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The dynamic properties of quadrupolar glasses are investigated on the basis of a soft-spin version of the
recently introduced symmetry adapted random-bond–random-field model. The model is applicable to the
mixed alkali cyanides and related cubic systems with^100&, ^111&, and^110& equilibrium orientations of the
quadrupolar axis. Following the dynamic theories of Ising and vector spin glasses, a field-theoretic approach is
formulated based on the Langevin equation of motion for the symmetry adapted order parameter fields. It is
shown that the average relaxation time diverges on the line of instabilityTf(hr), whereTf is the freezing
temperature andhr the strength of the static random strain fields, in agreement with the static replica theory.
For the ^111& model the long-time correlation function exponentn is evaluated along the instability line.
@S0163-1829~96!00534-6#

I. INTRODUCTION

Recently, the symmetry adapted random-bond–random-
field ~SARBRF! model of quadrupolar glasses~QG’s! was
introduced and its static properties were investigated.1,2 The
essential idea of the SARBRF model is that the order param-
eter fields should be defined in terms of symmetrized linear
combinations of the discrete-state occupation number opera-
tors introduced earlier by Vollmayret al.3 In systems with
strong cubic anisotropy the orientational degrees of freedom
are described by a set ofs53, 4, or 6 discrete states corre-
sponding to thê 100&, ^111&, or ^110& equilibrium orienta-
tions, respectively, of the quadrupolar axis. A physical ex-
ample are the mixed alkali cyanide-halide systems
KBr 12x~CN! x , K 12xNaxCN and related compounds,4

where the anisotropy of the rotational potential for the
CN2 ions is of the order;35 K and is thus relevant at
temperatures near the freezing transition.

Several other static theories of QG’s have been formu-
lated so far.3,5,6 Specifically, in Ref. 3 it was shown that the
discrete-state model for strongly anisotropic systems is
equivalent to ans-state Potts glass.7 In contrast to magnetic
systems, local random strain fields are linearly coupled to the
order parameter and hence need to be included into the
model. Since these transform according to the irreducible
representations of the local, i.e., cubic symmetry group of the
pure system, the symmetrized linear combinations of the
discrete-state occupation numbers appear as a natural choice
for the order parameter fields. The resulting SARBRF model
with r[s21 relevant order parameter fields and an isotropic
random-bond interaction has so far been used within a rep-
lica approach to calculate the temperature dependence of the
QG order parameter as well as the line of instability separat-
ing the ergodic from the nonergodic QG phase.1,2

For the limiting case of weak anisotropy potential, a natu-
ral choice for the symmetry adapted order parameter fields is
a set of cubic harmonicsYl(q,w), l 5 1,2, . . . ,5,8 where
the angular variables specify the molecular orientations.

As far as dynamic theories are concerned, the soft-spin
Potts glass model without random fields has been investi-
gated by Thirumalai and Kirkpatrick.9 The problem of di-

electric relaxation in quadrupolar glasses has been studied by
Kanter and Sompolinsky10 using a generalized randomly an-
isotropic quadrupolar interaction. In the present paper we
will adopt an analogous form for the random interaction
within the SARBRF model. We will focus on the dynamics
of this model on and above the line of instability, following
the well-known examples of the soft-spin dynamics of mag-
netic spin glasses11–13and/or dipolar glasses described by the
Ising random-bond–random-field~RBRF! model.14 A trans-
formation to continuous order parameter fields will be car-
ried out via field-theoretic methods, i.e., by introducing the
appropriate field densities, which contain all the symmetries
of the static SARBRF model.

In Sec. II we introduce the SARBRF model in its general
form and write down the corresponding Langevin equations
of motion. The averaged local equation of motion is derived
in Sec. III and an effective relaxation rate is introduced. In
Sec. IV the line of instability is derived and evaluated for
three representative cases. The long-time scaling exponent
n is calculated in Sec. V for the special case of the^111&
model. Finally, in Sec. VI the conclusions are presented.

