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Theoretical study of shear-modulus instabilities in the alkali metals under hydrostatic pressure
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The elastic stability of the bcc and fcc alkali metals is studied theoretically over wide ranges of hydrostatic
pressureP. A pseudopotential model is employed to compute the variations of the bulk medud shear
moduli x and u’, as well as the differences between the Gibbs energies of the two structures. Stability is
assessed according to the criteria of Hill and Milstein, kéP)>0, u(P)>0, andu'(P)>0. In compression,
the stability ranges of both phases are controlled primarily by the shear mqdudns! high pressure beefcc
transitions in K, Rb, and Cs are found to be associated with the vanishing of this modulus. The “interplay”
between the ranges of elastic stability and thermodynamic phase equilifeur@ K) is also studied.
[S0163-18296)05129-§

[. INTRODUCTION retical viewpoint, we show that the beecc transformations
in the heavier alkali metals are associated with the vanishing
Rasky and Milsteihhave derived formulas for computing of the shear modulug of the bcc structuréor ug) and the
the elastic moduli of cubic metals, that are described bysimultaneous growth of the shear modujusf the fcc struc-
pseudopotential models, under axial load. Here these formuure (or wg), from negative or “weakly positive” to
las are used to compute the elastic moduli of the alkali met“strongly positive.” For Na, however, both the bcc and fcc
als in their bcc and fcc configurations under hydrostatic presstructures exhibit elastic stability over wide ranges of com-
sure, and the computational results are used to evaluate tipgession in the region of the transition between the bcc and
pressure dependency of the elastic stability of these struslose-packed structures, in accord with the experimentally
tures. Stability is assessed according to the criteria developesbserved “sluggishness” in this transition. Finally, each al-
by Hill and Milsteir’~* which, for a cubic crystal under a kali metal has a qualitatively similar response to hydrostatic

constant hydrostatic pressufe may be expressed as loading, but the respective curves of shear moduli and Gibbs
energy difference are systematically shifted “toward the re-
x(P)>0, w(P)>0, andu’(P)>0, (1)  gion of higher compression” in passing through the series

from Cs to Li. The experimentally observed “diversity” in

where « is the bulk modulus angk and i’ are the shear the low-temperature, pressure-dependent, behavior of the al-
moduli in the relation between the cubic axes components ofali metals may be understood as a natural consequence of
the Cauchy stress incremefit;; and the rotationless strain this “shifting.”
increments;; (evaluated relative to the current configuration

under pressur®). While, in principle, the vanishing of any

one of the three elastic modu(lk, «, or u’) may induce an

instability in a cubic crystal under hydrostatic pressure, we Milstein and Hilg have employed the principles of bifur-
have found that it is specifically the shear modupushat  cation analyses for general materials in the determination of
COHtI’O|S the domainS Of e|aStiC Stablllty Of the alka“ metaISStab”ity Criteria for Cubic Crysta's subjected to hydrostatic
under compression in both their bcc and fcc configurationgoading. The analyses are carried out in a manner equivalent
(with the possible exception of Li at very high pressiires to Hijll (Ref. 7, Chap. Ill, Sec. §2but without recourse to
We also determine the difference between the Gibbs energye genera| mathematical apparatus for hand“ng follower
of the bce and fec structures under presgated K) and thus  |padings. Milstein and Hill's treatment of crystal stability is
are able to study the “interplay” of the ranges of elastic rigorous and complete; i.e(g) the loading environment is
stability and thermodynamic phase equilibrium. fully specified, to sufficient order and in both its active and
The alkali metals exhibit Seemingly diverse experimentalpassive modes' ar‘(dj,) the potentia' energy of the System as
behavior. For example, at low temperatures, the heavier mef whole is examined in all the nearby, possibly inhomoge-
als Cs, Rb, and K are bcc while Na and Li are in close-neous, configurations allowed by the kinematic constraints, if
paCked structures that are similar to fcc with pel’iodiC StaCkany_ Under a hydrostatic pressure that does not vary during
ing faults;5 SUCh Close-paCked structures eVidentIy differ I|tt|e any departure from a Considered Conﬁguration Of equ”ib_
in energy from the fcc phase. Indeed, cold working of Lirjym, elastic stability is guaranteed if
below 75 K produces fce.Under pressure, Cs, Rb, and K
undergo bce»fcc transitions, with the transition pressure
greatest for K and least for Csalso, experimentally, Na
transforms from a close-packed structure to bcc at a rela-
tively low pressure, and the bcc and close-packed structures )
coexist over a large range of presstife-ere, from a theo- +au'(e1pt - +-)>0, 2

