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Dynamics of quadrupolar glasses
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The dynamic properties of quadrupolar glasses are investigated on the basis of a soft-spin version of the
recently introduced symmetry adapted random-bond—random-field model. The model is applicable to the
mixed alkali cyanides and related cubic systems with0), (111), and(110) equilibrium orientations of the
guadrupolar axis. Following the dynamic theories of Ising and vector spin glasses, a field-theoretic approach is
formulated based on the Langevin equation of motion for the symmetry adapted order parameter fields. It is
shown that the average relaxation time diverges on the line of instabijity,), whereT; is the freezing
temperature antl, the strength of the static random strain fields, in agreement with the static replica theory.
For the(111) model the long-time correlation function exponentis evaluated along the instability line.
[S0163-182696)00534-9

[. INTRODUCTION electric relaxation in quadrupolar glasses has been studied by
Kanter and Sompolinsk{ using a generalized randomly an-
Recently, the symmetry adapted random-bond—-randomisotropic quadrupolar interaction. In the present paper we
field (SARBRP model of quadrupolar glassé®G’s) was  Will adopt an analogous form for the random interaction
introduced and its static properties were investigdte@ihe  within the SARBRF model. We will focus on the dynamics
essential idea of the SARBRF model is that the order paramef this model on and above the line of instability, following
eter fields should be defined in terms of symmetrized lineathe well-known examples of the soft-spin dynamics of mag-
combinations of the discrete-state occupation number operaetic spin glassé&**and/or dipolar glasses described by the
tors introduced earlier by Volimayet al® In systems with Ising random-bond—random-fiel@®@BRF) model** A trans-
strong cubic anisotropy the orientational degrees of freedorformation to continuous order parameter fields will be car-
are described by a set ef= 3, 4, or 6 discrete states corre- ried out via field-theoretic methods, i.e., by introducing the
sponding to th€100), (111), or (110 equilibrium orienta- ~appropriate field densities, which contain all the symmetries
tions, respectively, of the quadrupolar axis. A physical ex-of the static SARBRF model.
ample are the mixed alkali cyanide-halide systems In Sec. Il we introduce the SARBRF model in its general
KBr;_,(CN),, K;_,Na,CN and related compounds, form and write down the corresponding Langevin equations
where the anisotropy of the rotational potential for theof motion. The averaged local equation of motion is derived
CN~ ions is of the order~35 K and is thus relevant at in Sec. lll and an effective relaxation rate is introduced. In
temperatures near the freezing transition. Sec. IV the line of instability is derived and evaluated for
Several other static theories of QG’s have been formuthree representative cases. The long-time scaling exponent
lated so far>® Specifically, in Ref. 3 it was shown that the v is calculated in Sec. V for the special case of {id1)
discrete-state model for strongly anisotropic systems ignodel. Finally, in Sec. VI the conclusions are presented.
equivalent to ars-state Potts glassin contrast to magnetic
systems, local random strain fields are linearly coupled to the Il. DYNAMIC SARBRF MODEL
order parameter and hence need to be included into the o ) )
model. Since these transform according to the irreducible 1he Hamiltonian of the soft-spin SARBRF model is for-
representations of the local, i.e., cubic symmetry group of th&hally written as
pure system, the symmetrized linear combinations of the 1 ; .
discrete-state occupation numbers appear as a natural choice,,_ _ = avg o _ Y
for the order parameter fields. The resulting SARBRF model H= 2% 2 1 i bindiv Z ,Zl (it Bin) bin
with r=s—1 relevant order parameter fields and an isotropic
random-bond interaction has so far been used within a rep-
lica approach to calculate the temperature dependence of the
QG order parameter as well as the line of instability separat-
ing the ergodic from the nonergodic QG phage. where u,v=1,2,...,r with r=s—1 label the symmetry
For the limiting case of weak anisotropy potential, a natu-components of the order parameter fiells local random
ral choice for the symmetry adapted order parameter fields igtrain fieldsh; , and external fieldg; . We assume a general
a set of cubic harmonic¥, (9,¢), A\ = 1,2, ...,5° where  anisotropic form for the random-bond interactidf”.
the angular variables specify the molecular orientations. In the static SARBRF model, the fields, are replaced
As far as dynamic theories are concerned, the soft-spiby discrete variableg;, , which are defined as linear com-
Potts glass model without random fields has been investkbinations of the occupation number operatbig=0,1 for
gated by Thirumalai and Kirkpatrick The problem of di- each set of discrete orientatiops=1,2, . . . ,s, namely,

wov=

+ %2 pl il 6
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[hiJa=0, [hihj,]a=8;8,,h?I%r. 9)

ijCuv

S
Zi/L:le aMpNip. (2)

