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The recently discovered ‘‘ladder’’ compound LaCuO2.5 has been found to admit hole doping without
altering its structure of coupled copper oxide ladders. While susceptibility measurements on the parent com-
pound suggest a spin gap and a spin-liquid state, NMR results indicate magnetic order at low temperatures.
These seemingly contradictory results may be reconciled if in fact the magnetic state is near the crossover from
spin liquid to antiferromagnet, and we investigate this possibility. From a tight-binding fit to the valence band
structure computed in the local density approximation, we deduce that the strength of the interladder hopping
term is approximately half that of intraladder hopping, showing that the material is three-dimensional in
character. A mean-field treatment of the insulating magnetic state gives a spin-liquid phase whose spin gap
decreases with increasing interladder coupling, vanishing~signaling a transition to the ordered phase! at a value
somewhat below that obtained for LaCuO2.5. The introduction of an on-site repulsion term,U, to the band
scheme causes a transition to an antiferromagnetic insulator for rather small but finite values ofU, reflecting
the predominance of~one-dimensional! ladder behavior, and an absence of any special nesting features.
@S0163-1829~96!03833-7#

I. INTRODUCTION

One of the interesting and challenging subfields of low-
dimensional quantum magnetism which has emerged from
the wealth of activity directed at improving the understand-
ing of high-temperature superconductors is that of ladder
systems.1 These consist ofn parallel, interacting chains of
S5 1

2 ions, which can be considered as a spin ladder withn
legs, and rungs ofn21 bonds. The ladders have only weak
mutual interactions. A combination of experimental and
theoretical efforts has in the past few years produced signifi-
cant advances in the realization and understanding of the
properties of spin ladders, some of which are not at all intui-
tive.

Ladder cuprates emerged first with the discovery by Hiroi
et al.2 that in the series of materials SrnCun11O2n11 it is
possible to create two-dimensional, stoichiometric copper
oxide planes of composition Cun11 O2n11 by removing
from the uniform CuO2 plane parallel, equally-spaced lines
of oxygen atoms. It was pointed out by Riceet al.3 that be-
cause these shear defects give rise to only weak, ferromag-
netic interactions between neighboring copper spins, the re-
maining strips of CuO2 plane will appear as isolated
(n11!-leg ladders of antiferromagnetically coupled spins.
These authors proposed that the systems should then illus-
trate the contrasting, and now well-established properties of
even- and odd-leg ladders, that the former show a gap to spin
excitations~spin gap! with consequent exponential spatial
decay of correlations, while the latter are gapless with
power-law decays. Subsequent susceptibility4 and nuclear
magnetic resonance~NMR! ~Ref. 5! experiments have amply
borne out this conjecture.

The theoretical understanding of ladders has been in large
part based on numerical techniques, which are particularly
well suited to systems of such restricted dimensionality, and
this is reviewed in Ref. 1. The first indications that the two-
leg ladder should exhibit a spin gap came from numerical
work,6,7 and a variety of methods has since been applied to

investigate the spin gap and spin correlations, and the prop-
erties of multileg ladders.8–10These studies not only confirm
the picture of the spin system emerging from analytic
approaches11 valid in certain limits, but provide the most
accurate information available on the properties of this class
of strongly-correlated systems.

The second proposal concerning the properties of ladder
compounds made in Ref. 3, that the doped ladder should
become superconducting with ad-wave order parameter, has
proved harder to test for materials reasons. However, the
compound LaCuO2.5, recently synthesized by Hiroi and
Takano,12 has been found to admit hole doping without al-
tering its structure of coupled, two-leg copper oxide ladders,
and so constitutes the first case in which one may seek
doping-dependent behavior analogous to that of the high-
temperature superconductors. The high-pressure phase of
La12xSrxCuO2.5 is derived from a cubic, three-dimensional
perovskite structure. The absence of oxygen atoms along
lines leaves two-leg ladders which relax from a relative angle
of 90° in the primitive structure to 62° in the depleted one.
The material is then orthorhombic~space groupPbam!, with
four copper atoms per unit cell, and may be considered as a
set of ladders oriented along thez axis, and periodically ar-
rayed in thex andy directions, as shown in Fig. 1~a!. This
structure is not altered with Sr doping tox50.2. The inter-
ladder coupling in the (x,y) plane arises because each oxy-
gen atom at the outside edges of the two-leg ladders, which
is part of the planar CuO4 unit, is also effectively apical to a
copper atom in a neighboring ladder, contributing to a finite
transfer integral.

Susceptibility measurements12 on the parent compound up
to temperatures of 500 K, interpreted by a formula proposed
by Troyeret al.,13 suggest the presence of a spin gap in the
excitation spectrum, and therefore a spin liquid state. In con-
trast, NMR studies of the same samples14 indicate that the
system orders antiferromagnetically at low temperatures, be-
low an apparentTN.117 K. Since the spin susceptibility
should evolve continuously as one passes through the quan-
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tum critical point separating the spin-liquid state and the
state with long-range antiferromagnetic order, it is possible
that even in the latter, close to the quantum critical point, the
spin susceptibility will decrease substantially as the tempera-
ture is lowered. Such behavior may be difficult to distinguish
from that of a true spin liquid with a finite gap. Therefore it
is plausible that the seemingly contradictory experimental
results may be reconciled if the magnetic state is close to the
crossover from an antiferromagnet to the spin liquid. Here
we seek evidence, by examining the effects of interladder
interactions, that the system is indeed close to this quantum
critical point.