Il. STABILITY CRITERIA

2
Kk(e11+ Eppt £39) 7+ 3 pl(e1—e2)%+ - +-]
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whereg;; denotes the Eulerian strain rate in components omepend on the test configuration and the choice of variables
the cubic axes. Since the three terms are independently vani, . The criterion for stability, to second order in tlag, , is
able, the necessary and sufficient conditions for stability ar¢hen

the simultaneous satisfaction of the inequalities of relations

(1). Milstein and Hilf identified the primary eigenstates and

corresponding eigensolutions; associated with loss of sta- (Crs—Kys) 89,605>0, (4)

bility on a fundamental path at a pressite-Q as follows.

(i) x(Q)=0, w(@Q)>0, u'(Q)>0 with eigensolution
1= o= 337 0; M= 13= 13;=0 (the eigenmode is neces-
sarily homogeneous and purely volumetric, coincident with
dP/dV=0, whereV is the volume of the crystal

for arbitrary setq 4q,}, when not allsq, =0. [Relations(3),
of course, follow from the incomplete notional concept
C,s60; 69s>0.] In general (a) the quantitiesp, andc,s are
. , _ X calculable as functions of theg for various choices of the,

(i) u(Q) =0, x(Q)>0, u'(Q)>0 with solutions such that 514 models of atomic bondinghe literature contains many
Mt Moot 735=0; M5=173= 15, =0 (the uniform eigen- oy ampley (b) “the set of p, can be related to the Cauchy
m.or:jestmaktla th?hlatt'cﬁ ortlhor)r;ombm, or possibly tetragonalyactions on the crystal, but the connection is rarely
withou v’arymg € cell volum . ) simple” ? (except, e.g., in loadings of simple crystals coin-

(if) u'(Q)=0, x(Q)>0, u(Q)>0 with solutions such cigjent with crystallographic sym?netry axgsand {c) “the
that 77,,=17,=7735=0; any ratiosz;,:73: 751 (the uniform 4 4ing in laboratory experiments is usually frame dependent
eigenmodes distort the lattice without varying the lengths of, -4 the work is affected also by rotation of the specimen: the
the cell edges loads “follow” the material during any disturbance; they

It is important to distinguish between this treatment of 5y i addition, be deformation sensitive and so become
stability and the “notional concept” introduced by Born, and iterent in kind from those in the state of equilibrium whose

variously implemented by later writers on crystal elasticityst‘,:lb”ity is under test ... the incremesi of external work

(see, e.g., Refs. 8-10In pioneering work, Born and his ot he specified objectively to second order, like the incre-

co-workers'~**took the “positive definiteness” of the ma- 1 ant sw of internal energy.”?

trix of elastic de“"Crs (the values of W,h'Ch vary with For a loading environment consisting of a uniformly pres-

crystal deformationto be synonymous with stability; for g,;e4 fiuid, with the apparatus designed so that the pressure

cgb|c crystals under hydrostatic pressure Born’s criterions yoes not vary during @ departure from a primary con-

yields figuration of equilibrium, thek,s are readily evaluated. In

particular, if the crystal is cubic on the primary path, and the
C11+2¢45>0, c13—C1>0, andcy,>0. 3 g, are the components of the Green strain terfatnich was
always employed by the Born schpolthen k;;=P/\,

However, as first noted by Hilf* and elaborated by Hill and k,,= —P/\, andky,=P/\, and the stability criterion, rela-

Milstein2 Born's criterion [and hence relation§3)] inad-  tions (4), becomes

equately treats the effects of external loading upon the as-

sessment of stability. It follows, in general, that theoretical

“ranges of stability” computed via Born’s criterion depend Ci1t2C1p+P/N>0, €13~ C1p—2P/N>0,

upon the choice of parameters used to define strain in a crys-

tal under load, and thus such ranges do not represent intrinsig, 4

measures of crystal strength or stabiliifLlhere are some co P/N>0 )

exceptiong, but none occur for hydrostatic loadingVe re- 44 '

view these considerations briefly in the following paragraphdor the considered loading environment, as shown by Hill

as a prelude to the present work. and Milstein? The all-round stretch\ is the crystal lattice
Presume that the elastic stability of a homogeneously dgparameter divided by its value Bt=0; thek,s have the same

formed crystal(under loadl is to be tested by allowing the symmetry as the,,. Hill and Milsteir? also showed that

crystal to undergo arbitrany departures from its considered

state of equilibrium. Elastic stability prevails if the combined

incremental changes of internal eneidy and external work k=NI3(Cyy+2C1p) +P/3,  p=N2(cyy—C1)—P,

done by the surrounding8u are positive for all possibl&

departures, i.e.dw— Su>0 for stability. The internal energy

w per unit reference volume of a homogeneously deformed,

simple crystal may be written, in principle, as a function of P =NCas— P, ®)

six generalized coordinateg(r =1, ... ,6)that are used to so the respective inequalities of relatioffs) are in fact
specify crystal geometry. The change in internal energy durequivalent to those of relation).