The coefficientsa,,, are simply determined by group theory 1€ randomly anisotropic interactiaf{” (Refs. 8 and 1pof
arguments. Equatioi2) includes the trivial caseZ; =1, the abovg type is beheveql to be physwally more appropriate
with ag,=1 in view of the closure relatio& ,N;,=1. Drop- than the isotropic scalar mteractm]flj‘ =J;;6,, frequently

ping the site index, the relevant order parameter fields areused in static theorie's” In particular, the random average of
explicitly type (8) has the advantage that it does not lead to long-range

ferroelastic order at any temperature. By contrast, in the sca-
lar model one has to assume a nhonzero average
(100 Z;=V3/2AN;=Ny), Z,=1/A2N3—N;—N,). [Jij]la=J0/N< 0 in order to eliminate the spontaneous
©) strains at least in a certain temperature range.
Following the dynamic theories of spin glasSewe as-
sume that the time dependent order parameter fig|gét)
obey the Langevin equations of motion

<111> Zl:N1+N2_N3_N4,

22:N2+ N3_N1_ N4,

Z3:N3+N1_N2_N4y (4)
Jd J(BH
(110:  Z;=+3/2AN,+N5—N3—Npg), Falﬁ@#:_%“'&w (10)
in

22: \ 1/2(2N1+ 2N4_ N2_ N3_ N5_ NG)"
wherel'y is the bare kinetic coefficient, argg, the Gaussian

Z3= \/§(N1— Na), Zs= \/§(N2—N5), stochastic noise with zero average and correlations
Zs=3(Ns—Ng). 5
The fieldsZ,; andZ, in Egs.(3) and(5) transform according , 2 ,
to the E4 representation of the cubic group, whereas the re- (&in(D€(t) = F_O‘siiauﬁ(t_t )- 11

maining triplet fields transform according 1.
The last term in Eqg.(1) represents the local order-
parameter field density, which can be derived by the usual We will consider the correlation and response
field-theoretic methodésee the Appendix Its general form  functiond®4
for the present model is

1 1 1
plo]= E"o% ¢%+ §MEW Wk bbb Conlt=1)= 2 (D0 d1,(t))e (12)
1
+ ZEK uMVK¢/.L¢V¢i+ T (6)
1 .
The parameters,, wW,,,,, U,,,., etc., are fixed by the re- G#V(t—t’)zﬁz %, t>t'. (13

qguirement that the soft-operator representation should repro-
duce the known static properties of the model. Symmetry
restrllcts the coefﬁ.Clenth,,K, Upwi to.a set of nqnzero val- The Symbo| < .. .>§ |mp||es averaging over the Gaussian
ues in each particular case, the simplest being(thEl)  nojse¢.

model where

W =W for u#v#«, Ill. EFFECTIVE RELAXATION RATE
It is by now standard in spin glass thebry°to apply the
Uppe=U  for p=v=x, (7)  functional integral formalism to the dynamics of the order
. parameter fields, thus enabling one to perform the averages
andw,,=U,,,=0 otherwise. over the probability distributions of random bonds and ran-

Finally, the quenched infinite range random interactionsjom fields without the use of replicas. Here we will not
Jii¥ and random fields;,, in Eq. (1) are assumed to be describe the details of this formulation, which is similar to
uncorrelated and characterized by their respective Gaussiahe case of vector spin glassés? It should be noted, how-

distributions, i.e., ever, that the algebra of thg, operators differs from that of
vector spins, and there are new features introduced by the
[3a=0, [ 21.,=J3%(Nr), ®) cubicw,,,, terms in the field density6).