The outline of this paper is as follows. In Sec. II we
present a tight-binding fit to the local density approximation
~LDA ! band structure to extract the interladder hopping ma-
trix elements, and use these to obtain the superexchange in-
teractions. We consider in Sec. III the nature of the spin-
liquid ground state for ladders of spins coupled in both
orthogonal directions, using a mean-field approach to esti-
mate the location of the quantum critical point. In Sec. IV we
introduce a double-occupancy term to the tight-binding
bands, to investigate the degree of three-dimensional charac-
ter in the electronic structure as a result of interladder inter-
actions. Section V contains our conclusions and a brief dis-
cussion.

II. TIGHT-BINDING FIT TO THE LDA BAND STRUCTURE

The band structure of LaCuO2.5 has been computed by
Mattheiss,15 using the LDA method. Here we examine the
dispersion of only the highest occupied valence bands, and
use a tight-binding model based on the single, copper-based
orbital in each planar CuO4 unit within the ladder which lies
closest to the chemical potential: in the Cun11O2n11 strip
this is the antibonding, Cu-centered 3dx22y2 orbital. Restrict-
ing the set of hopping matrix elements to those between
nearby copper atoms, we obtain an effective one-band
model, albeit with four mixed levels~one from each Cu atom
in the unit cell!. These generate a complex of four bands,
which lie close to or cut the Fermi energy. The complex is
half-filled in the undoped system, and well separated from
other bands on the small energy scales of most physical in-
terest, so can be taken to determine the low-energy behavior
of the model. With this interpretation, one may deduce the
ratio t8/t, of inter- and intraladder atomic orbital overlap,
and thus estimate the ratioJ8/J of the magnetic interactions,
by using the superexchange result16 J.4t2/U.

The tight-binding Hamiltonian is

H52(
i j s

t i j cis
† cjs , ~1!

in which i and j each denote a pair (n,m), wheren labels the
unit cell, andm51, . . . ,4 thedifferent atoms within each
cell. The hopping matrix elementst i j may be taken to be
short ranged, and the maximal set which we need to achieve
a reasonable fit is illustrated in Fig. 1~b!. Starting from tight-
binding parameter fits in the two-dimensional CuO2
plane,17,18we choose the nearest-neighbor intraladder param-
eters,t r for hopping along a rung andtz for hopping along a

FIG. 1. ~a! Crystal stucture of the depleted perovskite
LaCuO2.5. Black and white spheres within the ladder units repre-
sent Cu and O atoms, respectively, and grey spheres represent Sr.
The material is viewed along the axis of the ladders (ẑ), which can
be seen to be rotated about this axis to a relative angle of 62°. In
any (x,y) plane each copper atom is bonded to a neighbor in the
same ladder by a rung bond, and to two copper atoms in neighbor-
ing ladders. The interladder couplings are through one oxygen atom
which is bonded as part of the square planar coordination in the
same ladder and is apical to a copper atom in the next ladder, and
through the single apical oxygen atom, which is bonded in the
ladder of the other neighbor. Allocation of antiferromagnetically
arranged spins to each ladder shows that the material can exist as an
unfrustrated antiferromagnet.~b! Schematic representation of
LaCuO2.5 to show the tight-binding parameters between Cu atoms
used to fit the LDA band structure.~c! Appearance of the four
inequivalent Cu atoms~black circles! in the unit cell. White circles
represent O atoms. The vectors for the two types of bond in the
(x,y) plane are r ( r̄ )5@0.5856a,2(1)0.2114b# and
s( s̄)5@1(2)0.5a,0.2886b#, where a.A2ap and b.2A2ap are
the lattice constants in thex and y directions, andap5c is the
lattice constant of the original, cubic perovskite structure~Ref. 12!.
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leg, to have the same valuet r5tz5t.0.4 eV. We use as the

next-nearest-neighbor parameterst r852 1
5t r and tz85 1

6tz for
hopping across a square plaquette in the ladder, and along
two leg bonds, respectively. Finally, we introduce a param-
eter ts for hopping from a copper atom on one ladder to its
neighbor on the adjacent ladder, and also the next-neighbor
analog ts8 for transfer between atoms on adjacent ladders
with a relative displacement of one leg bond. Because of the
low symmetry of the LaCuO2.5 structure, the Cu-~apical!
O-Cu interladder bond is far from straight, with the CuO5
pyramids quite irregular, and this distortion may allow a sub-
stantial value ofts . The role of each of the terms in the
fitting scheme will be illustrated below. The next-neighbor
parameterst r ,s,z8 are expected to be significantly smaller than
their direct counterparts, due to the short-range nature of the
overlaps, and the important parameter to fit will be the ratio
of ts to t r .

