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The elastic stability of the bcc and fcc alkali metals is studied theoretically over wide ranges of hydrostatic
pressureP. A pseudopotential model is employed to compute the variations of the bulk modulik and shear
moduli m andm8, as well as the differences between the Gibbs energies of the two structures. Stability is
assessed according to the criteria of Hill and Milstein, i.e.,k(P).0, m(P).0, andm8(P).0. In compression,
the stability ranges of both phases are controlled primarily by the shear modulusm, and high pressure bcc→fcc
transitions in K, Rb, and Cs are found to be associated with the vanishing of this modulus. The ‘‘interplay’’
between the ranges of elastic stability and thermodynamic phase equilibrium~at 0 K! is also studied.
@S0163-1829~96!05129-6#

I. INTRODUCTION

Rasky and Milstein1 have derived formulas for computing
the elastic moduli of cubic metals, that are described by
pseudopotential models, under axial load. Here these formu-
las are used to compute the elastic moduli of the alkali met-
als in their bcc and fcc configurations under hydrostatic pres-
sure, and the computational results are used to evaluate the
pressure dependency of the elastic stability of these struc-
tures. Stability is assessed according to the criteria developed
by Hill and Milstein2–4 which, for a cubic crystal under a
constant hydrostatic pressureP, may be expressed as

k~P!.0, m~P!.0, andm8~P!.0, ~1!

wherek is the bulk modulus andm and m8 are the shear
moduli in the relation between the cubic axes components of
the Cauchy stress incrementdsi j and the rotationless strain
increment«i j ~evaluated relative to the current configuration
under pressureP!. While, in principle, the vanishing of any
one of the three elastic moduli~k, m, or m8! may induce an
instability in a cubic crystal under hydrostatic pressure, we
have found that it is specifically the shear modulusm that
controls the domains of elastic stability of the alkali metals
under compression in both their bcc and fcc configurations
~with the possible exception of Li at very high pressures!.
We also determine the difference between the Gibbs energy
of the bcc and fcc structures under pressure~at 0 K! and thus
are able to study the ‘‘interplay’’ of the ranges of elastic
stability and thermodynamic phase equilibrium.

The alkali metals exhibit seemingly diverse experimental
behavior. For example, at low temperatures, the heavier met-
als Cs, Rb, and K are bcc while Na and Li are in close-
packed structures that are similar to fcc with periodic stack-
ing faults;5 such close-packed structures evidently differ little
in energy from the fcc phase. Indeed, cold working of Li
below 75 K produces fcc.5 Under pressure, Cs, Rb, and K
undergo bcc→fcc transitions, with the transition pressure
greatest for K and least for Cs;5 also, experimentally, Na
transforms from a close-packed structure to bcc at a rela-
tively low pressure, and the bcc and close-packed structures
coexist over a large range of pressure.5,6 Here, from a theo-

retical viewpoint, we show that the bcc→fcc transformations
in the heavier alkali metals are associated with the vanishing
of the shear modulusm of the bcc structure~or mB! and the
simultaneous growth of the shear modulusm of the fcc struc-
ture ~or mF!, from negative or ‘‘weakly positive’’ to
‘‘strongly positive.’’ For Na, however, both the bcc and fcc
structures exhibit elastic stability over wide ranges of com-
pression in the region of the transition between the bcc and
close-packed structures, in accord with the experimentally
observed ‘‘sluggishness’’ in this transition. Finally, each al-
kali metal has a qualitatively similar response to hydrostatic
loading, but the respective curves of shear moduli and Gibbs
energy difference are systematically shifted ‘‘toward the re-
gion of higher compression’’ in passing through the series
from Cs to Li. The experimentally observed ‘‘diversity’’ in
the low-temperature, pressure-dependent, behavior of the al-
kali metals may be understood as a natural consequence of
this ‘‘shifting.’’

II. STABILITY CRITERIA

Milstein and Hill3 have employed the principles of bifur-
cation analyses for general materials in the determination of
stability criteria for cubic crystals subjected to hydrostatic
loading. The analyses are carried out in a manner equivalent
to Hill ~Ref. 7, Chap. III, Sec. C2! but without recourse to
the general mathematical apparatus for handling follower
loadings. Milstein and Hill’s treatment of crystal stability is
rigorous and complete; i.e.,~a! the loading environment is
fully specified, to sufficient order and in both its active and
passive modes, and~b! the potential energy of the system as
a whole is examined in all the nearby, possibly inhomoge-
neous, configurations allowed by the kinematic constraints, if
any. Under a hydrostatic pressure that does not vary during
any departure from a considered configuration of equilib-
rium, elastic stability is guaranteed if3

k~«111«221«33!
21

2
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m@~«112«22!
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14m8~«12
2 1•1• !.0, ~2!
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where«i j denotes the Eulerian strain rate in components on
the cubic axes. Since the three terms are independently vari-
able, the necessary and sufficient conditions for stability are
the simultaneous satisfaction of the inequalities of relations
~1!. Milstein and Hill3 identified the primary eigenstates and
corresponding eigensolutionshi j associated with loss of sta-
bility on a fundamental path at a pressureP5Q as follows.

