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The spin dynamics of chromium alloys are produced by the fluctuations about a spin-densit{SRaVe
consisting of bound electron-hole pairs. While commensui@ea(loys have a single SDW with wave vector
G/2=2m/a, incommensuratel§ alloys have two SDW'’s with wave vectors on either side@®. Spin
fluctuations with frequencw and wave vectog correspond to possible quasiparticle transitions between the
two (C) or three () bands of hybridized electron and hole energies with energy charged momentum
changeq. This paper develops the random-phase approximation for the spin dynamics & bathl alloys.

The collective excitations df alloys consist of a transverse spin-wa@W\) mode with linear dispersion and

a longitudinal amplitude mode. Incoherent spin fluctuations lie above the amplitude mode frequency and below
the SW frequency. While the SW mode involves the rigid rotation of the local magnetic moments, the
amplitude mode involves the oscillation of the SDW amplitude, which decays in time according to a power
law. [S0163-182606)06834-9

[. INTRODUCTION U >0 between the electrons and holes produces a SDW con-
sisting of bound electron-hole pairs in a spin-triplet state

The magnetic and metallic properties of transition-metalwith order parameteg. In order to minimize the nesting free
antiferromagnets are intimately related. It is well-kndwn energy on both sides of the Fermi surfatete actual wave
that the spin-density wavésDW) in Cr andy-Mn alloys is ~ vectorsQ’. =2m(1+4")/a of the SDW are closer t&/2
produced by the nearly perfect nesting of electron and hol¢han the nesting wave vecto@. .

Fermi surfaces. Unlike the local magnetic moments of rare- Three domains for the SDW wave vect@$ correspond
earth antiferromagnets, the SDW of itinerant antiferromag+to the possible directions of the nesting wave vecrs A
nets consists of bound electron-hole pairs. Depending on inrsingle domain of the ISDW can be selected by coolind an
purity levels, the periodicity of the SDW in Cr may be either alloy below the Nel temperature in a magnetic fiettialong
commensurate) or incommensuratel { with the bcc lat-
tice. While the CSDW state has a single wave vecd?
=2mw/a, the ISDW state superimposes two SDW'’s with
wave vectors on either side @&/2. Although neutron scat-
tering has provided a wealth of datd’ on the dynamical
properties of Cr alloys, theoretical work has lagged behind.
Previous studigd~*3of the C spin dynamics were restricted
to either zero temperature or perfect nesting. This paper de-
velops the random-phase approximati®PA) for the spin
dynamics of itinerant antiferromagnets, and then applies that
formalism to the dynamics of a CSDW state. We describe
the spin dynamics o€ alloys for arbitrary values of doping
and temperature. In the following pap&tpaper 1), we ap-

ply the RPA to the spin dynamics ofCr alloys.

Chromium alloys are prone to the formation of a SDW
because of the nearly identical size and octahedral shape of
the electrona and holeb Fermi surfacescentered at thé
andH points in reciprocal space. The wave vectors which
nest these Fermi surfaces in Fig. 1 &@e =27(1=*4)/a,
whered measures the size difference between the Fermi sur-
faces. For pure Crg~0.05, so the hole surface is only
slightly larger than the electron surface. The other structures
in Fig. 1 form the “electron reservoir,” which is discussed in  FIG. 1. The hole and electron Fermi surfaces with nesting wave
paper Il. vectorsQ.-. . Also drawn are other bands which form the “electron

Below the Nel temperaturely, the Coulomb attraction reservoir.”
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one of the crystal axes. The SDW wave vectors will then bevhich are associated with the rotational symmetry of @he
aligned parallel toH. In this paper, we choose the SDW free energy about the spin polarization directianWe will
wave vectors to lie along the direction. show that SW’s have a linear dispersien=cq, with a
The “canonical” free energyF of Cr alloys is con- mode velocityc=uvg/v3 which is independent of both tem-
structed by integrating the self-consistent equation for théerature and wave-vector mismaieh
SDW order parameteg. The SDW wave vectors are then  Because the SDW consists of bound electron-hole pairs,
obtained by minimizin® F with respect tay'. For| alloys, the SW modes in an itinerant antiferromagnet may be quite
' lies between 0 and. In theC phase, the size mismateh  different than the rigidly rotating spins in a Heisenberg anti-
between the electron and hole Fermi surfaces is sufficientiferromagnet. Nontheless, SW's in itinerant and local-
small that the free energy is minimized whef=0 and Moment antiferromagnets bear many striking similarities.
Q. =G/2. The “canonical” free energy neglects higher har- For example, the susceptibility of SW's about a CSDW has
monics of the SDW, such as the charge-density Whve Precisely the same functional form as in a Heisenberg anti-
(CDW) with wave vectors @, . ferromagnet. Since the nonrigid rotation of the spins within a
Experimentally, can be controlled through doping: while CSPW would cost a nonzero pair-breaking energy, SW's in
alloying with Mn or Fe raises the chemical potentiaand & CSDW state must also correspond to the rigid rotation of
decreases the mismatch, alloying with V lowersand in- (e spin at every lattice site. _ _ _
creasesd. For Cr,_ Mn, alloys, the triple poirlt lies at Alo_ng|tud|qal mode with frequency, is a_ssomated with
x~0.003: for Ci_,Fe, alloys, it falls at the higher value of collective oscillations of the CSDW amplitude above the
. . —X ) . . .
x~0.02. Whereas the & temperature increases asde- Pair-breaking energy £=2v2g. At q=0, the amplitude
creases and the nesting improvg,decreases asincreases M0de frequencyo;(q) has a minimum of 2. For any wave
and the nesting worsens. In CrV, alloys, the Nel tem- vector, the amplitude mode frequency is always larger than
perature vanishes wharexceeds 0.04. Regardless of dopingth® SW mode frequency(q), so the two modes never
levels, however, electron scatteriigny phonons and impu- /0SS But unlike the SW mode, the amplitude mode is not

. . . 8 . g wgs
rities always suppresses both the order parameter and tgsociated with & function'® in the susceptibility. Conse-
Néel temperature. quently, oscillations of the CSDW amplitude decay accord-

Unlike the local moments of a rare-earth antiferromagnetiNd {0 & power law. -
which are fixed in magnitude by the spin quantization con- At frequencies above(q) or beloww(q), quasiparticle
dition S?=7%2s(s+ 1), the magnetic moments of a transition- transitions produce an incoherent background of spin excita-

metal antiferromagnet can fluctuate in magnitude with thdions: Betweeno,(q) andw(q), quasiparticle transitions are

formation and separation of electron-hole pairs. ConseProhibited, so the neutron-scattering cross section must van-

quently, the spin dynamics of an itinerant antiferromagnet idSh- Since A(0)~280 meV, most experiments are performed

much more complex than for a local-moment system. Be&t frequencies far below the pair-breaking threshold

sides conventional spin-wavéSW) modes, in which the 22(T)<®(0). In this regime, SW modes dominate the in-
magnetic moments rotate rigidly, the excitation spectrum

also contains amplitude modes, in which the magnitudes of
the magnetic moments oscillate about their equilibrium val-

ues.

The spin dynamics of transition-metal antiferromagnets
like Cr are driven by quasiparticle transitions. Spin excita-
tions with frequencyw and wave vectop=q+ G/2 about a
static SDW with wave vectoQ’'=w+ G/2 are associated
with quasiparticle transitions with energy differeneeand
momentum differencg—w. So the collective modes depend
very sensitively on the quasiparticle energies.

The simplest model for the quasiparticle energiesl of
alloys is the two-band model first introduced by Fedders and
Martin.}! Since it assumes that each ISDW is generated in-
dependently, this model does not allow quasiparticle transi-
tions between the two ISDW states with momefta. A
more realistic three-band model for the quasiparticle energies
was later developed by Young and Sokoltffwithin the
three-band model, the nesting on one side of the Fermi sur-
face is directly aﬁeqted _by the m_ls_match on the other side. FIG. 2. (a8) The unshifted and shifted paramagnetic energies
Consequently, quasiparticle transitions are allowed from ONBiotted vsz=ve(R-k—ke). The region near the Fermi energy is
ISDW state to the other, and the dynamics about one ISDVfhagnified for the(b) C and(c) I (k,>0) phases, with the paramag-
is intimately coupled with the dynamics about the other.  petic energies given by the dashed lines and the hybridized energies

In the C phase, the dynamics of the two- and three-bandhejow the Nel temperature given by the solid curves. g0,
models are identical. But due to its complexity, t8edy-  the b+ and b— labels in(c) would be switched. The chemical
namics has only been previously solv&d®in the limits of  potential is denoted by a horizontal dashed line in all three plots.
zero temperature or perfect nesting with0. The sole Gold-  SpecialC transitions discussed in the text are represented by filled
stone modes of a CSDW are the transverse SW modeand empty circles.
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coherent background and, the dynamical response can leherezy=(vg/v3)4mdla is the energy mismatch between
simply approximated by Eq40) for the cross section of the the electron and hole Fermi surfaces atwzyd'/26=0. In
SW modes. Only at high frequencies, or close enough to ththe | phase with«>0, theb+ surface is better nested for
Neel temperature thab>2A(T), does the incoherent back- k,>0, and theb— surface is better nested fky<0. In theC
ground become important. phase withk=0, the nested Fermi surfaces are concentric

The formalism developed in this paper for tle spin  and the two hole energieg.. (k)=e¢,(k) are identical. So the
dynamics can also be applied #Mn alloys!® Due to the nesting on both sides of the hole surface is equivalent.
very small mismatchy between its electron and hole Fermi  The paramagnetic energies are plotted versus the
surfaces, a-Mn alloy is always in a CSDW state. Unlike the dashed lines of Figs.(B) and Zc). Lying an energyzy/4
linear SW dispersion o€ Cr alloys, however, the SW dis- below the geometric center of both plots, the chemical po-
persion ofy-Mn alloys has a gap @j=0. As discussed in the tential is denoted by a dashed vertical line. In each plot, the
conclusion, this energy gap may be induced by the strongrigin (z,e)=(0,0) lies at the intersection of the chemical
coupling between a CDW and the tetragonal lattice~®fin. potential with the electron energy .