The Hamiltonian~1! may be expressed in matrix form in
reciprocal space as

H5(
ks

cks
† Hkcks , ~2!

wherecks
† 5(cks

1† ,cks
2† ,cks

3† ,cks
4†) is the vector of creation op-

erators

cks
m†5

1

AN(
n

eik–Rn,mcn,ms
† ~3!

for the Bloch states formed by separate linear combination of
thedx22y2 orbitals of each copper atom in the unit cell, and
k is a vector in the orthorhombic Brillouin zone. Setting the
lattice constantsa, b, andc to unity, the Hamiltonian matrix
is

Hk52S tz~kz! t̄ se
ikysy 0 t̃ re

2 ik• r̄

t̄ se
2 ikysy tz~kz! t̃ re

ik•r 0

0 t̃ re
2 ik•r tz~kz! t̄ se

ikysy

t̃ re
ik• r̄ 0 t̄ se

2 ikysy tz~kz!

D ,
~4!

wheretz(kz)52tzcoskz12tz8cos2kz, t̄ s52t̃ scos
1
2kx , in which

the factor cos12kx arises becausesx50.5, t̃n5tn12tn8coskz,
and the bond vectorsr ( r̄ ) and s( s̄) are shown in Fig. 1~c!.
The eigenvalue problem gives an equation quadratic in the
squares of the mode frequencies, whose solutions are the
dispersion relations of the four energy bands

ek56@ t̃ r
214t̃ s

2cos212kx64t̃ r t̃ scos
1
2kxcos

1
2ky#

1/2

22tzcoskz22tz8cos2kz . ~5!

This concise, closed form emerges because the exponential
factors e6(2ikyr y12ikysy) may be collected as 12cosky , as
r y1sy50.5. The general dispersion simplifies further for
particular values ofkx andky in the Brillouin zone: in par-
ticular, on the zone faces (kx ,ky5p), the last term in the
square root vanishes and the bands are doubly degenerate, as
required by the group-theoretical analysis of structures with
nonsymmorphic space groups.

The dispersions of the four bands are shown in Fig. 2~a!
for a series of high-symmetry lines in the orthorhombic Bril-
louin zone, and for the ratiots /t r50.4. The labeling of
points is shown in Fig. 2~c!, and their order is chosen to
match the results of Mattheiss.15 Also shown in the figure are
the energy spacings dictated by the choice of the tight-
binding parameters, as these vary between their maximum
and minimum values along the chosen directions.

For an isolated ladder alongẑ, i.e., with no interladder
interactions (t̃ s50), the bands would be completely flat
aroundGXSYG andZURTZ, with only a cosine dispersion
~mildly perturbed by thetz8 term! alongGZ. In this situation
there would be two doubly-degenerate bands around the
zone center and zone face, corresponding to the bonding and

FIG. 2. ~a! Illustration of the effects of the chosen band structure
parameters on the observed dispersion curves, for the choices

tz5t r5t50.4 eV, tz85
1
6tz , t r852

1
5t r , ts5

2
5t r , and ts85

1
5ts . ~b!

Tight-binding band structure for the parameter set which appears
closest to the LDA results of Mattheiss~Ref. 15!. Parameters are as

in ~a!, but with ts5
1
2t r . Details of the fitting procedure and param-

eter choices are given in the text.~c! Notation fork points in the
orthorhombic Brillouin zone.
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antibonding bands of each ladder. These features are re-
flected in the two branches observed in Fig. 2~a!. From Eq.
~5!, the separation of the degenerate bands along the zone
faceXSY and edgeURT is governed by the combinations
t r62t r8 and the splitting of the degeneracy alongGX, GY
andZU, ZT by the combinationsts62ts8 Considering first
the intraladder parameterstz , tz8 t r , andt r8 chosen from the
two-dimensional CuO2 plane, we find good agreement of the
tight-binding result with that from LDA. Particularly notable
is that the negative sign oft r8 and the relative magnitude
1
5t r , are required to reproduce the bands separations along
XSYandURT. There is no evidence that a value oft r dif-
ferent fromtz would improve the fit. The next-neighbor hop-
ping parameter along the ladder,tz8 appears only as an asym-
metry of the cosine dispersion alongGZ, and the value
chosen is in qualitative accord with the LDA result. That
CuO2 plane parameters remain appropriate for the ladder
confirms the predominantly local picture of the interactions
between copper sites. Turning to the band splitting at theG

andZ points, we find that the relatively large valuets5
1
2t r

@Fig. 2~b!# gives the best qualitative reproduction of the
bands crossing the chemical potential in the full LDA calcu-
lation by Mattheiss,15 but that the valuets5

2
5t r appears

closer to the results of a ‘‘12-parameter fit’’ illustrated in the
same reference. The difference of theG andZ splittings is
given rather well by the starting choice ofts85 1

5ts .
It is clear from Fig. 2 that the primary feature of the

dispersion remains that in thekz direction, i.e., along the
ladder. The Fermi surfaces for each band are determined
almost exclusively by this part of the dispersion, in that they
appear as sheets which are almost flat, perturbed little by the
t r and ts terms, and havekz as normal. At half-filling, the
lowest band is an exception to this situation, because part of
it is also filled close to theZ point. On doping with holes,
this region is rapidly emptied~below 5%! so that all four
Fermi surfaces are sheets parallel to the (kx ,ky) plane. Only
when the doping level reaches 20% does the chemical poten-
tial drop below the highest band in theGXSYG plane, caus-
ing a pocket to open at theG point for this band.

