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The spin dynamics of chromium alloys are produced by the fluctuations about a spin-density wave~SDW!
consisting of bound electron-hole pairs. While commensurate (C) alloys have a single SDW with wave vector
G/252p/a, incommensurate (I ) alloys have two SDW’s with wave vectors on either side ofG/2. Spin
fluctuations with frequencyv and wave vectorq correspond to possible quasiparticle transitions between the
two (C) or three (I ) bands of hybridized electron and hole energies with energy changev and momentum
changeq. This paper develops the random-phase approximation for the spin dynamics of bothC andI alloys.
The collective excitations ofC alloys consist of a transverse spin-wave~SW! mode with linear dispersion and
a longitudinal amplitude mode. Incoherent spin fluctuations lie above the amplitude mode frequency and below
the SW frequency. While the SW mode involves the rigid rotation of the local magnetic moments, the
amplitude mode involves the oscillation of the SDW amplitude, which decays in time according to a power
law. @S0163-1829~96!06834-8#

I. INTRODUCTION

The magnetic and metallic properties of transition-metal
antiferromagnets are intimately related. It is well-known1

that the spin-density wave~SDW! in Cr andg-Mn alloys is
produced by the nearly perfect nesting of electron and hole
Fermi surfaces. Unlike the local magnetic moments of rare-
earth antiferromagnets, the SDW of itinerant antiferromag-
nets consists of bound electron-hole pairs. Depending on im-
purity levels, the periodicity of the SDW in Cr may be either
commensurate (C) or incommensurate (I ) with the bcc lat-
tice. While the CSDW state has a single wave vectorG/2
52p/a, the ISDW state superimposes two SDW’s with
wave vectors on either side ofG/2. Although neutron scat-
tering has provided a wealth of data2–10 on the dynamical
properties of Cr alloys, theoretical work has lagged behind.
Previous studies11–13of theC spin dynamics were restricted
to either zero temperature or perfect nesting. This paper de-
velops the random-phase approximation~RPA! for the spin
dynamics of itinerant antiferromagnets, and then applies that
formalism to the dynamics of a CSDW state. We describe
the spin dynamics ofC alloys for arbitrary values of doping
and temperature. In the following paper14 ~paper II!, we ap-
ply the RPA to the spin dynamics ofI Cr alloys.

Chromium alloys are prone to the formation of a SDW
because of the nearly identical size and octahedral shape of
the electrona and holeb Fermi surfaces1 centered at theG
andH points in reciprocal space. The wave vectors which
nest these Fermi surfaces in Fig. 1 areQ652p(16])/a,
where] measures the size difference between the Fermi sur-
faces. For pure Cr,]'0.05, so the hole surface is only
slightly larger than the electron surface. The other structures
in Fig. 1 form the ‘‘electron reservoir,’’ which is discussed in
paper II.

Below the Néel temperatureTN , the Coulomb attraction

U.0 between the electrons and holes produces a SDW con-
sisting of bound electron-hole pairs in a spin-triplet state
with order parameterg. In order to minimize the nesting free
energy on both sides of the Fermi surfaces,15 the actual wave
vectorsQ68 52p(16]8)/a of the SDW are closer toG/2
than the nesting wave vectorsQ6 .

Three domains for the SDW wave vectorsQ68 correspond
to the possible directions of the nesting wave vectorsQ6 . A
single domain of the ISDW can be selected by cooling anI
alloy below the Ne´el temperature in a magnetic fieldH along

FIG. 1. The hole and electron Fermi surfaces with nesting wave
vectorsQ6 . Also drawn are other bands which form the ‘‘electron
reservoir.’’
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one of the crystal axes. The SDW wave vectors will then be
aligned parallel toH. In this paper, we choose the SDW
wave vectors to lie along thez direction.

The ‘‘canonical’’ free energyF of Cr alloys is con-
structed by integrating the self-consistent equation for the
SDW order parameterg. The SDW wave vectors are then
obtained by minimizing15 F with respect to]8. For I alloys,
]8 lies between 0 and]. In theC phase, the size mismatch]
between the electron and hole Fermi surfaces is sufficiently
small that the free energy is minimized when]850 and
Q68 5G/2. The ‘‘canonical’’ free energy neglects higher har-
monics of the SDW, such as the charge-density wave16

~CDW! with wave vectors 2Q68 .
Experimentally,] can be controlled through doping: while

alloying with Mn or Fe raises the chemical potentialm and
decreases the mismatch, alloying with V lowersm and in-
creases]. For Cr12xMnx alloys, the triple point1 lies at
x'0.003: for Cr12xFex alloys, it falls at the higher value of
x'0.02. Whereas the Ne´el temperature increases as] de-
creases and the nesting improves,TN decreases as] increases
and the nesting worsens. In Cr12xVx alloys, the Ne´el tem-
perature vanishes whenx exceeds 0.04. Regardless of doping
levels, however, electron scattering15 by phonons and impu-
rities always suppresses both the order parameter and the
Néel temperature.

Unlike the local moments of a rare-earth antiferromagnet,
which are fixed in magnitude by the spin quantization con-
dition S25\2s(s11), the magnetic moments of a transition-
metal antiferromagnet can fluctuate in magnitude with the
formation and separation of electron-hole pairs. Conse-
quently, the spin dynamics of an itinerant antiferromagnet is
much more complex than for a local-moment system. Be-
sides conventional spin-wave~SW! modes, in which the
magnetic moments rotate rigidly, the excitation spectrum
also contains amplitude modes, in which the magnitudes of
the magnetic moments oscillate about their equilibrium val-
ues.

The spin dynamics of transition-metal antiferromagnets
like Cr are driven by quasiparticle transitions. Spin excita-
tions with frequencyv and wave vectorp5q1G/2 about a
static SDW with wave vectorQ85w1G/2 are associated
with quasiparticle transitions with energy differencev and
momentum differenceq2w. So the collective modes depend
very sensitively on the quasiparticle energies.

The simplest model for the quasiparticle energies ofI
alloys is the two-band model first introduced by Fedders and
Martin.11 Since it assumes that each ISDW is generated in-
dependently, this model does not allow quasiparticle transi-
tions between the two ISDW states with momentaQ68 . A
more realistic three-band model for the quasiparticle energies
was later developed by Young and Sokoloff.16 Within the
three-band model, the nesting on one side of the Fermi sur-
face is directly affected by the mismatch on the other side.
Consequently, quasiparticle transitions are allowed from one
ISDW state to the other, and the dynamics about one ISDW
is intimately coupled with the dynamics about the other.

In theC phase, the dynamics of the two- and three-band
models are identical. But due to its complexity, theC dy-
namics has only been previously solved11–13 in the limits of
zero temperature or perfect nesting with]50. The sole Gold-
stone modes of a CSDW are the transverse SW modes,

which are associated with the rotational symmetry of theC
free energy about the spin polarization directionm̂. We will
show that SW’s have a linear dispersionv t5cq, with a
mode velocityc5vF/) which is independent of both tem-
perature and wave-vector mismatch].

Because the SDW consists of bound electron-hole pairs,
the SW modes in an itinerant antiferromagnet may be quite
different than the rigidly rotating spins in a Heisenberg anti-
ferromagnet. Nontheless, SW’s in itinerant and local-
moment antiferromagnets bear many striking similarities.
For example, the susceptibility of SW’s about a CSDW has
precisely the same functional form as in a Heisenberg anti-
ferromagnet. Since the nonrigid rotation of the spins within a
CSDW would cost a nonzero pair-breaking energy, SW’s in
a CSDW state must also correspond to the rigid rotation of
the spin at every lattice site.

A longitudinal mode with frequencyvl is associated with
collective oscillations of the CSDW amplitude above the
pair-breaking energy 2D52&g. At q50, the amplitude
mode frequencyv l(q) has a minimum of 2D. For any wave
vector, the amplitude mode frequency is always larger than
the SW mode frequencyv t(q), so the two modes never
cross. But unlike the SW mode, the amplitude mode is not
associated with ad function18 in the susceptibility. Conse-
quently, oscillations of the CSDW amplitude decay accord-
ing to a power law.

At frequencies abovev l(q) or belowv t(q), quasiparticle
transitions produce an incoherent background of spin excita-
tions. Betweenv t(q) andv l(q), quasiparticle transitions are
prohibited, so the neutron-scattering cross section must van-
ish. Since 2D~0!'280 meV, most experiments are performed
at frequencies far below the pair-breaking threshold
2D(T)<v l(q). In this regime, SW modes dominate the in-

FIG. 2. ~a! The unshifted and shifted paramagnetic energies
plotted vsz5vF~n̂•k2kF!. The region near the Fermi energy is
magnified for the~b! C and~c! I ~kz.0! phases, with the paramag-
netic energies given by the dashed lines and the hybridized energies
below the Ne´el temperature given by the solid curves. Forkz,0,
the b1 and b2 labels in ~c! would be switched. The chemical
potential is denoted by a horizontal dashed line in all three plots.
SpecialC transitions discussed in the text are represented by filled
and empty circles.
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coherent background and, the dynamical response can be
simply approximated by Eq.~40! for the cross section of the
SW modes. Only at high frequencies, or close enough to the
Néel temperature thatv.2D(T), does the incoherent back-
ground become important.

The formalism developed in this paper for theC spin
dynamics can also be applied tog-Mn alloys.19 Due to the
very small mismatch] between its electron and hole Fermi
surfaces, ag-Mn alloy is always in a CSDW state. Unlike the
linear SW dispersion ofC Cr alloys, however, the SW dis-
persion ofg-Mn alloys has a gap atq50. As discussed in the
conclusion, this energy gap may be induced by the strong
coupling between a CDW and the tetragonal lattice ofg-Mn.

Our motivation in studying theC spin dynamics is two-
fold. First, theC dynamics is interesting in its own right, and
we are hopeful that many of our predictions will be verified
by future experiments. Second, the CSDW state of Cr and
g-Mn alloys provide the simplest example of itinerant anti-
ferromagnetism in three dimensions. Due to the simplicity of
theC quasiparticle energies, the RPA susceptibilities can be
solved analytically and numerical uncertainties are mini-
mized. Paper II will use many of the insights gained in this
work to elucidate the more complexI dynamics, which can
only be solved numerically.

