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We determine the position and shape of the melting line in a layered superconductor, emphasizing the
importance of electromagnetic interactions in the vortex system. In the limit of vanishing Josephson coupling
we obtain a generic reentrant low-field melting line. Finite Josephson coupling pushes the melting line to
higher temperatures and fields and a line shapeBm}(12T/Tc)

3/2 is found. We construct the low-field phase
diagram including melting and decoupling lines and discuss various experiments in the light of our results.
@S0163-1829~96!02925-6#

Since its proposal in 1988,1 vortex-lattice melting in bulk
type-II material has become a central topic in the phenom-
enology of high-temperature superconductors. The order, po-
sition, and shape of the transition have been investigated
theoretically2 as well as experimentally3 by a large
number of authors. Most recently, the main interest
concentrates on the phase diagram of the strongly layered
Bi 2Sr2Ca1Cu2O8 ~BiSCCO! superconductor which is in-
vestigated by means ofmSR,4 neutron scattering,5 supercon-
ducting quantum interference device magnetometry,6 and
Hall-sensor arrays,7 probing the melting and/or decoupling
transition in these materials. The most interesting behavior is
found in the low-field part of the phase diagram withB,1
kG, where the electromagnetic interactions between the lay-
ers becomes relevant, and it is the purpose of this paper to
derive and analyze the vortex-lattice melting transition in
this regime, taking full account of electromagnetic coupling.

The importance of electromagnetic interactions, adding to
the stiffness of individual vortex lines, has been realized be-
fore within the context of vortex-lattice melting in the dilute
limit,9 where the transition line exhibits a reentrant behavior
~lower branchBm

l of the melting line, see Fig. 1!. As we will
show below, the electromagnetic interaction also influences
the behavior of the upper branchBm

u of the low-field melting
line and even may change its shape from the usualBm(T)
}(12T/Tc)

2 behavior to a new power lawBm(T)
}(12T/Tc)

3/2 within a large part of the phase diagram —
this is one of the central results of this paper.

Our analysis below is based on the continuum elastic de-
scription of the vortex lattice combined with the Lindemann
criterion, stating that the lattice will undergo a melting tran-
sition once the mean thermal displacement^u2& th

1/2 becomes
comparable to the lattice spacingao'(Fo /B)

1/2,
^u2& th

1/2/aouTm ,Bm
'cL . The Lindemann numbercL is usually

chosen to be a constant of ordercL'0.120.3. According to
Ryu et al.,2 the Lindemann number undergoes some varia-

tion in the low-field range discussed here, withcL changing
by a factor 2 while the magnetic field changes by two orders
of magnitude.8 Since only the square~rather than the usual
fourth power! of the Lindemann number enters the weak-
field result, this drift incL is less important. Summarizing,
though not rigorous, the Lindemann-type melting scenario
has proven very useful and reasonably accurate in predicting
the positions of first-order melting transitions in general, and
the line shape of the vortex-lattice melting transition in par-
ticular.

A well-known limiting case, where strong fluctuations
due to dimensional reduction drive a vortex-lattice melting
transition, is the superconducting film@two-dimensional~2D!
dislocation-mediated Kosterlitz-Thouless melting, see Refs.
10 and 11# and we will begin our analysis with this elemen-
tary building block of a layered superconductor. Next, we
study a layered system with electromagnetic coupling and
derive the shape of the reentrant melting line in this limit.
Finally, we account for the Josephson interaction between
the layers producing a finite anisotropy parameter
«25m/M,1, wherem andM denote the effective in-plane
andc-axis masses. Our results are illustrated in Fig. 1, where
we show the shape of the vortex-lattice melting line as it
evolves from the 2D isolated layer, to the electromagneti-
cally coupled system of layers, to the Josephson coupled
bulk anisotropic superconductor.

Our main task is the calculation of the mean-squared ther-
mal displacement12

^u2& th'E d3k

~2p!3
T

c66K
21c44~k!kz

2 , ~1!

with the shear modulusc66 given by

c6655A
p

6

l

ao
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2 , ao,l,

~2!
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and the dispersive tilt modulusc44(k) consisting of a bulk
term c44

o (k) and a single vortex contributionc44
c (kz),

c44(k)5c44
o (k)1c44

c (kz), with
13

c44
o ~k!5

«o
ao
2

4pl2/ao
2

11~l2/«2!K21l2kz
2 , ~3!

c44
c ~kz!'

«o
2ao

2 F«2lnS l2/«2j2

11~l2/«2!K BZ
2 1l2kz

2D
1

1

l2kz
2lnS 11

l2kz
2

11l2K BZ
2 D G ~4!