II. DYNAMIC SARBRF MODEL

The Hamiltonian of the soft-spin SARBRF model is for-
mally written as

H52
1

2(i j (
m,n51

r

Ji j
mnf imf jn2(

i
(
m51

r

~him1Eim!f im

1
1

b(
i

r@f i #, ~1!

where m,n51,2, . . . ,r with r[s21 label the symmetry
components of the order parameter fieldsf i , local random
strain fieldshi , and external fieldsEi . We assume a general
anisotropic form for the random-bond interactionJi j

mn .
In the static SARBRF model, the fieldsf im are replaced

by discrete variablesZim , which are defined as linear com-
binations of the occupation number operatorsNip50,1 for
each set of discrete orientationsp51,2, . . . ,s, namely,
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Zim5 (
p51

s

ampNip . ~2!

The coefficientsamp are simply determined by group theory
arguments. Equation~2! includes the trivial caseZis51,
with asp51 in view of the closure relation(pNip51. Drop-
ping the site indexi , the relevant order parameter fields are
explicitly

^100&: Z15A3/2~N12N2!, Z25A1/2~2N32N12N2!.
~3!

^111&: Z15N11N22N32N4 ,

Z25N21N32N12N4 ,

Z35N31N12N22N4 , ~4!

^110&: Z15A3/2~N21N52N32N6!,

Z25A1/2~2N112N42N22N32N52N6!,

Z35A3~N12N4!, Z45A3~N22N5!,

Z55A3~N32N6!. ~5!

The fieldsZ1 andZ2 in Eqs.~3! and~5! transform according
to theEg representation of the cubic group, whereas the re-
maining triplet fields transform according toT2g .

The last term in Eq.~1! represents the local order-
parameter field density, which can be derived by the usual
field-theoretic methods~see the Appendix!. Its general form
for the present model is

r@f#5
1

2
r 0(

m
fm
21

1

3(mnk
wmnkfmfnfk

1
1

4(mnk
umnkfmfnfk

21•••. ~6!

The parametersr 0, wmnk , umnk , etc., are fixed by the re-
quirement that the soft-operator representation should repro-
duce the known static properties of the model. Symmetry
restricts the coefficientswmnk , umnk to a set of nonzero val-
ues in each particular case, the simplest being the^111&
model where

wmnk5w for mÞnÞk,

umnk5u for m5n5k, ~7!

andwmnk5umnk50 otherwise.
Finally, the quenched infinite range random interactions

Ji j
mn and random fieldshim in Eq. ~1! are assumed to be
uncorrelated and characterized by their respective Gaussian
distributions, i.e.,

@Ji j
mn#av50, @~Ji j

mn!2#av5J2/~Nr !, ~8!

and

@him#av50 , @himhjn#av5d i jdmnhr
2J2/r . ~9!

The randomly anisotropic interactionJi j
mn ~Refs. 8 and 10! of

the above type is believed to be physically more appropriate
than the isotropic scalar interactionJi j

mn5Ji jdmn frequently
used in static theories.1,2 In particular, the random average of
type ~8! has the advantage that it does not lead to long-range
ferroelastic order at any temperature. By contrast, in the sca-
lar model one has to assume a nonzero average
@Ji j #av5J0 /N, 0 in order to eliminate the spontaneous
strains at least in a certain temperature range.1,2

Following the dynamic theories of spin glasses15 we as-
sume that the time dependent order parameter fieldsf im(t)
obey the Langevin equations of motion

G0
21 ]

]t
f im52

]~bH!

]f im
1j im , ~10!

whereG0 is the bare kinetic coefficient, andj im the Gaussian
stochastic noise with zero average and correlations

^j im~ t !j jn~ t8!&5
2

G0
d i jdmnd~ t2t8!. ~11!

We will consider the correlation and response
functions11,14

Cmn~ t2t8!5
1

N(
i

^f im~ t !f in~ t8!&j , ~12!

Gmn~ t2t8!5
1

N(
i

]^f im~ t !&j

]Ein~ t8!
, t.t8. ~13!

The symbol ^•••&j implies averaging over the Gaussian
noisej.

III. EFFECTIVE RELAXATION RATE

It is by now standard in spin glass theory11,15 to apply the
functional integral formalism to the dynamics of the order
parameter fields, thus enabling one to perform the averages
over the probability distributions of random bonds and ran-
dom fields without the use of replicas. Here we will not
describe the details of this formulation, which is similar to
the case of vector spin glasses.12,13 It should be noted, how-
ever, that the algebra of thefm operators differs from that of
vector spins, and there are new features introduced by the
cubicwmnk terms in the field density~6!.