This paper is divided into five main sections. Section II
describes the basic methodology used in both theC and I
regimes. In Sec. III, we apply this formalism to theC phase.
Section IV describes our results for theC spin dynamics.
Finally, Sec. V contains a discussion and conclusion. Most
of the formalism and derivations are relegated to the five
appendixes referenced in the text. TheI dynamics is dis-
cussed in paper II.

II. BASIC METHODOLOGY

The spin dynamics of an itinerant antiferromagnet are
driven by quasiparticle transitions. So the quasiparticle ener-
gies have a profound influence on the dynamics. Following
Young and Sokoloff,16 we introduce the shifted paramag-
netic hole energies

eb6~k!5eb~k2Q78 !, ~1!

which are plotted in Fig. 2~a!. Near the Fermi energy, the
unshifted and linearized electron energy is given by

ea~k!5z~k!, ~2!

where z~k!5vF~k•n̂2kF! is measured from an octahedral
face of the Fermi surface with normaln̂. The shifted and
linearized hole energies are

eb1~k!5
z0
2

2k sgn~kz!2z~k!, ~3a!

eb2~k!5
z0
2

1k sgn~kz!2z~k!, ~3b!

wherez05(vF/))4p]/a is the energy mismatch between
the electron and hole Fermi surfaces andk5z0]8/2]>0. In
the I phase withk.0, theb1 surface is better nested for
kz.0, and theb2 surface is better nested forkz,0. In theC
phase withk50, the nested Fermi surfaces are concentric
and the two hole energieseb6~k![eb~k! are identical. So the
nesting on both sides of the hole surface is equivalent.

The paramagnetic energies are plotted versusz in the
dashed lines of Figs. 2~b! and 2~c!. Lying an energyz0/4
below the geometric center of both plots, the chemical po-
tential is denoted by a dashed vertical line. In each plot, the
origin ~z,e!5~0,0! lies at the intersection of the chemical
potential with the electron energyea .

To simplify our calculations, we assume that the wave
vectorq of the spin fluctuations is parallel to the wave vec-
torsQ68 5Q68 ẑ of the SDW. Ifq is small compared withkF ,
then fluctuations remain close to an octahedral face of the
Fermi surface and

z~k1q!5z~k!1vFn̂•q5z~k!1j sgn~kz!, ~4!

wherej[vFuqusgn(qz)/). The factor of) from un̂• ẑu51/)
eventually appears in the SW mode velocityc5vF/). With
the assumptionq!kF,2p/a, our results are only valid near
the magnetic satellites. But the observed spin excitations also
lie close to the magnetic satellites.

In the Heisenberg representation, the second-quantized
operators are

CI ~k,t!5e2t~mN2H !CI ke
t~mN2H ! , ~5!

where

CI k5S ak↑
ak↓
bk↑

~2 !

bk↓
~2 !

bk↑
~1 !

bk↓
~1 !

D ~6!

is a six-dimensional vector in band and spin space. While
aks
† and aks create and destroy electrons,bks

(6) and bks
†(6)

create and destroy holes on theb6 bands.
The Matsubara Green’s function of Cr is a six-

dimensional matrix in band and spin space defined by

GI ~k,in l !5E
0

b

dt GI ~k,t!ein lt, ~7!

GI ~k,t!52^TtCI ~k,t!CI †~k,0!&, ~8!

wheren l5(2l11)pT are the fermion Matsubara frequen-
cies. Neglecting the CDW, the six-dimensional inverse
Green’s function is

GI 21~k,in l !5S @ in l2ea~k!#1I
2ge2 if2m̂•sO
2ge2 if1m̂•sO

2geif2m̂•sO
@ in l2eb2~k!#1I

0

2geif1m̂•sO
0

@ in l2eb1~k!#1I
D , ~9!
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wherem̂ is the polarization direction of the SDW andsO are the Pauli matrices in spin space. The order parameterg(T) is real,
and theab6 matrix elements are assigned arbitrary phasesf6 . If the CDW was included, then theb6b7 matrix elements
would be proportional to the CDW order parameter.16

Inverting the inverse Green’s function of Eq.~9! yields

GI ~k,in l !5
1

D~k,in l !

3S 1I@ in l2eb1~k!#
3@ in l2eb2~k!#

m̂•sge2 if2@ in l2eb1~k!# m̂•sge2 if1@ in l2eb2~k!#

m̂•sge2 if2@ in l2eb1~k!#
1I{ @ in l2ea~k!#

3@ in l2eb1~k!#2g2}
1Ig2ei ~f12f2!

m̂•sge2 if1@ in l2eb2~k!# 1Ig2e2 i ~f12f2! 1I$@ in l2ea~k!#
3@ in l2eb2~k!#2g2}

D , ~10!

where the determinant of the inverse Green’s function is

D~k,in l !5@ in l2ea~k!#@ in l2eb1~k!#@ in l2eb2~k!#

2g2@2in l2eb1~k!2eb2~k!#. ~11!

Although theb6b7 matrix elements were missing from the
inverse Green’s function, they now appear in the Green’s
function of Eq.~10!. Each band matrix element ofGI ~k,in l!
is proportional to a unit matrix in spin space exceptGI ab6

andGI b6a , which are proportional tom̂•sO . While GI aa and
GI b6b6 are the diagonal or ‘‘normal’’ Green’s functions in
band space,GI ab6}g and GI b6b7}g2 correspond to the
‘‘anomalous’’ Green’s functions in a superconductor, and
vanish aboveTN .

The hybridized energiese~k! are given by the zeros of
D~k,e!. These energies are plotted in the solid lines of Figs.
2~a! and 2~b! for the C and I phases, respectively. As ex-
pected, energy gaps appear wherever the paramagnetic ener-
gies cross. Wheng→0, the gaps close and the paramagnetic
energies are recovered.

In the C regime,e2eb~k! can be factored from the de-
nominatorD~k,e!. When ].0, the hole Fermi surface is
larger than the electron Fermi surface, so there are more
holes than electrons. Holes which are not paired to electrons
in the CSDW have the unperturbed energieseb~k!. Since the
factore2eb~k! cancels an identical term in the numerators of
the dynamic susceptibilities, these unpaired holes are decou-
pled from the SDW and do not affect theC spin dynamics.
As shall be reported elsewhere,20 the Coulomb interaction16

between the paired and unpaired holes may generate a first-
order PC transition.

An energy gap of 2D[2&g centeredz0/4 above the
chemical potential separates the upper and lowerC bands in
Fig. 2~b!. At T50, D~0!.z0/4, so that the lower band lies
completely below the chemical potential. As in a conven-
tional superconductor, the minimum energy 2D is needed to
break apart an electron-hole pair.

Because theI paramagnetic energies cross at two points,
two identical energy gaps appear above and below the cen-
tral band in Fig. 2~c!. The transition across each energy gap
is not quite vertical, with the value forz in the middle band
slightly smaller in magnitude than on the upper and lower
bands. In agreement with infrared data,21 the I energy gaps

are roughly 40% smaller than theC gap, which may make
some experiments easier to perform in theI phase. Infrared
measurements21 have also reported indirect transition be-
tween the bottom and top bands. AtT50, the bottom band
again lies completely below the chemical potential. But the
middle band intersects the chemical potential at any tempera-
ture. So in contrast to the pair-breaking threshold of theC
regime,I electron-hole pairs can be broken with zero energy
cost. The quasiparticle branches in Fig. 2~c! are numbered so
that e1→ea , e2→eb1 , and e3→eb2 , as g→0. Notice that
de1/dz>0 whilede2,3/dz<0. The CDW in theI phase16,20is
produced by the Coulomb attraction between electrons and
holes on bands 2 and 3.

The Matsubara spin susceptibilityxab~q,ivn! is defined
by

xab~q,ivn!

5
1

4V (
k,k8

E
0

b

dt eivnt^TtCI
†~k1q,t!•LI b•CI ~k,t!

3CI †~k8,0!•LI a•CI ~k81q,0!&, ~12!

where

FIG. 3. A graphical representation of the spin-spin correlation
functionx i jop

(s1s2)(q,ivn).
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LI b5S sI b

sI b

sI b

sI b

sI b

sI b

sI b

sI b

sI b

D , ~13!

vn52npT are the boson Matsubara frequencies andV is the
volume. The magnetic properties of Cr depend on the trans-
verse and longitudinal spin susceptibilitiesxt~q,v! and
xl~q,v!, defined with respect to the spin-polarization direc-
tion m̂. No assumptions are made about the angle betweenm̂
and the SDW wave-vector directionẑ. As usual, the real-
frequency susceptibilities are obtained from the Matsubara
susceptibilities with the substitutionvn→2 iv1e.

The band- and spin-dependent matrix elements
x i jop
(s1s2)(q,ivn) are defined by

x i jop
~s1s2!

~q,ivn!5
1

V (
k,k8

E
0

b

dt eivnt^TtCos2

† ~k1q,t!

3C is1
~k,t!C js1

† ~k8,0!Cps2
~k81q,0!&.

~14!

These band matrix elements are represented graphically in
Fig. 3, where band indicesi , j , o, andp can equala, b1, or
b2. To simplify our notation, we also define the specific
matrix elements

x1~q,ivn!5xaab1b1
↑↑ ~q,ivn!, ~15a!

x2~q,ivn!5xb1b1aa
↑↑ ~q,ivn!, ~15b!

x3~q,ivn!5xb1b2aa
↑↑ ~q,ivn!, ~15c!

x4~q,ivn!5xaab2b1
↑↑ ~q,ivn!, ~15d!

x5~q,ivn!5xab1b1a
↑↑ ~q,ivn!, ~15e!

x6~q,ivn!5xab1b2a
↑↑ ~q,ivn!, ~15f!

x7~q,ivn!5xb1aab1
↑↑ ~q,ivn!, ~15g!

x8~q,ivn!5xb1aab2
↑↑ ~q,ivn!. ~15h!

