alloys, very little is known
theoretically. Most previous theoretical studies9–12 of the I
dynamics relied on a simplistic two-band model only appro-
priate in theC phase. In this paper, we use the random-phase
approximation ~RPA! developed in the preceding work13

~paper I! to study theI spin dynamics of Cr alloys within a
three-band model for thea electrons andb6 holes. This
permits a systematic investigation of the longitudinal and
transverse excitations about the two SDW states of anI al-
loy.

The electron and hole Fermi surfaces of Cr alloys are
nearly nested by the wave vectorsQ65(G/2)(16]), which

can lie along any of the three crystal axis. For pure Cr,
]'0.05, so that the hole Fermi surface is slightly larger than
the electron Fermi surface.1 In order to minimize the nesting
free energy on both sides of the electron and hole Fermi
surfaces,14 the SDW wave vectorsQ68 5(G/2)(16]8) are
closer toG/2 than the nesting wave vectors. The periodicity
of the SDW can be controlled by doping Cr with another
transition metal. With Mn doping, the electron surface
grows,] and]8 decrease, and the Ne´el temperature increases.
When the Mn concentration exceeds1 about 0.3%, the
CSDW state is stabilized with]850. With V doping, the hole
surface grows,] and ]8 increase, and the Ne´el temperature
decreases. Pure Cr and CrV alloys are in an ISDW state with
].]8>0. Another useful measure of the commensurability of
the SDW is the energy mismatchz05(vF/))4p]/a, which
directly affects the quasiparticle energies.

The three different domains for the SDW wave vectors
along any crystal axis correspond to the three possible ways
of nesting the electron and hole Fermi surfaces. When anI
alloy is cooled in a magnetic field, the SDW wave vectors
are aligned parallel to the field direction. Here we study the
spin excitations about the two SDW wave vectors along the
ẑ axis. In units of 2p/a, the SDW wave vectors can then be
written as~0,0,16]8!.

As discussed in paper I, the spin dynamics of itinerant
antiferromagnets are produced by quasiparticle transitions.
Consequently, the spin dynamics sensitively depends on the
band structure. The simplest model for the quasiparticle en-
ergies ofI Cr alloys is the two-band model introduced by
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Fedders and Martin.15 Each ISDW is then independently
generated by the Coulomb attractionU.0 between electrons
and holes separated byQ68 . Within the three-band model
introduced by Young and Sokoloff,16 the nesting of the elec-
trons andb6 holes is directly affected by the mismatch be-
tween the electrons andb7 holes on the same side of the
Fermi surface. Hence the self-consistent equation for the
SDW order parameterg couples the two ISDW’s.

The ‘‘canonical’’ free energy is obtained upon integrating
this self-consistent equation. Because there is only a single
CSDW, theC free energies constructed from the two- and
three-band models are identical. But in theI phase, both the
self-consistent equation and the free energy are different for
the two- and three-band models.13

While the first harmonics of the SDW with wave vectors
Q68 drive the antiferromagnetic transition, other harmonics
have also been observed. The second harmonic of the SDW
corresponds to a charge-density wave17 ~CDW! with wave
vectors 2Q68 on either side ofG54p ẑ/a. Because it is cre-
ated by the coupling between the two ISDW’s the CDW can
only be generated within the three-band model. The third
harmonic18 of the SDW, with wave vectors 3Q68 , flattens
the peaks of the total spin density. Experimentally, the
weight of the third harmonic is about 3% of the fundamental
for pure Cr, and decreases with V doping. Neither of these
higher harmonics are included in the ‘‘canonical’’ free en-
ergy.

Spin excitations with wavevectorq and frequencyv are
associated with quasiparticle transitions between energies
e~k! and e8~k1q!5e~k!1v. Within the two-band model,
each ISDW is generated independently, so quasiparticle tran-
sitions about the ISDW atQ68 are not affected by the ISDW
atQ78 . Previous predictions

9 for the I dynamics based on the
two-band model were inconsistent with many experiments.
By contrast, the coupling between ISDW’s within the three-
band model allows quasiparticle transitions from one ISDW
state to the other. We shall show that this dynamical cou-
pling has profound consequences. Unlike the two-band
model, the three-band model also permits the formation of a
CDW.

Possible transitions among the threeI bands of quasipar-
ticles produce a rich spectrum of collective excitations.19

Each collective mode can be associated with some fluctua-
tion of the SDW. Using the inverse Green’s function of Eq.
~9! in paper I with arbitrary phasesf6 for the two SDW’s,
and neglecting the spatial extension of thed-band electrons,
the equilibrium spin at siteR can be written

S0~R!5S01~R!1S02~R!

5asgm̂$cos~Q18 •R1f1!1cos~Q28 •R1f2!%

52asgm̂~21!2Rz /a cosfavcosS 2p

a
]8Rz1

u

2D ,
~1!

where fav5~f11f2!/2 is the average phase, and
u5f12f2 is the phase difference. Hereas522\V/UN is
the constant of proportionality for a system withN atoms in
volumeV, andm̂ is the spin polarization direction. Because

the average phasefav is arbitrary, the overall SDW ampli-
tude 2asg cosfav is not determined by our model.

Associated with the rotational invariance of the free en-
ergy about them̂ direction, the transverse spin-wave~SW!
modes evolve from the satellites atQ68 with the same
temperature-independent mode velocityc5vF/) as in theC
regime. Despite their itinerant origin, SW’s in Cr alloys bear
many striking similarities to SW’s in local-moment rare-
earth antiferromagnets. For example, the dynamical suscep-
tibility associated with SW’s in Cr has precisely the same
functional form as in a local-moment antiferromagnet with
nearest-neighbor coupling. This and other evidence suggests
that SW’s in Cr correspond to the rigid rotation of the spin at
every lattice site.

In theC phase, the only Goldstone modes are the trans-
verse SW’s. But in theI phase, longitudinal phason modes
are associated with the translational invariance of the ISDW
state under changes in the phase differenceu. By contrast,
shifting the average phasefav would affect the SDW ampli-
tudeg8[g cosfav.

At low frequencies, the phasons evolve linearly from the
SDW satellites with mode velocitycph, which is always less
than the SW velocityc. We find thatcph approachesc asT
approachesTN , or as the wave-vector mismatch] increases.
Unlike the SW modes, the phasons are damped for any non-
zero frequency. As the frequency increases, the half-width of
the phasons grows, and the inner phason modes bend to-
wards theH point G/25~2p/a!~0,0,1! midway between the
two satellites. At low frequencies below 10 meV, phasons
were observed5 in the longitudinally polarized ISDW phase
below 120 K in pure Cr. At about 60 meV, the inner phasons
intersect theH point and their cross section reaches a maxi-
mum. This effect was recently observed in neutron-scattering
measurements by Fukudaet al.8 Above 60 meV, the inner
phasons become overdamped and disappear.

Since the magnetic moments are produced by electron-
hole pairs, oscillations of the SDW amplitudeg85g8m̂ are
allowed above a pair-breaking energy. We find that degener-
ate transverseand longitudinal amplitude modes lie above
each satellite, but at a lower frequency than in theC phase.
Unlike oscillations of the CSDW amplitude, oscillations of
the ISDW amplitude do not decay with time.

A class of collective excitations called wavons is associ-
ated with oscillations of SDW wave vectorsQ68 about their
equilibrium values. Undamped wavon modes lie near the
first and third harmonics of the SDW. Wavons are respon-
sible for the strong peak in the satellite cross sections re-
cently observed by Endohet al.7 between 15 and 20 meV.

Excitations about each satellite are prohibited inside the
wedge of~q,v! phase space bordered by the SW and ampli-
tude modes. However, since the wedges centered at each
satellite do not overlap, every point in~q,v! space corre-
sponds to a quasiparticle transition about one ISDW or the
other. So, unlike theC cross sections, theI cross sections do
not vanish for any frequency or wave vector.

This paper is divided into four main sections. Section II
applies the formalism developed in the previous paper to the
I regime. Section III describes the resultingI dynamics, and
Sec. IV contains a discussion and conclusion. The Appen-
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dix summarizes our results for theI susceptibilities. Many of
the lengthy expressions refered to in the text are contained in
paper I.

II. INCOMMENSURATE FORMALISM

Following the method of Young and Sokoloff,16 we shift
the hole energies by the SDW wave vectors:eb6(k)5eb(k
2Q78 ). Above the Ne´el temperature, the two linearized hole
energies plotted by the dashed lines in Fig. 1~b! are separated
by the energy 2k[z0]8/]. In theC regime,k50, and theb6
hole energies plotted in Fig. 1~a! coincide. For simplicity, we
assume that the electrons and holes have the same effective
mass and the same Fermi velocityvF . Different effective
masses and Fermi velocities would weaken the SDW order-
ing.

Below the Néel temperature, gaps appear whenever the
paramagnetic electron and hole energies cross. In the solid
curves of Figs. 1~a! and 1~b!, the hybridized electron and
hole energies are plotted versusz5vF~k•n̂2kF! near an oc-
tahedral face of the electron Fermi surface with normaln̂.
The chemical potentialm is denoted by a dashed line. We
have indexed the hybridizedI energies in Fig. 1~b! so that
e1→ea , e2→eb1 , and e3→eb2 in the paramagnetic limit
g→0.