Our motivation in studying th&€ spin dynamics is two- To simplify our calculations, we assume that the wave
fold. First, theC dynamics is interesting in its own right, and vectorq of the spin fluctuations is parallel to the wave vec-
we are hopeful that many of our predictions will be verified tors Q. = Q. z of the SDW. Ifq is small compared with,
by future experiments. Second, the CSDW state of Cr anthen fluctuations remain close to an octahedral face of the
y-Mn alloys provide the simplest example of itinerant anti- Fermi surface and
ferromagnetism in three dimensions. Due to the simplicity of
the C quasiparticle energies, the RPA susceptibilities can be z(k+q)=2z(k)+ven-q=2z(k)+ & sgnk,), (4)
solved analytically and numerical uncertainties are mini-
mized. Paper Il will use many of the insights gained in thiswhereé=v¢|q|sgn(@,)/v3. The factor of/3 from |n-z|=1A3
work to elucidate the more compléxdynamics, which can eventually appears in the SW mode velodty v /v3. With

only be solved numerically. the assumptioq<kg<<2m/a, our results are only valid near
This paper is divided into five main sections. Section Ilthe magnetic satellites. But the observed spin excitations also

describes the basic methodology used in bothGhand | lie close to the magnetic satellites.

regimes. In Sec. Ill, we apply this formalism to tGephase. In the Heisenberg representation, the second-quantized

Section IV describes our results for tli@ spin dynamics. operators are
Finally, Sec. V contains a discussion and conclusion. Most

of the f.ormalism and d(_arivations are relegate_d to thg five P(k,7)=e " "#N=Hhp, g7(kN=H) (5)
appendixes referenced in the text. Thalynamics is dis-
cussed in paper Il where
akT
Il. BASIC METHODOLOGY ay,
The spin dynamics of an itinerant antiferromagnet are b(k?
driven by quasiparticle transitions. So the quasiparticle ener- V= b, (6)
gies have a profound influence on the dynamics. Following b(+)
Young and Sokoloff® we introduce the shifted paramag- '(‘1)
netic hole energies by
ep+ (K)=ep(k—QL), (1) is a six-dimensional vector in band and spin space. While

a, and a,, create and destroy electroris;’ and b}(*)
create and destroy holes on the- bands.
The Matsubara Green's function of Cr is a six-

which are plotted in Fig. @). Near the Fermi energy, the
unshifted and linearized electron energy is given by

e.(K)=2(k), ) dimensional matrix in band and spin space defined by
where z(k)=vg(k-n—kg) is measured from an octahedral ) B -
face of the Fermi surface with normal The shifted and G(k,iv)= o dr G(k,7)e™”, @)
linearized hole energies are
z G(k,1)=—~(T¥(k,)¥'(k0), ®)
v+ (K)= 5~ sgrtk) —2(K), (3a)

wherey;=(21+1)#T are the fermion Matsubara frequen-
_% B cies. Neglecting the CDW, the six-dimensional inverse
€o-(K)= 5 +rsgrtky) —2(k), @Y Green's function is

[iv—e(k)]l -—gé?-mg —gémg
G Lkin)=| —ge'* me [in-—e- (K]l 0 : 9
—ge ' m-g 0 [iv— e+ (k)]1
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wherem is the polarization direction of the SDW amlare the Pauli matrices in spin space. The order pararg€®ris real,
and theab=* matrix elements are assigned arbitrary phages If the CDW was included, then the+ b+ matrix elements
would be proportional to the CDW order parameéfer.

Inverting the inverse Green'’s function of E@) yields

) 1
G(k'lv'):D(Tim)

Uivi—epy (k)]

X[iV|_€b,(k)] m'm67i¢_[iV|_€b+(k)] r.’h'O-geiiqs-*—[iV|_6b*(k)]

Ylivi—ea(k)] 20i(ds—b_)
X[ 11— vy (K)]- 7} 10%

m-oge "+ [iv—e, (K)] 1g2ei(#+ =)

x| m-oge "-[iv— e, (k)] , (10

Uliv—ea(k)]
X[iv—e,—(k)]—g%

where the determinant of the inverse Green'’s function is are roughly 40% smaller than th@ gap, which may make

) ] . ) some experiments easier to perform in thehase. Infrared

D(k,iv)=[iv)—ea(K) ][V~ €+ (K) ][1v)— €p—_(K)] measurement$ have also reported indirect transition be-
2%, _ _ tween the bottom and top bands. A0, the bottom band
g2 = €pi (k) ~ e (k)] (1 again lies completely below the chemical potential. But the
Although theb* b= matrix elements were missing from the middle band intersects the chemical potential at any tempera-
inverse Green’s function, they now appear in the Green’sure. So in contrast to the pair-breaking threshold of ¢he
function of Eq.(10). Each band matrix element @&(k,iv;)  regime,l electron-hole pairs can be broken with zero energy
is proportional to a unit matrix in spin space exc€p{,- cost. The quasiparticle branches in Fi¢c)Zare numbered so
and Gy ,, which are proportional tan-g. While G,, and  that ¢,—¢,, e,—¢,., and es—¢,_, as g—0. Notice that
Gp.p are the diagonal or “normal” Green'’s functions in de;/dz=0 while de, dz<0. The CDW in thd phasé®®is
band spaceG,,.*g and G,.,->g? correspond to the produced by the Coulomb attraction between electrons and
“anomalous” Green’s functions in a superconductor, andholes on bands 2 and 3.
vanish aboveT . The Matsubara spin susceptibilify,;(q,i w,) is defined
The hybridized energies(k) are given by the zeros of by

D(k,e). These energies are plotted in the solid lines of Figs.
2(a) and Zb) for the C and| phases, respectively. As ex-
pected, energy gaps appear wherever the paramagnetic engtz(q,i wp)
gies cross. Wheg—0, the gaps close and the paramagnetic
energies are recovered.

In the C regime, e—¢,(k) can be factored from the de- 1 B i ;
nominator D(k,e). When >0, the hole Fermi surface is =V E . dr e (T, ¥ (k+q,7)-Ag-V(k,7)
larger than the electron Fermi surface, so there are more kk

holes than electrons. Holes which are not paired to electrons )(\lIT(k”O)./_\a.\II(k’+q,O)>' (12
in the CSDW have the unperturbed energigi&). Since the
factor e—¢,(k) cancels an identical term in the numerators of
the dynamic susceptibilities, these unpaired holes are decowhere
pled from the SDW and do not affect tli& spin dynamics.
As shall be reported elsewhet&the Coulomb interactiofi
between the paired and unpaired holes may generate a first-
order PC transition.

An energy gap of 2=2v2g centeredzy/4 above the
chemical potential separates the upper and locWéands in
Fig. 2(b). At T=0, A(0)>zy/4, so that the lower band lies
completely below the chemical potential. As in a conven-
tional superconductor, the minimum energy B needed to
break apart an electron-hole pair.

Because thé paramagnetic energies cross at two points,
two identical energy gaps appear above and below the cen-
tral band in Fig. 2c). The transition across each energy gap
is not quite vertical, with the value farin the middle band
slightly smaller in magnitude than on the upper and lower FIG. 3. A graphical representation of the spin-spin correlation

bands. In agreement with infrared datethe | energy gaps function x{7"(qi w,).
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(01,02) ; _ (=o1.00) _ (01,—02)
g9 95 98 Xa(;igia(qvlwn)__)(abi[l)f; (q;'wn)__XaZibfg (diwy)
Ag=| o agg O 1
A=\ 98 98 9238/, (13 D i)
gg dp 0p Xab+b+a (Sl @n),

w,=2n=T are the boson Matsubara frequencies drigithe ~ Where x 1} p+a(di©,)=xs(0iw,). Thus, every possible
volume. The magnetic properties of Cr depend on the transsorrelation function can be related $(q,i w,) or x;(Q,i wp).
verse and longitudinal spin susceptibilitieg(q,w) and Itis also straightforward to show that the phagesof the
x(q,0), defined with respect to the spin-polarization direc-SDW cancel from the ladder diagrams for the susceptibili-
tion m. No assumptions are made about the angle between ties. So the arbitrary equilibrium phases do not affect the
and the SDW wave-vector directian As usual, the real- spin dynamics and can be taken to be zero. However, these
frequency susceptibilities are obtained from the Matsubarg@hases will be reinstated in Sec. IV in order to interpret the