Correlation functions with b6→b7 are defined by
x̄ i(q,ivn!. For example,x̄1~q,ivn!5x aab2b2

↑↑ ~q,ivn!.
Within the RPA, each susceptibility is approximated by a

series of ladder diagrams with continuous strings of Green’s
functions forming the two sides of the ladder, and the Cou-
lomb interactionU forming the rungs. Since the Coulomb
interaction does not flip the quasiparticle spin, the spin re-
mains unchanged along each side of the ladder. Using the
spin symmetries of the Green’s functions, any susceptibility
with spin variabless1 ands2 can be related to one of the
numerated susceptibilitiesx i~q,ivn! or x̄ i~q,ivn! with both
spins up. For example, the ladders forxaab1b1

(s1s2) (q,ivn) must
contain an even number of matrix elements likeGI ab6 and
GI b6a on each side. Soxaab1b1

(s1s2) (q,ivn) is spin independent,
and equalsx1~q,ivn!. On the other hand, the ladders for
xab1b1a
(s1s2) (q,ivn) must have an odd number of matrix ele-

mentsGI ab6 andGI b6a on each side. Then flipping eithers1
or s2 changes the sign of the susceptibility:

xab1b1a
~s1 ,s2!

~q,ivn!52xab1b1a
~2s1 ,s2!

~q,ivn!52xab1b1a
~s1 ,2s2!

~q,ivn!

5xab1b1a
~2s1 ,2s2!

~q,ivn!,

where x ab1b1a
↑↑ ~q,ivn!5x5~q,ivn!. Thus, every possible

correlation function can be related toxi~q,ivn! or x̄ i~q,ivn!.
It is also straightforward to show that the phasesf6 of the

SDW cancel from the ladder diagrams for the susceptibili-
ties. So the arbitrary equilibrium phases do not affect the
spin dynamics and can be taken to be zero. However, these
phases will be reinstated in Sec. IV in order to interpret the
collective modes.

Evaluated to zeroth order in the Coulomb interactionU,
the Hartree-Fock~HF! correlation functions are

x1
~0!~q,ivn!52

T

V (
l ,k

Gaa
↑↑~k,in l !Gb1b1

↑↑ ~k1q,in l2 ivn!,

~16a!

x2
~0!~q,ivn!52

T

V (
l ,k

Gb1b1
↑↑ ~k,in l !Gaa

↑↑~k1q,in l2 ivn!,

~16b!

x3
~0!~q,ivn!52

T

V (
l ,k

Gb1b2
↑↑ ~k,in l !Gaa

↑↑~k1q,in l2 ivn!,

~16c!

x4
~0!~q,ivn!52

T

V (
l ,k

Gaa
↑↑~k,in l !Gb1b2

↑↑ ~k1q,in l2 ivn!,

~16d!

x5
~0!~q,ivn!52

T

V (
l ,k

Gab1
↑↑ ~k,in l !Gab1

↑↑ ~k1q,in l2 ivn!,

~16e!

x6
~0!~q,ivn!52

T

V (
l ,k

Gab1
↑↑ ~k,in l !Gab2

↑↑ ~k1q,in l2 ivn!.

~16f!

Since the Green’s functionsGab6
↑↑ 5Gb6a

↑↑ are symmetric,
x7

~0!~q,ivn!5x5
~0!~q,ivn! and x8

~0!~q,ivn!5x6
~0!~q,ivn!. Using

the symmetry between theb6 energies in Eqs.~3!, it is easy
to show that

x̄ i
~0!~q,ivn!5x i

~0!~2q,ivn!. ~17!

Only x1
~0!~q,ivn! andx2

~0!~q,ivn! are nonzero aboveTN .
After performing the analytic continuationivn→v1 i«,

each HF susceptibility can be expressed in real and imagi-
nary parts as

x i
~0!~q,v1 i«!5f1

~ i !~q,v!1 if2
~ i !~q,v!. ~18!

Since the imaginary susceptibilities vanish whenv50, the
real partf 1

i ~q,0! is obtained by settingvn50 in Eqs.~16a!–
~16f!. The imaginary partf 2

( i )~q,v! can be evaluated by in-
tegrating over a spectral density12,22that involves all possible
quasiparticle transitions between branches 1, 2, and 3 with
momentum differencej[cq and energy differencev. If a
quasiparticle transition is allowed between branchesi and j ,
then the imaginary susceptibility will contain an integral of
the form
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I ~q,v!5E dv F~v !d@zi~v !2zj~v2v!2cq#

5
F~v !

udgi j /dvuU
v*
, ~19!

where gi j (v)[zi(v)2zj (v2v), and v* satisfies the mo-
mentum conservation condition

zi~v* !2zj~v*2v!5cq. ~20!

In Appendix A, the frequenciesv* and energieszi satisfying
Eq. ~20! are solved analytically for both theC andI regimes.
Finally, the frequency dependence of each real susceptibility
is obtained from the Kramers-Kronig relation

f1
~ i !~q,v!2f1

~ i !~q,0!5
v

p E
2`

` dv8

v8

f2
~ i !~q,v8!

v82v
. ~21!

The zero-frequency real HF susceptibilities are derived in
Appendix B; the imaginary HF susceptibilities are derived in
Appendix C. Symmetry relations between the HF suscepti-
bilities are provided in Appendix D.

In this and the following papers, we evaluate the trans-
verse and longitudinal susceptibilitiesxt~q,v! andxl~q,v! in
terms of the six HF susceptibilities. The neutron-scattering
cross sections are then given by

s t5U2N~0!~n11!Imx t~q,v!, ~22a!

s l5U2N~0!~n11!Imx l~q,v!, ~22b!

where n51/@exp~bv!21# is the Boltzmann function. Be-
causext andxl are each proportional to 1/U

2N~0!, the cross
sections defined above are independent of both the Coulomb
interactionU and the single-spin density of statesN~0!.
Above TN , xt~q,v!52x l~q,v! and s t52s l , so that spin
fluctuations are isotropic.

When ~q,v! joins quasiparticle energies with the same
slope, such as the filled circles in Fig. 2~b!, the denominator
dgi j /dv of I (q,v) vanishes, and the imaginary HF suscep-
tibilities diverge. This produces either a divergence or a zero
in the transverse and longitudinal susceptibilities. Often a
cusp or divergence in one susceptibility coincides with a zero
in the other. Such quasiparticle transitions are said to be
enhanced. Because nearby transitions have very small de-
rivatives dgi j /dv, the most important enhanced transitions
join points with zero slope, such as the vertical transition
between the empty circles in Fig. 2~b!.

If q is measured from a SDW wave vector, then a trans-
verse or longitudinal collective mode with frequencyv8 and
wave vectorj85cq8 corresponds to a pole of the cross sec-
tion

s~j,v!5
1

12e2bv Im
1

t11 i t 2
5

21

12e2bv

t2
t1
21t2

2 ,

~23!

with t1(j8,v8)5t2(j8,v8)50. Should t2<0 vanish faster
than t1, the cross section will contain ad function,

s5p
1

12e2bv8
d~ t1!1••• . ~24!

For most collective modes, the real denominatort1 can be
linearized about the wave vectorj8 at a fixed frequencyv8.
So if t15a~j2j8!, the strength of the mode integrated overj
is given by

s5
p

uau
1

12e2bv8
. ~25!

The dispersion of a damped excitation witht2,0 is fixed by
the condition t1~j8,v8!50 and its half-width is given by
Dj5ut2/au, which vanishes ast2→0. Although the excitation
is broadened by the damping energyt2,0, its integrated
weight is still given by Eq.~25! and is independent oft2.
Becausea}dv/dj, the weight of any damped excitation or
collective mode diverges whendv/dj50.

III. COMMENSURATE FORMALISM

Since theC hole energieseb6~k! are identical, the two-
and three-band models for the dynamics ofC Cr alloys are
equivalent. In order to employ the same notation for theC
andI phases, however, we shall use the three-band model for
theC dynamics. As discussed in Sec. I, the spin dynamics of
g-Mn alloys also builds on the basic formalism developed in
this section.

Using the relations between theab6 andb6b7 matrix
elements of the Green’s function, we find that the transverse
and longitudinal spin susceptibilities of Eq.~12! each contain
six terms:

x t~q,v!54@x1~q,v!1x2~q,v!1x3~q,v!1x4~q,v!#

28@x5~q,v!1x6~q,v!#, ~26!

x l~q,v!52@x1~q,v!1x2~q,v!1x3~q,v!1x4~q,v!#

14@x5~q,v!1x6~q,v!#. ~27!

The relative sign difference between the transverse and lon-
gitudinal susceptibilities arises from the symmetry relation
Gab6
↑↑ ~q,v!52Gab6

↓↓ ~q,v!.
After every susceptibility is expanded in a series of ladder

diagrams, each subset$x1,x4,x6% and$x2,x3,x5% only couples
to terms within itself:

x15x1
~0!1x1

~0!Ux11x4
~0!Ux412x5

~0!Ux6 , ~28a!

x45x4
~0!1x1

~0!Ux41x4
~0!Ux112x5

~0!Ux6 , ~28b!

x65x6
~0!1x6

~0!U~x11x4!1~x2
~0!1x3

~0!!Ux6 , ~28c!

and

x25x2
~0!1x2

~0!Ux21x3
~0!Ux312x6

~0!Ux5 , ~29a!

x35x3
~0!1x2

~0!Ux31x3
~0!Ux212x6

~0!Ux5 , ~29b!

x55x5
~0!1x5

~0!U~x21x3!1~x1
~0!1x4

~0!!Ux5 . ~29c!

The first set of three equations is sketched graphically in Fig.
4, where the boxes represent the HF susceptibilities and the
circles represent the full susceptibilities. Adding Eq.~28a!
with ~28b! and Eq.~29a! with ~29b! gives the same set of
four equations that would arise from a two-band model.17
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Using the relations between the HF susceptibilities in Ap-
pendixes B and C, we find thatx5~q,v!5x6~q,v! and
x1~q,v!1x4~q,v!5x2~q,v!1x3~q,v!.