In theC regime, the lower band in Fig. 1~a! is filled with
electron-hole pairs. The minimum energy required to break
apart an electron-hole pair is the gap energy 2&g, which
joins the empty circles in Fig. 1~a!. In the I regime, two
identical gaps appear symmetrically above and below the
middle band in Fig. 1~b!. For small wave vectors withuDzu
,k, a minimum energy is still required to traverse each en-
ergy gap. But for larger wavevectors withuDzu>k, quasipar-
ticle transitions are allowed at all frequencies and electron-
hole pairs can be broken with no energy cost.

Both theC andI condensates of electron-hole pairs carry
zero net momentum with respect to the crystal. Since eachC
electron-hole pair carries momentumG/2, theC condensate
must contain an even number ofab pairs. On the other hand,
the I condensate must contain the same number ofab1 and
ab2 pairs with total momentum equal to a multiple ofQ18
1Q28 5G. Correspondingly, the SDW’s atQ18 andQ28 are
superposed with equal weight, as assumed in Eq.~1!.

As in paper I, we restrict consideration to fluctuations
with wavevectorsq parallel to the SDW wave vectorsQ68
5(G/2)(0,0,16]8). So a quasiparticle transition with mo-

mentum changeq5qẑ corresponds to a change inz of
Dz5vFn̂•q5cq sgn(kz), which is the origin of the factor)
in the SW velocityc5vF/).

In the absence of a magnetic field, all sixI satellites
aroundG/2 or ~0,0,1! will be occupied with equal weight. So
besides the domain with wave vectors~0,0,16]8!, two other
domains will develop with wave vectors~6]8,0,1! and
~0,6]8,1!. The contribution of these other four satellites to
the cross sections along thez axis is difficult to evaluate
because it involves fluctuations with wave vectors at all pos-
sible angles to the SDW wave vectors. Those contributions
are neglected in this paper. So when all three domains are
present, our quantitative predictions for the transverse and
longitudinal cross sections along thez axis would be inaccu-
rate but the same spectrum of collective modes would appear
around all six magnetic satellites. If anI alloy is cooled in a
magnetic field parallel toẑ, then only thez domain will be
occupied and the cross sections evaluated in this paper
should be valid.

The transverse and longitudinal susceptibilities contain
two sets of contributions centered around each of the two
ordering wave vectorsQ68 :

x t~q,v!52@x2~q2w,v!1x2~2q2w,v!#, ~2!

x l~q,v!5x1~q2w,v!1x1~2q2w,v!, ~3!

x6~q,v!5x1~q,v!1x̄2~q,v!6@ x̄6~q,v!1x̄8~q,v!#.
~4!

In Eqs. ~2! and ~3!, q5qẑ is measured fromG/2, midway
between the two satellites, andw5~2p/a!~0,0,]8! is the wave
vector fromG/2 toQ18 . While the first terms in Eqs.~2! and
~3! produce the satellite atQ18 , the reflected terms with
q→2q produce the satellite atQ28 . Just as in theC regime,
the difference in sign between the transverse and longitudi-
nal susceptibilities arises from the relationGI ab6

↑↑ 52GI ab6
↓↓

between ‘‘anomalous’’ Green’s functions.
The notation used in Eq.~4! is a shorthand for the suscep-

tibilities x i jop
(s1s2)(q,v) defined by Eqs.~15a!–~15b! of paper I

and represented graphically in Fig. 3 of paper I. The barred
susceptibilitiesx̄ i are obtained from the unbarred quantities
xi with the change b6→b7. For example,
x1(q,v!5x aab1b1

↑↑ ~q,v! and x̄1~q,v!5x aab2b2
↑↑ ~q,v!. Be-

cause theb1 andb2 energies are translated by wave vec-
tors Q28 and Q18 , the crystal momentum carried by
x1~q,v!5x aab1b1

↑↑ ~q,v! is p5q2Q28 and the crystal mo-
mentum carried byx̄1~q,v!5x aab2b2

↑↑ ~q,v! is p5q2Q18 .
The momenta of the susceptibilities in Eqs.~2! and ~3! are
shifted by6w, so that each term transfers the same crystal
momentum.

Finally, the transverse and longitudinal cross sectionsst
andsl are defined by

s t5U2N~0!~n11!Imx t~q,v!, ~5a!

s t5U2N~0!~n11!Imx l~q,v!, ~5b!

where n51/@exp~bv!21# is the Boltzmann function and
N~0! is the single-spin density of states of either the electron
or hole Fermi surface~assumed identical!. Above TN , the
susceptibilities x6~q,v! and x8~q,v! vanish so that

FIG. 1. Paramagnetic~dashed! and hybridized~solid! quasipar-
ticle energiese vs z for the ~a! C and ~b! I phases. The markers
indicate the quasiparticle transitions discussed in the text, and the
horizontal dashed line denotes the chemical potential.
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x1~q,v!5x2~q,v!. Hencext~q,v!52x l~q,v!, st52sl , and
the spin fluctuations are isotropic.

Each susceptibility in Eq.~4! can be described by the
quasiparticles which enter or leave a vertex. Whilex1 andx̄2
correspond toab1 or ab2 pairs passing through the vertex,
x̄ 6 and x̄8 correspond to bothab1 andab2 pairs entering
the vertex and joining the condensate. Since eachab6 pair
carries momentumQ68 5G2Q78 , these susceptibilities
change the momentum of the condensate by a multiple ofG.
In other words, the momentum entering each of these corre-
lation functions from the right of Fig. 3 in paper I equals the
momentum exiting from the left, to within a multiple ofG.

Other correlation functions change the momentum of the
condensate by a nontrivial amount. For example, the suscep-
tibility x4~q,v!5x aab2b1

↑↑ ~q,v! corresponds to anab1 pair
entering the vertex from the right and anab2 pair exiting
from the left. So the momentum enteringx4~q,v! from the
the right isp5q2Q28 while the momentum exiting from the
left is p5q2Q1 . In theC regime, these momenta are equal
andx4~q,v! enters the susceptibilities of Eqs.~26! and ~27!
in paper I. But in theI phase,x4~q,v! must gain momentum
Q28 2Q18 522w from the condensate in order to transform
an incomingab1 pair into an outgoingab2 pair. As im-
plied by the definition of the spin-spin correlation function in
Eq. ~12! of paper I, only terms with the same incoming and
outgoing momenta may contribute to the transverse and lon-
gitudinal susceptibilities. So correlation functionsx3~q,v!,
x4~q,v!, x5~q,v!, andx7~q,v! must be omitted from Eqs.~2!
and ~3! for the I susceptibilities.

Consequently, theC dynamicscannotbe recovered from
the ]8→0 limit of the I dynamics. In theC phase, any fluc-
tuation which changes the number of electron-hole pairs by
an even number is permitted. But in theI phase, spin fluc-
tuations must maintain the same number ofab1 andab2
pairs. So a fluctuations which transforms anab1 into an
ab2 pair through a process likex4~q,v! is prohibited.

Nonetheless, the ladder diagrams forx1~q,v!, x̄2~q,v!,
x̄ 6(q,v), and x̄8~q,v! do involve these forbidden suscepti-
bilities. After expanding each susceptibility in a series of
ladder diagrams, we find that the two subsets$x1, x4, x7,
x̄ 8% and $x̄2, x3, x̄5, x̄6% do not couple to each other. The
first set of four coupled equations are

x15x1
~0!1x1

~0!Ux11x̄4
~0!Ux41x5

~0!Ux71x̄6
~0!Ux̄8 ,

~6a!

x45x4
~0!1x4

~0!Ux11x̄1
~0!Ux41x6

~0!Ux71x̄5
~0!Ux̄8 ,

~6b!

x75x5
~0!1x5

~0!Ux11x6
~0!Ux41x2

~0!Ux71x3
~0!Ux̄8 ,

~6c!

x̄85x̄6
~0!1x̄6

~0!Ux11x̄5
~0!Ux41x̄3

~0!Ux71x̄2
~0!Ux̄8 ,

~6d!

which uses the relationsx8
~0!5x6

~0! andx7
~0!5x5

~0! between the
Hartree-Fock~HF! susceptibilitiesx i

(0)~q,v!. The second set
of coupled equations is obtained with the transformations
1↔2̄, 3↔4, 5↔7̄, and 6↔8.

The first set of equations is represented graphically in Fig.
2, where the Coulomb interactionU.0 is drawn as a wiggly
line, the full susceptibilitiesxi as circles, and the HF suscep-
tibilities x i

(0) as squares. Although terms likex4
~0! and

x5
~0! enter Eqs.~6a! and~6d! for x1 andx̄8, contributions such

as x̄ 4
(0)Ux 4

(0) and x̄ 5
(0)Ux 4

(0) maintain the same incoming
and outgoing momenta and do not change the momentum of
the condensate. The solutions forxt~q,v! and xl~q,v! are
summarized in the Appendix. As in theC phase, the imagi-
nary susceptibilities are proportional to the factor 1/U2N~0!,
which is canceled by the prefactors to the cross sections in
Eqs.~5a! and ~5b!.

The HF susceptibilitiesx i
(0)~q,v!5f 1

( i )~q,v!1if 2
( i )~q,v!

were evaluated in Appendixes B and C of paper I. As shown
in Appendix C of paper I, the imaginary partf 2

( i )~q,v! sums
all quasiparticle transitions between branchesj andk, satis-
fying the momentum-conservation condition

Dz5zj~v* !2zk~v*2v!5cq. ~7!