We proceed to the effective equation of motion for the
Fourier componentsfm(v) of the order parameter fields,
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n
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1
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umnkE dv1

2p E dv2

2p
fn~v1!

3@fm~v2!1fk~v2!#fk~v2v12v2!, ~14!

where the bare responseG0(v) is an r3r matrix, which
satisfies the equation

G0~v!215~r 02 iv/G0!12b2J2G~v!. ~15!

The matrix elements of the full propagatorG(v) are defined
by Eq. ~13!. It will be argued below that the response is
diagonal, i.e., Gmn(v)5dmnG(v). Therefore, the off-
diagonal part ofG0(v)21 in Eq. ~14! is identically zero, but
is formally included in order to preserve the general structure
of the equation of motion.

In Eq. ~14! cm(v) is the Fourier component of an effec-
tive stochastic noisec im(t), which can be decomposed into a
fluctuating partf im(t) and an excess static noisexim , i.e.,

c im~ t !5 f im~ t !1xim . ~16!

The corresponding correlations are

^ximxjn&5d i jdmn~q1hr
2!, ~17!

^ f im~ t ! f jn~ t8!&5d i j @2G0
21dmnd~ t2t8!

1b2J2C̃mn~ t2t8!#, ~18!

where C̃mn(t2t8)[C(t2t8)mn2qmndmn is the fluctuating
part of the correlation function~12!, which has a nonzero
value in the long-time limit, namely,

lim
~ t2t8!→`

Cmn~ t2t8!5qdmn . ~19!

The quantityqmn , which plays the role of QG order param-
eter matrix known from the static theories,1,2 and has non-
zero components at any temperature due to random strains.

In view of the decomposition~16! it is convenient to in-
vestigate the response at a fixed value of the static noise field
xW5(x1 ,x2 , . . . ,xr), which will be denoted byg(v,xW ). This
is related to the responseG(v) according to

@gmn~v,xW !#xW5G~v!dmn , ~20!

where we make use of the fact that averaging has restored
the global cubic symmetry.

The functiong(v,xW ) satisfies the Dyson equation

g21~v,xW !5G0~v!211S~v,xW !, ~21!

where S(v,xW ) represents the self-energy, which is deter-
mined by thewmnk andumnk terms in Eq.~14!. The symbol
@•••#xW means a Gaussian average over the static noise.

We now define an effective kinetic coefficientĜ through
the relation

Ĝ2152 i lim
v→0

S ]

]v
G~v! D . ~22!

From Eqs.~15! and ~21! we then have

g21~v,xW !5~r 02 iv/G0!12b2J2G„v…1S~v,xW !. ~23!

Differentiating with respect tov, multiplying by g(v,xW )
from each side, and averaging overxW we obtain

~12b2J2@g2#xW !Ĝ
215G0

21@g2#xW1 i @g~]S/]v!g#xW , ~24!

whereg[g(0,xW ) and the limitv→0 is understood.
The quantitygmn(0,xW ) is related to the static susceptibility

xmn(xW ) in a fixed fieldxW :

xmn~xW !5bgmn~0,xW !. ~25!

IV. STATIC LIMIT AND THE LINE OF INSTABILITY

In the static limit,gmn(0,xW ) as calculated from Eq.~23!
should agree with the result obtained from the static theory
based on the discrete fieldsZim , by analogy to the Ising
case.11,14,15Thus one can write

gmn5^ZmZn&2pmpn , ~26!

wherepm5^Zm& and the thermodynamic average is evalu-
ated with the effective static Hamiltonian

Heff5JAq1hr
2(

m
xmZm . ~27!

Here q is a scalar QG order parameter obtained from the
static replica theory. It should be noted that in the static
SARBRF model, the order parameter matrixqmn is diagonal
in the high-temperature phase, namely,

qmn5@pmpn#xW5qdmn . ~28!

Thus the diagonal componentsqmm are given in terms of a
single longitudinal parameterqL5q, whereas the transverse
components,qT5qmn (mÞn), are strictly zero. This can be
easily verified numerically for the three models^100&,
^111&, and^110& as discussed in more detail in Refs. 1 and
2. The above simple parametrization of the order parameter
is inherent to the SARBRF model, and implies that, on the
average, the system is invariant under transformations of the
cubic group.