In terms of the variables

C6~q,v!5x1~q,v!1x4~q,v!62x5~q,v!, ~30!

the transverse and longitudinal susceptibilities are

x t~q,v!58
C2~q,v!

12UC2~q,v!
52

8

U
1

8

U

1

12UC2~q,v!
,

~31a!

x l~q,v!54
C1~q,v!

12UC1~q,v!
52

4

U
1

4

U

1

12UC1~q,v!
.

~31b!

If the real and imaginary parts ofC6~q,v! are defined by
C65C611iC62, then the results in Appendixes B and C
can be summarized as

C61~q,0!5
1

U
22p iTN~0!@~cq!212D262D2#

3(
l

sgn~n l !

xl@xl
22~cq!2#

, T,TN . ~32!

xl5F S z0222in l D 224D2G1/2, ~33!

C62~q,v!52
p

4
N~0!$u@~cq!22v2#1u@v22~cq!2

24D2#%S ~cq!214D22v2

~cq!22v2 D 61/2

3H f S v1
z0
4 D2 f S v1

z0
4

2v D2 f S 2v1
z0
4 D

1 f S 2v1
z0
4

1v D J , ~34!

where sgn Im(xl)52sgn~nl!, f (z)51/@exp(bz)11# is the
Fermi function,u(x) is the step function, and

v5
v

2
1
cq

2 S ~cq!214D22v2

~cq!22v2 D 1/2. ~35!

The frequency dependences of the real partsC61~q,v! are
evaluated using the Kramers-Kronig relation of Eq.~21!.
Above TN , the additional term2N~0!ln(T/TN) must be
added to Eq.~32!.

IV. COMMENSURATE DYNAMICS

The imaginary susceptibilitiesC62~q,v! are generated by
quasiparticle transitions with frequencyv and wave vectorq.
For any nonzero wave vector, quasiparticle transitions within
the lower or upper band are allowed whenv,cq. When
q50, transitions between the lower and upper bands are only
possible above a pair-breaking energy of 2D. Whenq.0 is
fixed, the interband transition with the smallest frequency
connects the filled circles of Fig. 2~b! with v
52AD21(cq)2/4. These restrictions are enforced by theu
functions in Eq.~34!.

Regions with allowed quasiparticle transitions lie outside
the shaded borders of Fig. 5. Above the top border and below
the bottom border, transverse and longitudinal spin fluctua-
tions are intrinsically damped even in the absence of impu-
rity or electron-phonon scattering. Inside the shaded borders,
however, quasiparticle transitions are disallowed, the imagi-
nary HF susceptibilities are zero, and the neutron-scattering
cross sections must vanish.

From Eqs.~31a! and ~31b!, the transverse and longitudi-
nal mode frequencies are zeros of the functions

FIG. 4. Graphical representa-
tion of the coupled equations for
x1~q,v!, x4~q,v!, andx6~q,v! in C
alloys.

FIG. 5. Transverse and longitudinalC mode frequencies border-
ing regions of incoherent excitations outside the hashed region for
T50.5TN andz0 /TN*54.
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12UC7~q,v!5~12UC71~q,v!!2 iUC72~q,v!50.
~36!

As proven in Appendix E, these conditions have the very
simple solutions

v t5cq, ~37!

v l52AD21~cq!2/4, ~38!

which coincide with the borders of the quasiparticle con-
tinuum in Fig. 5. Because theb6 hole energies have been
translated by momentumQ85(G/2)ẑ, q is measured from
the CSDW wave vector (G/2)ẑ. Hence the crystal momen-
tum corresponding toq is p5q1(G/2)ẑ. Whereas the trans-
verse mode frequency is independent of the temperature and
energy mismatch, the longitudinal mode frequency depends
on both T and z0 through the energy gapD5&g. As
T→TN , D→0 andv l→v t . So aboveTN , incoherent quasi-
particle transitions are allowed at all frequencies and wave
vectors.

The collective modes in theC phase can be associated
with fluctuations of the CSDW. Starting with the inverse
Green’s function of Eq.~9! with arbitrary phasesf6 , the
equilibrium spin at lattice siteR can be written

S0~R!5asgm̂$cos~Q8•R1f1!1cos~Q8•R1f2!%

52asgm̂~21!2Rz /acosfavcosu/2, ~39!

wherefav5~f11f2!/2 is the average phase andu5f12f2

is the phase difference. The constant of proportionality is
as522\V/UN, whereU.0 is the Coulomb interaction and
N is the number of atoms. Of course, the actual spin density
has the same spatial distribution as thed-band electrons. But
due to the rather localized orbitals of those electrons, Eq.
~39! is a good approximation.

Although the amplitudeasg of each SDW is fixed by the
thermodynamic free energy, the phasesf6 are not. Whereas
the average phasefav remains undetermined in either theC
or I phases, the phase differenceu in theC phase is fixed at
p/21np ~n any integer! by charge conservation.20 It seems
likely that spin-orbit coupling will further act to maximize
the spin on every lattice site, thereby fixingucosfavu51. Then
the magnitude of the spin would be given byA2asg.

While the transverse modes of Eq.~37! correspond to
fluctuations in the polarization directionm̂, the longitudinal
excitations of Eq.~38! correspond to fluctuations in the SDW
amplitudegucosfavcosu/2u. For theI phase discussed in pa-
per II, the phase differenceu remains arbitrary and fluctua-
tions in u are responsible for a class of Goldstone modes
called phasons. But for theC phase, fluctuations inu are
equivalent to fluctuations in the SDW amplitude so phason
modes are absent.

A. Spin-wave modes

Associated with the rotational symmetry of the SDW
about them̂ direction, transverse SW’s are Goldstone modes
which evolve from the SDW ordering wave vector. As first
predicted by Fedders and Martin11 for T50 andz050, the
SW mode velocity isq5vF/). Liu12 later extended this
result to perfectly nested Cr withz050 at any temperature.
Walker13 obtained the same SW velocity for all values ofz0

at T50. Finally, we have shown that the SW mode velocity
is independent of both temperature and mismatch energy.
Whereas SW’s in a transition-metal ferromagnet23 like Ni are
damped at very low frequencies by the excitation of electron-
hole pairs, SW’s in a transition-metal antiferromagnet are
undamped at any frequency within the RPA.

However, our results disagree with Sato and Maki,24 who
included explicit damping terms in a two-band model near
the Néel temperature. Although their expressions for the
Matsubara susceptibilitiesC6~q,ivn! are identical to ours,
their solutions for the CSW modes are quite different. Sato
and Maki find that the SW velocity vanishes asT→TN or as
z0 approaches the triple point.

Several workers25–27 have studied the spin dynamics of
both CSDW and ISDW states using phenomenological ex-
pansions of the free energy in powers of the magnetization
nearTN . The local-spin operatorS~R! then obeys the canoni-
cal spin commutation rules. All such phenomenological
models predict that the SW velocity is proportional to the
SDW order parameterg and vanishes asT→TN . However,
such phenomenological expansions have no justification for
itinerant antiferromagnets. In particular, there is no reason to
expect that the spinS~R! obeys the commutation rules for
Heisenberg spins.

Because the magnetic moments of an itinerant antiferro-
magnet are not fixed in magnitude, there has been some
question28 whether the SW modes in Cr are similar to the
SW modes in a local-moment antiferromagnet. However, the
fluctuation of the magnetic moment at any lattice site costs
an energy of at least 2D. So low-frequency SW’s can exist
only if each spinS~R! rotates rigidly about its equilibrium
position S0~R!. Form-factor measurements by Sinhaet al.4

confirm that the magnetic moments of Cr do not fluctuate in
magnitude at frequencies below about 17 meV.

The cross section of the SW modes about a CSDW state
is given analytically by the remarkably simple result

ssw~q,v!5~n11!
16pD2

v
d~v2cq!, ~40!

which has precisely the same form29 as for a local-moment
antiferromagnet. So the dynamical susceptibilities of the SW
modes in itinerant and local-moment antiferromagnets are
virtually identical. Integrating this cross section overj5cq,
we find that the SW strength defined by Eq.~25! is

st5~n11!
16pD2

v
. ~41!

As expected,st vanishes at the Ne´el temperature. More un-
expectedly,st depends on the mismatch energyz0 only
through the energy gapD. Notice that the normalized
strengthst/(n11) falls off inversely with frequency. The
decrease in the SW strengthst;D2 with temperature was
observed by Sinhaet al.4

Since c}vF , the SW velocity in Cr is about 50 times
larger than in a rare-earth antiferromagnet. This greatly com-
plicates the measurement of the SW velocity by neutron scat-
tering, which has a resolution9 in q space larger than the
splitting between the SW peaks. While SW modes have been
clearly observed ing-Mn alloys,19 only one experiment3 on
CrMn alloys has resolved the splitting of the central peak at
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27 meV. Instead, most measurements observe the broadening
of the central peak with frequency. Fits2,3 to the width of this
‘‘chimney’’ indicate that the SW velocity is roughly 33%
smaller than the theoretical SW velocity ofvF/)'1500
meV Å or about 2.33107 cm/s.

To explain this disagreement, Liu28 proposed a ‘‘frozen
magnon’’ model which constrains the magnitudes of the lo-
cal magnetic momentsS~R!, and assumes that the spin de-
viation induced by a single SW is the same as for a conven-
tional antiferromagnet. This approach yields the
renormalized SW velocityA2UN(0)c'0.55c, in closer
agreement with experiments than the RPA result. Since
SW’s within the RPA also preserve the magnitude of the
spin S~R! on each lattice site, the other assumption of the
‘‘frozen magnon’’ model may renormalize the SW mode ve-
locity. As discussed below and in the conclusion to paper II,
the discrepancy between the observed and predicted SW ve-
locities can also be explained within the RPA.