susceptibilities with the substitution,— —iw+e. collective modes.
The band- and spin-dependent matrix elements Evaluated to zeroth order in the Coulomb interaction
X_(_Ulo'z)(q iw,) are defined by the Hartree-FockHF) correlation functions are
ijop !
: T : o
xfj‘glp"2><q.iwn>=$ > [“ar een(r Wl (k+a,n X (@ion)= =G 2 Gaakin)Ghly. (ktain=ioy),
' 4 72 ' ’
k! 70 (169
Xy, (K, T)W], (K0, (K +0,0). T
19 X2 @ien)==G 2 Gl (kiv)Gu(k+ain—ivy),
These band matrix elements are represented graphically in (16b)
Fig. 3, where band indicds j, o, andp can equah, b+, or T
lrjn;{riloelzlrr:g:g our notation, we also define the specific qu,o)(q,iwn)=— Vo Gglb_(k,iv,)G;;(k+q,iv|—iwn),
(1690
X1(0i @0) = Xhhpr b4 (A @n), (153
: T , o
X2( i ©0) = Xbbs aa( Qi @), sy X&(@ion) == > GLikin) G, (k+ain—iap),
, , (16d)
X3(0,i@n) = Xbl b aa( Qi @), (150
: . O (i) — 1 i ) i
Xa(0hi@n) = Xho-ps (Qi@p), 150 X5 (@iwn) ==y 2 Gap:(Kiv)Gap. (kHa.iv ~iawy),
: : (169
X5(0,i@n) = Xabib+a( Qi @), (158
g i T 11 - 11 i — i
X6(0i @n) = Xdbsp-a(Aiwp), (150 X (Qion)==3 & Gap. (Kiv)Gap_(k+0,iv—iwn).
. _ (16f)
X7(0i @n) = Xb) aaps (AT @p), 159 . .
! o Abraab " Since the Green’s function§ ;Eingla(, are symmetric,
Xe(@i00) = XD aap_ (Gl @p). ash X @io)=x(@iw,) and x§ (i w,)=xe (0, w,). Using

the symmetry between the+ energies in Eqg3), it is easy
Correlation functions with b+ —b¥* are defined by to show that
Xi(0,iwy). For examplex(0,i wn)=xsho-b—(Qi ). —0), ) _

Within the RPA, each susceptibility is approximated by a Xi~ (Qiwn)=x;"(—0,iwp). 17)
series of ladder diagrams with continuous strings of Green'gy,y, , O q i and v9(qi are nonzero above
functions forming the two sides of the ladder, and the Cou- A)\/ft)é% [(aci;rfaépgning iﬁe(ghg)lg)tic cONfiNUationo. — o-+is
lomb interactionU forming the rungs. Since the Coulomb n '

) ) ; LI . : each HF susceptibility can be expressed in real and imagi-
interaction does not flip the quasiparticle spin, the spin re;

mains unchanged along each side of the ladder. Using thréary parts as
spin symmetries of the Green’s functions, any susceptibility xO(qotie)=¢(q,0)+idd(q ). (18)
with spin variabless; and o, can be related to one of the
numerated susceptibilitieg;(q,i ,) or x;(q,iw,) with both ~ Since the imaginary susceptibilities vanish whe0, the
spins up. For example, the ladders Réglb(:—zt)w(q’i ;) must real part¢'1.(q,0).|s obtame%)by setting,=0 in Eqs.(16a)—.
contain an even number of matrix elements liRg,. and (160). The Imaginary par; (q.’w% can.be evaluated bY In-

: (0102) . : o tegrating over a spectral densftythat involves all possible
Gy ON €ach side. Sy, %, (d.1wy) Is spin independent, o, agiparticle transitions between branches 1, 2, and 3 with
and equalsy,(q.iw,). On the other hand, the ladders for momentum differencé=cq and energy difference. If a
Xé‘;ﬁfm(q,iwn) must have an odd number of matrix ele- quasiparticle transition is allowed between branchasdj,
mentsG,,+ andGy-, on each side. Then flipping either,  then the imaginary susceptibility will contain an integral of

or o, changes the sign of the susceptibility: the form
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For most collective modes, the real denomindtpcan be
|(Q-w):f dv F(v)d[z(v)—2z(v—w)—cq] linearized about the wave vectét at a fixed frequencyy’.
So ift;=a(é—¢'), the strength of the mode integrated oger
F(v) is given by
~|dg;/do]] -
v a l
T (25)

S=
|

where gj;(v)=z(v) —z(v—w), andv* satisfies the mo- al 1—g= B’

mentum conservation condition
The dispersion of a damped excitation with<0 is fixed by

z(v*)—z(v* —w)=cq. (20)  the conditiont,(¢,0')=0 and its half-width is given by
Aé=|t,/a|, which vanishes as,—0. Although the excitation
is broadened by the damping enerty<O, its integrated
weight is still given by Eq.(25) and is independent df,.
)éecauseaocdw/dg, the weight of any damped excitation or
collective mode diverges whetw/d&=0.

In Appendix A, the frequencies* and energieg; satisfying
Eq. (20) are solved analytically for both th@ andl regimes.
Finally, the frequency dependence of each real susceptibilit
is obtained from the Kramers-Kronig relation

) ) 0 d ! (i) ’w/
(1')(q,w)—qb(l')(q,O):2 f i,w (21) Ill. COMMENSURATE FORMALISM
an —n W w —w

Since theC hole energies,- (k) are identical, the two-

The zero-frequency real HF susceptibilities are derived Ny three-band models for the dynamicsoCCr alloys are
Appendix B; the imaginary HF susceptibilities are derived i”,equivalent. In order to employ the same notation for Ghe

Appendix C. Symmetry relations between the HF susceptizng| phases, however, we shall use the three-band model for
bilities are provided in Appendix D. the C dynamics. As discussed in Sec. |, the spin dynamics of

In this and the following papers, we evaluate the trans- .\ ailoys also builds on the basic formalism developed in
verse and longitudinal susceptibilitigg(d, @) and x;(q,w) i {his section.

terms of the six HF susceptibilities. The neutron-scattering Using the relations between tleb= andb+b¥+ matrix

cross sections are then given by elements of the Green’s function, we find that the transverse
a=UZN(0)(n+1)Imy,(q, @), (223 ;r;(dtlec;nmgsi'fudinal spin susceptibilities of Ed.2) each contain
o =UZN(0)(n+1)Imy,(q, ), (22b)

xt(Q, @) =4[ x1(0, @) + x2(0, @) + x3(0, @) + x4(0, @) ]
where n=1/[exp(Bw)—1] is the Boltzmann function. Be- .
causey, and y; are each proportional to W#N(0), the cross 8[x5(0, )+ xs(d @) ], (26)
sections defined above are independent of both the Coulomb _
interaction U and the single-spin density of stat&0). X1(0,0)=2[x1(Q. )+ Xx2(4, @) F x3(0, @) + Xa(q )]

Above Ty, x(9,0)=2x,(0,0) and o;=20y, so that spin + 4 x5(q,0)+ x6(q,0)]. (27

fluctuations are isotropic. . . .
When (q,) joins quasiparticle energies with the same 1he relative sign difference between the transverse and lon-

slope, such as the filled circles in Fighh2, the denominator gitTquinaI suscepﬂbilities arises from the symmetry relation
dg;;/dv of 1(q,w) vanishes, and the imaginary HF suscep-G ab+(0,0)=—G abt(q,Q}-_ . . _
tibilities diverge. This produces either a divergence or a zero, After every susceptibility is expanded in a series of ladder
in the transverse and longitudinal susceptibilities. Often &1i2grams, each subsgy,xa,xel andixz.xs.xs only couples
cusp or divergence in one susceptibility coincides with a zerd® €rms within itself:
in the other. Such quasiparticle transitions are said to be _ (0 0 0 0
enhanced Because r?earbsl transitions have very small de- x1=x1 +xVUxi x5 Uxat2x8'Uxe, (283
rivatives dg;;/dv, the most important enhanced transitions
join points with zero slope, such as the vertical transition
between the empty circles in Fig(i8.

If qis measufe)é from a SDV% wave vector, then a trans- Xe=X6 + x5 U(xatxa)+ (x2"+x§)Uxs, (289
verse or longitudinal collective mode with frequenoyand  gng
wave vectoré’ =cq’ corresponds to a pole of the cross sec-

Xa= X+ XOUxa+ XD Uxi+2x P00 x6, (28D

tion Xo= X2+ x5 Uxa+ x5 Uxs+2xs Uxs, (299
1 -1 ty — (0 (0 (0) (0)
= - X3=X3 Txz Uxstxs Uxat2xs Uxs, (29D
&)= M T, T T e P g
(23 X5= X+ XU (ot xa) + (X0 +xX)HUxs. (299
with 1,(£',0")=15(£',0')=0. Shouldt,<0 vanish faster Tnhe first set of three equations is sketched graphically in Fig.
thant,, the cross section will contain &function, 4, where the boxes represent the HF susceptibilities and the
1 circles represent the full susceptibilities. Adding EQ8a
o=m7 ——— St + - . (24) with (28b) and Eq.(29a with (29b) gives the same set of
—eg Pe four equations that would arise from a two-band mddel.
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a a a a a a a a a a b+ a
W= Y+ prEGy ¢ EEG] ¢ BIEG
b+ b+ b- b+ b+ b- b+ b+ a b+

a
b+ b+ b+

a a g a a a a a a a a b+ a
Yo = w( v G ¢ PTEG] ¢ BIEGE
b- b+ b’ b+ b- b+ b+  b- b- b+ b- a b+

FIG. 4. Graphical representa-
tion of the coupled equations for

x1(0,0), x4(0,0), andye(g,w) in C
alloys.

bt a b+ a bt a a b+ a a b+ b+ a b+ b- a
Yol = )+ BIEG ¢ EEG] ¢ EEG] + EEE
a b+ a b+ a b+ b+ a b- b+ a a b+ a a b+

Using the relations between the HF susceptibilities in Ap-The frequency dependences of the real pafts(q,w) are

pendixes B and C, we find thaks(q,0)=x(q,@) and

Xx1(0,@) + x4(0, ) = xo(0, @) + x3(0, w).
In terms of the variables

"Pt(q!w):Xl(qvw)—'_Xél(q!w)i2X5(q!w)! (30)
the transverse and longitudinal susceptibilities are

g Vv (qw) 8 8 1
X)) =81y o) - U T UT-UV (g0
(319

V. (q,0) 4 4 1
X4 =410y e U UI-UV,(qe)
(31b

If the real and imaginary parts oF.(q,w) are defined by

V. =V¥_.,+iV¥., then the results in Appendixes B and C

can be summarized as

V.o ozi—z iTN 2+ 2A%2+2A2
+1(4,0)= ;=27 TN(0)[(cq)"+ 247+ 2A7]

sgn(v)
T I
2 . 2 1/2
X|: (E_2|V|> _4A2:| f (33)

o0, 0) = = 5 NO){ Al (c0)?~ 2]+ [ 0?— (c0)?