In summary, we find that a simple model of a single or-
bital per copper atom provides a good fit to the band struc-
ture. While there is scope for some variation in the choice of
intraladder parameters, with this level of agreement between
the tight-binding results and those of LDA it is not worth-
while to optimize further. We choose to work with the above
values of the intraladder hopping matrix elements, and with

the interladder overlapts5
1
2t r , bearing in mind that this lat-

ter will be close to the upper limit of the narrow range of
probable values. Estimating the superexchange interaction by
J8}4t82/U leads us to conclude that the interaction between
spins on neighboring ladders will have a magnitude
J8.0.25J, whereJ is the intraladder magnetic coupling of
both rung and leg spins. BecauseJ8 is an appreciable frac-
tion of J, it is clear that the spin interactions in LaCuO2.5will
have significant three-dimensional character.

III. MEAN-FIELD ANALYSIS
OF THE SPIN GROUND STATE

A mean-field analysis of the spin state for ladder systems
was introduced by Gopalanet al.,19 and in this section we

follow closely the treatment of these authors. They employed

a bond operator representation ofS5 1
2 quantum spins, used

initially20 to investigate dimerized spin phases in two-
dimensional systems, exploiting the fact that the topology of
the ladder favors dimerization, particularly when the spin
interaction,J, on a rung exceeds that on a leg,lJ. The
authors proceeded in the mean-field approximation to con-
sider first the properties of an isolated ladder as a function of
the interaction ratiol, then of periodic arrays of ladders in
two dimensions, and finally of an array of frustrated double
ladders of the type found in the SrCu2O3 system.

2 This ap-
proach can be considered to be exact in the limit where
l→0 and the spins form dimers on every rung, while its
accuracy will diminish on extrapolating through finitel to-
wards the desired isotropic point,l51.

We begin by representing the system of spin ladders, each
coupled by two identical bonds per spin to separate, neigh-
boring ladders, in a geometrically simpler but topologically
identical form, as shown in Fig. 3. Note that the spin con-
figuration for local, antiferromagnetic interactions is unfrus-
trated, so a transition to an ordered antiferromagnet may be
expected with increasing interladder coupling. The magnetic
interactions are taken to beJ for spins on the same rung,
lJ for spins separated by a leg bond, andl8J for neighbor-
ing spins on different ladders, while no other couplings are
considered. The Hamiltonian for the spins is

H5J(
j
Sl , j•Sr , j1lJ (

j ,m5 l ,r
Sm, j•Sm, j1 ẑ

1l8J(
j

~Sr , j•Sl , j1 1
2x̂1

1
2 ŷ

1Sr , j•Sl , j1 1
2 x̂2

1
2 ŷ

!, ~6!

where j is a rung bond index and the labelsl and r denote
spins on the left and right sides of the ladder. Following Ref.
19, transformation to the bond-operator representation yields

H5H01H11H21HHO, ~7!

where

H05J(
j ,a

~2 3
4sj

†sj1
1
4 t j ,a

† t j ,a!2(
j ,a

m j~sj
†sj1t j ,a

† t j ,a21!,

~8!

FIG. 3. Schematic representation of the periodic structure in the
(x,y) plane of locally antiferromagnetically correlated spins, for
calculation of the spinon dispersion. The magnetic interaction pa-
rameters shown areJ on the ladder rungs andJ8[l8J between
spins on neighboring ladders.
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H15
1
2lJ(

j ,a
~ t j ,a
† t j1 ẑ,asj1 ẑ

† sj1t j ,a
† t j1 ẑ,a

† sjsj1 ẑ1H.c.!

~9!

and

H252 1
4l8J(

j ,a
(

n561
~ t j ,a
† t j1 1

2 x̂1n
1
2 ŷ,a

s
j1

1
2 x̂1n

1
2 ŷ

†
sj

1t j ,a
† t

j1
1
2 x̂1n

1
2 ŷ,a

†
sj1 1

2 x̂1n
1
2 ŷ
sj1H.c.!. ~10!

In these equations,sj
† is the creation operator for a spin sin-

glet on bondj , the operatorst j ,a
† create the three possible

triplet states on the same bond, and the Lagrange multiplier,
m j , introduced to ensure the constraint

sj
†sj1(

a
t j ,a
† t j ,a51 ~11!

on each bond, which restricts the physical spin states to sin-
glets or triplets, appears as an effective chemical potential.
The partHHO in ~7! contains terms with three and fourt j ,a
operators, and will be neglected in our approximation; in
Ref. 19 it was shown in addition that the effects of such
higher-order terms are small.