B. Amplitude modes

Fluctuations in the SDW amplitudeg are caused by the
separation and formation of electron-hole pairs. Soq50
fluctuations with the same periodicity as the CSDW cost
pair-breaking energy 2D. Amplitude modes in an itinerant
antiferromagnet were first predicted within the Hubbard
model by Sokoloff,30 whose result differs slightly from Eq.
~38! but agrees in theq50 limit. To order q2, our result
agrees with Psaltakis,31 who used a one-band model for per-
fectly nested Cr atT50. For smallq, Eq. ~38! also coincides
with the amplitude mode frequency of a conventional
superconductor.32

As shown in Fig. 5, the amplitude and SW modesnever
intersect, and become nearly parallel for large wave vectors.
Since the lower boundary of the particle-hole continuum co-
incides with the mode frequencyvl , the longitudinal mode is
undamped at any wave vector. By contrast, the longitudinal
amplitude mode of a superconductor is immediately
damped32 as it enters the quasiparticle continuum above 2D
for any nonzero wavevector

After expanding the imaginary susceptibility for smallq,
Psaltakis31 concluded that the damping energy of the ampli-
tude mode is proportional tocuqu. We have reproduced Psal-
takis’ result by first settingq50 in the imaginary suscepti-
bility C12~q,v! and only then settingv5v l(q). However,
this procedure neglects the explicitq dependence of the lon-
gitudinal susceptibility.

A zero of the denominatort11 i t 2}12UC7~q,v! at
wave vectorj85cq8 and fixed frequencyv is associated
with a d function in the susceptibility, provided that the real
part t1}12UC71~q,v! vanishes linearly asU~j2j8!, and
that the imaginary partt2}2UC72~q,v! is much smaller
than t1 near j8. Due to the Fermi functions in Eq.~34!,
C22~q,v! vanishes exponentially fast asj→v1; due to theu
functions,C22~q,v! is infinitesimally small asj→v2. On
either side ofj5v, 12UC21~q,v! is proportional toU~j
2v!. So the zero of the transverse denominator at the SW
frequencyvt is indeed associated with ad function in the
transverse susceptibility.

For the longitudinal amplitude mode atvl~q!, this is not
the case. Whenv is fixed, the longitudinal mode appears at

the wave vectorj5z(v)[Av224D2. As j→z2, C12~q,v!
vanishes much more slowly than the real part
12UC11~q,v!}U~j2z!. As j→z1, 12UC11~q,v! is pro-
portional toU~j2z!a with a,1. So on either side ofj5z~v!,
the pole in the longitudinal susceptibility is not associated
with a d function.23 Unlike the SWd function, the weight of
the amplitude mode is completely contained within the inco-
herent background. Moreover, the absence of a longitudinal
d function implies that oscillations of the CSDW amplitude
decay with time according to a power law, as predicted by
Volkov and Kogan33 for theq50 amplitude oscillations of a
superconductor.

C. Cross sections and incoherent background

As defined by Eqs.~22!, the transverse and longitudinal
cross sections are independent of both the Coulomb interac-
tion U and the density of statesN~0!. In theC phase, trans-
verse and longitudinal spin fluctuations cannot be distin-
guished. So in Figs. 6 and 7, we plot the total cross section
s5s t1s l versus wave vector forz054TN

! andv/TN
! 50.05

or 2.0. Here,TN
! '80 meV is the fictitious Ne´el temperature11

of a perfectly nested alloy with]50. It is defined by Eq.
~B12! in terms of the energy cutoffe0 and the Coulomb
interactionU. The zero-temperature energy gap in theC
phase is then given by the BCS resultD~0!51.764TN

! . The
d-function contribution of each SW atj5v is denoted by an
X in these two figures.

Sincev is smaller than the pair-breaking threshold 2D(T)
in Fig. 6, no excitations are possible forj,v. Just above
j5v, longitudinal fluctuations vanish and transverse fluctua-
tions dominate. Whenv.2D(T), the cross section contains
contributions from bothj,z~v! andj.v. The pair-breaking
regime belowz appears in Fig. 7 forT/TN50.9 or 0.975.
Longitudinal fluctuations dominate just below the pair-
breaking edge atj5z. In fact, all the weight of the amplitude
mode is contained in the divergence ofsl below z~v!.

FIG. 6. The totalC cross section vscq/TN* for z054TN* , v
50.05TN* , andT/TN50.974~solid!, 0.9 ~long dash!, 0.6 ~medium
dash!, or 0.4 ~short dash!. The SWd function is denoted by anX.
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The integrated weight of the incoherent background is
defined by

I i~v!5E
2`

`

dj s i~j,v!, ~42!

wheresi~j,v! excludes thed-function contributions of the
SW modes. In Fig. 8, we plot the integrated backgroundI i
versusT/TN for v/TN

! 53. Since it is produced by thermally-
excited quasiparticle transitions, the incoherent background
vanishes atT50 and grows monotonically with temperature.
At sufficiently small temperatures that 2D(T).v, only intra-
band transitions contribute to this background. When the
temperature is large enough that 2D(T),v, quasiparticle
transitions between the lower and upper bands are allowed.

Due to the divergence of the longitudinal cross section below
j5z~v!, the background increases discontinuously at the
pair-breaking threshold. As the energy mismatchz0 de-
creases, the minimum in the nesting free energy becomes
deeper, and incoherent fluctuations are suppressed. Conse-
quently, the integrated background is smaller forz050 than
for z054TN

! . But atTN , the integrated paramagnetic back-
ground is relatively independent ofz0.

While the incoherent background increases with tempera-
ture, the relative SW strengthst/I i plotted in Fig. 9 for
v/TN*53 decreases. AtT50, I i50, so the relative SW
strength diverges. At a temperature of 0.5TN , the strength of
each SW is still several times larger than the incoherent
background. For bothz050 andz054TN* , the relative SW
strengthst/I i falls below 1 when 2D(T) becomes smaller
thanv. Only for temperatures above about 0.8TN does the
SW strength become negligible compared to the background.

Since the incoherent background peaks at a larger wave
vector than the SWd function, Fig. 9 suggests that the total
cross section will peak at a higher wave vector than the SW
mode. Because the incoherent background grows with tem-
perature, the observed SW velocity will decrease as the tem-
perature increases. For temperatures above about 0.6TN . the
observed SW velocity may be substantially smaller than the
true mode velocityc. However, systematic measurements of
the SW velocity as a function of frequency and temperature
are needed to confirm this explanation for the discrepancy
between the observed and theoretical mode velocities. An-
other possible explanation for this discrepancy is proposed in
the conclusion to paper II.

AboveTN , the SWd functions are absent, and incoherent
spin fluctuations generate the paramagnetic background24,34

which was most recently reported by Fawcettet al.35 and
Noakeset al.36 The paramagnetic cross section just aboveTN
is much smaller than the cross section just belowTN due to
both the rapid falloff in the SW intensities nearTN and to the
extra ln(T/TN) term in Eq. ~32!, which removes the zero-
frequency divergence of the susceptibility.

FIG. 7. Same as Fig. 6, but withv52TN* .

FIG. 8. The incoherentC backgroundI i vs T/TN for v53TN*
andz0 /TN*50 ~solid! or 4 ~dash!.

FIG. 9. The relative SW strengthst/I i vs T/TN for the same
parameters as Fig. 8.

7242 54R. S. FISHMAN AND S. H. LIU



Also of experimental interest are results at a fixed tem-
perature as a function of frequency. In Fig. 10, we plot the
background cross section versus frequency forT/TN50.5.
Although the imaginary susceptibilitiesC62~q,v! vanish as
v→0, the cross section remains nonzero due to the Boltz-
mann factorn1151/@12exp~2bv!#→T/v in Eqs.~22!. It is
apparent from Fig. 10, however, that the integrated back-
ground diverges more strongly than the Boltzmann factor
n11. Due to the divergence of the transverse susceptibility
at the SDW ordering wave vector, the normalized back-
groundI i /(n11) diverges like 1/v belowTN . The incoher-
ent background initially decreases with frequency but then
increases discontinuously atv52D(T) due to the onset of
amplitude fluctuations. Beyond this point, the background
continues to increase with frequency as the amplitude fluc-
tuations grow.

Since both the integrated backgroundI i and the SW
strengthst diverge at zero frequency like (n11)/v}T/v2,
the ratiost/I i approaches a finite value asv→0. As shown in
Fig. 11, the relative SW strength reaches a maximum just
below the pair-breaking thresholdv52D. Above this thresh-
old, the relative strength of each SW drops dramatically and
continues to decrease with increasing frequency. For all fre-
quencies, Figs. 10 and 11 indicate that the incoherent back-
ground decreases and the relative SW strength increases as
z0 decreases and the nesting improves.

An examination of Figs. 9 and 11 reveals that the two SW
modes dominate the incoherent background at low tempera-
tures and small frequencies. More precisely, 2st/I t@1 when
v,2D(T). In practice, this means that virtually all measure-
ments onC alloys can be simply described by Eqs.~39! and
~40! for the cross section and strength of the SW modes.
Only at very high frequencies or close enough to the Ne´el
temperature thatv.2D(T) does the incoherent background
play a significant role.

Recent low-frequency and low-temperature measurements
by Lorenzoet al.9 in the I phase indicate that the peak inten-
sities at the SDW satellites depend on temperature mainly

through the Boltzmann factorn11. At fixed values ofq and
v, the transverse and longitudinal susceptibilitiesxt~q,v! and
xl~q,v! of the C phase depend explicitly on temperature
through the Fermi functions of Eq.~34! and vanish asT→0.
But, as shown in Fig. 12, the normalized integrated intensity

I ~v!

n11
5

1

n11
~ I i12st!

52U2N~0!E
2`

`

dj@ Imx t~j,v!1Imx l~j,v!#

~43!

FIG. 10. The incoherentC backgroundI i vs normalized fre-
quencyv/TN* for T50.5TN andz0 /TN*50 ~solid! or 4 ~dash!.

FIG. 11. The relative SW strengthst/I i vs v/TN* for the same
parameters as in Fig. 10.