ing any test departure is then Sw=p,dq, In summary, elastic stability under load is “machine de-
+1/2¢,:69, 695+ . . . (summation convention, r, pendent” and thus a rational attempt to assess the stability of
s=1,...,8, wherep,=dw/dq, , ¢,s= d*wl/dq,dqs, and the  a crystal at finite strain must incorporate the behavior of the

derivatives are to be evaluated for the crystal in its currentmachine; i.e., the behavior of the loading environment during
state, under equilibrium loading.e., before anys depar- a & departure from a given crystallographic configuration
ture). Likewise the increment oéxternalwork per unit ref-  must be specified and included in the analysis. &pparent

erence volumedu during a § departure is expressible as onset of an instability in a crystal under load, according to
Su=p,89,+1/2k,86q,89s+ . .. , where the coefficients,,  the Born criterion, will depend upon one’s choice of moduli
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(i.e., the geometric parameteg used in defining the general pseudopotential models of the type described above.
moduli). Although application of the Born criterion with a The bulk and shear moduli are, in turn, computed from the
particular choice of moduli may be considered as equivalentelations
to the specification of “a particular machine,” the actual
connection is rarely obvious or simple. The stability criteria
[relations(1)] employed in the present study are correct and
rigorous for a machine that applies a hydrostatic pressure
that remains constant and hydrostaticring the initial de- 1
parture from a cubic configuratiofio possibly a noncubic ) (C11—Cy2—P),
configuration at the onset of instability. These criteria are
also the conditions ensuring all re@onimaginary elastic  and
waves or long-wavelength phonons, as statel?lsin general uw' =Cyy—P, 7
terms, for example, in EJ3.40 of Wallace’s book:> Were . . . . L
the crystallograp?hic depgrture to cause the loading to dep hich are equ_|va|ent to Eqd44) in .H'" and Milstein?
incrementally from its considered mode.g., a departure ,quat|ons(7) yield the same respeciive Va“.JeS'Qf'“’ qnd
from cubic to tetragonal might induce a nonhydrostatic com+ as Egs.(6), O.f course. The apparent dn‘fgrence n the
ponent of stress in some pressure-producing systetis exphcu P terms is owing to the different choices o_f strain
criteria. would need to be modified to account for this\"'jl_r""‘blfaS in the definitions of the;s andCs, as mentioned
“machine-dependent” behavior. briefly in Sec. II; see Refs. 2—4 for further d|s_cuss]on.
Milstein and HilF* determined the domains of elastic sta- " the present yvork,_ a two-parameter Hgme-Abgrenkov
bility for the entire family of Morse-function cubic crystals local model potentidf with the Taylor dielectric functioff

(fec, bee, and S over wide ranges of pressure. Their work were used in the description of atomic bindifgn some of

clearly demonstrated that relatio(® are not only incorrect our gomputatlons a Born-Mayer rgpulswe Interaction was
(under nonzero pressuré principle, but they yield large also included to moded-band repulsion between near neigh-

discrepancies in computed “stability” ranges when com-?o_r? The model ics describerc]i_ (:_xplticgly indeef]; 1. We c;a_r-
pared with relationgl). (It is interesting to note, however, ainly are aware of more sophisticated modeils for computing

that for all bcc and fcc Morse-function crystals that are stablep”"d'ng energies of the alkali metals. However, owing to the

at zero pressure, the bulk and shear moduli increased monBe—IatiV.e complexity of the formulas for compu_tirtgastic
tonically with increasing pressufé, unlike the present moduli of crystalsunder load(see the Appendix in Ref.)1
pseudopotential-based computati()n:s we have selected the pseudopotential approach for this study.