Because the singlet on each bond has the lowest energy,
we assume that the system condenses into this state, leading
to a finite expectation value of the bosonicsj operator,
^sj&5 s̄. This is the average expectation value, or mean-field
value of the operatorssj , and the site-dependent chemical
potentialm j is also replaced by a global average valuem.
Working with the physical unit cell, which contains two
rungs, we may transform the operators (t j ,a) in H0, H1, and
H2 to those for two types of triplets,tka

1 andtka
2 . The Hamil-

tonian in this approximation is21

Hm~m,s̄!5N~2 3
4Js̄

22m s̄ 21m!1(
ka

H (
n51,2

@Lktka
n†tka

n

1Dk~ tka
n†t2ka

n† 1tka
n t2ka

n !#1@Lk8tka
1†tka

2

1Dk8~ tka
1†t2ka

2† 1tka
1 t2ka

2 !#1@1↔2#J , ~12!

in which

Lk5
1
4J2m1Js̄ 2lcoskz, ~13!

Dk5
1
2Js̄

2lcoskz, ~14!

Lk852Dk852J8s̄2cos12kxcos
1
2ky, ~15!

andN denotes the total number of ladder rungs. The part of
Hm ~12! dependent on the triplet operators is diagonalized by
the non-unitary, bosonic Bogoliubov transformation

gka
6 5coshuk

6~ tka
1 6tka

2 !1sinhuk
6~6t2ka

1† 2t2ka
2† !, ~16!

whose coefficients are given by

cosh2uk
65

Lk1Lk8

vk
6 , sinh2uk

65
2~Dk6Dk8!

vk
6 . ~17!

where in turn

vk85A~Lk6Lk8!224~Dk6Dk8!2 ~18!

yield the dispersion relations of the two magnon branches.
The Hamiltonian now takes the form

Hm~m,s̄!5N~2 3
4Js̄

22m s̄ 21m!2 3
2N~ 1

4J2m!

1(
ka

(
n56

vk
n~gka

n†gka
n 1 1

2 !, ~19!

which contains the mean-field part and the zero-point quan-
tum corrections from the triplet magnon excitations. The
mean-field equations to be solved self-consistently form and
s̄ are given by

K ]Hm

]m L 505 s̄ 22
5

2
13 (

kn56

Lk1nDk8

4vk
n nm~vk

n! ~20!

and

K ]Hm

] s̄
L 505

3

2
12

m

J
23 (

kn56

Lk22Dk

2vk
n ak

nnm~vk
n!,

~21!

where

ak
65lcoskz6l8cos12kxcos

1
2ky ~22!

contain the dispersive parts ofvk
6. nm(vk

6) denotes the
magnon thermal occupation function, and will be discussed
in more detail in a future publication. The factor of 3 pre-
ceding thek summations in both equations is the result of the
sum overa for the three triplet magnon states.21 This factor
was omitted in Ref. 19, and we comment below on the effect
of the correction on the results presented there.

The mean-field equations are solved at zero temperature,
where the thermal factor becomes unity, and by taking the
continuum limit in which thek sum becomes an integral
over three-dimensional reciprocal space. As in Ref. 19 we
reduce the two equations to a single one for the variable

d5
2Js̄ 2

1
4J2m

, ~23!

which has the form

d5523 (
n56

E d3k

~2p!3
1

A11dak
n
. ~24!

As a characteristic parameter of the spin-liquid ground state,
we will be most interested in the value of the spin gap, the
minimum excitation energy of the triplet magnon excitations,
which is given by

D5~ 1
4J2m!A12d~l1l8!, ~25!

with d determined by the mean-field equation~24!. From Eq.
~16! we see that the excitation spectrum has a minimum at
the wave vectorkM5(0,0,p) in the reciprocal lattice of the
bipartite structure shown in Fig. 3. The value ofl8 where
D is driven to zero will give the transition from the spin
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liquid state, where the spin orientation fluctuates with a time-
averaged value of zero and with short-range correlations pri-
marily at kM , to a magnetically ordered state characterized
by kM . This wave vector corresponds to uniform polariza-
tion of the spin singlets on ladder rungs in the (x,y) plane,
with spins oppositely directed between neighboring planes in
the z direction, i.e., a simple antiferromagnetically aligned
spin pattern.

In the limit of no interladder coupling we obtain the spin
gap D050.501J of the isolated, isotropic (l51) two-leg
ladder. This is only a mean-field result, but is in very good
agreement with the resultD050.504J of numerical studies9

by the density matrix renormalization group technique. In
fact this agreement is largely serendipitous, and deteriorates
on taking into account the higher-order terms;22 in the mean-
field approximation, the spin gap of the isolated ladder di-
verges logarithmically in the limit of largel,19 and the ef-
fects of this increase are already manifest atl51, causing
the mean-field result, which initially underestimates the spin
gap, to recover towards the exact value determined numeri-
cally. In this treatment we have not had to invoke a self-
energy correction term: in Ref. 19, the authors investigated
the curious qualitative behavior of the solution to their~er-
roneous! mean-field equation by expanding in smalll about
the limit of strong rung coupling where the dimer treatment
is accurate. In the corrected mean-field theory, one obtains

D5J„12l1 1
4l21 3

8l31O~l4!…, ~26!

which corresponds reasonably well to the result

D5J„12l1 1
2l21 1

4l31O~l4!… ~27!

of a detailed strong-coupling analysis including excitation
modes.23 Previously, the coefficient of the quadratic term had
been found to be negative, and so a self-energy termbl2

was introduced to correct for short-range interaction effects
which appeared to have been missing at the mean-field level;
the chosen valueb50.7 brought the results into good argee-
ment with previous numerical ones, and with the above ap-
proximate treatments.