FIG. 12. The total intensityI5I i12st normalized byn11 vs
temperatureT/TN for several values ofv/TN* andz0 /TN*54.
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is relatively constant. At low temperatures and frequencies,
where the SW modes dominate the incoherent background,
I /(n11)'32pD2/v depends on temperature primarily
through the relatively flat energy gapD(T). So, as in theI
phase at low temperatures, the total integrated intensity un-
der the SDW ‘‘chimney’’ is approximately proportional to
~n11!/v. The jump in thev/TN*53 intensity atT/TN50.64
occurs as the gap 2D(T) drops belowv. For lower frequen-
cies, smaller jumps occur at higher temperatures.

Whereas intraband transitions produce the incoherent
background belowvt , interband transitions across the en-
ergy gap produce the background abovevl . Longitudinal
and transverse spin fluctuations cannot be so neatly sepa-
rated. For a fixedj, transverse fluctuations dominate just
belowvt , and longitudinal fluctuations dominate just above
vl . But intraband transitions belowvt and interband transi-
tions abovevl are associated with both longitudinal and
transverse spin fluctuations. Nonetheless, longitudinal fluc-
tuations belowvt and transverse fluctuations abovevl are
disproportionately suppressed as the temperature is lowered.

In Fig. 13, we plot the cross sectionsst/2 andsl versus
frequency for the fixed wave vectorj50. As expected for
this wave vector, both cross sections vanish below the pair-
breaking energy 2D. At q50, the longitudinal mode corre-
sponds to the vertical transition between the empty circles in
Fig. 2~b!. As shown in Fig. 13, this enhanced quasiparticle
transition is associated with a divergence in the longitudinal
susceptibility and a zero in the transverse susceptibility.
Whereas the longitudinal cross section decreases monotoni-
cally, the transverse cross section reaches a maximum at a
frequency of about 3D. At very large frequenciesv/D→`,
the spin fluctuations become isotropic withs t/2s l→12. The
fluctuations also become isotropic at a fixed frequency as
uju/v→`.

V. DISCUSSION AND SUMMARY

This paper has developed the RPA for the spin dynamics
of itinerant antiferromagnets, and then applied that formal-

ism to the spin dynamics of a CSDW state. Spin excitations
with frequency v and wave vectorp5q1G/2 about a
CSDW with wave vectorG/2 are associated with quasipar-
ticle transitions with energy changev and wave-vector
changeq. The relatively simple quasiparticle energies of the
C phase produce a simple spectrum of collective excitations
which can be solved analytically using the RPA.

Within the RPA, theC modes do not interact and are
undamped. Corrections beyond the RPA would damp the
SW and amplitude modes. At nonzero temperatures, anhar-
monic interactions would generate finite SW lifetimes just as
they do in a conventional antiferromagnet. However, because
Cr has such a large Ne´el temperature, the effects of fluctua-
tions on the mode spectrum are expected to be rather small.

The RPA also predicts that the SW modes evolve linearly
from each satellite up to arbitrarily high energies. But at the
zone centerp50, the SW’s evolving fromp56G/2 must
meet with zero slope. This discrepancy can be explained by
examining the implicit assumptions of our model. As dis-
cussed in Appendix B, we assume that the fluctuation energy
cq is restricted to a range within6e0 of the Fermi surface.
Since the energy cutoffe0 is much less than the Fermi energy
eF andkF,G/2, the fluctuation momentumq must be much
less thanG/2. So our model is only valid, near the magnetic
satellites. In this regime, the cutoffe0 only enters implicitly
through the Ne´el temperatureTN* defined by Eq.~B12!. A
more general model valid near the zone center would involve
cutoff-dependent quantities likecq/e0. Fortunately, the ob-
served spin dynamics of Cr alloys also occurs close to the
magnetic satellites.

A high-energy neutron source may be required to test
many of the predictions of our model within theC phase.
The onset of longitudinal fluctuations atq50 should be ob-
served above the pair-breaking energy of 2D52&g. At low
temperatures, 2D(0)53.52TN*'280 meV is probably too
large for detection. But just below the Ne´el temperature, the
order parameter may be small enough to make such an ex-
periment feasible.

The C formalism developed in this paper can also be
applied tog-Mn alloys, which areC itinerant antiferromag-
nets. But, unlike for Cr alloys, the SW spectrum ofg-Mn
alloys contains a gap19 at zero frequency. The large tetrago-
nal distortion of the fccg-Mn lattice may break the rotational
symmetry about the spin polarization direction and induce an
energy gap in the SW spectrum. The coupling between the
SDW and the lattice may be mediated by an associated
CDW. We hope to test this conjecture in the near future.
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APPENDIX A

In this appendix, we solve for all quasiparticle transitions
subject to the momentum-conservation condition of Eq.~20!,

zi~v !2zj~v2v!2j50, ~A1!

wherej5cq is the momentum change, andv is the energy
difference. The quasiparticle solutions$zi ,v% and$zj ,v2v%
are zeros of the determinantD(z,e) with band indicesi or j .
If z0 is removed by the shift in variablese→e1z0/4 and
z→z1z0/4, then the conditionD(z,e)50 can be rewritten as

~e2z!@~e1z!22k2#52g2~e1z!. ~A2!

As shown in Appendix C, the mismatch energyz0 only en-
ters the imaginary susceptibilities through the Fermi func-
tions.

In the C regime, the hybridized energies are given by the
simple quadratic expression

e22z25D2, ~A3!

where 2D52&g is the energy gap in Fig. 2~b!. Upon squar-
ing Eq. ~A1! and using Eq.~A3! to eliminatez2 terms, we
find

2vv2v22j252zjj. ~A4!

Squaring this expression and applying Eq.~A3! once more
yields

v22vv2 1
4 ~j22v2!2

j2D2

j22v2 50, ~A5!

with the two possible solutions

v65
v

2
6

j

2 S j214D22v2

j22v2 D 1/2. ~A6!

Due to the symmetry of the quasiparticle energies, solutions
are always paired withv25v2v1 . Real solutions occur
when v2,j2 or v2.j214D2. The former condition corre-
sponds to transitions within the bottom or top band; the latter
condition corresponds to transitions between the two bands.

As expected, theI case is considerably more complicated.
Cubing Eq.~A1!, using Eq.~A2! to remove thez3 terms, and
then applying Eq.~A1! to eliminatezj produces

zi
2~v13j!1zi@v222v~v2j!22jv23j2#

5v2~3v1j!1v~23v21j222vj!1v31v2j

2v~j21k212g2!2j31j~k222g2!. ~A7!

Multiplying by zi and again applying Eq.~A1! yields

zi
2@v22v~3v1j!22jv23j2#

1zi@22v2~v2j!1v~3v22j212vj!2v32v2j

1v~j212k2!1j312j~k222g2!#

52v~v22k222g2!~v13j!. ~A8!

These two relations may be viewed as simultaneous equa-
tions for the variablesz i

2 and zi . Nontrivial solutions are

possible when their determinant vanishes. Although the re-
sulting expression is a sixth-order polynomial inv, the sixth-
and fifth-order coefficients vanish identically. The remaining
expression is quadratic in the variablex5v(v2v),

ax21bx1c50, ~A9!

with coefficients

a516~v22j2!~v1j!@2~v1j!214k2#, ~A10!

b58~v1j!$2~g422k4!~v22j2!24g2k2~v225j2!

1~v1j!2@k2~v2j!~5v23j!12g2j~v23j!#

2~v1j!4~v2j!2%, ~A11!

c5$~v1j!~v22j222g2!2k2~v2j!%

3$24@2jg22k2~v1j!#222g2~v1j!2

3~v222vj15j2!1k2~v1j!2~5v226vj15j2!

2~v1j!4~v2j!2%. ~A12!

Equation~A9! guarantees that theI solutions also come in
pairs {v,v2v}.

Once the solutions forv are known, Eqs.~A2! and ~A3!
can be used to find the associated values forz. Only real
solutions contribute to the imaginary HF susceptibilities. For
a givenv and j, there are at most twoC or four I real
solutions.

APPENDIX B

In this appendix, we derive the zero-frequency real parts
f 1
( i )~q,0! of each HF susceptibility. As shown in Appendix

C, the zero-frequency imaginary parts vanish.
We demonstrate the procedure with the fifth HF suscepti-

bility:

x5
~0!~q,0!52

T

V (
l ,k

Gab1
↑↑ ~k,in l !Gab1

↑↑ ~k1q,in l !

52
Tg2

2
N~0!(

l
E dz

in l2z0/22k1z

D~z,in l !

3
in l2z0/22k1z1j

D~z1j,in l !

1j→2j, k→2k, ~B1!

where Eq.~4! is used forz~k1q!, andN~0! is the single-spin
density of states on either the electron or hole Fermi surface
~assumed identical!. The first set of terms is produced by the
k integral over the northern hemisphere withkz.0; the sec-
ond set of terms withj→2j and k→2k comes from the
integration over the southern hemisphere withkz,0.

To evaluate thez integral, we require the imaginary roots
of
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D~z,in l !5~ in l2z!~~ in l2z0/21z!22k2!

2g2~2in l2z012z!

52~z2z1l !~z2z2l !~z2z3l !. ~B2!

In the g→0 limit, z1l→ in l , z2l→2 in l1z0/22k, and
z3l→2 in l1z0/21k. For g.0, the roots are defined so that
sgn Im(z1l)5sgn~nl! and sgn Im(z2,3l)52sgn~nl!. When
k→2k, z2l↔z3l . So after completing the contour of the
integral in the upper-half-plane fornl.0 and the lower-half-
plane fornl,0, we find

x5
~0!~q,0!52p iTg2N~0!(

l
H ~ in l2z0/22k1z1l !~ in l2z0/22k1z1l1j!

j~z1l2z2l !~z1l2z3l !~z1l2z2l1j!~z1l2z3l1j!

2
~ in l2z0/22k1z1l2j!~ in l2z0/22k1z1l !

j~z1l2z2l !~z1l2z3l !~z1l2z2l2j!~z1l2z3l2j! J sgn~n l !1j→2j,k→2k

524p iTg2N~0!(
l
Ql~j!$2~2z1l2z2l2z3l !@~ in l2z0/21z1l !