For every allowed quasiparticle transition, each imaginary
susceptibility contains an integral of the form

FIG. 2. Graphical representa-
tion of the coupled equations for
x1~q,v!, x4~q,v!, x7~q,v!, and
x8~q,v!.
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E dv F~v !d@zj~v !2zk~v2v!2cq#5
F~v !

udgjk /dvuU
v*
,

~8!

where gjk(v)[zj (v)2zk(v2v). The frequenciesv* and
energieszi satisfying Eq.~7! were solved analytically in Ap-
pendix A of paper I.

When quasiparticle transitions join energies with the same
slope,dgjk/dv50 andf 2

( i )~q,v!56`. Such a transition is
calledenhanced. For example, an enhanced transition joins
the filled circles of Fig. 1~a!. An enhanced quasiparticle tran-
sition may be associated with either a zero or a divergence in
the full transverse and longitudinal susceptibilities. In many
instances, a divergence in one susceptibility is accompanied
by a zero in the other. Because nearby transitions also have
very small denominatorsdgjk/dv, the most important en-
hanced transitions are between quasiparticle energies with
zero slopede/dz50, such as between the empty circles in
Fig. 1~a!.

A spin excitation with wave vectorq and frequencyv
about theQ68 SDW corresponds to quasiparticle transitions
with wave-vector changej6[c(q7w) and energy change
v. Incoherent spin excitations about each SDW are only pos-
sible outside the wedge of~q,v! phase space centered at
eitherQ18 or Q28 , and bordered by the hashed marks in Fig.
3. In this figure,TN

! '80 meV is the fictitious Ne´el tempera-
ture of a perfectly nested alloy with]50. Inside the left or
right wedge of Fig. 3, fluctuations aboutQ28 or Q18 are pro-
hibited and the imaginary HF susceptibilitiesf2

( i )(q6w,v)
vanish. For example, a spin excitation with wave vector
q5w about theQ18 SDW corresponds to a vertical quasipar-
ticle transition withj150. This transition is only possible
when v exceeds the gap energy of 1.41TN

! in Fig. 3. For
sufficiently largeuju/TN

! >k beyond the sides of the wedge,
quasiparticle transitions are possible at all frequencies.

For the remainder of this paper, we reserve the notation
j/c for the momentumq6w measured relative to one of the
two SDW wave vectors. In the transverse or longitudinal
susceptibilities, the wave vectorq is measured fromG/2,

midway between the two satellites. On the other hand, the
crystal momentump is given byq1G/2.

After the two wedges centered atQ18 andQ28 are super-
imposed as in Fig. 3, each point in~q,v! phase space is
associated with an excitation about at least one of the two
ordering wave vectors. Points lying outside both wedges are
associated with excitations about both ISDW’s. So in con-
trast to theC regime, the neutron-scattering cross sections
are nonzero for all frequencies and wave vectors. AboveTN ,
the wedges collapse and the incoherent spin excitations pro-
duce the paramagnetic background predicted theoretically9,20

and observed experimentally.21,22

By adding the contributions from each SDW, Eqs.~2! and
~3! allow us to distinguish the collective modes about one
SDW from the collective modes about the other. Using the
results of the Appendix, the longitudinal~1! or transverse
~2! collective modes aboutQ18 are given by the poles of

x6~q2w,v!52
2

U
1

1

t16~q2w,v!1 i t 26~q2w,v!
,

~9!

where t161 i t 265U2D/N6 . Both the denominatorD and
the numeratorsN65N6

a 1N6
b are evaluated in the Appen-

dix. The excitations aboutQ28 are given by the same expres-
sion as Eq.~9! with q→2q.

Collective modes about either ISDW state are determined
by the zeros of the denominatorD~j,v!. Unlike the numera-
torsN6~j,v!, D(j,v)5D(2j,v) is an even function of the
relative wave vectorj. So if the numerators are nonzero, the
collective modes will be symmetric about each SDW wave
vector. Since the same denominator appears in both the
transverse and longitudinal susceptibilities, the collective
modes will also be degenerate unless one set of numerators
vanishes.

Becausext,l~q,v! sums the contributions about each
ISDW, the collective modes aboutQ18 are not affected by
the quasiparticle transitions aboutQ28 . This does not imply,
however, that the dynamics of the two SDW’s are indepen-
dent. Within the three-band model, quasiparticle transitions
are allowed from one condensate to the other. For example,
the x̄ 4

(0)Ux 4
(0) term inx1 involves the transfer of a hole from

theab2 to theab1 condensates and then back to theab2
condensate with no net change in momentum. In the two-
band model, such processes are forbidden, and the dynamical
coupling between the two SDW’s is lost.

If t26 vanishes faster thant16, then the transverse or lon-
gitudinal collective mode about the SDW atQa8 ~a56! is
associated with ad function in the imaginary susceptibility
Imx6~aq2w,v!. As discussed in paper I, the integrated
strength s of this collective mode is proportional to
(dv/dq)21. So the weight of any collective mode diverges
when the slopedv/dq vanishes. The same conclusion holds
for damped excitations witht26,0. The half-width of a
damped excitation is given byDq}t26/udv/dqu, which van-
ishes ast26→0 but diverges asdv/dq→0.

The cross sectionsst and sl defined by Eqs.~5a! and
~5b!, include both the incoherent background of spin fluctua-
tions and the collective modes. To distinguish those two sets
of contributions, we define the incoherent cross sectionssi t
and si l by subtracting thed-function contributions of the

FIG. 3. The collective modes of I Cr with
cw/TN

! 5k/TN
! '1.903 are plotted in the bold lines withz0/TN

! 54.7
andT/TN50.5. Excitations about each SDW are only allowed out-
side the hashed region. Damped longitudinal excitations are plotted
in the dashed lines. The dynamics of individual spins are pictured
for the SW and amplitude modes.
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collective modes fromst andsl . For comparison with theC
results, we also define the total cross sections5s t1s l and
the total incoherent cross sections i5s i t1s i l . Then the to-
tal and incoherent backgroundsI and I i are obtained by in-
tegrating the total or incoherent cross sectionss or si over
wave vectorcq.

III. INCOMMENSURATE DYNAMICS

Because the summation over theI quasiparticle transi-
tions cannot be performed exactly, the imaginary suscepti-
bilities f i

(2)~q,v! are more complicated than theirC counter-
parts. Evaluating the real susceptibilityf i

(1)~q,v! using the
Kramers-Kronig relation requires a numerical integration
over the imaginary susceptibility, with some attached nu-
merical uncertainty. So theI cross sections are more difficult
to evaluate, and contain greater numerical errors than theC
cross sections evaluated in paper I.

In Fig. 4, we plot the total incoherent backgroundI i , ver-
sus frequency for four different temperatures. Like theC
background plotted in Figs. 8 and 10 of paper I, theI back-
ground also grows asT approachesTN and diverges asv
approaches 0. But unlike theC background, which increases
with frequency above the energy gap, theI background de-
creases monotonically. The limiting paramagnetic back-
ground withT5TN is plotted in the solid curve.

As revealed by Fig. 4, the integrated background diverges
more strongly than the thermal factorn11→T/v asv→0.
In paper I, we were able to show analytically that theC
backgroundI i , diverges like (n11)/v}T/v2 asv→0. Al-
though such an analytic result has not been verified, we be-
lieve that theI background also behaves in this fashion.

The complex quasiparticle energies of theI phase pro-
duce a rich spectrum of collective excitations. Since Fig. 1~b!
contains five segments of quasiparticle energies, there are 25
types ofI transitions, far greater than the four types of tran-
sitions in theC phase. As discussed in Sec. I, the collective

modes may be associated with fluctuations of the SDW po-
larization directionm̂, amplitudeg8, phase differenceu, and
wave vectorsQ68 . While the SW and amplitude modes were
also present in theC phase, the phason and wavon modes
have no analog in theC dynamics.

A. Spin-wave modes

The invariance of the free energy under rotations of the
spin-polarization directionm̂ is associated with transverse
Goldstone modes evolving from each satellite. These SW
modes have a linear dispersionv5cq with the same
temperature-independent mode velocityc5vF/) as in theC
phase. Each SW mode borders the side of a wedge inside of
which quasiparticle transitions about that satellite are forbid-
den. Along the side of the wedge, each imaginary HF sus-
ceptibility f 2

( i )~j,v! vanishes at the frequencyv5uju. Inside
the quasiparticle continuum above the top of the wedge, the
individual imaginary HF susceptibilities become nonzero,
but Im~x11x̄22x̄62x̄8! still vanishes atv5uju, so the SW
mode remains undamped.

These results disagree sharply with previous authors,9,10

who neglected the coupling between the two condensates of
electron-hole pairs. Using a two-band model, Sato and Maki9

found that the SW velocity vanishes at the Ne´el temperature
and at the triple point. Starting with a one-dimensional array
of local moments with long-range exchange interactions,
Wolfram and Elliatioglu10 obtained a spectrum of multiple
branches and energy gaps with modes originating fromq50
as well as from the SDW ordering wave vectors.

Unfortunately, experimental fits to the twin ‘‘chimneys’’
evolving from theI satellites are even more difficult than fits
to the single ‘‘chimney’’ of theC phase. Measurements by
Mikke and Jankowska2 on a CrRe alloy indicated a SW ve-
locity of 500 meV Å, about half of theC value23,24 and one
third of the theoretical valuec'1500 meV Å. We shall re-
turn to this discrepancy in Sec. IV.