~i! k(Q)50, m~Q!.0, m8(Q).0 with eigensolution
h115h225h33Þ0; h125h235h3150 ~the eigenmode is neces-
sarily homogeneous and purely volumetric, coincident with
dP/dV50, whereV is the volume of the crystal!.

~ii ! m(Q)50, k(Q).0,m8(Q).0 with solutions such that
h111h221h3350; h125h235h3150 ~the uniform eigen-
modes make the lattice orthorhombic, or possibly tetragonal,
without varying the cell volume!.

~iii ! m8(Q)50, k(Q).0, m(Q).0 with solutions such
that h115h225h3350; any ratiosh12:h23:h31 ~the uniform
eigenmodes distort the lattice without varying the lengths of
the cell edges!.

It is important to distinguish between this treatment of
stability and the ‘‘notional concept’’ introduced by Born, and
variously implemented by later writers on crystal elasticity
~see, e.g., Refs. 8–10!. In pioneering work, Born and his
co-workers11–13 took the ‘‘positive definiteness’’ of the ma-
trix of elastic moduli crs ~the values of which vary with
crystal deformation! to be synonymous with stability; for
cubic crystals under hydrostatic pressure Born’s criterion
yields

c1112c12.0, c112c12.0, and c44.0. ~3!

However, as first noted by Hill,14 and elaborated by Hill and
Milstein,2 Born’s criterion @and hence relations~3!# inad-
equately treats the effects of external loading upon the as-
sessment of stability. It follows, in general, that theoretical
‘‘ranges of stability’’ computed via Born’s criterion depend
upon the choice of parameters used to define strain in a crys-
tal under load, and thus such ranges do not represent intrinsic
measures of crystal strength or stability.~There are some
exceptions,2 but none occur for hydrostatic loading.! We re-
view these considerations briefly in the following paragraphs
as a prelude to the present work.

Presume that the elastic stability of a homogeneously de-
formed crystal~under load! is to be tested by allowing the
crystal to undergo arbitraryd departures from its considered
state of equilibrium. Elastic stability prevails if the combined
incremental changes of internal energydv and external work
done by the surroundingsdu are positive for all possibled
departures, i.e.,dv2du.0 for stability. The internal energy
v per unit reference volume of a homogeneously deformed,
simple crystal may be written, in principle, as a function of
six generalized coordinatesqr(r51, . . . ,6) that are used to
specify crystal geometry. The change in internal energy dur-
ing any test departure is then dv5prdqr
11/2crsdqrdqs1 . . . ~summation convention, r ,
s51, . . . ,6!, wherepr5]v/]qr , crs5]2v/]qr]qs , and the
derivatives are to be evaluated for the crystal in its current
state, under equilibrium loading~i.e., before anyd depar-
ture!. Likewise the increment ofexternalwork per unit ref-
erence volumedu during a d departure is expressible as
du5prdqr11/2krsdqrdqs1 . . . , where the coefficientskrs

depend on the test configuration and the choice of variables
qr .

2 The criterion for stability, to second order in thedqr , is
then

~crs2krs!dqrdqs.0, ~4!

for arbitrary sets$dqr%, when not alldqr50. @Relations~3!,
of course, follow from the incomplete notional concept
crsdqrdqs.0.# In general, ~a! the quantitiespr and crs are
calculable as functions of theqr for various choices of theqr
and models of atomic bonding~the literature contains many
examples!, ~b! ‘‘the set of pr can be related to the Cauchy
tractions on the crystal, but the connection is rarely
simple’’ 2 ~except, e.g., in loadings of simple crystals coin-
cident with crystallographic symmetry axes!, and ~c! ‘‘the
loading in laboratory experiments is usually frame dependent
and the work is affected also by rotation of the specimen; the
loads ‘‘follow’’ the material during any disturbance; they
may, in addition, be deformation sensitive and so become
different in kind from those in the state of equilibrium whose
stability is under test . . . the incrementdu of external work
must be specified objectively to second order, like the incre-
mentdv of internal energy.’’2