21k2#

1@~z1l2z2l !~z1l2z3l !1j2#~ in l2z0/21z1l !%, ~B3!

where

Ql~j!5
sgn~n l !

~z1l2z2l !~z1l2z3l !@~z1l2z2l !
22j2#@~z1l2z3l !

22j2#
. ~B4!

The sgn~nl! in the summation overnl guarantees that
x5

~0!~q,0!5f1
~5!~q,0! is real.

To simplify our results, we define the variable
ih l5 in l2z0/21z1l . Whenunl u is large,h l'2n l . Three iden-
tities for the roots zil can be obtained by expanding
D(z1j,in l) in powers ofj, and then comparing the coeffi-
cients using Eq.~B2!:

~h1
21k2!~ in l2z1l !12ih lg

250, ~B5!

~z1l2z2l !~z1l2z3l !52g22h l
22k222ih l~ in l2z1l !,

~B6!

2z1l2z2l2z3l52 in l1z1l12ih l . ~B7!

The last identity can be also be rewritten as

z1l1z2l1z3l5z02 in l ~B8!

for the sum of the three roots.
Using these identities, our results forx3

~0!~q,0! through
x6

~0!~q,0! can be summarized as

f1
~3!~q,0!5f1

~4!~q,0!524p iTg2N~0!(
l
Ql~j!

3$~2z1l2z2l2z3l !~h l
21k22j2/2!

1@~z1l2z2l !~z1l2z3l !1j2# ih l%, ~B9a!

f1
~5!~q,0!524p iTg2N~0!(

l
Ql~j!

3$~2z1l2z2l2z3l !~h l
22k2!

1@~z1l2z2l !~z1l2z3l !1j2# ih l%, ~B9b!

f1
~6!~q,0!524p iTg2N~0!(

l
Ql~j!

3$~2z1l2z2l2z3l !~h l
21k21kj!

1@~z1l2z2l !~z1l2z3l !1j2# ih l%, ~B9c!

which are all real. The identity in Eq.~B9a! follows from the
symmetry of theb6 energies ask→2k.

Both x1
~0!~q,0! and x2

~0!~q,0! are formally divergent. This
divergence is removed by using the self-consistent equation
for the SDW order parameter,

geif652U
T

V (
l ,k

Gab6
↑↑ ~k,in l !

52p igeif6TUN~0!(
l

ih l sgn~n l !

~z1l2z2l !~z1l2z3l !
,

~B10!

which can be rewritten as

1

U
52p iTN~0!(

l

ih l sgn~n l !

~z1l2z2l !~z1l2z3l !
. ~B11!

In Eq. ~B10!, we have temporarily reinstated the phasesf6

to demonstrate how they cancel from the self-consistent
equation. The constant Coulomb interactionU can be re-
garded as the first term in an expansion ofU( k̂,k̂8) in a
series37 of ‘‘kubic harmonics.’’ Only thel50,m50 constant
term drives the SDW instability of Cr alloys.

When g50 andz050, the Matsubara sum in Eq.~B11!
can be evaluated by introducing the energy cutoffe0. If nl is
summed between6e0, then Eq.~B11! can be written as
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TN*5
2g

p
e0e

21/UN~0!, ~B12!

whereTN* is the Néel temperature of perfectly nested Cr, and
lng'0.577 is Euler’s constant. The cutoffe0 has precisely
the same significance as in BCS theory: quasiparticles are

only defined within the range6e0 of the Fermi energyeF .
Although undetermined within BCS theory and within our
model of itinerant antiferromagnetism,e0 is subject to the
constraintsTN*!e0!eF .

After separating the formally-divergent contributions
from f1

~1!~q,0! andf1
~2!~q,0!, we find

f1
~1!~q,0!5f1

~2!~2q,0!5
1

U
22p iTN~0!(

l
Ql~j!$~2z1l2z2l2z3l !@22ih ljk~ in l2z1l !1h l

2~2g21j21kj!

1g2~j222k2!1jk2~k2j!#1@~z1l2z2l !~z1l2z3l !1j2#@ ih l~2g
21j2!1kj~ in l2z1l !#%, ~B13!

where the first equality follows from shiftingk→k2q in the
sum of Eq.~16b!.

Since all physical results involve the combinations
x1,2

~0!~q,v!21/U, the divergent parts ofx1,2
~0!~q,0! never appear.

The self-consistent equation forg is equivalent to the expres-
sion

x1
~0!~0,0!1x3

~0!~0,0!2x5
~0!~0,0!2x6

~0!~0,0!5
1

U
.

~B14!

In fact, this identity produces the poles in the transverse and
longitudinal susceptibilities at the two SDW satellites.

Specializing to theC regime,k50 and the rootszil have
the analytic solutions

z1l52 1
2xl1

z0
4
, ~B15a!

z2l5
1
2 xl1

z0
4
, ~B15b!

z3l52 in l1
z0
2
, ~B15c!

xl522iAt l
21D2 sgn~n l !, ~B16!

where i t l5 in l2z0/4, and xl is defined so that
sgn Im(xl)52sgn~nl!. It follows that ih l5 in l2xl /22z0/4,

Ql~j!5
2 i sgn~n l !

xlh l~xl
22j2!~h l

21j2!
, ~B17!

and that the zero-frequency susceptibilities can be rewritten
as

f1
~1!~q,0!1f1

~4!~q,0!5f1
~2!~q,0!1f1

~3!~q,0!

5
1

U
22p iTN~0!~2D21j2!

3(
l

sgn~n l !

xl~xl
22j2!

, ~B18a!

f1
~5!~q,0!5f1

~6!~q,0!522p iTN~0!D2(
l

sgn~n l !

xl~xl
22j2!

.

~B18b!

Since the divergent HF susceptibilities always appear in the
combinationsx1

~0!~q,v!1x4
~0!~q,v! and x2

~0!~q,v!1x3
~0!~q,v!,

no further relations are needed.

APPENDIX C

In this appendix, we evaluate the imaginary HF suscepti-
bilities f 2

( i )~q,v!, which are defined by analytically continu-
ing the susceptibilitiesx i

(0)~q,ivn!,

x i
~0!~q,v1 i«!5f1

~ i !~q,v!1 if2
~ i !~q,v!, ~C1!

as«→01. The formalism used in this section was originally
developed for superconductivity by Ambegaokar and
Tewordt,22 and later applied to theC dynamics by Liu.12

Each HF susceptibility may be written as a general sum
over n l :

x i
~0!~q,ivn!52T(

l
Pi~ in l ,in l2 ivn ;q!

5T(
l
E dv1

2p E dv2

2p

3
ai~v1 ,v2!

~v12 in l !~v22 in l1 ivn!
, ~C2!

with the spectral densityai~v1,v2! defined by

ai~v1 ,v2!5Pi~v11 i«,v21 i«!2Pi~v11 i«,v22 i«!

2Pi~v12 i«,v21 i«!1Pi~v12 i«,v22 i«!.

~C3!

Performing the sum overnl then yields

x i
~0!~q,ivn!5E dv1

2p E dv2

2p
ai~v1 ,v2!

f ~v1!2 f ~v2!

v12v22 ivn
,

~C4!

where f (z)51/@exp(bz)11# is the Fermi function. After
substitutingivn→v1 i«, we obtain

f2
~ i !~q,v!5 1

2 E dv1

2p
ai~v1 ,v12v!@ f ~v1!2 f ~v12v!#,

~C5!

which implies that the imaginary susceptibilities vanish
whenv50.
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The spectral density depends on the behavior of the roots
zil as in l→v1 i«. To linear order in«,

zil→zi~v1 i«!5zi~v!1D i , ~C6a!

D i5 i«S dv

dzD
21U

z5zi ~v!

. ~C6b!

The real hybridized quasiparticle energieszi~v! are defined

so thatdz1/dv>0 anddz2,3/dv<0. When all the solutions
are real,D15i«1 andD2,352i«2,3, where sgn~«i!5sgn~«!. In
the top energy gap,z1 andz3 are complex andD1,3 contain
both real and imaginary parts. Similarly, in the lower-energy
gap,z1 and z2 are complex, andD1,2 contain both real and
imaginary parts.

As in Appendix B, we usex5
~0!~q,ivn! to demonstrate the

procedure for finding the spectral density:

x5
~0!~q,ivn!52

T

V (
l ,k

Gab1
↑↑ ~k,in l !Gab1

↑↑ ~k1q,in l 8!

52
Tg2

2
N~0!(

l
E dz

~ in l2z0/22k1z!

D~z,in l !

~ in l 82z0/22k1z1j!

D~z1j,in l 8!
1j→2j,k→2k, ~C7!

wheren l 85n l2vn . So after completing the contour in the upper-half-plane, we find

x5
~0!~q,0!52p iTg2N~0!(

l
H ~ ih1l2k!~ ih1l 82k1j1z1l2z1l 8!

~z1l2z2l !~z1l2z3l !~z1l2z1l 81j!~z1l2z2l 81j!~z1l2z3l 81j!
u~n l !

1
~ ih1l2k2j1z1l 82z1l !~ ih1l 82k!

~z1l 82z2l 8!~z1l 82z3l 8!~z1l 82z1l2j!~z1l 82z2l2j!~z1l 82z3l2j!
u~n l 8!

1
~ ih2l2k!~ ih2l 82k1j1z2l2z2l 8!

~z2l2z1l !~z2l2z3l !~z2l2z1l 81j!~z2l2z2l 81j!~z2l2z3l 81j!
u~2n l !

1
~ ih3l2k!~ ih3l 82k1j1z3l2z3l 8!

~z3l2z1l !~z3l2z2l !~z3l2z1l 81j!~z3l2z2l 81j!~z3l2z3l 81j!
u~2n l !

1
~ ih2l2k2j1z2l 82z2l !~ ih2l 82k!

~z2l 82z1l 8!~z2l 82z3l 8!~z2l 82z1l2j!~z2l 82z2l2j!~z2l 82z3l2j!
u~2n l 8!

1
~ ih3l2k2j1z3l 82z3l !~ ih3l 82k!