As discussed in paper I, the strengthst532pg2(n11)/v
of each SW in theC phase has precisely the same form as for
a Heisenberg antiferromagnet.25 Motivated by this relation,
we have searched for a similar result inI alloys. While an
analytic expression has eluded us, the ISW strength is given
numerically by

st5~n11!
Atg

2

v
, ~10!

whereAt'16p/3 is independent of frequency, temperature,
and mismatch energyz0. This remarkable relation again un-
derscores the similarity between SW’s in itinerant and local-
moment antiferromagnets. As expected, the SW strength
vanishes asT→TN or asv→`.

ComparingC and I expressions, we find that the com-
bined weight of the four ISW’s evolving from the satellites
at ~0,0,16]8! is approximately three times smaller than the
weight of the two CSW’s evolving from~0,0,1!. However,
the intensity of the SW’s evolving from each magnetic sat-
ellite along thez axis may have a different angular depen-
dence onq•ẑ than the intensity of the SW’s in theC phase.
In the C limit ]8→0, the total integrated intensity of the
ISW’s evolving fromQ68 must smoothly approach the inte-
grated intensity of the CSW’s evolving fromG/2. So most of

FIG. 4. The incoherentI backgroundI i5I it1I il vs normalized
frequency v/TN

! for T50.5TN ~stars!, 0.9 ~triangles!, 0.975
~squares!, or 1 ~solid line! andz0/TN

! 54.7.
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the ISW intensity must develop in theqx andqy directions,
perpendicular to the ordering wave vectors. Of course, a
complete description of the SW ‘‘cones’’ evolving from each
satellite must include fluctuations with wave vectorq non-
parallel toQ68 . We shall attempt such a general description
in future work.

In paper I, we argued that SW’s in aC alloy involve the
rigid rotation of each spin about its equilibrium value. Now
in the I regime, the two SW’s with frequencyv and crystal
momentum p56Qa81v/c (a56) have an identical
strengthst . This suggests that the spin deviation at siteR
should be written

dS~R,t !}S0a~R!exp$ i ~p7Qa8 !•R2 ivt%, ~11!

which also yields the rigid rotation of each spin.
Figure 5 compares the SW strength with the weight of the

transverse, incoherent backgroundI it . As in theC phase, the
relative SW strength decreases with increasing temperature
and vanishes atTN . Comparing Fig. 5 with Fig. 11 of paper
I reveals that the relative weights of the SW modes are an
order of magnitude smaller than in theC regime. So theI
background contains a much larger fraction of the spin fluc-
tuations than does theC background. If the incoherent back-
ground diverges like~n11!/v as v→0, then st/I it should
approach a constant in this limit.

In recent work, Lorenzoet al.6 used the form of Eq.~10!
to fit the low-temperature~T/TN<0.3! and low-frequency
~v/TN*<0.15! transverse susceptibility of pure Cr. At such
low frequencies and temperatures, Fig. 5 indicates that the
combined weight of the four SW’s is somewhat larger than
the incoherent transverse background. Hence the observed
constancy ofvI t/(n11)'4Atg

2 below 100 K reflects the
weak temperature dependence of the order parameter below
about 0.7TN . Since the incoherent background falls off more
weakly with increasing frequency than does the SW strength
st;1/v, the incoherent backgroundI it will eventually domi-

nate the SW’s, and this simple parametrization of the trans-
verse susceptibility will break down.

B. Amplitude modes

Due to their high frequency and small weight, amplitude
modes have never been observed in an itinerant antiferro-
magnet, to our knowledge. Nonetheless, they are of great
theoretical interest due to their absence in local-moment an-
tiferromagnets. Amplitude modes about an ISDW state were
first predicted within a two-band model by Sokoloff.26 Later,
Lee, Rice, and Anderson27 and Psaltakis12 confirmed the ex-
istence of amplitude modes for one-dimensional systems.

Within the three-band model for itinerant antiferrogmag-
nets, degenerate transverse and longitudinal modes lie sym-
metrically on either side of each SDW wave vector and just
below the top of each wedge. NearG/2, the amplitude modes
smoothly join one of the SW modes from the far satellite. On
the other side ofQ68 , the amplitude modes tangentially enter
the quasiparticle continuum. In theC limit ]8→0, the SW
cones centered atQ18 andQ28 merge intoG/2, and theI
amplitude modes are squeezed into a vanishing portion of
phase space. TheC amplitude mode with frequency 2&g at
q50 first appears as a large longitudinal absorption peak
between the twoI satellites~see Sec. II G below!. So theI
amplitude modes donot evolve into theC amplitude mode
discussed in paper I.

Unlike theC amplitude mode, theI amplitude modes are
slightly displaced below the quasiparticle continuum. For the
parameters of Fig. 3, theI amplitude modes lie at a fre-
quency of about 1.431024TN* below the top of each wedge.
Consequently, theI amplitude modes are associated withd
functions in the transverse and longitudinal susceptibilities.
So, unlike oscillations of the CSDW amplitude, oscillations
of the ISDW amplitude do not decay with time.

The weight of each amplitude mode is about ten times
smaller than the weight of a SW mode with the same fre-
quency. Unlike the strengths of the SW modes, the strengths
of the transverse and longitudinal amplitude modes are dif-
ferent on either side of each satellite. Directly above each
satellite, the transverse weight is twice the longitudinal
weight. Close toG/2, the transverse mode dominates; near
the outside of each SW cone, the longitudinal and transverse
weights are roughly equal.

In an itinerant antiferromagnet, deformations of the SDW
amplitudeg85m̂g cosfav can be produced by either trans-
verse or longitudinal fluctuations. Exactly at the satellite
wave vectorsQ18 or Q28 , the degeneracy of the amplitude
modes can be explained with a simple picture. Longitudinal
fluctuations of magnitudegS06~R!exp(ivt) cost condensa-
tion energy DF}^S•S* &2S06•S06* 5(guS06u)2. On the
other hand, a purely transverse excitation with crystal mo-
mentum p5Q18 or Q28 and magnitudegS06~R!exp(ivt)
will rock all the spins back and forth with the same time-
dependent angle. Due to the absence of any bending ener-
gies, transverse fluctuations atR will also cost condensation
energy~guS06u!2. Hence the longitudinal and transverse am-
plitude modes are degenerate. AtQ18 orQ28 , both collective
excitations are standing-wave modulations of the ISDW am-
plitude which do not affect the nodes of the SDW.

FIG. 5. The relative SW strengthst/I it vs v/TN
! for the same

parameters as in Fig. 4.
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Away from the SDW ordering wave vectors, the trans-
verse amplitude modes must gain a longitudinal component
~just as the transverse SW modes have a longitudinal com-
ponent! so that the combined bending and condensation en-
ergies of the transverse mode equals the energy of the purely
longitudinal one. As a result, the standing-wave patterns will
be disrupted and the nodes of the static SDW will be dis-
turbed.

C. Phason modes

Whereas SW’s are associated with the rotational invari-
ance of the free energy, phasons are associated with its trans-
lational invariance under a shift in the phase differenceu.
Phason modes of a CDW were first predicted by
Overhauser.28 While studied primarily in one-dimensional
organic conductors,29 phasons have also been predicted5,12 in
I Cr alloys. For the CSDW state discussed in paper I, fluc-
tuations of the phase differenceu generate fluctuations of the
SDW amplitude. So the CSDW state does not support pha-
son modes.

In anI alloy, phason modes are produced by the dynamics
of the phase differenceu~R,t! in Eq. ~1!. Supposingu0 to be
the equilibrium phase difference and settingdu~R,t!
5u(R,t!2u0, the change in spin is given by

dS~R,t !52asgm̂~21!2Rz /acosfavImdu~R,t !

3expH i S 2p

a
]8Rz1

u0
2 D J , ~12!

parallel tom̂. Consequently, the phasons are longitudinal ex-
citations which evolve from the SDW wave vectors atQ68 .

Like amplitude modes, phasons are also associated with
the longitudinal oscillation of the spinS~R,t! about its equi-
librium value. While electron-hole pairs are broken on some
lattice sites, they reform on others. So a phason mode trans-
fers electron-hole pairs from one atom to another down the
length of the SDW. By contrast, amplitude modes transfer
electron-hole pairs into and out of the condensate.

At zero frequency, the poles in the longitudinal suscepti-
bility xl~q,0! at q56w are undamped witht11(0,0)
5t21(0,0)50. But at any nonzero frequency, the phason
modes are damped witht21~j,v!,0. Below about 0.4TN

! , the
phason modes evolve linearly and symmetrically on either
side of the satellites atQ18 andQ28 . For all values of tem-
perature and mismatchz0, the phason mode velocitycph at
zero frequency is smaller than the SW mode velocity
c5vF/). As shown in Fig. 6,cph only approaches the SW
velocity at the Ne´el temperature. Also notice that the phason
velocity increases with the mismatch energyz0 or, equiva-
lently, with the V concentration in CrV alloys.

By contrast, Psaltakis12 used a linear-response formalism
in one dimension to conclude thatcph5c ~c5vF in one di-
mension! at zero temperature. Psaltakis also found that the
electron-electron and hole-hole Coulomb repulsion enhances
the phason mode velocity. As discussed below, the nesting
and ordering wave vectors coincide in the one-dimensional,
single-band model used by Psaltakis. So the resultcph5c is
recovered in thez0→` or Q68→Q6 limit of our model.