Furthermore, with but two adjustable parametgses., ionic
radius and well depth, which were determined for each of the
alkali metals in Ref. }, the model yields excellent agreement
In pseudopotentia| theory the b|nd|ng energy per atoleth eXperime-ntal blndlng - energie_s, atomic VOIUmeS,
Eping May be written as a sum of a real-space pEff, second- and third-order elastic moduli, and pressure-volume
—E,(Q)+3,E,(r,Q), and a reciprocal space paid, relations® Also, we are aware of lithium’s known departure

= 3,Eq(q,Q2). The summations are over atomic positians from “free-electron behavior,” which would be expected to

and reciprocal-lattice vectors both summations depend on cause greater discrepancies between theory and experiment

crystal structure(i.e., the geometric arrangement of atoms?n the case of Li than in the remaining alkali metéimd

and the level of strainand on the atomic volume. In an indeed that tendency is obseryedlevertheless, Li is in-

orthorhombic  crystallographic ~ configuration, following ¢luded in the present study, both for the "purpose of comple-
Rasky and Milsteir}, the Cauchy stresses are tion” and because the theoretical mechanical response of Li

at moderate pressures is in reasonably good agreement with
experiment, as seen in Tables | and Il and in Fig. 1 of Ref. 1.

1
K= § (C11+ 2C12+2P),

IIl. COMPUTATIONAL PROCEDURE

s J ; q
770 dag (Epina™t Epind)
IV. RESULTS AND DISCUSSION
and (strain-dependeptelastic moduli are conveniently de-
fined as Computations were made of the pressure, the bulk and
shear moduli, and the associated domains of stability of the
arag  9° ] q bcc and fcc configurations of each alkali methi, Na, K,
Cis= Q Ja0a, (Epina™ Ebing)» Rb, and C} over extensive ranges of hydrostatic compres-

sion and expansion. The results for compression are shown
where the parametess;, a,, anda; are the principal edges in Figs. Xa)—1(e) and for expansion in Figs.(@-2(e); nu-

of the conventional crystallographic cell aad, a5, andag ~ merical values of particular interest are tabulated in Table I.
are their included anglesys=ag if s=1,2,3 andag=1 if = The stretch\ is of course related to the atomic volurf¥eby
s=4,5,6. Fors=1,2,3, theuy are axial stresses acting parallel \3>=Q/Q, where (), is the atomic volume in the unstressed
to thesth cell edge and fos=4,5,6 theo, are shear stresses; state. While hydrostatic expansion is difficult to achieve in a
here cubic crystal symmetry requires all shear stresses on tlwentrolled experiment, this mode is nonetheless of interest
faces of the cell to vanish and axial stresses=o,  since, as is well known, states of pure hydrostatic tension can
=0,=—P. The pressure an@,, are computed with the ana- be approached locally near cracks and other stress rdisers.
lytic formula derived in Ref. 1[see Egs.(A19), (A21), these figures, we observe the followiggneralbehaviors.
(A36), and (A37)]; these formulas are suitable for use with (1) At zero pressuré\=1), all of the bcc and fcc bulk and
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TABLE |. Theoretical values of pressuReand stretch\ at particular “states of interest” in Figs. 1—4 and structures with elastic stability
and lower Gibbs energy. The particular states occur at the following stretch vakids: (or A, andA ,g(gy for Li), where stability is lost
in hydrostatic tension\=A gy and\=A g ) where, respectively, stability of the bcc structure is lost and regained under increasing
compression\=A, vy andA=A ¢y Where, respectively, stability of the fcc phase is lost and regained under increasing compression: and
A=a and\=h, where the Gibbs energy for the bcc structure equals that of the fcc structure.

Structure
of lower Structures
Stretch Stretch Pressure Gibbs stable
Metal (symbolic) (numerical) (GPa) energy elastically
fcc Cs A, 1.190 —0.428 fclc -1
bee Cs A, 1.188 -0.432
Cs a 1.048 -0.24 L 1
bee fce bee
Cs b 0.706 14.0 1 e
bee Cs Az 0.681 18.1 foe
bee Cs Ay 0.564 65.4 ! e
fec Rb Ay 1.190 —0.575 i —
bee Rb Ay 1.188 -0.581 fee —_
Rb a 1.041 -0.29 —— fce
fec Rb Ayron 0.778 8.89 e - bee
fcc Rb Auray 0.700 20.9 1
Rb b 0.680 25.8 — fee
bec Rb Auson 0.670 28.8 fec | —
bee Rb Ausry 0.528 140 ! , "
fec K A, 1.192 -0.715 i '
bec K A, 1.191 -0.722 fee T —
K a 1.022 -0.21 —— fee
fce K Auran 0.732 18.6 e —— bee
fec K Aury 0.708 24.1 T
K b 0.668 37.0 —— e
bec K Auson 0.653 44.0 e | —
bec K Az 0.520 196 | —_
HB(L) ; : b?:c
fcc Na A, 1.202 —1.49 i '
bee Na A, 1.201 -1.50 fce T —
Na a 0.968 0.90 fcc
fec Na Auron 0.662 87.2 —L— e
fcc Na Auray 0.622 137 bee N
Na b 0.600 176 —— fee
bee Na Auson 0.592 192 fec ‘ ——
bee Na Ausy 0.458 970 ! : e
|
foc Li Ar 1.216 -2.82 | '
bee Li Az 1.168 -2.77 foe T
Li a 0.902 7.31 -1 fee bee
fee Li Auran 0.584 397 e 1
fee Li Aury 0.536 731 —
Li b 0.524 856 — fee
bee Li Ausan 0.522 861 ‘