We proceed to the effective equation of motion for the
and Fourier components ,(w) of the order parameter fields,



54 DYNAMICS OF QUADRUPOLAR GLASSES 7123

dwl da)2

d 1
ZV [Go(w)_l],uv(rbv(w):lp,u,(w)_F,BE,u(w)_; W/.LVKJ’ zi;d)v(wl)gﬁk(w_wl)_zg u,uVKf Z Ed’v(wl)

X[pu(w2) + ¢ (w2)]P (00— w1~ wy), (14
|
where the bare respong@®(w) is anrxr matrix, which From Egs.(15) and(21) we then have
satisfies the equation
Go(w)_1=(ro—iw/FO)l—,BzJZG(w). (15) gil(a),)_()):(ro—ia)/ro)l—ﬁZJZG(w)+2(w,)_())_ (23)

The matrix elements of the full propagats{w) are defined Differentiating with respect tow, multiplying by g(w,X)
by Eq. (13). It will be argued below that the response is from each side, and averaging ovewe obtain
diagonal, i.e., G,,(w)=46,,G(w). Therefore, the off-
diagonal part o’GéL(w)‘1 in Eq. (14) is identically zero, but
is formally included in order to preserve the general structur
of the equation of motion. - - _
In Eq. (14) ¢,(w) is the Fourier component of an effec- WNereg=g(0x) and the limito—0 is understood.
tive stochastic noise; ,(t), which can be decomposed intoa  The quantityg,,,(0x) is related to the static susceptibility

(1= BRPIIT =T P litilg(0%low)gly, (24

fluctuating partf; ,(t) and an excess static noizg,, i.e., XW()Z) in a fixed fieldx:
(D=1, (D) +X, . (16) - -
D= X9 =BG OK). (25
The corresponding correlations are
(Xi Xy = 81 8 A+ h?), (17 IV. STATIC LIMIT AND THE LINE OF INSTABILITY
fOOF ()N =8.12T=1s  S(t—t’ In the static limit,g,,(0x) as calculated from Eq23)
(Fiu(DT,(1)= 5[2T0 70, 5(t=1") should agree with the result obtained from the static theory
+B2326MV(t—t')]l (18)  based on the discrete fields,, by analogy to the Ising

- _ _ case'"*15Thus one can write
wherefC,ﬁV(t—t )IEC_:(t—ft )M_,,—quﬁwh_|sh tEe fluctuating
part of the correlation unctlorﬁl ), which has a nonzero 9,0 =(Z,Z,) =~ PPy (26)
value in the long-time limit, namely,

wherep,=(Z,) and the thermodynamic average is evalu-

lim  C,(t=t")=0qd,,. (19 ated with the effective static Hamiltonian

(t—t")—o

The quantityq,,, , which plays the role of QG order param-
eter matrix known from the static theorit$,and has non- Heg=J\Vq+ h?E XuZ,, - (27)
zero components at any temperature due to random strains. “

In view of the decompositioli16) it is convenient to in-
vestigate the response at a fixed value of the static noise fie
X=(X1,X2, . . . X;), which will be denoted by(w,x). This
is related to the respong&(w) according to

Hereq is a scalar QG order parameter obtained from the
static replica theory. It should be noted that in the static
SARBRF model, the order parameter matjiy, is diagonal

in the high-temperature phase, namely,

9yl @00 h= G0 O 20 0 =[PP, 1= 03, (29)
where we make use of the fact that averaging has restored
the global cubic symmetry. Thus the diagonal components,, are given in terms of a
The functiong(w,x) satisfies the Dyson equation single longitudinal parametey; =, whereas the transverse
componentsgr=q,, (u# v), are strictly zero. This can be
g Y w,X)=G%w) 1+ 3(w,X), (21)  easily verified numerically for the three mode{d00),

R (111), and(110) as discussed in more detail in Refs. 1 and
where X (w,X) represents the self-energy, which is deter-2. The above simple parametrization of the order parameter
mined by thew,,,, andu,,, terms in Eq.(14). The symbol is inherent to the SARBRF model, and implies that, on the
[---1x means a Gaussian average over the static noise. ~average, the system is invariant under transformations of the

We now define an effective kinetic coefficiehitthrough  cubic group. _ o .
the relation In a similar fashion one can explicitly prove the relation

- o[ R - .
Fl=—"'m(£6(w>)- 22 2 [0,(0X9,,(00 1= 8, L(@(0)) ]z, (29

w—0
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TABLE I. Values of the constartt from Egs.(32) and(33) for

various models, and line of instabiligg= 6(h,) in the limit of small 12 ‘
random fieldh, <1.