@in ~1! we neglect a second contribution to^u2& th involving
lattice compression and keep only the main term#. Here,
«o5(Fo /4pl)2 denotes the basic energy scale of the con-
tinuum elastic theory,Fo5hc/2e is the flux quantum,l
denotes the planar London penetration depth, andj is the
planar coherence length. The second term in the single vor-
tex tilt c44

c is due to the electromagnetic coupling between
the layers, and is the only term inc44 surviving the limit
«→0 ~layer decoupling!. The electromagnetic contribution
to the tilt modulus is strongly dispersive and produces the

large stiffness« l'«o/2 of the vortex lines in the long-
wavelength limitkz,1/l. With increasingkz the electro-
magnetic stiffness decays}1/l2kz

2 and the line tension
crosses over to the well-known result« l'«2«o for the an-
isotropic superconductor askz increases beyond 1/«l ~note
that this residual tension is due to the Josephson coupling
and is relevant only for«l.d, whered denotes the layer
separation!. The expression given in~4! is valid for small
displacements, in the elastic regime. For large displacements
ukz.1 the logarithm in the second term of~4! should be cut
on 2l/u rather thanlkz .

14 In our analysis below we then
replace the logarithm by the factorl2kz

2/(11bl2kz
2) with

b51/ln(114l2/cL
2ao

2), producing a smooth interpolation
between the hard and soft tilt modes at large and small wave-
lengths, respectively.

We start with the analysis of anindividual layer ~we use
the definitionl2/d5ls

2/ds , with ls andds the penetration
depth and thickness of the superconducting layer!. In two
dimensions a scenario based on the unbinding of dislocation
pairs leads to a continuous Kosterlitz-Thouless type melting
transition10,11 at Tm

2D'Aao
2dc66/2A3p, where the numerical

A'0.420.75 accounts for the renormalization of the shear
modulus close to the transition. For high fugacities the tran-
sition turns first order,15 and accurate results for the melting
temperature are known from Monte Carlo simulations of the
2D Coulomb gas problem; see, e.g., Caillolet al.,16 who find
A'0.62. It is convenient to try reproducing this result within
our simple Lindemann approach: dropping the tilt energy in
~1!, the integral overkz provides a factor 2p/d and cutting
theK integration on a few lattice spacings we obtain the ratio
^u2& th /ao

2'T lna/2pc66dao
2 . Choosing the cutoff parameter

a'3 and a Lindemann numbercL5(A lna/A3)1/2/2p'0.1
we recover the exact expression for the melting temperature
Tm
2D . The high-field part (ao,l) of the melting line is field

independent,

Tm
2D'

«od

70
, ~5!

and using parameters typical for the layered high-Tc super-
conductors, Tc'100 K, l2(T)'l0

2/(12T2/Tc
2) with

l0'1800 Å, andd515 Å, we obtain«o(T50)d'103 K
and Tm

2D'15 K. For a 2D film, the low-field limit
(ao.leff52l2/d) of the shear modulus decays
algebraically17 rather than exponentially,c66'0.46«oleff /
ao
3}B3/2, and we obtain the low-field branch of the 2D melt-
ing line in the form~see also Ref. 11!

Bm
2D'

Fo

leff
2 S 37T«od

D 2. ~6!

The result for the melting line of an isolated layer is illus-
trated in Fig. 1~dashed line!.

Next we consider a finiteelectromagnetic couplingbe-
tween the layers while keeping«50 ~no Josephson cou-
pling!. In the high-field regime (ao,l) the shear term in~1!
dominates over the tilt energy and we recover the field inde-
pendent 2D result~5!. For small fields withao.l the tilt
energy becomes relevant and the Lindemann criterion reads

FIG. 1. Low-field phase diagram of a strongly layered supercon-
ductor. Reduced unitsb5B/(Fo /l0

2) and t5T/Tc have been used
(cL50.1 and parameters appropriate for BiSCCO, see text, have
been chosen!. The dashed line shows the result for the isolated 2D
layer. The solid lines illustrate the 3D bulk results for anisotropy
parameters «50 ~only electromagnetic coupling!, «51/500,
1/150, and 1/50. The dotted line tracesb(t)5B/@Fo /l

2(t)#. The
inset shows a sketch of the phase diagram comprising melting and
decoupling lines. Within our scheme we cannot decide between the
dashed (Bdc

em collapsed ontoBdc
em,u for Tm

2D,T,Tem) and dash-
dotted scenaria for the phase boundaries.
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cL
2'

2T

«od

l2

ao
2 F 1

4pd
ln~114pdb!1

d

l~4pd!1/2G , ~7!

with d52c66l
2/«o . The first term originates from the soft

tilt modes withkzl.1. The second term involves the long-
wavelength modes hardened by the electromagnetic cou-
pling, and becomes relevant only at very small fields
ao /l.2 ln(l/d), where the shear modulus is exponentially
small,d}exp(2ao /l). Result~7! provides a lower branch of
the melting line which is limited by soft shear and hard tilt,

Bm
em,l~T!'