CO) 2+ AA2— 2| £ 12
—4A%]} M
(co)~o
Zy Zy Z
X1 f U+Z)—f U+Z—w)—f(—v+z
Zy
+f _U+Z+(1) , (34)

where sgn Img;)=—sgny), f(z)=1[exp(Bz)+1] is the
Fermi function,f(x) is the step function, and

12

_®  cq[(cq’tar’-oe?
= #9

evaluated using the Kramers-Kronig relation of E8l).
Above Ty, the additional term—N(0)In(T/Ty) must be
added to Eq(32).

IV. COMMENSURATE DYNAMICS

The imaginary susceptibilitie¥ . ,(q,w) are generated by
quasiparticle transitions with frequeneyand wave vectog.

For any nonzero wave vector, quasiparticle transitions within
the lower or upper band are allowed whenr<cq. When
g=0, transitions between the lower and upper bands are only
possible above a pair-breaking energy of 2¥heng>0 is
fixed, the interband transition with the smallest frequency
connects the filled circles of Fig. (® with o
=2A%+(cq)?/4. These restrictions are enforced by the
functions in Eq.(34).

Regions with allowed quasiparticle transitions lie outside
the shaded borders of Fig. 5. Above the top border and below
the bottom border, transverse and longitudinal spin fluctua-
tions are intrinsically damped even in the absence of impu-
rity or electron-phonon scattering. Inside the shaded borders,
however, quasiparticle transitions are disallowed, the imagi-
nary HF susceptibilities are zero, and the neutron-scattering
cross sections must vanish.

From Egs.(318 and (31b), the transverse and longitudi-
nal mode frequencies are zeros of the functions

O T T T T
cq/ Ty

FIG. 5. Transverse and longitudinalmode frequencies border-
ing regions of incoherent excitations outside the hashed region for
T=0.5Ty andz,/Ty=4.
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1-UV-_(q,0)=(1-U¥-,(q,w)—iU¥-,(q,w)=0. at T=0. Finally, we have shown that the SW mode velocity
(36) is independent of both temperature and mismatch energy.
Whereas SW's in a transition-metal ferromadriéke Ni are
ydamped at very low frequencies by the excitation of electron-
hole pairs, SW’s in a transition-metal antiferromagnet are

As proven in Appendix E, these conditions have the ver
simple solutions

w=cq, (37) undamped at any frequency within the RPA.
However, our results disagree with Sato and M&kiho
w,=2JAZ+ (cq)%4, (39) included explicit damping terms in a two-band model near

the Neel temperature. Although their expressions for the

which coincide with the borders of the quasiparticle con-pmatsubara susceptibilitie¥ . (q,i w,) are identical to ours,
tinuum in Fig. 5. Because thie= hole energies have been their solutions for the CSW modes are quite different. Sato
translated by momentur@’'=(G/2)z, q is measured from and Maki find that the SW velocity vanishes s> Ty, or as
the CSDW wave vectorG/2)z. Hencg the crystal momen- z, approaches the triple point.
tum corresponding tq is p=q+(G/2)z. Whereas the trans-  Several workerS~2" have studied the spin dynamics of
verse mode frequency is independent of the temperature anghth CSDW and ISDW states using phenomenological ex-
energy mismatch, the longitudinal mode frequency dependgansions of the free energy in powers of the magnetization
on both T and z, through the energy gaj\=v2g. As  nearT,. The local-spin operatd®(R) then obeys the canoni-
T—Ty, A—0 andw;— w,. So aboveTy, incoherent quasi- cal spin commutation rules. All such phenomenological
particle transitions are allowed at all frequencies and wavenodels predict that the SW velocity is proportional to the
vectors. SDW order parametgy and vanishes a§— Ty . However,

The collective modes in th€ phase can be associated sych phenomenological expansions have no justification for
with fluctuations of the CSDW. Starting with the inverse jtinerant antiferromagnets. In particular, there is no reason to
Green's function of Eq(9) with arbitrary phasesp., the  expect that the spils(R) obeys the commutation rules for

equilibrium spin at lattice sit&® can be written Heisenberg spins.
A , , Because the magnetic moments of an itinerant antiferro-
So(R)=asgm{cosQ"-R+ ¢,)+codQ"- R+ )} magnet are not fixed in magnitude, there has been some
=2agm(—1)%Re/acosh, cOHI2, (399  questiori® whether the SW modes in Cr are similar to the
i SW modes in a local-moment antiferromagnet. However, the
whereg,,=(¢, +¢_)/2 is the average phase afid ¢, —b_  flyctuation of the magnetic moment at any lattice site costs

is the phase difference. The constant of proportionality is;p, energy of at least’2 So low-frequency SW's can exist
as=—2hV/UN, whereU>0 is the Coulomb interaction and onjy if each spinS(R) rotates rigidly about its equilibrium

N is the number of atoms. Of course, the actual spin dens't}’)osition Sy(R). Form-factor measurements by Sinagal®

has the same spatial distribution as thband electrons. But confirm that the magnetic moments of Cr do not fluctuate in
due to the rather localized orbitals of those electrons, Edmagnitude at frequencies below about 17 meV.

(39) is a good approximation. The cross section of the SW modes about a CSDW state

Although the amplitudersg of each SDW is fixed by the s given analytically by the remarkably simple result
thermodynamic free energy, the phages are not. Whereas

the average phas#,, remains undetermined in either te 167A?
or | phases, the phase differengéén the C phase is fixed at sl @)=(n+1)
m/2+n (n any integer by charge conservatidfi.It seems
likely that spin-orbit coupling will further act to maximize Wwhich has precisely the same foftras for a local-moment
the spin on every lattice site, thereby fixifupsp,|=1. Then  antiferromagnet. So the dynamical susceptibilities of the SW
the magnitude of the spin would be given k2a.g. modes in itinerant and local-moment antiferromagnets are
While the transverse modes of E€R7) correspond to Virtually identical. Integrating this cross section ovgrcq,
fluctuations in the polarization directiam, the longitudinal ~ We find that the SW strength defined by E25) is
excitations of Eq(38) correspond to fluctuations in the SDW
amplitudeg|cosp,,cosd/2|. For thel phase discussed in pa-
per Il, the phase differencé remains arbitrary and fluctua-
tions in @ are responsible for a class of Goldstone mode
called phasons. But for th€ phase, fluctuations i are
equivalent to fluctuations in the SDW amplitude so phaso
modes are absent.

S(w—cq), (40

w

167A2

w .

si=(n+1) (47
SAs expecteds, vanishes at the Mg temperature. More un-
expectedly,s, depends on the mismatch energy only
r1hr0ugh the energy gap@. Notice that the normalized
strengths,/(n+1) falls off inversely with frequency. The
decrease in the SW strength~A? with temperature was
observed by Sinhat al?

Associated with the rotational symmetry of the SDW  Sincecoxvg, the SW velocity in Cr is about 50 times
about them direction, transverse SW’s are Goldstone modedarger than in a rare-earth antiferromagnet. This greatly com-
which evolve from the SDW ordering wave vector. As first plicates the measurement of the SW velocity by neutron scat-
predicted by Fedders and Martifor T=0 andz,=0, the  tering, which has a resolutidrin q space larger than the
SW mode velocity isq=vg/v3. Liu'? later extended this splitting between the SW peaks. While SW modes have been
result to perfectly nested Cr withy=0 at any temperature. clearly observed in-Mn alloys?® only one experimeriton
Walker® obtained the same SW velocity for all valueszgf ~ CrMn alloys has resolved the splitting of the central peak at

A. Spin-wave modes
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27 meV. Instead, most measurements observe the broadening
of the central peak with frequency. Fitsto the width of this
“chimney” indicate that the SW velocity is roughly 33%
smaller than the theoretical SW velocity of/v3~1500

meV A or about 2.%10 cm/s.