Model (100 (1131 (110 Ising 10

b 1 2 4 0

0 h, /\2 (7/2)h? h, /\2 (3/4)Y3n213

0.8

where the last average is, in fagt, independent. Thus the
matrices g°]5 in Eq. (24) are diagonal and can be evaluated

at any u, say, u=1. For example, in th€111) case we 06
find®
Ey [gfw]fﬁy [0%,15=1+[pilc+4[P1paPsls 04
+2[pip3l.- (30)
0.2 4
By analogy with dipolar glasses, the QG order parameter
g is a measurable quantity and can be determined by NMR
(Refs. 17 and 1B8and related techniqués.
It can be shown that the term containind/dw in Eq. %%0 05 % s
(24) remains finite aso— 0. Therefore, one can solve Eq. h,

(24) for I'"! provided that none of the eigenvalues of the
matrix 1— 8237 ¢?]; is zero™ On the other hand, if one of  FIG. 1. Lines of dynamic instabilityT=T;(h,) plotted vs
its eigenvalues vanishes, this signals the occurrence of a dyandom-field strength, , for quadrupolar glasses described by the
namic instability. Combining Eq$24) and(25) we find that SARBRF model with{100), (111), and(110 equilibrium orienta-
the instability will develop when tions of the molecular axis. Also plotted is the instability line for
dipolar glasses described by the Ising RBRF model.
2
J model one hab=2 and the second term in E¢33) van-

ishes, so that one has to evaluate the next term yielding

Thus in the high-temperature phase the system will exhibit ) 5 i 2 663

critical slowing down at the freezing temperatdrgh,) ob- T1y/I°=1-7p"3"q “+ O(B°3°0°). (34)
tained as the solution of E¢31). Formally, the same condi-
tion for T¢(h,) follows from the static replica theory if one In the (110 case, Eq(33) becomes
uses either the randomly anisotropic interact{@h or the
scalar isotropic interactioﬂ{f”zJijcSW.2 The line of insta-
bility T=T(h,) separates the high-temperature NONCOOPEIg, icating thatT; initially increases withg and hence with
tive ergodic QG phase from the low-temperature cooperativ

nonergodic QG phase, and is analogous to the familiar AT '
line of spin glasse®’ This analogy is meaningful provided
the transition is continuous. However, in tlsestate Potts
glass without random fieldsh{=0) the transition becomes
discontinuous fos>4 and the actual transition temperature
lies above the zero-field valug = J.?! Therefore, the result
for the presen{110) (s=6) case should be regarded as an
estimated lower bound for the freezing temperatliyéh,).

Close toT; and forh, small one can expand the averages
in Egs. (28) and (31) in powers ofg=q+h? and find to
leading order

EV Xon(X)

=1. (31

Toio/9?= 14282374+ O(B*34G ?), (35)

Introducing #=|T¢(h,)—J|/J, one can derive the line of
instability for smallh, in analytic formé#= 6(h,). The results
are summarized in Table I.

In Fig. 1 the numerical results for the instability line
T:(h,) in a broad temperature range for the00), (111),
and (110 models, i.e.,s=3, 4, and 6, respectively, are
shown together with the Ising RBRF case=(2). As already
mentioned, th€110) (s=6) case provides only an estimate
of the actual line of instability as it would occur if the tran-
sition were continuous. The initial increase Bf vs h, may
be related to this problem.