At nonzero frequencies, the inner phasons curve outward
towardsG/2. At a frequency of about 0.75TN

! '60 meV and

at a wave vector close toG/2, the slopesdv/dq of the inner
phasons vanish. As shown in Fig. 3, the inner phason modes
then smoothly join the damped longitudinal excitations dis-
cussed in Sec. III D. Above 0.75TN

! , the overdamped phason
modes disappear. With V doping, the inner phasons will sur-
vive to larger energies. For example, whenz0/TN

! 510, the
inner phasons become overdamped at a much higher energy
of 2.65TN

! '212 meV. Psaltakis12 did not evaluate the disper-
sion of the phason modes at nonzero frequencies.

Fitting the strength of each phason mode to the form of
Eq. ~10!, we find that

sl65~n11!
Al6~v!g2

v
, ~13!

where6 refers to the inner~2! or outer ~1! branch. The
coefficientsAl6 are now functions of frequency, tempera-
ture, and mismatch. In Fig. 7, we plot the ratios
sl6/st5Al6/At'3Al6/16p versus frequency forz0/TN

! 54.7
and two different temperatures. For each temperature, the
upper set of points corresponds to the inner coefficient
Al2~v!. At zero frequency,Al1(0)'Al2(0) depends mainly
on the energy mismatchz0 and only weakly on temperature.
For the parameters of Fig. 7,Al6~0!'12.8, so that the
strength of each longitudinal phason mode is only about 0.75
times smaller than the strength of each transverse SW mode
with its two possible polarizations. As the mismatchz0 in-
creases,Al6~0! decreases, so the phasons become weaker
compared to the SW’s. WhileAl2~v! monotonically in-
creases with frequency,Al1~v! initially decreases with fre-
quency.

The (n11)/v'T/v2 divergence ofsl6~v! asv→0 char-
acterizes the Goldstone modes of a SDW. Other damped
longitudinal excitations discussed below also evolve from
zero-frequency poles in the imaginary susceptibility. How-
ever, the strengths of those excitations diverge like the Bolt-
zmann factorn11'T/v. So the SW and phason modes
dominate the low-frequency response of Cr alloys.

FIG. 6. The phason mode velocitycph normalized by the SW
velocity vsT/TN for z0TN

! 54.7 ~solid! or 7.0 ~dashed!.
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As discussed at the end of Sec. II, the strength of any
damped excitations is inversely proportional to its slopedv/
dq. So the coefficientAl2 of the inner phason diverges when
it meets the damped longitudinal excitation pictured in Fig.
3. Likewise, the coefficientAl1 of the outer phason also
diverges, although more weakly, as its slope vanishes.

Unlike the SW modes, the phasons are not associated with
d functions of the susceptibility, and form a part of the inco-
herent background. Hence the phason mode strength of Eq.
~13! is already counted as part of the longitudinal back-
ground. At frequencies less than about 0.1TN

! and tempera-
tures below about 0.5TN , the phason modes dominate the
rest of the incoherent longitudinal background. Since the lon-
gitudinal amplitude modes lie at a much higher frequency,
the low-frequency longitudinal intensity may be approxi-
mated byI l'I i l'2(sl11sl2).

Because they evolve from satellite wave vectors and have
velocities close toc, phason modes have been mistaken for
SW’s. For example, the low-frequency, longitudinal excita-
tions observed by Burkeet al.5 were actually phason modes
rather than SW’s. Recently, Lorenzoet al.6 used the form of
Eq. ~13! with a single coefficientAl5(Al11Al2)/2 to fit the
low-temperature longitudinal susceptibility of pure Cr. For
the low frequencies and temperatures studied by Lorenzo
et al.,6 the phason modes dominate the rest of the longitudi-
nal background. So, as expected, the scaled longitudinal in-
tensity

v

n11
I l'

2v

n11
~sl11sl2!54Al~v!g2 ~14!

is almost independent of temperature. According to Fig. 7,
the sumAl1(v)1Al2~v! is a weaklyincreasingfunction of
v below about 0.25TN

! '20 meV. By contrast, Lorenzoet al.
observe a dramatic falloff ofvI l /(n11) with frequency be-

low about 10 meV. As discussed later, our model is not
sophisticated enough to describe this low-frequency behav-
ior.

D. Damped excitations near the first harmonic

As shown in Fig. 3, the damped longitudinal excitations
which extend beyond the phasons reach zero frequency close
to the first harmonics of the SDW. The zero-frequency pole
in the imaginary longitudinal susceptibility at these wave
vectors corresponds to thej5j0 quasiparticle transition be-
tween the empty triangles in Fig. 1~b!. Translatingj0 by
6cw, the longitudinal poles lie at wave vectorscq5cw6j0
and2cw6j0, wherecw5k andj0,2k. AsT→TN , j0→2k,
and the poles merge with the first6cw56k and third63cw
563k harmonics of the SDW. To distinguish these longitu-
dinal excitations from the phason modes, we label them as
excitationsl1 andl3.

Unlike the Goldstone modes, the strengths of excitations
l1 andl3 diverge liken11'T/v asv→0. Compared to the
phasons, their relative weightssl1/sl6 and sl3/sl6 vanish
like v as v→0. So these longitudinal excitations become
unobservable at low frequencies.

As v increases, the wave vector of excitationl1 bends
towardsG/2 and approaches the inner phason mode. The
longitudinal excitationsl1 and the inner phasons meet with
zero slopedv/dq50. So the weights of both excitations di-
verge at precisely the same frequency. Just below this fre-
quency, the strengthssl1 andsl2 are nearly equal.

At very low frequencies,sl1 is much smaller than the
combined weight 2st of the two nearby SW’s. But as shown
in Fig. 8, sl1/2st rapidly increases with frequency and even-
tually diverges as the slopedv/dq vanishes. Using the pa-
rameters in Fig. 3, sl1/2st51 when v/TN

! '0.4 and
s1l /2st→` as v/TN

!→0.75. Consequently, the SW cones
emanating from each satellite will tilt inward towardsG/2, as
first observed by Fincher and co-workers.4 At a frequency of

FIG. 7. The phason mode strengthssl6 normalized by the SW
strengthst vs v/TN

! for T/TN50.5 ~stars andx’s! or 0.8 ~squares!
andz0/TN

! 54.7. The inner phason~2! corresponds to the upper set
of points; the outer phason~1! to the lower set.

FIG. 8. The strength of the longitudinal damped excitationsl1
near the first harmonicsQ68 relative to the strength 2st of the two
nearby SW’s for the same parameters as Fig. 7.
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30 meV, Fincher and co-workers observed that the axis of
the SW cones were 30% closer toG/2 than at zero fre-
quency. Since the tilting angle will increase with frequency,
their result is in good agreement with our estimate for
0.75TN

! '60 meV. As discussed below, the divergence ofsl1
and sl2 nearG/2 has been recently observed by Fukuda
et al.8

E. Damped excitations near the third harmonic

The zero-frequency quasiparticle transition between the
empty triangles in Fig. 1~b! also produces the damped longi-
tudinal excitationl3 close to the observed third-harmonics18

of the SDW atcq563k. Its frequency is plotted versus
wave vector in the medium-dashed lines of Fig. 9, where the
long-dashed line corresponds to the enhanced quasiparticle
transitions between the filled triangles of Fig. 1~b!. So exci-
tation l3 begins and terminates at an enhanced quasiparticle
transition. For frequencies between 0.045TN

! and 0.135TN
! ,

the real denominator has two zeros nearcq563k, so l3 has
two branches.

A static third harmonic of the SDW was not included in
the ‘‘canonical’’ inverse Green’s function of Eq.~9! of paper
I. So, not unexpectedly, the normalized weightsl3/2st van-
ishes asv→0. Hence, like excitationl1, excitationl3 is not
a Goldstone mode, and disappears at low frequencies. But as
shown in Fig. 10 for thel3 branch with the smaller wave
vector, the relative weightsl3/2st diverges at a frequency of
about 0.135TN

! , where its slopedv/dq vanishes. Above
0.135TN

! , excitationl3 is overdamped and disappears.
Another set of poles in the longitudinal susceptibility is

induced by thev50 quasiparticle transition between the
empty squares in Fig. 1~b!. For large energies, the wave vec-
tor j of this transition approaches 2k. Translating by the
satellite wave vectors6cw, these poles coincide with the
first and third harmonics of the SDW. But unlike the SW and

phason poles, these poles are not associated with Goldstone
modes: their weights diverge like 1/v rather than 1/v2 as
v→0. At nonzero frequencies, these longitudinal excitations
are damped.

Since it lies very close to the phason pole, the damped
excitation evolving from the first harmonic is probably im-
possible to observe. The damped excitation evolving from
the third harmonic survives only at very low frequencies and
is much weaker than thel3 excitation discussed above. Its
dispersion is given by the short-dashed line of Fig. 9. As
T→TN , j0→2k and the two zero-frequency poles near the
third harmonic merge into one.

So even in the absence of a static third harmonic,I alloys
remain susceptible to the formation of a dynamically driven
third harmonic. But unlike the Goldstone modes, this excita-
tion disappears at low frequencies. Of course, a rigorous
theory for the excitations evolving fromcq563k must in-
corporate the static third harmonics of the SDW. Only then
would the excitations evolving from63k be true Goldstone
modes of the alloy.