~z3l 82z1l 8!~z3l 82z2l 8!~z3l 82z1l2j!~z3l 82z2l2j!~z3l 82z3l2j!
u~2n l 8!J 1j→2j,k→2k, ~C8!

where u(x)51 for x>0 and 0 otherwise. This defines the
functionP5( in l ,in l 8) from Eq. ~C2!.

To perform the analytic continuation in Eq.~C3!, we use
the relationu(n l→2 iv1«)5u~«!. For every possible qua-
siparticle transition betweenzi5zi~v1! and z̄I5zI~v2! with
momentum change2j, the spectral density contains ad
function d(zi2 z̄I1j). Because of the sign difference be-
tweenD1 and D2,3, transitions involvingz1 or z̄1 have an
extra minus sign. So we find that

a5~v18 ,v28!522p2g2N~0!(
i51

3

(
I51

3

MiMId~zi2 z̄I1j!

3
~v11zi2k!~v21 z̄I2k!

~zi2zj !~zi2zk!~ z̄I2 z̄J!~ z̄I2 z̄K!

1j→2j,k→2k, ~C9!

whereMi521 if i51 and11 otherwise,v i85v i1z0/4, and

$ i , j ,k%5$I ,J,K%5$1,2,3%.

Due to the shift in variablesv i8 , the rootszi~v1! andzI~v2!
are evaluated withz050. When the transition between bands
i and I is forbidden, one or both ofzi and z̄I are complex,
and thed function vanishes.

Although the real parts ofx1
~0!~q,v1i«! andx2

~0!~q,v1i«!
are formally divergent, their spectral densities and imaginary
parts are well defined. The spectral densities may be summa-
rized as follows:

ai~v18 ,v28!522p2N~0!(
i51

3

(
I51

3

MiMId~zi2 z̄I1j!

3
K~v1 ,zi ,v2 ,z̄I !

~zi2zj !~zi2zk!~ z̄I2 z̄J!~ z̄I2 z̄K!

1j→2j,k→2k, ~C10!

where
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K11K45~v11zi2k!~v11zi1k!~v22 z̄I !~v21 z̄I2k!,
~C11a!

K21K35~v21 z̄I2k!~v21 z̄I1k!~v12zi !~v11zi2k!,
~C11b!

K35g2~v21 z̄I2k!~v21 z̄I1k!, ~C11c!

K45g2~v11zi2k!~v11zi1k!, ~C11d!

K55g2~v11zi2k!~v21 z̄I2k!. ~C11e!

K65g2~v11zi2k!~v21 z̄I1k!. ~C11f!

The results fora1(v18 ,v28) anda2(v18 ,v28) have been sim-
plified by combining them with a3(v18 ,v28) and
a4(v18 ,v28).

The imaginary susceptibilities of Eq.~C5! involve inte-
grals of the form

E dvF~v !d@zi~v !2zI~v2v!1j#5
F~v !

udgiI /dvuU
v i I

,

~C12!

where

giI ~v,v!5zi~v !2zI~v2v!, ~C13!

and v i I satisfies the momentum-conservation condition
giI (v i I ,v)52j. Whenz050, dgiI /dv can be evaluated us-
ing the relation forzi(v),

dzi
dv

5
v~v1zi !

22k2zi
zi~v1zi !

22k2v
. ~C14!

Hence the imaginary susceptibilities can be written

f2
~ i !~q,v!52

p

2
N~0!g2(

v i I
M iMI

3@ f ~v11z0/4!2 f ~v12v1z0/4!#
1

udgiI /dv1u

3
K~v1 ,zi ,v12v,z̄I !

~zi2zj !~zi2zk!~ z̄I2 z̄J!~ z̄I2 z̄K!
U

v15v i I

1j→2j,k→2k, ~C15!

each of which involves a sum over all possible quasiparticle
transitions.

In theC phase, we adopt the following convention for the
rootszi(v):

z1~v !5za~v ![sgn~v !AD21v2, ~C16a!

z2~v !5 H 2v,
2za~v !,

v.0
v,0, ~C16b!

z3~v !5 H 2za~v !,
2v,

v.0
v,0. ~C16c!

TheC spectral densities can then be written

a1~v18 ,v28!1a4~v18 ,v28!

5a2~v18 ,v28!1a3~v18 ,v28!

5
p2N~0!

2zaz̄a
~~v12v2!

222D22j2!

3 (
m1561

(
m2561

d~m1za1m2z̄a1j!, ~C17a!

a5~v18 ,v28!5a6~v18 ,v28!

52
p2D2N~0!

2zaz̄a

3 (
m1561

(
m2561

d~m1za1m2z̄a1j!, ~C17b!

whereza5za~v1! and z̄a5za~v2!.
These spectral densities can be simplified even further

using

)
m1561,m2561

~m1za1m2z̄a1j!54~v22j2!~v2v1!

3~v2v2!, ~C18!

wherev6 are the roots defined in Eq.~A6!. So the sum over
d functions can be performed exactly,

(
m1561

(
m2561

d~m1za1m2z̄a1j!

58zaz̄aujudF )
m1561,m2561

~m1za1m2z̄a1j!G
52zaz̄aujud@~v22j2!~v2v1!~v2v2!#. ~C19!

Then Eq.~A6! implies

a1~v18 ,v182v!1a4~v18,v182v!62a5~v18 ,v182v!

52p2N~0!@u~j22v2!1u~v22j224D2!#

3S j214D22v2

j22v2 D 61/2

$d~v12v1!1d~v12v2!%,

~C20!

which is easily transformed into the form of Eq.~34! for the
imaginary HF susceptibilities.

APPENDIX D

This appendix summarizes the symmetry relations be-
tween the HF susceptibilities. The frequency dependence of
each real susceptibility is evaluated from the Kramers-
Kronig relation of Eq.~21!. After defining the full suscepti-
bility by

x i
~0!~q,v!5f1

~ i !~q,v!1 if2
~ i !~q,v!, ~D1!

and using Eqs.~C11! and ~C15! for the imaginary suscepti-
bilities, we find

x1
~0!~2q,2v!5x2

~0!~q,v!* , ~D2a!
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x3
~0!~2q,v!5x3

~0!~q,v!, ~D2b!

x4
~0!~2q,v!5x4

~0!~q,v!, ~D2c!

x3
~0!~q,2v!5x4

~0!~q,v!* , ~D2d!

x4
~0!~q,2v!5x3

~0!~q,v!* , ~D2e!

x5
~0!~2q,2v!5x5

~0!~q,v!* , ~D2f!

x6
~0!~q,2v!5x6

~0!~q,v!* . ~D2g!

In theC regime,

x i
~0!~2q,v!5x i

~0!~q,v! ~D3!

for each correlation function.

APPENDIX E

In this appendix, we demonstrate that the expressions

12UC7~q,v!50 ~E1!

have solutions at the transverse and longitudinal mode fre-
quenciesvt~q! andvl~q!. Since the imaginary transverse and
longitudinal susceptibilitiesC72~q,v! vanish atvt andvl ,
respectively, it remains to show that the real part of Eq.~E1!
is satisfied or that

U@C71~q,v t,l !2C71~q,0!#

512UC71~q,0!52p iTUN~0!~2D21j272D2!

3(
l

sgn~n l !

xl~xl
22j2!

, ~E2!

where the right-hand side was evaluated using Eqs.~B15!.
Now we must evaluate the left-hand side using the Kramers-
Kronig relation.

In the transverse case, the left-hand side of Eq.~E2! can
be written

J25C21~q,uju!2C21~q,0!

5 1
2 j2N~0!RePE

2`

`

dv8
1

v8A4D21j22v82Aj22v82

3$ f ~v18 1z0/4!1 f ~v82v18 1z0/4!%, ~E3!

wherev18 5v1(v8). This integral is evaluated on the con-
tour C drawn in Fig. 14. Since the residues at the poles on
the real axis all vanish, only the poles in the upper-half-plane
contribute toJ2 . These poles are produced by the Fermi
functions at the points

v8

2
6

j

2 S 4D21j22v82

j22v82 D
1/2

5 in l2
z0
4

[ i t l , ~E4!

which has four sets of roots given by

ul65 i t l2d6 , ~E5a!

v l65 i t l1d6 , ~E5b!

d65A2t l
21j262i jt l r , ~E6!

wherer5 ix l /2t l , sgn Im~d6!5sgn~nl!, andxl is defined by
Eq. ~B16!. As j→0, ul6→0 andv l6→2i t l . Notice also that
ul1(2j)5ul2~j! andv l1(2j)5v l2~j!.

Using sgn lm~v l6!5sgn~nl! and sgn Im~ul6!52sgn~nl!,
J2 can be written

J252j2N~0!pT Im (
l50

`

~Al1B2 l21!, ~E7!

where the residues atv l6 andu2 l2 l ,6 are

Al5
2jt l~t l1 i jr2 id2!

4t l
2~2t l

22d2
2 !~t l1 i jr2 id2!214j2D2~ i t l1d2!2

1j→2j , ~E8a!

B2 l215
2jt l~t l1 i jr1 id2!

4t l
2~2t l

22d2
2 !~t l1 i jr1 id2!214j2D2~ i t l2d2!2

1j→2j. ~E8b!

After some algebra, we find that the sum of residues is given by

FIG. 14. The contourC used to evaluate the integralJ in Ap-
pendix E.
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Al1B2 l215
i

2

t l r

j~j22i t l r !

1

t l
21D2 1j→2j

5
i

4

1

At l
21D2

1

t l
21D21j2/4

, ~E9!

so that

J25
j2

2
N~0!pT (

l52`

`
1

At l
21D2

1

t l
21D21j2/4

52p iTN~0!j2(
l

sgn~n l !

xl~xl
22j2!

, ~E10!

which is the desired result.
The longitudinal case is very similar. In Eq.~E3!, the

prefactorv t
25j2 must be replaced byv l

25j214D2. Other-
wise, J1 is identical toJ2 , and the steps described above
produce

J152p iTN~0!~j214D2!(
l

sgn~n l !

xl~xl
22j2!

, ~E11!

in agreement with Eq.~E2!.
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