1 One can define an effective relaxation time
q=hi+ B2 — 5 B*IG3(4—b)+0(B%I%G%), (32 .
Teﬁzq_—lr_l, (36)
T213%2=1- B23%q(2—b)+ O(B*I*q ?). (33

) which diverges on approaching the line of instability from
Hereb=(1/ZX,,(Z,Z, Z)h -o="—1. The values ob  apove. Introducinge=(T—T;)/T; as the vertical distance
for the various models are listed in Table I. In th&1l)  from a pointT;=T;(h,) on this line, we find
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Teff™ €. (37) "
From Egs.(24) and (31) one can see that the exponent
takes the mean field valug=1 and is independent of the b
strength of the random field, , i.e., y is universal.
V. SLOW RELAXATION AT LONG TIMES u

To characterize the dynamic properties of the model we
focus on the long-time behavior of the correlation functions

Cw(t)=C(t)5Wz where by analogy to theT respon$e§t) .

we need to consider only diagonal correlations. Anticipating

a power-law asymptotic behavior at-~ as found in spin n
glasses and other glassy systés,we introduce a scaling

exponenty by writing

C(t)~t™". (39
. o FIG. 2. Two types of diagrams for the derivative of self-energy
In the following we will limit ourselves to thg111) ;5 /s, in the (111) model. The line with a dot represents
model (s=4) in view of the particularly simple algebra of g, (0,X)/di o, whereX = u or x. Heavy squares and circles rep-
the corresponding,, operators. The calculation parallels esent renormalized andw vertices, respectively.
that for the spif® and dipolar glasse’$,however, there are

new features in view of the presence of third-order coupling . . )
w. For the response function we use the arfSatz with ' to be specified below. Following the examples from
the theories of dipolaf and vectol® glasses, we calculate

the contributions of the self-energy diagrams in Fig. 2 with

AG(0)=AG(0)=AG(0)=-R(-ia/l)"" (39 ranormalized vertices and thus derive the relation

+odae’ i

AG(w)2=2(Au+AW)f W(:),ImAG(w’)[AG(erw’)—AG(w’)]+?w, (40)

|
wherel'=T",8*3*[(g%)015/[{g%)o]x and From Eqg. (40) it follows that the value of the critical
exponentr on the instability line is determined by the equa-
Au=[{(8Z1)2)1:1(GP) ol (419 1O
Aqcol( wv)=2B(v,v)(A,+Ay), (44)
Aw=1(6215255Z5)*111{S)o )i, (41b) h

. where as usu#l B(»,v) is the 8 function. The solution of
with 6Z,=7Z,—p, and (- - )o=Tr(---)/Trl=Tr(---)/r.  Eq. (44) representing the value of the long-time scaling ex-

For the averages in Eqétl) we find ponent v along the line of instability is shown in Fig. 3
together with the corresponding result for the Ising RBRF
[((6Z1)%)21:=4[p3(1-PD?]%, (429  model. In the limit of zero random fields oF/J—1 the

exponentv approaches the value=0.395, which in the
Ising case is found fol =0, and is here due to the fact that
[(62,6Z,6Z3)?13=[(1—p2—p3—p5—2p1p2P3)?l5, A,,— 1/2 in this limit, wherea®\,—0. As the temperature is
(42b lowered, v increases but remains<1/2, and forT—0 ap-
proaches the extrapolated value-0.478.
1 In the region below the instability line, the dynamics of
[(®)ol5= _2 gi}ﬁ}: gyugiy(l_ayv)+2912923g3l , glassy systems is characterized by a broad distribution of
3% uv ; relaxation times resulting from a distributié?(V) of poten-
(420 tial barriers for quadrupolar reorientation. For a QG without
local crystal-field anisotropy a calculation B{V) has been
carried out in Ref. 10 using a mean field theory and the Parisi
order parameter functiog(x).® An analogous calculation
for the SARBRF model would be beyond the scope of the
9ur=P(8,, =)+ 6,,— PP, (43 present paper, since the problem of replica-symmetry break-

whereg,,, are given by Eq(26), which in the(111) case
becomes explicitly
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random fields, wheres=3, 4, or 6, respectively, for the
above three cases. In the static SARBRF model, the order
parameter field has only=s—1 relevant irreducible com-
ponentsZ,,, which are symmetrized linear combinations of
the discrete-state occupation numbers. The random-bond in-
teraction is assumed to have the general fafi, where
each component is an independent Gaussian random variable
with zero mean, which ensures that there is no long-range
order at any temperature.