Fo

l2

1

4 F lnS 4pcL
2

~3p!1/4
«ol

T D G22

, ~8!

as well as a tilt limited upper branch

Bm
em,u~T!'

Fo

l2

cL
2

2b

«od

T
}S 12

T2

Tc
2D 2. ~9!

The two branches merge nearTc ,

12
Tx
Tc

'
bG 2D

4cL
2 F lnS 2p~2b!1/2

~3p!1/4
cL

AG 2D

l0

d D G22

, ~10!

and no solid phase can exist at high temperatures beyond
Tx . Using typical parameters for the layered high-Tc mate-
rials and adopting a valuecL'0.1 for the Lindemann num-
ber we findTx close toTc , 12Tx /Tc'0.05@in ~10! we have
introduced the 2D Ginzburg numberG 2D'Tc /«o(T50)d
'0.1; the logarithms in~8! and ~10! take typical values
around 5–6#. The reentrant melting line defined by~8! and
~9! is illustrated in Fig. 1: The electromagnetic coupling of
the layers favors the solid phase and the low-field melting
line develops the characteristic ‘‘noselike’’ shape of a 3D
system. Note that the point of reentrance ends up in the criti-
cal region close toTc . Since our approach accounts for the
fluctuations of the phase field via the thermal motion of vor-
tices but neglects amplitude fluctuations of the order param-
eter, our analysis breaks down in this regime.

In the final step we account for theJosephson coupling
between the layers producing a finite anisotropy parameter
«.0. This additional coupling becomes relevant when
ao ,l.d/« and favors the solid phase, thus pushing the melt-
ing line further towards higher temperatures and fields.
Evaluating the Lindemann criterion in the low-field regime
(ao.l) we recover the previous result~7! with the modifi-
cation that soft tilt modes are cut on 1/«Abl instead of
p/d, leading to the replacement of ln( . . . )/4pd by
(dAb/p«l)@ ln( . . . )/4pbd11#. The lower branch of the
melting line remains unaffected, whereas the upper branch of
the low-field melting line takes the form

Bm
em,J~T!'

Fo

l2

pcL
2

4Ab

««ol

T
}S 12

T2

Tc
2D 3/2. ~11!

The crossing point of the lower and upper branches of the
melting line is shifted towards higher temperatures,

12
Tx
Tc

'
1

2 H AbG2D

pcL
2

d

«l0
F lnS 4Ab

~3p!1/4« D G22J 2. ~12!

For «,d/l0 the lineBm
em,J goes over into the generic melt-

ing line Bm
em,u as the temperature drops below

Tem'Tc@12b(«pl0 /d)
2#1/2. For the opposite case, where

«.d/l0 , the generic lineBm
em,u is completely hidden, and

Bm
em,J merges into the well-known bulk anisotropic melting

line Bm
J as the field grows beyondFo /l

2: At these fields the
tilt energies are dominated by the dispersive bulk term
c44
o '4p«2«o /ao

4K2 @see Eq.~3!#, and the Lindemann crite-
rion provides the well-known result

Bm
J ~T!'

Fo

l24pcL
4

«2«o
2l2

T2
}S 12

T2

Tc
2D 2. ~13!

At large fields (ao,d/«,l0) the 2D result~5! is recovered.
The most interesting result is the line shape

Bm
em,J;(12T/Tc)

3/2, Eq. ~11!, describing the low-field/
high-temperature melting in a Josephson-coupled layered or
highly anisotropic superconductor~small parameter
«,d/l0). This result is due to the electromagnetic coupling
which dominates over the bulk-dispersive tilt modulusc44

o as
well as over the single-vortex line tension«2«o due to
Josephson-coupling in this regime. The substitution of the
old result ~13! by the new expression~11! is particularly
relevant in the strongly layered superconductors such as
BiSCCO: The (12T/Tc)

3/2 power law is valid provided that
d/pAb«,l,ao . Assuming«;1/150, the second restric-
tion impliesT.0.4Tc . In less anisotropic materials, such as
YBCO with «'1/5, this condition is much more stringent
and the upper branch of the melting line is always described
by the old result, Eq.~13!. Note, however, that in YBCO the
suppression of the order parameter close to the upper critical
field Hc2

is relevant and the melting line cannot be described

in terms of a simple power law}(12T/Tc)
2; see Ref. 2,

Blatter and Ivlev, for details~in BiSCCO the melting line is
far belowHc2

and there is no suppression of the order pa-
rameter!.