F. Wavon modes

In addition to the three classes of collective modes~SW’s,
amplitude modes, and phasons! discussed above, another
class of collective modes is associated with oscillations of
the SDW wave vectorsQ68 . Unlike the ordering wave vector
Q52kF of a one-dimensional organic conductor,

29 the SDW
wave vectorsQ68 of Cr are not fixed by a nesting condition.
Instead,Q68 are chosen to minimize the free energy, which
involves a compromise between the nesting on both sides of
the Fermi surfaces. The wavon modes are then produced by
oscillations of the ordering wavevectors within this potential
well.

For the ISDW state of Eq.~1!, the wavon modes corre-
spond to oscillations in the wave-vector parameter]8 about

FIG. 9. The wavon mode~solid! and damped longitudinal exci-
tations~medium and short dash! for z054.7TN

! andT/TN50.5. The
long dashed line corresponds to the quasiparticle transitions be-
tween the filled triangles in Fig. 1~b!.

FIG. 10. The strength of the longitudinal damped excitation
~medium dashed line with the smaller wavevector in Fig. 9! sl3
relative to the SW strength 2st vsv/TN

! for the same parameters as
Fig. 9.
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its equilibrium value. A small change in]8 either stretches or
contracts the SDW along thez direction. As the change in]8
vanishes, the original SDW is smoothly restored. By con-
trast, even a small change in the wave vector of a CSDW
state will dramatically change the spin configuration.
Whereas the equilibrium CSDW contains spins with values
S0~R!56asg8 on different sublattices, the nonequilibrium
CSDW would contain spins with all possible values between
asg8 and2asg8. Hence even a vanishingly small change in
the CSDW wave vector produces a very large change in free
energy. For this reason, wavon modes were not present in the
C dynamics discussed in paper I.

As shown in Fig. 3 forv/TN
! '0.15, the inner wavons

~each both longitudinal and transverse! join the inner SW’s,
while the outer wavons~purely longitudinal! lie close to the
third harmonics. Although within the quasiparticle con-
tinuum, the wavons are undamped. The wavon modes are
produced by zeros of the susceptibility denominatorD~j,v!
with j'62k. Because the longitudinal numeratorN1~j,v! is
nonzero at these wave vectors and frequencies, the longitu-
dinal wavons lie symmetrically on either side of the SDW
satellites. But near the third harmonic, the zeros inD~j,v!
are canceled by zeros in the transverse numeratorN2~j,v!,
so the outer wavons are purely longitudinal. Since the same
pole is responsible for both, the transverse and longitudinal
wavons near the first harmonic are degenerate.

While the longitudinal wavons are easy to understand, the
transverse wavons near the first harmonic involve the coher-
ent oscillation of both the wave-vector parameter]8 and the
polarization directionm̂. If the change in]8 is d]8~R,t! and
the change in polarization direction isdm~R,t! perpendicular
to m̂, then the transverse fluctuation of the spin on siteR can
be written

dS~R,t !52asg~21!2Rz /acosfavRedm~R,t !

3expH i S 2p

a
@]81d]8~R,t !#Rz1

u

2D J .
~15!

This combination of infinitesimals is possible because
dS~R,t! cannot be linearized ind]8. As d]8/dm→0, this ex-
citation becomes a SW mode. Correspondingly, the inner
wavons terminate at a SW branch.

The transverse and longitudinal wavon modes near the
first harmonic are plotted versus wave vector for several tem-
peratures in Fig. 11. Using the symmetry ofD~j,v! about
j50, the longitudinal wavons near the third harmonic are
obtained from Fig. 11 with the operationcq→2cq12k.
Since the inner wavons terminate on a SW branch, the outer
wavons terminate at the pointcq53k2v. Figure 12 plots the
termination frequency of the inner wavons versus tempera-
ture. This termination point coincides with the onset of qua-
siparticle transitions between branches 2 and 3, such as be-
tween the open stars in Fig. 1~b!.

With increasing temperature, the range of frequencies and
wave vectors of the wavons collapses. In the limitT→TN ,
the wavon frequency vanishes and the modes disappear. As
the temperature decreases, the wavon frequency increases
and the undamped wavons are again confined to a shrinking
window of wavevectors. Below about 0.2TN , the undamped

wavons are replaced by a set of damped excitations. Excita-
tions to the left of the circles in Fig. 12 are damped.

For any energy mismatchz0, the range of wave vectors of
the wavon modes is always less than the differenceDQ
5Q12Q18 52p(]2]8)/a between the nesting and SDW
wave vectors. Asz0→`, ]8→] and the range of wave vectors
of the wavon modes vanishes. As shown in Fig. 12, the
wavon mode frequency also vanishes asz0→`. In the C
limit, ]8→0, the wavons are again restricted to a vanishing
window in wave-vector space. As remarked above, the
CSDW state does not support wavons.

The longitudinal wavon near the third harmonic is plotted

FIG. 11. The transverse and longitudinal wavons near the first
harmonic forz054.7TN

! and the various temperaturesT/TN given.
The dispersion of the longitudinal wavon near the third harmonic is
obtained with the operationcq→2cq12k.

FIG. 12. The intersection frequency of the wavons with the
inner SW branch vs temperatureT/TN for z0/TN

! 54.7 ~solid! or 7
~dashed!. The wavons are damped to the left of the circles.
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in the solid curve of Fig. 9 forT/TN50.5 andz0/TN
! 54.7.

As shown, the wavon evolves tangentially from the dashed
line of enhanced quasiparticle transitions, such as between
the filled triangles in Fig. 1~b!.

Remarkably, the inner wavons were recently observed by
Endohet al.7 as a peak in the satellite intensity between 15
and 20 meV at 54 K. ForT/TN50.2 andz0/TN

! 54.7, Fig. 12
indicates that the satellite intensity should be strongly peaked
at about 0.28TN

! '23 meV. However, electron-phonon scat-
tering may lower this frequency by suppressing the SDW
order parameterg. As shown in Fig. 12, our model predicts
that the peak frequency will decrease rapidly with increasing
temperature and with V doping. Thus future measurements
may be able to confirm the existence of this interesting class
of collective excitations. Because the strength of the longitu-
dinal wavons is much smaller than that of the transverse
wavons, it is unlikely that the outer wavons can be detected.

G. Cross sections

Fixing q50 orp5~G/2!~0,0,1!, we plot the transverse and
longitudinal cross sections versus frequency in Fig. 13. Fluc-
tuations about each SDW contribute equally to the excita-
tions at q50. Since quasiparticle transitions with relative
wave vectorsj75c(q6w)56k are allowed at all frequen-
cies, the cross sections remain nonzero even atv50. The
strong longitudinal peak atv/TN*'0.75 is produced by the
phason andl1 excitations discussed in Secs. III C and III D.
Intraband transitions across the chemical potential are re-
sponsible for the large transverse peak atv/TN*'1.3. Two
SW modes cross atv/TN*5k/TN*'1.903, which is denoted
by anX. Because their widths are infinitesimally small, the
SW and amplitude-moded functions do not appear in the
plots of the transverse and longitudinal cross sections. The
peak in the transverse cross section atv/TN*52.39 is pro-
duced by the enhanced transition across the energy gap be-
tween the filled squares in Fig. 1~b!.

At higher energies still, the longitudinal peak near
3.46TN* is driven by the enhanced transition between the
filled circles on the top and bottom bands in Fig. 1~b!. In the
C limit, this peak evolves into theC amplitude mode, which
is associated with the transition between the filled circles in
Fig. 1~a!. Above 3.46TN* , no additional enhanced transitions
arise, and the cross sections are smooth functions of fre-
quency. In the limitv/TN*→`, the fluctuations become iso-
tropic, and the transverse cross section is exactly twice the
longitudinal cross section.

In Fig. 14, q5w is fixed at the right-hand satellite with
crystal momentump5~G/2!~0,0,11]8!. While quasiparticle
transitions about Q18 have a relative wave vector
j15c(q2w)50, transitions aboutQ28 have a relative wave
vector j25c(q1w)52k. Becausej50 transitions are for-
bidden below the top of the wedge, excitations below the
energy gap of 1.41TN* are associated with fluctuations about
the far satellite atQ28 . Since q5w is an ordering wave
vector, the SW and phasond functions lie atv50.

At very low frequencies, quasiparticle transitions with
j52k lie far from the chemical potential, and the back-
ground cross sections are small. The low-frequency peaks in
the satellite cross sections atv50.24TN*'19 meV are pro-
duced by damped excitations which evolve from the wavons
between the two SW’s. Because these damped excitations
increase in frequency as they cut across the satellite wave
vector, the peak frequency of 0.24TN* is larger than the
wavon frequency of 0.15TN* obtained from Fig. 12 for
T/TN50.5.

Just below the energy gap, the amplitude-moded function
is marked by anX. Whereas only longitudinal fluctuations
diverge above theC energy gap in Fig. 12 of paper I, both
transverse and longitudinal fluctuations diverge above theI
gap in Fig. 14. The SWd function at v/TN*52k/TN*
53.806 is also denoted by anX. As expected, the fluctua-
tions become isotropic at high frequencies withs t52s l .

FIG. 13. The transverse~solid! and longitudinal~dash! I cross
sections vsv/TN

! for q50. z0/TN
! 54.7, andT50.5TN . The SWd

functions are denoted by anX.