(2) A soft-spin density[ ¢] is constructed by using field-
theoretic arguments, and dynamics is introduced via the
Langevin equations fos;,, from which an effective equa-
tion of motion for the soft-spin fields ,(w) is derived. The
solutions are investigated in the region on and above the
instability line T¢(h,), which separates the ergodic from the
nonergodic QG phase. The freezing temperalyrés calcu-
lated from the dynamic condition that the effective kinetic
coefficientI'~? should diverge on the instability line in the
limit ®—0. The results foif;(h,) agree with the static rep-
lica theory.

(3) The dynamic correlation function decays algebraically

at long times with a characteristic exponentAn evaluation
0.35 ' ; : : ) o :
0.0 0.2 0.4 0.6 0.8 1.0 of v along the instability line has been carried out for the
™ case of a(111l) model. In contrast to spin and dipolar
glasses,v increases towards lower temperatures. This new

FIG. 3. Exponentv plotted vs temperature along the line of feature is due to a third-order coupling in the field density
instability T=T;(h,) for a quadrupolar glass witf111) equilib-  p[¢].
rium orientations. Also shown is the exponenfor an Ising dipolar (4) The freezing temperatur@;(h,) and the long-time
glass. exponentr are observable quantities and could, in principle,

be measured in mixed cyanides and related systems by ob-
ing in the SARBRF model has not yet been solved. This willserving the elastic response functions, for example, by ultra-

0.50

0.45

0.40

be the subject of a forthcoming publication. sonic methods, Brillouin scattering, and strain monitoring
techniques?® In dipolar glasses, the exponenthas been
VI. CONCLUSIONS determined by dielectric spectroscoffyhowever, no analo-
gous experiments have been reported so far in quadrupolar

The main points of this paper are the following. glasses
(1) A soft-spin symmetry adapted random-bond—random- '
field (SARBRP model has been formulated to describe the ACKNOWLEDGMENT
dynamic properties of quadrupolar glas$€ss’s) with spe- . o
cific reference to mixed crystals with cubic symmetry with _ This work was supported by the Ministry of Research and
(100, (111), or (110 equilibrium orientations of the qua- Technology of the Republic of Slovenia.
drupolar gxis. For physical reasons the mod_el includes a lin- APPENDIX: EIELD DENSITY
ear coupling between the order parameter figld and ran-
dom local strain fields of strength, , which are represented The partition function for a QG can be written with the
by their irreducible components. An alternative descriptionaid of a Hubbard-Stratonovich transformation as a functional
would be in terms of a soft-spis-state Potts glass with integral over the “soft-spin” fieldsp;, :

1 r r

z= f D¢w<exp(—§ﬁ‘1§ 2 (O bt 2 X zm¢i#)>. (A1)
V= n=

HereZ;, are the discrete fields as defined by E@—(5) and(---)=Tr(---)/s, where the trace involves a sum over all

orientations. Again, in the exponent we ignore the trivial symmgtrys=A,4 for which Zj;=1. We introduce the density
pl ¢i] by rewriting Eq.(Al) as

1
z= f Dczn,Lexp(Ei p[¢i])exp(—5312 > (Jl>ﬁ”¢i#¢jﬂ), (A2)

ij uv
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implying

p[¢i]=ln<exp(§ Zi,bin > (A3)

Expanding up to fourth-order terms and dropping the site

indexi leads to

21
+gz <ZMZVZK>¢[L¢V¢K
HVK

1 1
plo]1=52 cbi—g(; ¢

1
t 542 (22220 bububebrt o (Ad)
JIRTIN

1
ple)aon =541+ 89 +ui(i+¢3)

+ Uyl 3+ Wi T o+ W3, (A5)

1

p[¢](lll>:§(¢§+¢§+¢§)
1o 4, 4, 4
+Zu(¢1+¢2+¢3)+w¢1¢2¢31 (A6)

1
pLP)i110 =75 (d1+ $5+ G5+ bt ¢2) +ur($1+ 62)

Evaluating the averages by using the algebra of the discrete

Z,, operators for the three models as given by Egs-(5),
we realize that the general structure of the dengjity ] has
the form given by Eq(6). Considering the symmetry of the

coefficientsw andu in the three cases of interest, we

. pvK MVK
obtain the following result:

2 42 2
+ 2 Uy badet 2 Wb, bl
nv nv

+ W13+ Upbr o 5 — B3). (A7)
Comparing Egs(A4) and (A6) leads to relatior(7).
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