The spin gap obtained from the solution of~24! for the
three-dimensionally coupled ladder system is shown in Fig.
4~a! as a function of the interladder couplingl8, for fixed
l51. We see immediately that the spin gap decreases mono-
tonically, with the transition point atl850.121. Comparison
with the result of Sec. II indicates that the LaCuO2.5 system
should lie within the ordered antiferromagnetic regime, but
that it is indeed located in the vicinity of the quantum critical
point marking the phase transition from spin liquid to mag-
netic order.

It is also instructive to compare the appearance of the spin
gap with that in a two-dimensional, unfrustrated periodic ar-
ray of coupled ladders.19 In this case the dispersive factor in
the excitation spectrum will be

ak5lcoskz2
1
2l8coskx , ~28!

wherekx is a wave vector parallel to a ladder rung. Again
kM5(0,p) corresponds to a simple antiferromagnetic spin
alignment in the ordered phase, and the factor of1

2 appears
because there is only one bond between ladders per spin in
such a system. The spin gap for the two-dimensional array is

shown as a function ofl8 in Fig. 4~b!, where againl51 and
the gap atl850 is that of the isolated, isotropic ladder. The
critical value of the interladder coupling,lc850.43, isseen
to be significantly greater than twice that in the three-
dimensional case above, as might be expected for the simple
reason that there are half as many interladder interactions,
which may be taken as an indication that the spin liquid state
is more robust in lower dimensions. The almost linear de-
crease, in contrast to the downward curvature of the function
in Fig. 4~a!, illustrates the most significant effect of dimen-
sionality, and agrees well with the qualitative result of Ref.
19.

We may conclude that to within the accuracy of the mean-
field approach for an isotropic ladder system, the above
analysis provides good evidence that LaCuO2.5 lies on the
magnetically ordered side of the quantum critical regime of
the transition between spin liquid and antiferromagnet.

IV. HARTREE-FOCK APPROXIMATION
TO THE HUBBARD MODEL

We have seen in the previous sections that the interladder
interactions in LaCuO2.5 are quite strong, and possibly suffi-
ciently strong to change the magnetic structure from a spin
liquid to a three-dimensionally ordered antiferromagnet. To
examine further the character of the electronic structure, we

FIG. 4. ~a! Spin gapD as a function of the ratio between inter-
ladder and intraladder magnetic couplingsJ8/J, calculated for a
three-dimensional system atT50, in the mean-field approximation
from the starting point of dimerized ladder rungs. Here the intra-
ladder rung and leg interactions are the same (l51), and the value
of the spin gap atJ850 is that of the noninteracting, two-leg ladder
(D050.501J) in the same approximation.~b! Spin gap for a two-
dimensional array of ladders.
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introduce an on-site Coulomb interaction,U, to the tight-
binding band structure of Sec. II, and perform a Hartree-
Fock calculation of an ordered antiferromagnetic state. In a
strictly one-dimensional system, the critical value ofU nec-
essary to stabilize an insulating antiferromagnet vanishes at
half-filling, whereas in a general, three-dimensional elec-
tronic structure it is of the order of the bandwidth.

Introduction of the on-site Coulomb interaction leads to a
Hubbard Hamiltonian

HHM52(
i j s

t i j cis
† cjs1U(

i
ci↑
† ci↑ci↓

† ci↓ . ~29!

Examining the stability of an antiferromagnetic state with
wave vectorkM , we note first that there will be no increase
of the unit cell in the (x,y) plane, since there are already two
atoms for each spin direction, but that it doubles alongẑ
when the spins order along the ladder legs. In the notation of
A andB sublattices for the bipartite system, sitesm51,3 of
the original unit cell@Fig. 1~c!# in every second plane, and
m52,4 in the alternating planes, will belong to theA sublat-
tice, while the remaining sites will belong toB. Introducing
the parameterdnA5n↑2n↓ as the difference between aver-
age site occupation by particles of each spin orientation on a
site of theA sublattice, we requirednA52dnB5dn for all
sites. We proceed by solving the problem in the Hartree-
Fock approximation, with the value ofU wheredn becomes
finite marking the antiferromagnetic transition.

Following the treatment of Sec. II, the Hamiltonian may
be written as in Eq.~2!, with now cks

† 5(cks
1a† ,cks

1b† , . . . ),
where the superscriptsa and b denote atoms in the two
(x,y) planes of the doubled unit cell, and

Hk52S M1 S~kz! 0 R̄* ~kz!