FIG. 14. Same as Fig. 13, but withq56w. The SW and am-
plitude modes are denoted byX’s.
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While each feature in Figs. 13 and 14 can be associated
with the onset of quasiparticle transitions, the dynamical sus-
ceptibility will be dominated by the three largest peaks. At
q50, the other features in Fig. 13 are dwarfed by the large
longitudinal peak at 0.75TN*'60 meV and by the smaller
transverse peak at 1.3TN*'104 meV. As discussed in Sec.
IV, the larger peak at 60 meV was recently observed by
Fukudaet al.8 The dominant peak in the satellite cross sec-
tion at 0.24TN*'19 meV is associated with the wavon
modes, which were recently observed by Endohet al.7 Un-
fortunately, the smaller features in Figs. 13 and 14, such as
the onset of amplitude fluctuations at 1.41TN* in Fig. 13, may
be unobservable.

Whenv50, the SW and phason poles atcq56cw carry
infinite weight. So the elastic cross sections are dominated
by the satellite peaks. The transverse and longitudinal cross
sections forv50.1TN*'8 meV are plotted in Figs. 15–17.
In all three figures, the cross sections withT/TN50.5 are
plotted on the solid curve, and the paramagnetic cross sec-
tions withT5TN are plotted on the long-dashed line. If each
of the three magnetic domains is occupied, then Figs. 15 and
16 will underestimate the cross sections nearq50 orp5G/2,
close to all six satellites. In contrast to the rather simple
paramagnetic cross sections first obtained by Sato and Maki,9

the magnetic cross sections are spectroscopic fingerprints of
the allowed quasiparticle transitions. Notice that the mag-
netic cross sections fall off more rapidly with wave vector
than does the paramagnetic cross section.

In Fig. 15, the SW poles atcq/TN*51.90360.1 and
21.90360.1 are denoted byX’s. As indicated by Fig. 5, the
weight of each SW pole is only about 25% the integrated
weight of the incoherent background. Both the transverse
and longitudinal cross sections are very small in the wedge
of ~q,v! phase space between the SW modes, where only
spin fluctuations about the far satellite are permitted. The
transverse cross section contains additional peaks associated

with the SW modes just outside each wedge. Each phason
mode is associated with three zeros oft11~j,v!, and appears
as two distinct peaks in the longitudinal cross section of Fig.
16. The largest and outermost peak was used to assign the
phason mode velocity and strength in Sec. III C. Thel1 ex-
citation discussed in Sec. III D contributes strong peaks at
the wave vectorscq/TN*'61.24 in Fig. 16.

Longitudinal excitations near the third harmonic are plot-
ted in Fig. 17, which includes an additional curve for
T/TN50.9. At low temperatures, the two damped excitations
appear as distinct peaks separated by a region with a much
smaller cross section. Excitationl3 discussed in Sec. III E
lies to the left of the weaker dynamically driven third har-

FIG. 15. The transverse cross section vscq/TN
! for v/TN

! 50.1,
z0/TN

! 54.7, andT/TN50.5 ~solid! or 1 ~dashed!. Each SWd func-
tion is denoted by anX.

FIG. 16. The longitudinal cross section vscq/TN
! for the same

parameters as Fig. 15.

FIG. 17. The longitudinal cross section vscq/TN
! for T/TN50.5

~solid!, 0.9 ~short dash!, or 1 ~long dash!. Other parameters as in
Fig. 15.
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monic. As the temperature increases,j0→2k and the peaks
move closer together. The peak heights decrease with in-
creasing temperature and disappear in the paramagnetic
limit.

As the frequency increases, the cross sections become
more complex due to the larger number of possible quasipar-
ticle transitions. For a fixed frequency, each peak or valley in
the cross sections can be associated with one of the 25 pos-
sible types of quasiparticle transitions. Of course, most fea-
tures will be smoothed by quasiparticle damping. At very
high frequencies exceeding the gap energy between the
lower and upper bands, the satellite peaks in theI cross
sections disappear. In this limit, the cross sections also be-
come independent of the energy mismatchz0 and wave-
vector parameterk.

IV. DISCUSSION AND SUMMARY

In this paper, we have examined the excitations about the
two ISDW states of pure Cr and CrV alloys. Spin excitations
with frequencyv and wave vectorp5q1G/2 about the
ISDW with wave vectorQ68 56w1G/2 are associated with
quasiparticle transitions with energy changev and wave-
vector changeq7w. While the relatively simple quasiparti-
cle energies of theC phase produced a simple spectrum of
collective modes which could be solved analytically, the
more complex quasiparticle energies of theI phase produce a
richer spectrum of collective excitations which must be
solved numerically.

Our basic model for the spin dynamics consists of an
electron-hole condensate generated by the Coulomb attrac-
tion U. In the I phase, a three-band model couples theab1
and ab2 condensates. Although the RPA is the simplest
formalism to produce SW modes in a conventional antifer-
romagnet, applying the RPA to the ‘‘canonical’’ model of an
itinerant antiferromagnet has been a challenging task. In the
I phase, quasiparticle transitions between the three bands of
energies produce a wealth of excitations about the two satel-
lites Q68 5(G/2)(0,0,16]8).

Surprisingly, the imaginary susceptibilities contain sev-
eral poles at zero frequency. But only the SW and phason
poles at the first harmonics are associated with instabilities of
the alloy. While the strengths of the Goldstone modes di-
verge like 1/v2, the strengths of the other excitations diverge
more weakly like 1/v. Hence the low-frequency dynamics is
dominated by the SW and phason excitations. Only at fre-
quencies above about 0.15TN*'12 meV does the rest of the
incoherent background become important.

The most disturbing discrepancy between theory and ex-
periment lies in the smaller observed value of the SW veloc-
ity. In the I phase, the phason modes will broaden the SW
cones, and lower the effective mode velocity in measure-
ments of the total cross section.

A second possibility could also explain the discrepancy in
theC phase: the SW mode velocity may depend on the di-
rection of the wavevectorq. Fluctuations along theẑ direc-
tion are probably stiffer than fluctuations which shear two of
the octahedral faces against each other. So the SW velocity
with q parallel toQ68 , which was evaluated in this and pre-
vious papers, may be larger than forq parallel to an octahe-
dral face of the Fermi surface. Since the resolution ellipsoid6

of the neutron-scattering cross section is extended in~q,v!
space, the measured SW velocity would be lower than
c5vF/).

It is instructive to compare the spin dynamics of a
transition-metal antiferromagnet with the spin dynamics of a
one-dimensional organic conductor.29 For the latter system,
the ISDW wave vectorQ52kF is fixed by the nesting across
the Fermi surface. As mentioned previously. Psaltakis’
result12 for the phason velocity of a one-dimensional ISDW
can be recovered in thez0→` or Q68→Q6 limit of our
model. Since the nesting and ordering wave vectors coincide,
wavon modes are not present in a one-dimensional organic
conductor.

Several workers30–32 have studied the spin dynamics
about an ISDW by starting with a phenomenological expan-
sion of the free energy nearTN in powers of the spin opera-
torsS„R…, which are assumed to obey the canonical commu-
tation relations for Heisenberg spins. Due to this assumption,
the SW mode velocity is found to scale like the SDW order
parameterg and vanish asT→TN . The amplitude, phason,
and wavon excitations all involve the transfer of electron-
hole pairs from one atomic site to another or into and out of
the condensate. Such processes are forbidden by the assump-
tion that the spinS~R! obeys canonical commutations rules
and is fixed in magnitude. Hence, phenomenological ap-
proaches to theI spin dynamics are severely handicapped.

Despite the complexity of the excitation spectrum de-
scribed in this paper, many important effects are missing,
and the resulting spin dynamics is oversimplified. As previ-
ously remarked, the ‘‘canonical’’ model ignores the higher
harmonics of the SDW. Both a CDW with wave vectors
2Q68 and a third harmonic of the SDW with wave vectors
3Q68 will generate their own unique dynamics. Atv50, the
translational invariance of the ICDW produces the observed
peaks17 at the satellite wave vectors 2Q68 5G(0,0,16]8),
on either side of the reciprocal-lattice vectorG. The rota-
tional and translational invariance of the third harmonic pro-
duces peaks18 at 3Q68 5(G/2)(0,0,163]8)1G. While trans-
verse SW modes may be associated with the third harmonic,
longitudinal phason modes may be associated with the trans-
lational invariance of both higher harmonics. By changing
the quasiparticle spectrum, both the second and third har-
monics will also affect the excitations about the first har-
monic of the SDW.

As first realized by Shibatani, Motizoki, and Nagamiya,33

the ‘‘canonical’’ model of Cr alloys assumes that the chemi-
cal potentialm52z0/4 is unaffected by the formation of a
SDW. Since the SDW depletes the electrons from the nested
Fermi surfaces, the ‘‘canonical’’ model implicitly assumes
that an infinite electron reservoir replenishes the electrons
transfered to the condensate. If the reservoir is finite, then the
chemical potentialm̄(T) will decrease and the effective mis-
matchz̄0(T)524m̄(T) will increase as the SDW grows. In
practice, the electron reservoir contains all bands which do
not contribute to the nested electron and hole Fermi surfaces.
The reservoir powerr is defined as the ratio of the reservoir
density of states to the electron-hole density of states
reh54N~0! for both spins and both Fermi surfaces.

Many authors34 have studied the effects of a finite reser-
voir on the phase diagram of Cr alloys. Most recently,34 we
examined the effects of a finite reservoir within the three-
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band model of theI phase. Surprisingly, order parameters
$gs ,]s8% which are saddle points of the ‘‘canonical’’ free en-
ergy withr5` may become minima of the free energy when
r,`.