To explain this disagreement, ?fiproposed a “frozen
magnon” model which constrains the magnitudes of the lo-
cal magnetic momentS(R), and assumes that the spin de-
viation induced by a single SW is the same as for a conven- 104
tional antiferromagnet. This approach vyields the
renormalized SW velocityy2UN(0)c~0.55, in closer
agreement with experiments than the RPA result. Since ' S ~
SW's within the RPA also preserve the magnitude of the 10° | S
spin S(R) on each lattice site, the other assumption of the
“frozen magnon” model may renormalize the SW mode ve-
locity. As discussed below and in the conclusion to paper II,
the discrepancy between the observed and predicted SW ve- 102 "
locities can also be explained within the RPA. 0 0.1 02 03 04 05

cq/Ty

FIG. 6. The totalC cross section veq/Ty for zy=4T}, @
Fluctuations in the SDW amplitudg are caused by the =0.05Ty, andT/Ty=0.974(solid), 0.9 (long dash, 0.6 (medium
separation and formation of electron-hole pairs. §80  dash, or 0.4(short dash The SWé function is denoted by ak.
fluctuations with the same periodicity as the CSDW cost
pair-breaking energy £ Amplitude modes in an itinerant the wave vectog= {(w)=Jw’—4AZ. As ¢, ¥, ,(q,0)
antiferromagnet were first predicted within the Hubbardygnishes much more slowly than the real part
model by Sokoloff® whose result differs slightly from Eq. 1-UW 4 (qyw)xU(é—0). As é-¢F, 1-UW, ,(q,w) is pro-
(38) but agrees in they=0 limit. To order g2 our result portional toU (é—¢)* with a<1. So on either side @f={(«),
agrees with PsaltakiS,who used a one-band model for per- the pole in the longitudinal susceptibility is not associated
fectly nested Cr aT=0. For smallq, Eq.(38) also coincides  \yith a § function?® Unlike the SW function, the weight of
with the amplitude mode frequency of a conventionalihe amplitude mode is completely contained within the inco-
superconduct_o?z. _ _ herent background. Moreover, the absence of a longitudinal
~ As shown in Fig. 5, the amplitude and SW modes/er 5 fynction implies that oscillations of the CSDW amplitude
intersect and become nearly parallel for large wave vectorsgecay with time according to a power law, as predicted by

Since the lower boundary of the particle-hole continuum co+/glkov and Kogas?® for the q=0 amplitude oscillations of a
incides with the mode frequenay , the longitudinal mode is  gyperconductor.

undamped at any wave vector. By contrast, the longitudinal
amplitude mode of a superconductor is immediately
damped? as it enters the quasiparticle continuum aboye 2
for any nonzero wavevector As defined by Eqs(22), the transverse and longitudinal

After expanding the imaginary susceptibility for small ~ cross sections are independent of both the Coulomb interac-
Psaltakis! concluded that the damping energy of the ampli-tion U and the density of stateé(0). In the C phase, trans-
tude mode is proportional 1@ g|. We have reproduced Psal- verse and longitudinal spin fluctuations cannot be distin-
takis’ result by first settingg=0 in the imaginary suscepti- guished. So in Figs. 6 and 7, we plot the total cross section
bility ¥, ,(q,0) and only then settingp=w,(q). However, o=o+ g, versus wave vector fa,=4T y andw/T §=0.05
this procedure neglects the expligitdependence of the lon- or 2.0. HereT ;~80 meV is the fictitious Nel temperaturé
gitudinal susceptibility. of a perfectly nested alloy witl#=0. It is defined by Eq.

A zero of the denominatot,+it,x1-U¥_(q,w) at (B12) in terms of the energy cutof§; and the Coulomb
wave vectoré =cq’ and fixed frequencyw is associated interactionU. The zero-temperature energy gap in i@e
with a & function in the susceptibility, provided that the real phase is then given by the BCS resii0)=1.764T §. The
partt;«1—-UW_,(gq,w) vanishes linearly asJ((é—¢'), and  &function contribution of each SW &t=w is denoted by an
that the imaginary part,«—UW -,(q,w) is much smaller X in these two figures.
than t; near ¢. Due to the Fermi functions in Eq34), Sincew is smaller than the pair-breaking thresholiZ)
¥ _,(q,w) vanishes exponentially fast §s-w"; due to thed  in Fig. 6, no excitations are possible fg<w. Just above
functions, ¥_,(q,w) is infinitesimally small ast—w™. On  é=w, longitudinal fluctuations vanish and transverse fluctua-
either side of¢é=w, 1-UV¥ _,(q,0) is proportional toU(¢  tions dominate. Whew>2A(T), the cross section contains
—w). So the zero of the transverse denominator at the SWontributions from botl#¥<{(w) and £&>w. The pair-breaking
frequencyw, is indeed associated with &function in the regime below( appears in Fig. 7 foif/Ty=0.9 or 0.975.
transverse susceptibility. Longitudinal fluctuations dominate just below the pair-

For the longitudinal amplitude mode af(q), this is not  breaking edge a§=¢. In fact, all the weight of the amplitude
the case. Whemw is fixed, the longitudinal mode appears at mode is contained in the divergence gfbelow {(w).
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B. Amplitude modes

C. Cross sections and incoherent background
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FIG. 7. Same as Fig. 6, but wih= 2Ty, . FIG. 9. The relative SW strengt/I; vs T/Ty for the same

parameters as Fig. 8.

The integrated weight of the incoherent background is ) o )
defined by Due to the divergence of the longitudinal cross section below

&={(w), the background increases discontinuously at the
% pair-breaking threshold. As the energy mismaitgh de-
Ii(w):f d¢ oi(¢0), (42)  creases, the minimum in the nesting free energy becomes
o deeper, and incoherent fluctuations are suppressed. Conse-

where o:(£,0) excludes thes-function contributions of the guently, the integrated background is smaller Zg+0 than
SW modes. In Fig. 8, we plot the integrated backgrotnd for Zo=4T{. But atTy, the integrated paramagnetic back-
versusT/ Ty, for »/T §,=3. Since it is produced by thermally- ground is relatively independent aj. .
excited quasiparticle transitions, the incoherent background While the incoherent background increases with tempera-
vanishes al =0 and grows monotonically with temperature. ture, the relative SW strengt/I; plotted in Fig. 9 for
At sufficiently small temperatures thah@T) >w, only intra- ~ @/T=3 decreases. AT=0, 1;=0, so the relative SW
band transitions contribute to this background. When thétrength diverges. At a temperature of )5 the strength of
temperature is large enough thaA(d)<w, quasiparticle €ach SW is still several times larger than the incoherent
transitions between the lower and upper bands are allowedbackground. For botlzy=0 andz,=4Ty, the relative SW
strengths,/I; falls below 1 when A(T) becomes smaller
than w. Only for temperatures above about T8does the
SW strength become negligible compared to the background.
Since the incoherent background peaks at a larger wave
vector than the SW function, Fig. 9 suggests that the total
cross section will peak at a higher wave vector than the SW
mode. Because the incoherent background grows with tem-
perature, the observed SW velocity will decrease as the tem-
perature increases. For temperatures above aboty, Othe
observed SW velocity may be substantially smaller than the
true mode velocityc. However, systematic measurements of
the SW velocity as a function of frequency and temperature
are needed to confirm this explanation for the discrepancy
between the observed and theoretical mode velocities. An-
other possible explanation for this discrepancy is proposed in
the conclusion to paper II.
Above Ty, the SWé functions are absent, and incoherent
. 1 | | | | | | spin fluctuations generate the paramagnetic backgr8dfid
10 05703 04 05 06 07 08 09 1.0 which was most recently reported by Fawcettal® and
T /T Noakeset al®® The paramagnetic cross section just abbye
N is much smaller than the cross section just belgyvdue to
both the rapid falloff in the SW intensities negy and to the
FIG. 8. The incoherent background; vs T/Ty for o=3T}, extra In(T/Ty) term in Eq.(32), which removes the zero-
andz, /Ty =0 (solid) or 4 (dash. frequency divergence of the susceptibility.
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FIG. 10. The incoherenC backgroundl; vs normalized fre-
guencyw/Ty, for T=0.5Ty andz,/T{ =0 (solid) or 4 (dask).
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FIG. 11. The relative SW strengty/|; vs /Ty, for the same
parameters as in Fig. 10.

Also of experimental interest are results at a fixed tem’[hrough the Boltzmann factar+1. At fixed values ofj and

perature as a function of frequency. In Fig. 10, we plot th
background cross section versus frequency TbFy=0.5.
Although the imaginary susceptibilitieg . ,(q,w) vanish as

€w, the transverse and longitudinal susceptibilitig|,») and
xi(g,0) of the C phase depend explicitly on temperature
through the Fermi functions of E¢34) and vanish a§ —0.

»—0, the cross section remains nonzero due 1o the Boltzg ;i a5 shown in Fig. 12, the normalized integrated intensity

mann factom+1=1/[1—exp(—Bw)]—T/w in EQs.(22). It is
apparent from Fig. 10, however, that the integrated back-
ground diverges more strongly than the Boltzmann factor
n+1. Due to the divergence of the transverse susceptibility
at the SDW ordering wave vector, the normalized back-
groundl;/(n+1) diverges like 1b below Ty . The incoher-
ent background initially decreases with frequency but then
increases discontinuously at=2A(T) due to the onset of
amplitude fluctuations. Beyond this point, the background
continues to increase with frequency as the amplitude fluc-
tuations grow.

Since both the integrated backgroumd and the SW
strengths, diverge at zero frequency liken(-1)/woT/w?,
the ratios,/l; approaches a finite value as-0. As shown in
Fig. 11, the relative SW strength reaches a maximum just
below the pair-breaking threshole=2A. Above this thresh-
old, the relative strength of each SW drops dramatically and
continues to decrease with increasing frequency. For all fre-
guencies, Figs. 10 and 11 indicate that the incoherent back-

ground decreases and the relative SW strength increases as ¢ 10°
p—

z, decreases and the nesting improves.