For a loading environment consisting of a uniformly pres-
surized fluid, with the apparatus designed so that the pressure
P does not vary during ad departure from a primary con-
figuration of equilibrium, thekrs are readily evaluated. In
particular, if the crystal is cubic on the primary path, and the
qr are the components of the Green strain tensor~which was
always employed by the Born school!, then k115P/l,
k1252P/l, andk445P/l, and the stability criterion, rela-
tions ~4!, becomes

c1112c121P/l.0, c112c1222P/l.0,

and
c442P/l.0, ~5!

for the considered loading environment, as shown by Hill
and Milstein.2 The all-round stretchl is the crystal lattice
parameter divided by its value atP50; thekrs have the same
symmetry as thecrs . Hill and Milstein2,3 also showed that

k5l/3~c1112c12!1P/3, m5l/2~c112c12!2P,

and
m85lc442P, ~6!

so the respective inequalities of relations~5! are in fact
equivalent to those of relations~1!.

In summary, elastic stability under load is ‘‘machine de-
pendent’’ and thus a rational attempt to assess the stability of
a crystal at finite strain must incorporate the behavior of the
machine; i.e., the behavior of the loading environment during
a d departure from a given crystallographic configuration
must be specified and included in the analysis. Theapparent
onset of an instability in a crystal under load, according to
the Born criterion, will depend upon one’s choice of moduli
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~i.e., the geometric parametersqr used in defining the
moduli!. Although application of the Born criterion with a
particular choice of moduli may be considered as equivalent
to the specification of ‘‘a particular machine,’’ the actual
connection is rarely obvious or simple. The stability criteria
@relations~1!# employed in the present study are correct and
rigorous for a machine that applies a hydrostatic pressure
that remains constant and hydrostaticduring the initial de-
parture from a cubic configuration~to possibly a noncubic
configuration! at the onset of instability. These criteria are
also the conditions ensuring all real~nonimaginary! elastic
waves or long-wavelength phonons, as stated in general
terms, for example, in Eq.~3.40! of Wallace’s book.15 Were
the crystallographic departure to cause the loading to depart
incrementally from its considered mode~e.g., a departure
from cubic to tetragonal might induce a nonhydrostatic com-
ponent of stress in some pressure-producing systems!, the
criteria would need to be modified to account for this
‘‘machine-dependent’’ behavior.

Milstein and Hill3,4 determined the domains of elastic sta-
bility for the entire family of Morse-function cubic crystals
~fcc, bcc, and sc!, over wide ranges of pressure. Their work
clearly demonstrated that relations~3! are not only incorrect
~under nonzero pressure! in principle, but they yield large
discrepancies in computed ‘‘stability’’ ranges when com-
pared with relations~1!. ~It is interesting to note, however,
that for all bcc and fcc Morse-function crystals that are stable
at zero pressure, the bulk and shear moduli increased mono-
tonically with increasing pressure,3,4 unlike the present
pseudopotential-based computations.!

III. COMPUTATIONAL PROCEDURE

In pseudopotential theory the binding energy per atom,
Ebind may be written as a sum of a real-space part,Ebind

r

5Ev(V)1( rEr(r ,V), and a reciprocal space part,Ebind
q

5(qEq(q,V). The summations are over atomic positionsr
and reciprocal-lattice vectorsq; both summations depend on
crystal structure~i.e., the geometric arrangement of atoms
and the level of strain! and on the atomic volumeV. In an
orthorhombic crystallographic configuration, following
Rasky and Milstein,1 the Cauchy stresses are

ss5
as

V

]

]as
~Ebind

r 1Ebind
q !

and ~strain-dependent! elastic moduli are conveniently de-
fined as

Crs[
a ras

V

]2

]ar]as
~Ebind

r 1Ebind
q !,

where the parametersa1, a2, anda3 are the principal edges
of the conventional crystallographic cell anda4, a5, anda6
are their included angles;as5as if s51,2,3 andas51 if
s54,5,6. Fors51,2,3, thess are axial stresses acting parallel
to thesth cell edge and fors54,5,6 thess are shear stresses;
here cubic crystal symmetry requires all shear stresses on the
faces of the cell to vanish and axial stressess15s2
5s352P. The pressure andCrs are computed with the ana-
lytic formula derived in Ref. 1@see Eqs.~A19!, ~A21!,
~A36!, and ~A37!#; these formulas are suitable for use with

general pseudopotential models of the type described above.
The bulk and shear moduli are, in turn, computed from the
relations

k5
1

3
~C1112C1212P!,

m5
1

2
~C112C122P!,

and
m85C442P, ~7!