In a similar fashion one can explicitly prove the relation

(
n

@gnk~0,xW !gmn~0,xW !#xW5dmk@~g2~0,xW !!mm#xW , ~29!
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where the last average is, in fact,m independent. Thus the
matrices@g2#xW in Eq. ~24! are diagonal and can be evaluated
at anym, say,m51. For example, in thê111& case we
find16

(
n

@gmn
2 #xW5(

n
@g1n

2 #xW511@p1
4#xW14@p1p2p3#xW

12@p1
2p2

2#xW . ~30!

By analogy with dipolar glasses, the QG order parameter
q is a measurable quantity and can be determined by NMR
~Refs. 17 and 18! and related techniques.19

It can be shown that the term containing]S/]v in Eq.
~24! remains finite asv→0. Therefore, one can solve Eq.
~24! for Ĝ21 provided that none of the eigenvalues of the
matrix 12b2J2@g2#xW is zero.

15 On the other hand, if one of
its eigenvalues vanishes, this signals the occurrence of a dy-
namic instability. Combining Eqs.~24! and~25! we find that
the instability will develop when

J2F(
n

xmn
2 ~xW !G

xW

51. ~31!

Thus in the high-temperature phase the system will exhibit
critical slowing down at the freezing temperatureTf(hr) ob-
tained as the solution of Eq.~31!. Formally, the same condi-
tion for Tf(hr) follows from the static replica theory if one
uses either the randomly anisotropic interaction~8! or the
scalar isotropic interactionJi j

mn5Ji jdmn .
2 The line of insta-

bility T5Tf(hr) separates the high-temperature noncoopera-
tive ergodic QG phase from the low-temperature cooperative
nonergodic QG phase, and is analogous to the familiar AT
line of spin glasses.20 This analogy is meaningful provided
the transition is continuous. However, in thes-state Potts
glass without random fields (hr50) the transition becomes
discontinuous fors.4 and the actual transition temperature
lies above the zero-field valueTf5J.21 Therefore, the result
for the present̂ 110& (s56) case should be regarded as an
estimated lower bound for the freezing temperatureTf(hr).

Close toTf and forhr small one can expand the averages
in Eqs. ~28! and ~31! in powers of q̃[q1hr

2 and find to
leading order

q5hr
21b2J2q̃2

1

2
b4J4q̃ 2~42b!1O~b6J6q̃ 3!, ~32!

T2/J2512b2J2q̃~22b!1O~b4J4q̃ 2!. ~33!

Here b[(1/r )(mnk^ZmZn Zk&hr50
2 5r21. The values ofb

for the various models are listed in Table I. In the^111&

model one hasb52 and the second term in Eq.~33! van-
ishes, so that one has to evaluate the next term yielding

T^111&
2 /J25127b4J4q̃ 21O~b6J6q̃ 3!. ~34!

In the ^110& case, Eq.~33! becomes

T^110&
2 /J25112b2J2q̃1O~b4J4q̃ 2!, ~35!

indicating thatTf initially increases withq̃ and hence with
hr .

Introducingu[uTf(hr)2Ju/J, one can derive the line of
instability for smallhr in analytic formu5u(hr). The results
are summarized in Table I.

In Fig. 1 the numerical results for the instability line
Tf(hr) in a broad temperature range for the^100&, ^111&,
and ^110& models, i.e.,s53, 4, and 6, respectively, are
shown together with the Ising RBRF case (s52). As already
mentioned, thê110& (s56) case provides only an estimate
of the actual line of instability as it would occur if the tran-
sition were continuous. The initial increase ofTf vs hr may
be related to this problem.

One can define an effective relaxation time

teff5
1

q21
Ĝ21, ~36!

which diverges on approaching the line of instability from
above. Introducinge[(T2Tf)/Tf as the vertical distance
from a pointTf5Tf(hr) on this line, we find

TABLE I. Values of the constantb from Eqs.~32! and~33! for
various models, and line of instabilityu[u(hr) in the limit of small
random fieldhr!1.

Model ^100& ^111& ^110& Ising

b 1 2 4 0
u hr /A2 (7/2)hr

2 hr /A2 ~3/4!1/3h r
2/3

FIG. 1. Lines of dynamic instabilityT5Tf(hr) plotted vs
random-field strengthhr , for quadrupolar glasses described by the
SARBRF model witĥ 100&, ^111&, and^110& equilibrium orienta-
tions of the molecular axis. Also plotted is the instability line for
dipolar glasses described by the Ising RBRF model.
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teff}e2g. ~37!