Since all fluctuations are infinitesimal, the spin dynamics
places no additional demands on the electron reservoir.
Hence the excitation spectrum is not directly affected by the
size of the electron reservoir, and depends only on the order
parameters$g,]8%, the temperatureT, and the mismatch en-
ergy z0. But if the reservoir is finite, then the mismatchz0
must be replaced by the effective mismatchz̄0(T). So the
temperature dependences of the incoherent background, SW
strength, and phason velocity will be affected by the tem-
perature dependence of the effective mismatch energyz̄0(T).

For some values of the reservoir powerr and mismatch
energy z̄0(T), it may be necessary to use the saddle-point
solutions $gs ,]s8% rather than the order parameters which
minimize the ‘‘canonical’’ free energy. WithI saddle-point
solutions, the peaks in the central band of quasiparticles in
Fig. 1~b! disappear. Consequently, the damped longitudinal
excitations l1 and l3 produced by thev50 quasiparticle
transition across the central band are lost. If 2k is the small-
est energy for a vertical quasiparticle transition, the ampli-
tude mode becomes absorbed into the quasiparticle con-
tinuum. Otherwise, two amplitude modes appear. However,
the spectrum of Goldstone modes evolving from each satel-
lite remains fundamentally unchanged. In particular, the SW
velocity is still given byc5vF/), and the phason velocity
remains smaller thanc. We will examine this case in more
detail at a future date.

Because spin-orbit coupling has been neglected, our re-
sults do not depend on the angle between the spin-
polarization direction m̂ and the nesting wave vectors
Q65Q6ẑ. However, the spin-orbit energy in pure Cr pro-
duces two differentI regimes:1 one transversely (T) polar-
ized above 120 K and the other longitudinally (L) polarized
below 120 K. Because the neutron-scattering cross sections
only measure spin fluctuations perpendicular to the wave
vectorq, experimentalists can distinguish longitudinal from
transverse spin fluctuations in theI phase~but not in theC
phase!. In the LSDW phase below 120 K, the cross section
across thep5~G/2!~0,0,16]8! satellites equalsst while the
cross section across thep5~G/2!~1,0,6]8! satellites equals
sl1s t/2.

Below about 4 meV, experiments by Burkeet al.5 and
Lorenzoet al.6 in the LSDW state indicate thats l@s t . So
the low-frequency excitations evolving from the satellite
wave vectors atp5~G/2!~1,0,6]8! must be phasons. In the
TSDW state at very low frequencies, Burkeet al. find that
the spin fluctuations are predominantly perpendicular to the
ordering wave vectors.5 Hence the spin-orbit energy con-
strains the spin fluctuations to lie along the possible polar-
ization directions: parallel toQ68 and to the magnetic mo-
ments in the LSDW state, and transverse toQ68 in the TSDW
state. In future work, we will study this behavior by adding
the spin-orbit coupling to our basic model.

The ‘‘commensurate diffuse’’ scattering first observed by
Fincher, Shirane, and Werner4 is a broad hump centered at
G/2 in the TSDW state at a frequency of about 4 meV. But
as shown in Fig. 13, theq50 or p5~G/2!~0,0,1! cross sec-
tions remain very small until frequencies of order 0.7TN*

'55 meV. So the ‘‘commensurate diffuse’’ scattering can-
not be explained within our basic model. Later work by
Burke et al.5 indicated that the ‘‘commensurate diffuse’’
peak might be produced by very low-velocity excitations
evolving from each satellite. Within our model, the scale for
all mode velocities is set by the Fermi velocityvF'2600
meV Å. However, the Fincher-Burke excitations have a ve-
locity of approximately 43 meV Å, roughly 60 times smaller
than the Fermi velocity and very close to the velocity of a
longitudinal acoustic phonon5 in Cr. Clearly, the Fincher-
Burke excitations involve a much smaller velocity scale than
contained in our model. It is possible, however, that the
Fincher-Burke excitations are produced by the coupling be-
tween the ISDW and the acoustic phonons mediated by a
CDW. This will also be investigated in future work.

Measurements by Burkeet al.5 and Lorenzoet al.6 indi-
cate that the transverse and longitudinal spin fluctuations are
averaged above 10 meV. Experimental cross sections above
10 meV should then be compared with the average cross
sectionsav5(s t/21s l)/2. Two mechanisms may be respon-
sible for this averaging. At frequencies above 10 meV, the
resolution ellipsoid6 of the experimental measurements may
be large enough to average the transverse and longitudinal
fluctuations effectively. Alternatively, fluctuations of the
electron spins above 10 meV may average the susceptibili-
ties x i jop

↑↑ ~q,v! and x i jop
↑↓ ~q,v!. Sincex6 of Eq. ~4! differ

only in the spin-dependent terms6(x̄61x̄8), the averaged
transverse or longitudinal susceptibility are both equal to
(x t/21x l)/2. Notice that three times this average cross sec-
tion 3sav differs from the total cross sections5s t1s l ex-
pected if the spin fluctuations are isotropic. Only at very high
frequencies above 3.5TN

! does 3sav→s.
Our results for the average cross section agree well with

the recent high-frequency measurements of Endohet al.7

The observed peak in the satellite intensities between 15 and
20 meV is slightly lower than our estimate for the wavon
frequency of 0.28TN

! '23 meV. As the temperature in-
creases, we predict that the wavon frequency should decrease
and vanish asT→TN .

Very recently, Fukudaet al.8 observed that theq50 in-
tensity reaches a broad maximum centered at about 60 meV.
This observation agrees with the predicted longitudinal peak
in Fig. 13 at 0.74TN

! '59 meV, where the dampedl1 exci-
tations intersectq50. Although this peak will broaden with
increasing temperature, the peak frequency should change
very little in the range 0,T/TN,0.7, where the phason
mode velocity is relatively constant. At higher temperatures,
cph increases, and the phason peak moves to higher frequen-
cies, as suggested by Figs. 7 and 8. But as the peak width
continues to grow, the phason eventually disappears from the
averaged cross section. It may also be possible to observe the
secondary transverse peak at 1.3TN

! '104 meV.
With V doping, the phason velocitycph of CrV alloys

increases, and thel1 excitations intersectq50 at a higher
energy. So at low temperatures, the 60-meV peak in theG/2
cross section should move to higher energies. As indicated
by Fig. 12, the wavon peak in the satellite cross section of
pure Cr should move downward with V doping.

Other predictions of our model may also be borne out by
experiments. Above 10 meV but below 0.75TN

! '60 meV, it
may be possible to distinguish the SW modes from the

7266 54R. S. FISHMAN AND S. H. LIU



nearby l1 excitation. The separation between these excita-
tions should increase with frequency. However, as indicated
by Figs. 5 and 8, the strength of thel1 excitation may be
large enough to observe only very close toq50. The l3
excitation may be sufficiently separated from the third har-
monic to be observable at low frequencies. As the tempera-
ture increases, this excitation should move towards higher
wave vectors and eventually merge with the third harmonic.
Low-frequency measurements in the LSDW phase may be
able to observe the predicted variation of the phason mode
velocity with temperature and doping. Unlike the SW modes,
the damping energy of the phasons should increase with fre-
quency.

Even the most basic theory for the spin dynamics of Cr
alloys produces a rich spectrum of collective modes and ex-
citations. Previous experimental work on the dynamics of Cr
alloys was undertaken with very little theoretical guidance.
Hopefully, our work will help in the design of future experi-
ments and the development of more refined models.
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APPENDIX

Our results for theI susceptibilities are summarized in
this appendix. Solving the set of four coupled equations in
Eqs.~6a!–~6d!, we find

x152
1

U
2

1

U2

CĀ2B2

AĀ2B2
. ~A1!

x̄8

52
A~2x2

~0!8x̄6
~0!1x3

~0!x5
~0!!1B~2x2

~0!8x̄5
~0!1x3

~0!x6
~0!!

AĀ2B2 ,

~A2!

where we define the convergent susceptibilities

x1
~0!8~q,v!5x1

~0!~q,v!2
1

U
, ~A3a!

x2
~0!8~q,v!5x2

~0!~q,v!2
1

U
, ~A3b!

and the factors

A5x1
~0!8C1U2$2x2

~0!8x̄6
~0!22x̄2

~0!8x5
~0!212x3

~0!x5
~0!x̄6

~0!%,
~A4a!

B52x4
~0!C2U2$2x2

~0!8x̄5
~0!x̄6

~0!2x̄2
~0!8x5

~0!x6
~0!

1x3
~0!~x5

~0!x̄5
~0!1x6

~0!x̄6
~0!!, ~A4b!

C52U2~x2
~0!8x̄2

~0!81x3
~0!2!. ~A4c!

Notice that B̄5B and C̄5C but ĀÞA. The relationships
for x̄2 and x̄6 are obtained with the map 1↔2̄, 3↔4, 5↔7̄,
and 6↔8. As discussed in paper I,x7

~0!~q,v!5x5
~0!~q,v! and

x8
~0!~q,v!5x6

~0!~q,v!. Also recall thatx̄ i
(0)5x i

(0)~2q,v!.
So finally putting it all together, we find
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where
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Notice that the longitudinal and transverse susceptibilities
differ only in the signs ofx5

~0! and x6
~0! . Since Im~1/U!50,

the constant terms in Eqs.~A6! do not contribute to the cross
sections.
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