An examination of Figs. 9 and 11 reveals that the two SW
modes dominate the incoherent background at low tempera-
tures and small frequencies. More precisels;/12>1 when
w<2A(T). In practice, this means that virtually all measure-
ments onC alloys can be simply described by E¢389) and
(40) for the cross section and strength of the SW modes.
Only at very high frequencies or close enough to theINe
temperature thab>2A(T) does the incoherent background
play a significant role.

o) 1

n+1 n+1 (li+2s)

~2UN(0) | delimy(£.0)+ Imy(£,0)]

(43
1055 T T T T T T T E
i 0.01 §
ok i
—~ E 0.1 ;
T i \i
3 05 E
~ s \‘
o i
i T T A
2:\/ =
10°E 3 E
10 | | | | 1 § |
02 03 04 05 06 07 08 09 1.0
T /Ty

Recent low-frequency and low-temperature measurements
by Lorenzoet al® in thel phase indicate that the peak inten-

FIG. 12. The total intensity =1;+2s; normalized byn+1 vs

sities at the SDW satellites depend on temperature mainlemperaturel/ Ty, for several values ob/Ty, andz, /TY=4.
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6 — . . : ism to the spin dynamics of a CSDW state. Spin excitations
with frequency w and wave vectorp=q+G/2 about a
| CSDW with wave vectolG/2 are associated with quasipar-
5r \ ] ticle transitions with energy change and wave-vector
\ changeg. The relatively simple quasiparticle energies of the
4k \ 4 C phase produce a simple spectrum of collective excitations
\ which can be solved analytically using the RPA.
N Within the RPA, theC modes do not interact and are
3r N 1 undamped. Corrections beyond the RPA would damp the
N SW and amplitude modes. At nonzero temperatures, anhar-
oL ~ i monic interactions would generate finite SW lifetimes just as
~ - they do in a conventional antiferromagnet. However, because
Cr has such a large eetemperature, the effects of fluctua-
1r 1 tions on the mode spectrum are expected to be rather small.
The RPA also predicts that the SW modes evolve linearly
0 | | | ! | from each satellite up to arbitrarily high energies. But at the
2 3 4 5 6 7 8 zone centep=0, the SW’s evolving fromp==+G/2 must
CO/TN* meet with zero slope. This discrepancy can be explained by
examining the implicit assumptions of our model. As dis-
cussed in Appendix B, we assume that the fluctuation energy
cq is restricted to a range withirt ¢, of the Fermi surface.
Since the energy cuto#, is much less than the Fermi energy
e andkg<G/2, the fluctuation momentumy must be much
is relatively constant. At low temperatures and frequenciesiess thanG/2. So our model is only valid, near the magnetic
where the SW modes dominate the incoherent backgroundatellites. In this regime, the cutoéf only enters implicitly
I/(n+1)~32wA%w depends on temperature primarily through the Nel temperaturel?, defined by Eq(B12). A
through the relatively flat energy gaf(T). So, as in thd  more general model valid near the zone center would involve

phase at low temperatures, the total integrated intensity unsiot gependent quantities likeg/e,. Fortunately, the ob-
?ei ;r)]/e S‘IPhW' chlmn?%/ |/sTi1|1)_p:rgo?<|{natgtly pt[ro/[_)rort_l%ngllto served spin dynamics of Cr alloys also occurs close to the
n+1iw. The jJump in thew/ Ty =3 intensity atl/Ty=0. magnetic satellites.

occurs as the gapMT) drops beloww. For lower frequen- . .
cies, smaIIerjl?mEgogcur gt higher temperatures. | A h|gh—energy_n9utron source may pe_reqmred to test
Whereas intraband transitions produce the incoheredfi@ny of the predictions of our model within th@ phase.

background belows,, interband transitions across the en- The onset of longitudinal fluctuations g0 should be ob-
ergy gap produce the background abawe Longitudinal ~Served above the pair-breaking energy af=2v2g. At low
and transverse spin fluctuations cannot be so neatly septemperatures, 2(0)=3.52T{~280 meV is probably too
rated. For a fixed¢, transverse fluctuations dominate just large for detection. But just below the  Bletemperature, the
below w;, and longitudinal fluctuations dominate just aboveorder parameter may be small enough to make such an ex-
oy . But intraband transitions below; and interband transi- periment feasible.
tions abovew, are associated with both longitudinal and  The C formalism developed in this paper can also be
transverse spin fluctuations. Nonetheless, longitudinal ﬂucapp”ed toy-Mn alloys, which areC itinerant antiferromag-
tuations beloww, and transverse fluctuations aboweare  nets, But, unlike for Cr alloys, the SW spectrum pMn
disproportionately suppressed as the_ temperature is IoweregﬂoyS contains a gdPat zero frequency. The large tetrago-
In Fig. 13, we plot the cross sectiong/2 andoj VErsus | yistortion of the fce-Mn lattice may break the rotational

IL?SI\J/\?;\g Jggttohre gi?tidcx?s\;esgsgg’: (\)/.aﬁiss he)t()g?;vtve?héogaiﬁymmetry about the spin polarization direction and induce an
breaking energy 2. At g=0, the longitudinal mode corre- energy gap in the SW spectrum. The coupling between the

sponds to the vertical transition between the empty circles i [[))VV\\i aWnd r:he lattice mr?y be _medlatgdtr?y an a}ssouated
Fig. 2(b). As shown in Fig. 13, this enhanced quasiparticle - We hope to test this conjecture in the near future.
transition is associated with a divergence in the longitudinal

susceptibility and a zero in the transverse susceptibility.
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APPENDIX A possible when their determinant vanishes. Although the re-
sulting expression is a sixth-order polynomiabinthe sixth-
and fifth-order coefficients vanish identically. The remaining
expression is quadratic in the variable v (v — ),

In this appendix, we solve for all quasiparticle transitions
subject to the momentum-conservation condition of 24),

zi(v) = z(v—w)—£=0, (A1) ax’+bx+c=0, (A9)

where é=cq is the momentum change, aagdis the energy
difference. The quasiparticle solutiofg ,v} and{z; ,v — w}
are zeros of the determinabDi(z, €) with band indices or j. s o ) )
If z, is removed by the shift in variables—e+zy4 and a=16(0 "= &) (w+ [ (w+ & +4k7], (AL0)
z— 7+ zy/4, then the conditio® (z,€) =0 can be rewritten as

with coefficients

b=8(w+&){2(g"~ 2«")(w?~ €%) — 4g’k*(w?~5&)

(e—2)[(e+2)*—k?]=2g%(e+72). (A2)
As shown in Appendix C, the mismatch energyonly en- +Ho+ & k(0= §)(50—3&)+2¢%°¢(w—3¢)]
ters the imaginary susceptibilities through the Fermi func- 4 2
tions. _(w+§) (w_g) }1 (All)
In the C regime, the hybridized energies are given by the
simple quadratic expression c={(w+ &) (w’—&-209%) — kK (w— &)}
€-7=a% (A3) X{~4[260~ k¥ (w+ )]~ 20% w0+ §)?

where 2=2v2g is the energy gap in Fig.(B). Upon squar-
ing Eq. (A1) and using Eq(A3) to eliminatez? terms, we

find —(w0+ &) w—8)?. (A12)
uw—w?—=2z¢. (A4)

X(w?—2wé+582)+ kX (w+ €)2(5w’—6wé+5£2)

Equation(A9) guarantees that thle solutions also come in
Squaring this expression and applying E43) once more  pairs {v,w—v}.

yields Once the solutions fos are known, Eqs(A2) and (A3)
272 can be used to find the associated valueszioOnly real
V2= v (gz_wz)_ £°A =0 (A5) solutions contribute to the imaginary HF susceptibilities. For
' a given w and &, there are at most tw&€ or four | real
with the two possible solutions solutions.
2 2 2\ 1/2
1) +4A - w
vi=—t§ 3 _ (A6) APPENDIX B
22 £—w?

In this appendix, we derive the zero-frequency real parts
Due to the symmetry of the quasiparticle energies, solutiongs{(q,0) of each HF susceptibility. As shown in Appendix
are always paired withh_=w—v, . Real solutions occur C, the zero-frequency imaginary parts vanish.
when w?<& or w?>&+4A% The former condition corre- We demonstrate the procedure with the fifth HF suscepti-
sponds to transitions within the bottom or top band; the lattebility:
condition corresponds to transitions between the two bands.

As expected, thé case is considerably more complicated.