fpc

shear moduli are positive; thus the zero-pressure bcc and febroughout the ranges of hydrostatic tension and compres-

structures both are stable. sion that were studied, the difference between the atomic
(2) The pressure vs stretch curves for the bcc and fcwolumes of the bee and fce structures of a given metal at any

structures of a given metal are very similar, as are the bulljiven pressure is less than 0.5%.

modulus vs stretch curves for the two structures. In fact, (3) In compression, the pressure and bulk modulus both
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FIG. 1. Pressure and elastic moduli of the bcc and fcc alkali metals in compression; the stieetble lattice parameter divided by its
value in the unstressed stdte GPa=10° dyn/cnf).

increase monotonically with decreasing stretghis was (4) For both crystal structures, in hydrostatic tension, the
found for all compressive values of stretch, including somebulk modulus decreases, with increasing more rapidly
values as low as=0.35. Thus no instabilities of “typei)” than the shear moduli. For all of the bcc alkakscept L)
are found in compression. the moduli in tension pass through zero in the ordes, u',
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FIG. 2. Pressure and elastic moduli of the bcc and fcc alkali metals in hydrostatic téhsB&Re=10'° dyn/cn?).

asA increases; for the fcc alkalis, the shear moduli approacliiexcept for bece L); the values oA, are close to 1.20 and are
zero in a more asymptotic manner, and remain positive alonglightly greater for the fcc than the bcc structure of a given
the entire tensile range studiéo values oi\=1.5). Stability = element.

of both the fcc and bcc structures in tension is thus lost when (5) In the neighborhood af=1, the values of the bcc and
x passes through zefand P through a minimumat A=A,  fcc shear modulin’ of a given metal are almost identical;
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FIG. 3. Gibbs energy difference and elastic moduli that control stability of the bcc and fcc alkali metals in hydrostatic loading; the
terminate stability rangel GPa=10'° dyn/cnf). The region of very high compression @ is shown in expanded view in Fig. 4.

over the full range of compression and tension, the bcc anétc Li under very great compressigrthere are no instabili-
fcc functionsu’(\) behave gqualitatively alike. In compres- ties of “type (iii).”