S* ~2kz! M2 R~kz! 0

0 R* ~2kz! M1 S~kz!

R̄~2kz! 0 S* ~2kz! M2

D ,
~30!

in which the 232 matrices

M65S 2tz8coskz6 1
2Udn tze

i1/2kz

tze
2 i1/2kz 2tz8coskz7

1
2Udn

D , ~31!

R~kz!5S t re
ik•r

t r8e
ik•r1 i

1
2kz

tr8e
ik•r2 i

1
2kz tre

ik•r D , ~32!

R̄(kz) ~defined identically using ) and

S~kz!5S tscos
1
2kxe

ikysy ts8cos
1
2kxe

ikysy1 i1/2kz

ts8cos
1
2kxe

ikysy2 i1/2kz tscos
1
2kxe

ikysy
D
~33!

are the generalizations of the previous expressions to the new
unit cell, and the newc-axis dimension is set to unity. This
matrix cannot be block diagonalized, but the structure of the
solution for the eigenmodes and eigenvectors is evident from
Sec. II. Schematically, if the (kx ,ky) dispersion contained in

the square root in Eq.~5! is denoted byēk
2 the eight band

dispersions will have the form

Ek
i 56@ ēk

214tz
2cos212kz6

1
4U

2dn2#1/222tz8cos2kz ,
~34!

where i labels the bands. TheUdn term splits the former
four bands into two sets, which asU becomes large will not
overlap, ensuring that the half-filled system becomes insulat-
ing. The corresponding eigenvectors are the states

ck
i 5(

j51

8

Cj
ifk

j , ~35!

where the indexj runs over the eight atomic sites, andfk
j is

the Bloch state created by the operatorck
j† The Hartree-Fock

equations for the system, which will determinedn and the
chemical potential m at fixed U when solved self-
consistently, are the equations for the total and site occupan-
cies

12d5
1

4(i51

8 E d3k

~2p!3
1

ebjk
i
11

~36!

and

1
2 ~12d!~11dn!5(

i51

8 E d3k

~2p!3
uCj

i u2

ebjk
i
11

. ~37!

These equations have been generalized to arbitrary band fill-
ing, which is expressed in terms of the deviationd from
half-filling, which in turn is normalized to be 1. The chemi-
cal potential is contained injk

i 5Ek
i 2m, and the second ex-

pression is valid for the coefficients of any chosen Bloch
function j .

The operation of diagonalizing the Hamiltonian matrix
~29! can be performed numerically at sufficient speed that it
is still possible to solve the Hartree-Fock equations, which
involve three-dimensionalk integration, on a workstation
within a reasonable amount of time. In Fig. 5~a! are shown
the energy bands for the incipient antiferromagnetic system
for half-filling (d50) andU5t. The splitting of the bands
into upper and lower branches as a result ofU is clearly
evident, as is the characteristicGXSYG andZURTZ struc-
ture of the purely kinetic Hamiltonian in both sets of bands,
at positive and negative energies, as a result of the folding
back of bands due to the change in meaning of the coordinate
kz , which now spans a Brillouin zone half the former size.
At this value ofU, the half-filled system would appear to be
close to the transition from metallic to insulating behavior,
which one expects near the point where there is no longer
any overlap between upper and lower band energies in any
region of reciprocal space. At smaller values ofU, the two
sets of bands are characteristic of the doubled Brillouin zone,
and have a semimetallic overlap, while asU is raised to large
values, the energy gap increases, and the bands become pro-
gressively more flat.

In other cuprate compounds, a Hubbard model has been
found24 to give an accurate description of the low-energy
behavior with a ratioU/W of order unity, whereW is the
bandwidth. Here the total bandwidth of the uppermost va-
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lence bands is approximately the same as in the cuprates
with CuO2 planes,W.3 eV. Since the local environment of
the Cu21 ions is similar, the on-site Coulomb repulsion
should also be the same,U.4 eV. These parameter values
place LaCuO2.5 well within the Mott insulating region. We
note that the actual magnetic structure cannot be determined
in the Hartree-Fock approximation, as the quantum correc-
tions which act to stabilize the spin liquid phase are not
included.

The form of the Hartree-Fock solutions for smaller values
of U are sensitive to the effective dimensionality of the elec-
tronic structure. In general, values ofU;W are required to
obtain a Mott insulator at half-filling, but the perfect-nesting
property of a one-dimensional band gives an insulating state
for arbitrarily small values ofU. In Fig. 5~b!, the average
antiferromagnetic order~parametrized bydn) in the half-
filled system is shown as a function of the on-site repulsion
U, which is measured in terms of the bandwidthW[3 eV.
In LaCuO2.5 we find that the critical valueUc for the anti-
ferromagnetic transition is rather small,Uc.0.2W, which
indicates substantial one-dimensional nature. The interladder

hopping matrix elements, although quite strong, are not suf-
ficient to destroy the nesting character completely, which
would make the electronic structure effectively three dimen-
sional.