-

Cubing Eq.(A1), using Eq.(A2) to remove the® terms, and x(q,00=— v > Gl (kiv)GlL, (k+q,iv)

then applying Eq(A1) to eliminatez; produces Lk

Ziz(w+3§)+zi[w2—20(w—§)—2§w—3§2] =——N(0)2 f *;H—Z
4

.2 _ 2 2_ 3 2

=0(3w+ &) +v(—3w+E-2wé) + w+ wE D= 2of2— K 24 £
— (&4 k2+20?) — £+ £(k2—2g?). (A7) T D(zt Eim)

Multiplying by z; and again applying EqA1) yields FES—E ko —k, (B1)

{0’ v(Bw+ &) —2éw—382]

where Eq(4) is used forz(k+q), andN(0) is the single-spin

+z[—20%(w— &)+ v(3w?— £+ 2wé) — wi— w?E density of states on either the electron or hole Fermi surface
) ) 5 ) (assumed identical The first set of terms is produced by the
+ (24267 + £+ 28(k*-29%) ] k integral over the northern hemisphere witjr0; the sec-
= —v(v2— k2= 29?)(w+3¢). (A8) ond set of terms witht——¢ and k——« comes from the

integration over the southern hemisphere wkik:O.
These two relations may be viewed as simultaneous equa- To evaluate the integral, we require the imaginary roots
tions for the variablez? and z;. Nontrivial solutions are of
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D(z,iv)=(iv,—2)((iv,—20/2+ 2)%— k?) In the g—0 limit, zy,—iv,, z;——iy+2zy/2—«, and
Zq— —iv+2y/2+ k. For g>0, the roots are defined so that
sgn Im(zy)=sgn(») and sgnlmg, 5)=-—sgr(y). When
K— — K, Zy<—Zz. So after completing the contour of the

integral in the upper-half-plane fa5>0 and the lower-half-
=~ (2= z)(z=25)(2~ 23). B2 plane fory <0, we find |

—g%(2iv,— 2+ 22)

(v —2p/2— k+2z9))(1v)— 2p/2— k+ 21, + &)

(Zu—=22) (20— Za)(Zy =29+ E) (21— 25+ §)
(iV|_Zo/2_K+Zl|_§)(iV|_20/2_K+Zl|)

§(z1y—2o) (20— Za)(Zu— 22— E)(Z1 = 23— §) Sgm)+é—— &k~

x£(q,0= —wiTg?l\umEI ;

= —47TiT92N(0)2| QUO{— (229~ 25— z3)[ (i v~ Zo/2+ 29)) * + K]

+[(z11— 2a) (211~ Z31) + €21 (i v — Zo/2+ 24)}, (B3)
where
sgn(vy)
= . B4
A8 (21— 221) (21— Z3) [ (20— 220)* = E°1[ (20— 231)*— £7] B4
|
The sgiiy) in the summation overy, guarantees that © B
¥9(q,0=4%(q,0) is real. ©(0,00=—-4miTg N(O)EI Qi(é)
To simplify our results, we define the variable
i 9, =1v,—2Zy/2+ z5,. When|y| is large, n,~2v, . Three iden- X{(224)— 2o~ 23) (P + K2+ K£)
tities for the rootsz; can be obtained by expanding _
D(z+¢&,iv) in powers of£ and then comparing the coeffi- +[(zy—2z2) (20— 25) + Eim}, (B9

cients using Eq(B2):
9 EqB2) which are all real. The identity in EgB9a) follows from the

(924 k) (iv,—2z4) +2i 7,g?=0, (B5)  symmetry of theb* energies ak— —k. _ .
! Fo | Both x{%(g,0) and x¥(q,0) are formally divergent. This
Za1— Zo /(211 — Za) = 202 — 12— k62— 2i 1 (i v — Z4), divergence is removed by using the self-consistent equation
(20~ 2)(20~29) =20"— 7 — & miiny ll)(B6) for the SDW order parameter,

22y =2y~ 2y ="y tzyt+2iy. (B7) gedi=—U T > Gl (k,in)
VX A

The last identity can be also be rewritten as

_ o P77 sgn(v)
21t Zy +231=2Z5— 1y (88) :2W|gel¢rTUN(O)Z (le_ZZI)(ZlI_Z?:l)’
for the sum of the three roots. (B10)
Using these identities, our results fat’(g,0) through
x2(g,0) can be summarized as which can be rewritten as
(3) — 44 - _ ; 1 . in s
#(00)= ¢ (0= 47 TgN(O) S Q(¢) S=2mTNO)S —— o) gy
T (zZu—2z2)(21—23)

2 2 2
X2z =22~ 25) (7 + k7= £°12) In Eq. (B10), we have temporarily reinstated the phages
(29— 2o)(zy—25) + €2]im}, (B9  to demonstrate how they cancel from the self-consistent
equation. The constant Coulomb interactioncan be re-
garded as the first term in an expansionlbfk,k’) in a

#2(9,00= —4miTg?N(0) >, Q/(&) serie§’ of “kubic harmonics.” Only thel =0, m=0 constant
! term drives the SDW instability of Cr alloys.
X{(224)— 23— 23)) (72— K?) When g=0 andz,=0, the Matsubara sum in E¢B11)

can be evaluated by introducing the energy cuggfflf v, is
+[(zy—22)(z1y— 23) + £%i m}, (B9b) summed betweert ¢, then Eq.(B11) can be written as
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2y only defined within the range: ¢, of the Fermi energy. .
TX=— epe MNO), (B12)  Although undetermined within BCS theory and within our
7 model of itinerant antiferromagnetisng, is subject to the
whereTy, is the Neel temperature of perfectly nested Cr, and constraintsTy < eg<eg .
Iny~0.577 is Euler's constant. The cutoff has precisely After separating the formally-divergent contributions
the same significance as in BCS theory: quasiparticles afeom ¢{"(g,0) and ¢{?(q,0), we find

1
$17(0,0)=¢17(~0,0)= 5= 27 TN(0) 2 QN (220~ 21~ 2a)[ ~ 2 méw(ivi—2a) + 7297+ £+ k§)

+0%(E2-262) + €k (k= )]+ (20— 2) (29— 23) + E[ (297 + €2) + k(i v — 29 1}, (B13)

where the first equality follows from shifting—k—q in the  Since the divergent HF susceptibilities always appear in the
sum of Eq.(16b). combinations y{”(q,w)+ x2(q,0) and x2(q,w)+xL(0,w),
Since all physical results involve the combinationsno further relations are needed.
x2Ha,0)—1/U, the divergent parts ofi’y(q,0) never appear.
The self-consistent equation fgris equivalent to the expres- APPENDIX C
sion In this appendix, we evaluate the imaginary HF suscepti-
bilities ¢4(q,w), which are defined by analytically continu-

1 i hilitiea (0)(q i
X2(0.0+x57(0,0 = x§”(0.0 ~ x¢”(0.0 = 55 ing the su?g)eptlbllltl_es(. (?i,)lwn), o
Xi (qotie)=¢;'(q,0)+id; (q,w), (CY

. ) ) ase—0". The formalism used in this section was originally
In fact, this identity produces the poles in the transverse aneeveloped for superconductivity by Ambegaokar and

(B14)

longitudinal susceptibilities at the two SDW satellites. Tewordt? and later applied to th€ dynamics by Liut?
Specializing to theC regime, k=0 and the roots; have Each HF susceptibility may be written as a general sum
the analytic solutions over v :
0 . . . .
2= —3x+ 7, (B153 )(i(o)(q,lwn)=—TEI Pi(iv,iv—iwy;q)
%0 do do
Za=3 x+ (B15b) _ f doy [ dw,
? 4 TE| 2 2
z
zgl=—iyl+§°, (B159 a(wy,w,) 2
(w1—iv)(wy—iy+tim,)’
o [ZiAZ
X = =21 +A% sgr(n), (B16)  \ith the spectral densitg;(w,,w,) defined by

where in=iv—z/4, and X, is defined so that , =Pi(w:+i +ie)—Pi(w+i —i
sgn Im;) =—sgr(y). It follows thati »=iv,—x,/2—zy/4, (01,02) =Piloytie, wptle) =Piloy e, wp—ie)

—i sgr(v))

xm(x — &) (mi+&)’
and that the zero-frequency susceptibilities can be rewritterl?erforrnlng the sum oves then yields

—Pij(wi—ig,wytie)+Pij(wi—ie,wy—ig).
(B17) (C3)

Qi(é)=

o O )_f dij G e Vi C)
$1V(0,0)+ ¢17(0,0= ¢ (0,0 + 4 (6,0 X = ] on ) g AlOned G ey
1 (C4)
=U—27riTN(0)(2A2+§2) where f(z)=1/[exp(8z)+1] is the Fermi function. After
substitutingi w,— w+ie, we obtain
sgn(v;)
———, B18 i do
* xog-g@y e §'><q,w>=%f 5 a0~ 0)[f(w) ~f(01-0)],

: sgn(v) (CH
(5) — 4(6) - _ 2
$17(0.0=¢17(q,0)= 2 TN(0)A 2| X (xF— &))" which implies that the imaginary susceptibilities vanish
(B18b) when w=0.
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The spectral density depends on the behavior of the rootso thatdz/dw=0 anddz, ydw=0. When all the solutions
z, asivj—w+ie. To linear order ing, are realA;=ie; andA, 3= —ie, 3 Where sgfe;)=sgr(e). In
_ _ Co o _ the top energy gagg, andz; are complex and\; ; contain
Zi—zi(otie)=z(w)+4;, (C63 both real and imaginary parts. Similarly, in the lower-energy
gap,z; andz, are complex, and\; , contain both real and
(C6b  imaginary parts.
As in Appendix B, we use”(q,i w,,) to demonstrate the
The real hybridized quasiparticle energieéw) are defined procedure for finding the spectral density:

do\ ™1

Ai=le E

z=7{(w)

x0(q,i w,) GLl . (k,iv)GLl. (k+q,iv)

<I—|

I,k

Tg? (iv,—2p/2— k+2) (v —29l2— k+ 2+ &)
=—5 NO2 fd D(z,in) Dzt Eiv,) e TEKoTR €7

wherev; = v,— w,. So after completing the contour in the upper-half-plane, we find

(ipu—r)(iny —k+&+2—2q)0)
(Zy—Z2a) (20— Z23) (Zy = 2 + E(Z0 — 2o + ) (21— 25 + €)

9(q,00= —wingl\umEI { ()

(i — K=&+ 2y —29) (i 91— K)

" (Zyr = 2o ) (20 = 231 (20 = 29y = EN( 201 = Zo = §)(Z1 — 23— §) 6(n)
(ima— k)i mr—k+E+ 25— 2y) o(— )
(22— 20)(Zo1 = Z3)) (2o = 201 + E)(Zo = 2o + €) (2 — 23 + ) '
(img— k)i mgyr — k+ &+ 23— 230) 8- )

(Zg1—20)(Zg1— Za)(Zg1 — 21y + ) (23— 210 + €) (231 — Zg1 + €)
(1m0 = k= &+ 250 = 25 ) (i 92 — K) "
(2o =20y (21 — 23y ) (2o — 20— E) (21 — 2y — €) (2 — 23— €)
(img— k= &+ 231 — 23) (i 931 — K)
(Zg1r =201 )(Za) — 21 ) (Zg) — 20— €)( 231 — 2y — €) (23 — 23— &)

— )

O(—v)+é——&k——k, (C8

where §(x) =1 for x=0 and 0 otherwise. This defines the {i,j,ky={1,3,K}={1,2,3.
function Pg(iv,,iv;/) from Eq. (C2).