sion, the functionsu’(\) exhibit minima(or local minima, (6) The functionsu(\) are particularly interesting, not
but remain positivéfcc Li is an exceptiol thus(except for  only when considered individually, but as regards the evident
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5 ; 12 the series from Cs to Li, the states wherea, A\=Db, and
A=A g(v) are seen to occur at progressively lower values of
stretch; i.e., through this series, the curyga) and AE(N)
are shifted toward the region of higher compression. It is
particularly interesting to note that the states=a,” where
the Gibbs energy difference vanish@s Figs. 3, occur in
regions of hydrostatic tension for K, Rb, and Cs and in com-
pression for Na and Li. Thus, although both the bcc and fcc
phases of all five alkali metals are elastically stable at zero
pressure, the thermodynamically preferred zero-pressure
structuregqi.e., the structures with the lower Gibbs energy
low temperatures are indicated to be bcc for K, Rb, and Cs
and fcc for Li and Na, in good agreement with experiment
(i.e., the low-temperature phases of K, Rb, and Cs are indeed
~_AE bce while Li and Na are closed packed similar to “faulted
0.50 0.55 060 fcc”).
STRETCH, A Figures 3 also display the critical role of the shear modu-
lus w and the interplay betweep and the Gibbs energy
FIG. 4. Expanded view of the theoretical behavior of[Eig.  differenceAE. At A=a and at\=b, where both phases have
3(a)] under very high compression; it is of interest to note that therdhe same Gibbs energy and are equally favored thermody-
is a region(\<A,'rv)=0.508 where bothu’ of the fcc structure  namically, the values qfg and ur are very close. Whergg
and u of the bec structure are negative, and thus both structures ais substantially greater thapg, AE is strongly negative,
unstable. favoring the bcc structure; and vice versa whggeis con-
siderably larger thapg . Often the literature fails to distin-
“interplay” between the functionsu(\) of the two consid- guish between issues of “stability” and “thermodynami-
ered crystal structures. Although the shear modylusf  cally preferred phase;” the present results help clarify these
each bcc metalor wg) initially increases with pressure, un- concepts. Consider, e.g., the bcc phase of Rb to be com-
der continued loading the stable bcc ranges are terminated tpressed to a state whetg,g)<A <b, i.e., to where 0.670
instabilities of “type(ii)” at A=A ,g(v), Whereug becomes <A<0.680 for the present computational model. Here the
negative; another bcc-stable range appears at even greafec structure has a lower Gibbs energy, but the bcc crystal is
pressures, whergg becomes positive at 5 . [Following  still elastically stable; it would take somefihite distur-
the notation of Milstein and Hift* the symbolsA gy, bance,” to cause a transformation from the bcc to the fcc
A,gvy, andA g g are used to denote the values of stretchstate. In principle, in the absence of disturbance, the metal
at which the shear modulys(\) of the bcc crystal changes could remain in the elastically stable but thermodynamically
sign algebraically; the subscrif@ indicates bcc andl(),  disfavored bcc structure; the closer the system is to the state
(M), and R) refer to the left-hand, middle, and right-hand where A=A gy, the smaller the disturbance required to
zeros, respectively, ip(\); analogous notation applies to the cause the transition; at=A gy, an infinitesimal distur-
fcc structure] The fcc shear moduli: tend to be small or bance would trigger the transformatiofin an imperfect
negative in regions whergg is large and positive; and vice crystal, i.e., an actual metal crystal, “internal disturbances”
versa. In the metals Li, Na, K, and Rb, stable fcc range®f some magnitude of course are unavoidable owing to lo-
initially are terminated in compression, by “tyg@)” insta-  calized stress raisers associated with defects.
bilities at A=A ,rv), and subsequently reappear, under in- In the cases of K, Rb, and Cs, theoretically the stable bcc
creased pressure, B&A (), Yielding an intermediate un- structure thus transforms to fcc at compressions in the range
stable fcc range. In Cg4 becomes small, indicating “weak A ,g)<A<b, with the transformation pressure greatest for
stability” of the fcc configuration, in the analogous region of K and least for Cs, in good agreement with experintent.
stretch. (Our calculations, suggesting a bcc to fcc transformation in
Since the variations of pressure with stretch for the fccK under pressure, were in fact carried out before this was
and bcc phases are almost identical, the difference in Gibbsbserved experimentallyThe computations also show the
energyAE of the two phasest a given pressurenay be transitions to be associated with instabilities of typge Fur-
represented on a plot where the strekcls the independent ther, there is experimental evidence that these fcc metals
variable, as shown in Figs.(@-3(e) and 4. For practical again transform to other structures, at still higher pressures;
purposes, the Gibbs energy differences are the differences ot all of these have been identified, although some may be
binding energies per atom, since the pressure-volume prodetragonal and/or have eight nearest-neighbor aforks:
ucts are almost identical at a given pressure or volume. Farordingly, the theoretical shear moduliof these fcc metals
each of the alkali metals, at relatively large values of stretchunder increasing pressure again vanish, suggesting such fur-
(i.e., \>a in Figs. 3 AE is positive, so the fcc, or close- ther transformations. Our computed transformation pressures
packed, phase is favored thermodynamically, when comand volumes for these metals are somewhat gredimd
pared with bcc; over a broad intermediate ranget{ <a) smalley than experiments would suggest. For example, ex-
AE is negative, favoring bcc; at still greater compressionsperimentally the bce>fcc transitions in K, Rb, and Cs are
AE again becomes positive at=b, and thus fcc again be- observed at pressures ranging from about 2 Gé&aCs) to
comes the preferred phaégherex<b). In passing through 11 GPa(for K),® whereas theoretically the Gibbs energy dif-
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ference vanishe@tA=b) at pressures ranging from 14 to 37 [Ey,;,qin Ry: —0.344,—0.344;—-0.368,—0.368, [lattice pa-
GPa for these metals. This is within the range of other comrameter in Bohr radii: 11.4205, 11.4399; 10.5388, 10.3441
putations, which have suggested corresponding theoretichk in GPa: 22.4, 23.2; 30.2, 30,5 in GPa: 2.47, 2.40;
transformation pressures as high as about 50 GPa for K argi34, 3.3], [’ in GPa: 16.6, 17.2; 23.4, 23,7[d«/dP:
RbS The numerical discrepancy between theory and experig 72, 3.85; 3.77, 3.91[du/dP: 0.271, 0.241; 0.268, 0.258
ment may be variously explained. For example, Milstein[q,’'/dpP: 1.07, 1.24; 1.16, 1.31 [d’x/dP? in (GP3 %
et al'® have pointed out one possible source of discrepancy,.19 —16 —1.3 —1.2], [d?x/dP? in (GPa™ % —0.33
which may result from experimental technique, i.e., from_g34. (.23 —0t23], and [d%4'IdP? in (GP3 ™ 17
nonhydrostatic components of stress which may be presentq 4. —1.3, —1.3] (corresponding experimental values are
in a high-pressure test. In particular, they used the preserngted' in Tables | and Il of Ref.)1
pseudopotential model to study the stability of the alkali met- ;55 our theoretical results are in good agreement with
e_lls under uniaxial Ioadlng ?”d fou_nd that MG transi- = e experimental observation that Na transforms from the
tions occur under both uniaxial tensile and uniaxial COMPreSg)ose nacked structure to bce at a relatively low pressure
sive stresses, and the magnitudes of the uniaxial stressgst e bee and close-packed structures coexisting over a,\
required to initiate the transitions in K, Rb, and Cs are closqarge range of pressué.That is, the Gibbs energies of the
to 2 orders of magnitude less than the “hydrostatic” Pres-p.c and fee structures of Na t;ecome eqiN=a) at a
fures at Wh'Ch. the transitions are_observed. Th_|s .SudﬁeStSrelatively small pressure, although here the transformation
that the combined effect of a relatively small uniaxial com- y,e¢ not seem to be associated with the vanishing of a shear
ponent of stress “superimposed” on a_lgrge hydrostatic COMinodulus, since bothuz and ue are appreciably large and
pression cou]d cause a beécc trans!t|op well before ,',t positive at state, and remain so over large ranges of com-
would occur in the absence Qf the_unlaX|aI component. pression. This “strong” elastic stability of both phases is
In view of the above consideration, the qualitative agreey, 5 515 consistent with the observed “coexistence” of the