It is instructive to compare the different low-field melting
lines as given by Eqs.~9!, ~11!, and~13!. A quick inspection
gives the ratioBm

em,u/Bm
J 5(d/l«cL)

2T/8pb«od, which is of
order unity taking the above parameters for BiSCCO and
using «51/150, a value often quoted in the litera-
ture.4,5 Similarly, Bm

em,J/Bm
J 5(d/l«cL)T/16AbcL«od

'a@T2/Tc(Tc2T)#1/2, where againa;1 if we use the
above parameters for BiSCCO. The comparison of experi-
mental data for the irreversibility or melting line with the
theoretical prediction is often used to extract an estimate for
the anisotropy parameter«, particularly in the strongly lay-
ered materials.4,5 Following up the above discussion we draw
attention to an important problem with this procedure: If the
anisotropy parameter is very small, say«,1/500, the~upper
branch of the! low-field melting line~where the comparison
theory/experiment is carried out! is dominated by the elec-
tromagnetic coupling and no anisotropy parameter can be
extracted. The analysis of the melting line can provide a
reliable estimate for the anisotropy parameter only if« is
large enough, such that either the bulk result~13! is valid or
the mixed electromagnetic/Josephson result~11! can be iden-
tified via its particular line shape.

In layered systems an additional thermodynamic transi-
tion takes the 3D bulk system into a system of decoupled 2D
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layers.13 The loss of interlayer coherence is due to strong
thermal fluctuations of the pancake vortices within the indi-
vidual layers, and the transition line can be estimated within
a Lindemann-type approach: decoupling occurs when the in-
terlayer phase correlator

^~dw!2&;
T

dao
4E d2K

K2

1

c66K
21c44d

22 ~14!

becomes of order unity. The conventional analysis based on
an intermediate anisotropy with«.d/l0 predicts a high-
field decoupling line in the solid at low temperatures
T,Tm

2D and a low-field decoupling line in the liquid for
T.Tm

2D @with c6650 in ~14!#. The shape follows from the
above criterion and takes the formBdc

J '(Fo«
2/

d2)(«od/70T)
n, with n52 (1) at low ~high! temperatures.

The situation changes when the anisotropy is large,
«,d/l0 . For fields B,Fod

2/«2l4 the decoupling line
takes the formBdc

em'(Fo /l
2)(«od/70T) ~see also Ref. 18!.

Within the intermediate temperature regimeTm
2D,T,Tem

this expression coincides~up to a numerical factor of order
unity! with the one for the melting lineBm

em,u , see Eq.~9!. At
high temperaturesT.Tem decoupling occurs in the liquid
phase followingBdc

J as given above. Whether the decoupling
line collapses with the melting line in the intermediate re-
gimeT m

2D,T,Tem or marks a separate transitionbelow the
melting line cannot be decided on the basis of the above
arguments. In both cases, however, the resulting phase dia-
gram~see inset of Fig. 1! looks markedly different from that
predicted by the previous analyses.

Recently, a first-order phase transition has been observed
in the low-field (B,Fo /l

2) regime of a strongly layered
BiSCCO superconductor.7 The jump in the magnetization
observed at the transition can be associated either with a
vortex-lattice melting- or with a layer-decoupling transition.
Fits using a (12T/Tc)

1.55 ~melting! or a (Tc /T21) ~decou-
pling! power-law behavior produce a satisfactory agreement
with the data over most of the measured temperature
interval.7 Our result~11! then is in good agreement with the
measured power-law behavior based on the melting scenario.
Whether the observed transition indeed can be attributed to a
first-order melting transition remains to be shown, however.

In conclusion, we have presented Lindemann-based esti-
mates for the position and shape of the melting line in a
layered superconductor, accounting for the electromagnetic
interaction between vortices. Results for the melting line
have been obtained in the low-field regimeB,Fo /l

2: In
the absence of Josephson coupling between the layers we
have found a generic reentrant melting line independent of
the material anisotropy. Including a finite Josephson cou-
pling, the upper branch of the melting line is pushed out to
higher temperatures and fields and takes on a characteristic
line shape}(12T/Tc)

3/2. We have discussed the influence
of electromagnetic interactions on the decoupling line, and
have drawn attention to the quantitative and possible quali-
tative changes in the low-field phase diagram of layered su-
perconductors.
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