To perform the analytic continuation in EGC3), we use  Due to the shift in variables| , the rootsz;(w;) andz(w,)
the relationd(v,— —iw+e)=6(e). For every possible qua- are evaluated witlzy=0. When the transition between bands
siparticle transition between=z(w;) andz =z(w,) with i andl is forbidden, one or both of; andz are complex,
momentum change-¢, the spectral density contains & and theé function vanishes.
function &z,—z + ¢). Because of the sign difference be-  Although the real parts 0f?(q,w+is) andx>(q,0+ie)
tween A; and A, 5 transitions involvingz, or z; have an  are formally divergent, their spectral densities and imaginary
extra minus sign. So we find that parts are well defined. The spectral densities may be summa-

rized as follows:

3 3 -
(01, 07) =~ 2N 2 2 MMz =2+ 6 (01 0= —27NO)S S, MM, 0z -2 +8)
(0172— k) (w2~ k)
(zi—z)(z— 2)(2—-23)(21— 2)

+&—— & k— — K, (C9Y

> K(wlvzlvw21Z)
(zi—2))(zi—2)(21— 2)) (2~ Z«)

+é——& k— —k, (C10

whereM;=—1if i =1 and+1 otherwise w{ = w; +2y/4, and  where
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Ki+Ks=(w1+tz— k) (01 T2+ k) (0— 7)) (w0 + 2~ k), =ay(wy,wy) +ag(w;, ;)
B B (C113 NO) e
K2+K3:(w2+2|_K)(w2+Z|+K)(wl_zi)((l)1+zi_K), - Zzaz_a ((wl_wZ) _2 _6)
(C11b
Ka=g%wp+ 21— k)(wp+2+ k),  (C119 Xm;ﬂ m;ﬂ S(Mize+myzo+£),  (C178
=q? — :
K4 g ((l)l+Z| K)(wl+Zl+K), (Cll@ as(wi,wé)zaG(wi,wé)
Ks=g*(w1+2— k) (w+2— k). (Clie 22A%N(0)
Ke=0%(w1+Z— k) (wy+2Z + k). (C11f T 27,2,

The results fora;(w; ,w;) anday(w; ,w5) have been sim- _
plified by combining them with as(w;,w)) and X > X d(mzatmyze+§), (Cl7b

mp=*1my==*1

as(wy, 7). _
The imaginary susceptibilities of EGC5) involve inte- ~ Wherez,=2z,(w)) andz,= z,(w,).
grals of the form These spectral densities can be simplified even further
using
[ doFw)atzw)-zw-w)+ =g
1% v Zi(v _Z| V—w = Ta - a1 y o
| ldguavl],, [T (mizatmzet §=4(0~)0-v,)
(ClZ) ml:tl,mzztl
where X(v—v-), (C18
(v.0)=2(v)— —w), Cc13 whereu_i are the roots defined in E¢A6). So the sum over
9i(v.@)=2(v)=2(=w) (€13 5 functions can be performed exactly,
and v; satisfies the momentum-conservation condition
0i(vi) ,w)=—¢& Whenzy=0, dg;/dv can be evaluated us- —
ing the relation forz;(v), mlzﬂ m;ﬂ S(MyZa+ MpZa +€)
dz, v(v+2z)?—«?z _ _
dv z(v+z) 2<% (C14 =82:2¢]9 my = tll_[,mzztl (MuZa t MaZat &)
Hence the imaginary susceptibilities can be written =22,7, €| [ (02— ) (v—v ) (v—0v_)]. (C19

. T Then Eq.(A6) implies
2(a,0)=— 5 N(0)g>> M;M,
o al(w:,l_ !wi_w)+a4(w:,|_lell__w)i2a5(wjll_!wi_w)

1
X[f(wl+20/4)_f(w1_w+ZO/4)]W =—72N(0)[ 0(£%— w?) + O(w>— £2— 4A?)]
= 2+4A2—w2 +1/2
y K(wl,Zi,w_l &Zi _ ‘ X 5—52_—602—) {8(w1—v )+ 8(wy—v_)},
(Zi—Zj)(Zi_Zk)(Z|—ZJ)(Z|_ZK)‘%:U”
(C20
+&—— —
¢ Gk, (€19 which is easily transformed into the form of E@4) for the
each of which involves a sum over all possible quasiparticlémaginary HF susceptibilities.
transitions.
In the C phase, we adopt the following convention for the APPENDIX D
rootsz;(v):
This appendix summarizes the symmetry relations be-
2,(v)=24(v)=sgr(v) VA% +v?, (Cl6a tween the HF susceptibilities. The frequency dependence of
each real susceptibility is evaluated from the Kramers-
| =, v>0 Kronig relation of Eq.(21). After defining the full suscepti-
(V)= Z 2. (v), v<0, (C16b ity by
z3(v) [_Za(v)’ o (C160 X2(0,0)=¢1"(q,0)+id5)(q,0), (D1)
3\U)= _
v, v<0. and using Eqgs(C11) and (C15) for the imaginary suscepti-
The C spectral densities can then be written bilities, we find

a (], w))+as(w],w)) X2 (—a,—w)=x(q,0)*, (D2a)
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x5 (—6,0)=x5"(q,0), (D2b)
X (—g.0)=x(q,0), (D20)
C
X0~ )= x4V (q,0)*, (D2d)
Oy — )= 0 * . . . . .
X2 (4, —0)=x3 (q,0)*, (D2¢) o, -6 o o, o
Xgo)(—q,—w)zxgo)(q,w)*, (D2f) FIG. 14. The contou used to evaluate the integralin Ap-
pendix E.
X0, — )= X (q,0)*. (D29

Jo=V_4(q,|§) =¥ _1(a,0)

In the C regime, 1

o' JAAZ+ £2— w'z\/gz— w'?

=3 £N(O)R Pf do’
X (- a.0)=x(q,0) 03 2 ENOReP | do

for each correlation function. X{f(v) +2o/4) + (w0 —v' +25/4)}, (E3)

wherev', =v ,(w’). This integral is evaluated on the con-

tour C drawn in Fig. 14. Since the residues at the poles on

the real axis all vanish, only the poles in the upper-half-plane
APPENDIX E contribute toJ_. These poles are produced by the Fermi

In this appendix, we demonstrate that the expressions functions at the points

1/2
1_U\I’1(q,(1)):0 (El) ' g 4A2+§2_w/2
B —
have solutions at the transverse and longitudinal mode fre- 2 2 ( E-w'?
quenciesw(q) ande(q). Since the imaginary transverse and ywhjch has four sets of roots given by
longitudinal susceptibilitiesV'-,(q,w) vanish atw, and o,
respectively, it remains to show that the real part of (&1) U.=in—d., (E53
is satisfied or that - -

) :iV|_?EiT|, (E4)

l)|::iT|+d1_, (E5b)
U[W=1(0 o)) = ¥=1(0,0)]
d.=\— 2+ &+ 2iénr, (E6)
=1-UV+(q,00=27iTUN(0)(2A%+ 25 2A%) wherer =ix /27, sgn In(d..)=sgn(»), andx, is defined by
sgr(v) Eq. (B16). As é&—0, u;.—0 andv,.—2i ;. Notice also that
X 2—|21 (E2)  U+(=8H=u_(H andv,(=&§=v,-(§.
T X (X = &%) Using sgn Infv,.)=sgr(y) and sgn Inu,..)=—sgn(y),
J_ can be written
where the right-hand side was evaluated using EB%5).
Now we must evaluate the left-hand side using the Kramers- *
Kronig relation. J_=2&N(0)#T Im >, (A+B_,_,), (E7)
In the transverse case, the left-hand side of (&) can 1=0
be written where the residues at. andu_,_, . are

B 2¢6m(m+iér—ido)
A (=7 —d?)(nt+igr—id_ )2+ 4£2A%(ir+d_)?

A té——&, (E83

2§T|(T|+i§r+id,)

Bf|71=47_|2(_ 72—d2)(n+iér+id_)2+482A%(ir—d_)2

+é——E&. (E8b

After some algebra, we find that the sum of residues is given by



_i Tr
T2 EE-2inr) T$+A2+§_’_§
1

A+B__;

i 1

T4 A AT E9
so that
& - 1 1
J_—E N(O)’TTTI:E_OG \/;IZ-}—_AZ 7'|2+A2+ 52/4
; sgn(v;)
=27iTN(0) &2 —_—, E10
mINOES e (E10
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which is the desired result.

The longitudinal case is very similar. In EGEJ), the
prefactorw?=£ must be replaced bw?=&+4A2 Other-
wise, J, is identical toJ_, and the steps described above
produce

J, =2mTN(0)(£2+4A2), ﬂ;%,

A (E1D)

in agreement with Eq(E2).
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