ment between_thepry and experiment is considered excellewv0 apparently stable phases. As in the case of the higher
and the quantitative agreement, “reasonably good.” How-

ver another ibl £ th ical di (}&ressure bcefce transformations in Cs, Rb, and K, the in-
ever, another possibie source of the numerical dISCrepantyicated theoretical transformation pressure in Na is some-

between the calculated and observed -blc ransition  \ynat greater than what experiment would suggest: i.e., at
pressures in the heavier alkali metals may be that the pseudpy, yomperature, Na is found to transform to bce in the range
potential model does not fuII_y account for repulspn betwee_ 1-0.2 GP& whereas the stateN=a” resides at about
core electrons under very high pressures. As a first approxy gq Gpa in the pseudopotential model of Na. A further
mation, d-band overlap in slmple metgls mf\z);.be representeqy.. fcc transition in Na is suggested at very high pressures,
by Born-Mayer(BM) repulsive interaction$,*i.e., by add- " has not, as yet, been observed. According to the model
ing an overlap energy term of the form computations, Li also undergoes a close-paekbdc transi-

tion that is “sluggish” and this occurs at greater pressures
than those at which the analogous transition occurs in Na.
Experimentally, Li is thought to undergo a crystallographic
phase changeta7 K and 26 GPa, based on resistance
to the binding energy, wher& andB are positive constants curves’ Since the points where=a occur where\>1 in K,
andr , is the nearest-neighbor distance in the unstressed bdgb, and Cs, these metals would also be expected to undergo
configuration. This overlap energy term was included in thesimilar *“sluggish” transformations from bcc to close
present study for selected computations with Cs and Rb. lpacked, but in regions of hydrostatic tension. It is noteworthy
was found that, for appropriate choices of the parameers (and perhaps contrary to one’s intuitjothat increasing

and B, the theoretical values oh g, andb can be in- compressionstabilizes the bcc structurevhich is usually
creased considerablywithout changing appreciably the thought of as “more open)’ at the expense of fcc; this in-
computed low-pressure behavigio bring them more in line creasing stabilization of bcc occurs over large ranges of ten-
with what would be expected experimentaltye results in  sion and compressioie., where the slope afE is positive
Figs. 1-4 were computed without this interaclioRor ex- in Figs. 3.