From Eqs.~24! and ~31! one can see that the exponentg
takes the mean field valueg51 and is independent of the
strength of the random fieldhr , i.e.,g is universal.

V. SLOW RELAXATION AT LONG TIMES

To characterize the dynamic properties of the model we
focus on the long-time behavior of the correlation functions
C̃mn(t)5C̃(t)dmn , where by analogy to the responseG(t)
we need to consider only diagonal correlations. Anticipating
a power-law asymptotic behavior att→` as found in spin
glasses and other glassy systems,11,15we introduce a scaling
exponentn by writing

C̃~ t !;t2n. ~38!

In the following we will limit ourselves to thê 111&
model (s54) in view of the particularly simple algebra of
the correspondingZm operators.1 The calculation parallels
that for the spin15 and dipolar glasses,14 however, there are
new features in view of the presence of third-order coupling
w. For the response function we use the ansatz15

DG~v![DG~v!2DG~0!52R~2 iv/G!2n, ~39!

with G to be specified below. Following the examples from
the theories of dipolar14 and vector13 glasses, we calculate
the contributions of the self-energy diagrams in Fig. 2 with
renormalized vertices and thus derive the relation

DG~v!252~Au1Aw!E
2`

1` dv8

pv8
ImDG~v8!@DG~v1v8!2DG~v8!#1

iv

G
, ~40!

whereG5G0b
4J4@^g3&0#xW /@^g

2&0#xW and

Au5@^~dZ1!
3&2#xW /@^g

3&0#xW, ~41a!

Aw5@^dZ1dZ2dZ3&
2#xW /@^g

3&0#xW , ~41b!

with dZm[Zm2pm and ^•••&0[Tr(•••)/Tr15Tr(•••)/r .
For the averages in Eqs.~41! we find

@^~dZ1!
3&2#xW54@p1

2~12p1
2!2#xW , ~42a!

@^dZ1dZ2dZ3&
2#xW5@~12p1

22p2
22p3

222p1p2p3!
2#xW ,

~42b!

@^g3&0#xW5F13(m gmm
3 1(

mn
gmmgmn

2 ~12dmn!12g12g23g31G
xW

,

~42c!

wheregmn are given by Eq.~26!, which in the^111& case
becomes explicitly

gmn5pk~dmn21!1dmn2pmpn . ~43!

From Eq. ~40! it follows that the value of the critical
exponentn on the instability line is determined by the equa-
tion

4pcot~pn!52B~n,n!~Au1Aw!, ~44!

where as usual15 B(n,n) is theb function. The solution of
Eq. ~44! representing the value of the long-time scaling ex-
ponent n along the line of instability is shown in Fig. 3
together with the corresponding result for the Ising RBRF
model. In the limit of zero random fields orT/J→1 the
exponentn approaches the valuen50.395, which in the
Ising case is found forT50, and is here due to the fact that
Aw→1/2 in this limit, whereasAu→0. As the temperature is
lowered,n increases but remainsn,1/2, and forT→0 ap-
proaches the extrapolated valuen.0.478.

In the region below the instability line, the dynamics of
glassy systems is characterized by a broad distribution of
relaxation times resulting from a distributionP(V) of poten-
tial barriers for quadrupolar reorientation. For a QG without
local crystal-field anisotropy a calculation ofP(V) has been
carried out in Ref. 10 using a mean field theory and the Parisi
order parameter functionq(x).15 An analogous calculation
for the SARBRF model would be beyond the scope of the
present paper, since the problem of replica-symmetry break-

FIG. 2. Two types of diagrams for the derivative of self-energy
]Sm /] iv in the ^111& model. The line with a dot represents

]gll(v,xW )/] iv, wherel5m or k. Heavy squares and circles rep-
resent renormalizedu andw vertices, respectively.
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ing in the SARBRF model has not yet been solved. This will
be the subject of a forthcoming publication.