This quasi-one-dimensional behavior of the bands may
also be reflected in the sensitivity of the system to random
potential fluctuations. It is well known that the onset of lo-
calization is strongly dependent on dimensionality. Clearly,
in ladder compounds there is an inherent conflict between
the need to change the valence of the counterions in order
to induce hole carriers, and the need to avoid strong,
random potential fluctuations. Thus it appears that in
La12xSrxCuO2.5 the random potential fluctuations act to
cause localization forx<0.15, in spite of the substantial in-
terladder overlap, suggesting that a more gentle hole-doping
technique will be required to retain itinerant character at
small doping concentrations. This could perhaps be achieved
in structures where the counterions are further from the lad-
ders than in the present case of LaCuO2.5.

V. CONCLUSION

We have investigated the basic electronic and magnetic
properties of the three-dimensionally coupled two-leg ladder
compound LaCuO2.5, a material which is of significant ex-
perimental and theoretical interest as it is the first ladder
compound to be discovered in which the Cu2O3 ladders may
be doped with holes. We present a tight-binding fit in which
the bands are derived from a single (dx22y2) orbital close to
the Fermi energy on each copper atom. The results of LDA
studies are well reproduced by reasonable values of the most
significant transfer integrals: those within each ladder are
found to be similar to the CuO2 planar system, emphasizing
the short-range nature of the dominant physical processes,

while the interladder hopping termt8. 1
2t is found to be quite

large. As a consequence, the interladder magnetic coupling
J8 is also relatively large, and the compound may be ex-
pected to exhibit some three-dimensional characteristics.

The effective spin interactions in this structure are those
of unfrustrated antiferromagnetism, and a mean-field treat-
ment of the magnetic state from the basis of dimerized sin-
glets on the rungs of decoupled ladders gives a spin-liquid
phase whose spin gap decreases with increasing interladder
coupling. The spin gap is found to vanish, signaling a tran-
sition to an ordered phase, at an interladder coupling ratio
J8/J somewhat smaller than that deduced for LaCuO2.5, in-
dicating that the system is located in the antiferromagneti-
cally ordered state, albeit not far from the quantum critical
point of the ordering transition. We may take the very small
value of the intrinsic susceptibility measured at low
temperatures12 as evidence that proximity to the critical
point, and the possibility this allows of significant critical
fluctuations, plays an important role in determining the phys-
ics of the system.

Further insight into the electronic properties is provided
by the introduction of an on-site repulsion term,U, to the
band scheme: within the Hartree-Fock approximation we
find that in the half-filled system the transition to an antifer-
romagnetic insulator occurs for values ofU quite small com-
pared to the bandwidth. This is a reflection of the fact that
the predominant feature of the bands remains the dispersion

FIG. 5. ~a! Band structure computed in the Hartree-Fock ap-
proximation for the parameters of the tight-binding fit of Sec. II,
with the inclusion of an on-site repulsion parameterU. The bands
are shown forU5t50.4 eV, where the half-filled system is close
the metal-insulator transition.~b! Antiferromagnetic order as a
function of U. The degree of ordering is parameterized by
dn5n↑2n↓ , the difference between the average occupation of
each site in the structure by particles with spins oriented upwards
and downwards. The doping isd50, i.e., the system is half-filled,
and the temperature is taken to be low.
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in the ladder direction, and this one-dimensionality, also ap-
parent in the Fermi surfaces of the partially-filled bands,
makes the system inherently susceptible to potential fluctua-
tions. ThatUc is finite illustrates an absence of perfect nest-
ing conditions in the band structure, and the instability oc-
curs at the antiferromagnetic wave vector.

Our results represent the first theoretical consideration of
the LaCuO2.5 system. While by the nature of the approximate
techniques used they are somewhat inexact, we believe that
they are important in establishing the parameter space for the
magnetic state, and in focussing the direction of further re-
search. The properties of such ‘‘nearly critical’’ magnetic
systems have been studied for the two-dimensional, planar
case by detailed analytical25 and numerical26 techniques. We
propose the application of similar methods for the case of
ladder systems with variable interladder coupling in two ad-
ditional dimensions, to investigate the nature of the critical
point, and the surrounding ‘‘quantum critical’’ regime, in the
same formalism, with particular emphasis on the appearance
of physical quantities accessible in experiment. Such studies
may prove valuable in establishing the framework within
which to interpret the data from experiment, and hopefully

will serve to reconcile the apparent contradiction in current
results.

The observation that the spin liquid is not the appropriate
description of the magnetic ground state is itself important,
particularly with regard to the current interpretation of the
susceptibility data.12 While it may be possible to deduce the
form of the susceptibility suitable for the critical regime from
a mean-field picture, we await the results of numerical stud-
ies of the same system in order to make a more detailed
comparison with the data. A further direction not strongly
emphasized in this communication is the nature of the doped
system: the methods used here become less accurate at finite
doping, and so were not studied in great detail in this regime,
but may nonetheless be used to obtain additional insight into
the evolution of spin properties on moving towards the me-
tallic state.
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