ample, with the inclusion of BM interactions for the cases of There are few studieof the behavior of the bulk and
A=0.75x10"° Ry for Rb andA=2.2x10 ° Ry for the Cs, shear moduli of metals under pressumgith which the
with B=20 (for both Cs and R} the Gibbs energies of the present work may be compared, although other investigators
bce and fcc phases become equakab=0.856 for Cs and  have reported “shear modulus instabilities” in silicdrand
A=b=0.778 for Rb, with the corresponding pressures ain « quart?* under pressure. The earlier work with Morse
these points equal to 2.7 GPa for Cs and 9.6 GPa for Rb; thizinctions** did not exhibit transitions from stability to insta-
bcc structures then become unstablé gg ) =0.774 for Cs  bility under increasing compression, although there are some
and A ,gmy=0.718 for Rb, with corresponding pressures ofremarkable similarities among the mechanical behaviors of
8.5 and 20.5 GPa, respectively. The Born-Mayer interactionthe Morse function crystals and the pseudopotential model
were introduced without altering the pseudopotential paramerystals. For example, the Morse model bcc shear moduli
eters; the effect of these interactions on various unstresseas(\) were found to be negative throughout an intermediate
properties(i.e., atA=1) of the bcc structure is seen from the range of stretch values, and positive under both large com-
following list, which is in the formafproperty: value for Cs pressiongsmall\) and large expansiorigarge)), not unlike
without the BM interactions, value for Cs with the BM in- the present functiongg(\). However, in the Morse model
teractions; value for Rb without.., ... Rbwith ...]. computations, the ranges of negative valuegugf\) either
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were entirely in the region of tension, i.&>1 (in which  i.e., for Morse model bcc crystals with small shear moduli
cases the bcc crystals were stablaatl and did not become ratios (specifically, w/u’=<0.05, which occurs when
unstable under compressjoor the “negative ranges” in- Ing=3.91), w(\) becomes negative before(\) as \ in-
cluded the zero-pressure statehatl (then the bcc crystals creases, in tension.

were unstable ak=1, but eventually became stable under  Finally, we mention an additional theoretical stétithat
increasing pressure The characteristic behavior of the deals with post-bifurcation phenomena. First-order bifurca-
Morse model bcc and fcc crystals depended on the “rang@on theory(i.e., inclusive of the second-order elastic mogluli

parameter,” I, for a given value of I, theP vs A andx  predicts that the homogeneous eigenméaigsociated with
vs \ curves were almost identical for the bcc and fcc strucyygq of stability when<>0, x'>0, andu=0) makes the lat-

tures, as in the present study. Values g#42.9—-3.3 model
the zero-pressure elastic properties and the pressure volu
behavior of the alkali metals fairly we{see Figs. 7 and 8 of
Ref. 1). For example, the ratio of the shear moduilju’ for

tice orthorhombic with no variation of volunfé i.e., the

tial departure of a previously stable cubic cell of edges
Mfitial d f iousl bl bi Il of ed
a;,=a,=az from its primary equilibrium .pgth is given by
bcc Morse model crystals at zero pressure varies from abo a1+ 8y + 5a;3=0, with C?” edge; remaining mutually or-
0.1 (for InB=3.3) to 0.14 (for InB=2.9); the experimental hogonal. In the forthcoming workj) it is found that equi-
range is also about O(for Li) to O.14(f0,r K). Also, for this librium tetragonalpaths, under hydrostatic pressure, link the
range of values of I8, the bcc moduli are all positive ini- €SPective cubic paths at the states whege-0 and e =0;
tially, and in tension they pass through zero in the order, (i) a general relation derived among third order moduli at
u' as\ increases, withe vanishing atn~1.2, in excellent the _branch point proves tha_t hom(_)geneous branching of a
agreement with the behavior of the alkali metals in thecubic crystal under hydrostatic loading#0 must be from
pseudopotential model. For Li, which has the smallest zerocubic to tetragonali(iii) calculations of the third-order
pressure shear moduli ratip, passes through zero befoke moduli atu=0 verify this relation. This is important owing
in the pseudopotential computations under tension; herto the possible existence of tetragonal phases in some of the
again there is qualitative agreement with the Morse modelalkali metals under very high pressures.
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