VI. CONCLUSIONS

The main points of this paper are the following.
~1! A soft-spin symmetry adapted random-bond–random-

field ~SARBRF! model has been formulated to describe the
dynamic properties of quadrupolar glasses~QG’s! with spe-
cific reference to mixed crystals with cubic symmetry with
^100&, ^111&, or ^110& equilibrium orientations of the qua-
drupolar axis. For physical reasons the model includes a lin-
ear coupling between the order parameter fieldf im and ran-
dom local strain fields of strengthhr , which are represented
by their irreducible components. An alternative description
would be in terms of a soft-spins-state Potts glass with

random fields, wheres53, 4, or 6, respectively, for the
above three cases. In the static SARBRF model, the order
parameter field has onlyr5s21 relevant irreducible com-
ponentsZm , which are symmetrized linear combinations of
the discrete-state occupation numbers. The random-bond in-
teraction is assumed to have the general formJi j

mn , where
each component is an independent Gaussian random variable
with zero mean, which ensures that there is no long-range
order at any temperature.

~2! A soft-spin densityr@f# is constructed by using field-
theoretic arguments, and dynamics is introduced via the
Langevin equations forf im , from which an effective equa-
tion of motion for the soft-spin fieldsfm(v) is derived. The
solutions are investigated in the region on and above the
instability lineTf(hr), which separates the ergodic from the
nonergodic QG phase. The freezing temperatureTf is calcu-
lated from the dynamic condition that the effective kinetic
coefficientĜ21 should diverge on the instability line in the
limit v→0. The results forTf(hr) agree with the static rep-
lica theory.

~3! The dynamic correlation function decays algebraically
at long times with a characteristic exponentn. An evaluation
of n along the instability line has been carried out for the
case of a^111& model. In contrast to spin and dipolar
glasses,n increases towards lower temperatures. This new
feature is due to a third-order coupling in the field density
r@f#.

~4! The freezing temperatureTf(hr) and the long-time
exponentn are observable quantities and could, in principle,
be measured in mixed cyanides and related systems by ob-
serving the elastic response functions, for example, by ultra-
sonic methods, Brillouin scattering, and strain monitoring
techniques.19 In dipolar glasses, the exponentn has been
determined by dielectric spectroscopy,22 however, no analo-
gous experiments have been reported so far in quadrupolar
glasses.
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APPENDIX: FIELD DENSITY

The partition function for a QG can be written with the
aid of a Hubbard-Stratonovich transformation as a functional
integral over the ‘‘soft-spin’’ fieldsf im :

Z5E Df imK expS 2
1

2
b21(

i j
(

m,n51

r

~J21! i j
mnf imf jn1(

i
(
m51

r

Zimf imD L . ~A1!

HereZim are the discrete fields as defined by Eqs.~3!–~5! and ^•••&[Tr(•••)/s, where the trace involves a sum over all
orientations. Again, in the exponent we ignore the trivial symmetrym5s5A1g for which Zis51. We introduce the density
r@f i # by rewriting Eq.~A1! as

Z5E Df imexpS (
i

r@f i # D expS 2
1

2
b21(

i j
(
mn

~J21! i j
mnf imf jmD , ~A2!

FIG. 3. Exponentn plotted vs temperature along the line of
instability T5Tf(hr) for a quadrupolar glass witĥ111& equilib-
rium orientations. Also shown is the exponentn for an Ising dipolar
glass.
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implying

r@f i #5 lnK expS (
m

Zimf imD L . ~A3!

Expanding up to fourth-order terms and dropping the site
index i leads to

r@f#5
1

2(m fm
22

1

8 S (
m

fm
2 D 21 1

6(mnk
^ZmZnZk&fmfnfk

1
1

24(
mnkl

^ZmZnZkZl&fmfnfkfl1•••. ~A4!

Evaluating the averages by using the algebra of the discrete
Zm operators for the three models as given by Eqs.~2!–~5!,
we realize that the general structure of the densityr@f# has
the form given by Eq.~6!. Considering the symmetry of the
coefficientswmnk andumnk in the three cases of interest, we
obtain the following result:

r@f#^100&5
1

2
~f1

21f2
2!1u1~f1

41f2
4!

1u2f1
2f2

21w1f1
2f21w2f2

3 , ~A5!

r@f#^111&5
1

2
~f1

21f2
21f3

2!

1
1

4
u~f1

41f2
41f3

4!1wf1f2f3 , ~A6!
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Comparing Eqs.~A4! and ~A6! leads to relation~7!.
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