which are equivalent to Eqs.~44! in Hill and Milstein.2

@Equations~7! yield the same respective values ofk, m, and
m8 as Eqs.~6!, of course. The apparent difference in the
explicit P terms is owing to the different choices of strain
variables in the definitions of thecrs andCrs , as mentioned
briefly in Sec. II; see Refs. 2–4 for further discussion.#

In the present work, a two-parameter Heine-Abarenkov
local model potential16 with the Taylor dielectric function17

were used in the description of atomic binding.18 In some of
our computations a Born-Mayer repulsive interaction was
also included to modeld-band repulsion between near neigh-
bors. The model is described explicitly in Ref. 1. We cer-
tainly are aware of more sophisticated models for computing
binding energies of the alkali metals. However, owing to the
relative complexity of the formulas for computingelastic
moduli of crystalsunder load~see the Appendix in Ref. 1!,
we have selected the pseudopotential approach for this study.
Furthermore, with but two adjustable parameters~i.e., ionic
radius and well depth, which were determined for each of the
alkali metals in Ref. 1!, the model yields excellent agreement
with experimental binding energies, atomic volumes,
second- and third-order elastic moduli, and pressure-volume
relations.1 Also, we are aware of lithium’s known departure
from ‘‘free-electron behavior,’’ which would be expected to
cause greater discrepancies between theory and experiment
in the case of Li than in the remaining alkali metals~and
indeed that tendency is observed!. Nevertheless, Li is in-
cluded in the present study, both for the ‘‘purpose of comple-
tion’’ and because the theoretical mechanical response of Li
at moderate pressures is in reasonably good agreement with
experiment, as seen in Tables I and II and in Fig. 1 of Ref. 1.

IV. RESULTS AND DISCUSSION

Computations were made of the pressure, the bulk and
shear moduli, and the associated domains of stability of the
bcc and fcc configurations of each alkali metal~Li, Na, K,
Rb, and Cs! over extensive ranges of hydrostatic compres-
sion and expansion. The results for compression are shown
in Figs. 1~a!–1~e! and for expansion in Figs. 2~a!–2~e!; nu-
merical values of particular interest are tabulated in Table I.
The stretchl is of course related to the atomic volumeV by
l35V/V0 whereV0 is the atomic volume in the unstressed
state. While hydrostatic expansion is difficult to achieve in a
controlled experiment, this mode is nonetheless of interest
since, as is well known, states of pure hydrostatic tension can
be approached locally near cracks and other stress raisers.3 In
these figures, we observe the followinggeneralbehaviors.

~1! At zero pressure~l51!, all of the bcc and fcc bulk and
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shear moduli are positive; thus the zero-pressure bcc and fcc
structures both are stable.

~2! The pressure vs stretch curves for the bcc and fcc
structures of a given metal are very similar, as are the bulk
modulus vs stretch curves for the two structures. In fact,

throughout the ranges of hydrostatic tension and compres-
sion that were studied, the difference between the atomic
volumes of the bcc and fcc structures of a given metal at any
given pressure is less than 0.5%.

~3! In compression, the pressure and bulk modulus both

TABLE I. Theoretical values of pressureP and stretchl at particular ‘‘states of interest’’ in Figs. 1–4 and structures with elastic stability
and lower Gibbs energy. The particular states occur at the following stretch values:l5Lk ~or LkF andLmB(R) for Li !, where stability is lost
in hydrostatic tension;l5LmB(M ) andl5LmB(L) where, respectively, stability of the bcc structure is lost and regained under increasing
compression;l5LmF(M ) andl5LmF(L) where, respectively, stability of the fcc phase is lost and regained under increasing compression: and
l5a andl5b, where the Gibbs energy for the bcc structure equals that of the fcc structure.
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increase monotonically with decreasing stretch~this was
found for all compressive values of stretch, including some
values as low asl50.35!. Thus no instabilities of ‘‘type~i!’’
are found in compression.

~4! For both crystal structures, in hydrostatic tension, the
bulk modulus decreases, with increasingl, more rapidly
than the shear moduli. For all of the bcc alkalis~except Li!
the moduli in tension pass through zero in the orderk, m, m8,

FIG. 1. Pressure and elastic moduli of the bcc and fcc alkali metals in compression; the stretchl is the lattice parameter divided by its
value in the unstressed state~1 GPa51010 dyn/cm2!.
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asl increases; for the fcc alkalis, the shear moduli approach
zero in a more asymptotic manner, and remain positive along
the entire tensile range studied~to values ofl51.5!. Stability
of both the fcc and bcc structures in tension is thus lost when
k passes through zero~andP through a minimum! at l5Lk

~except for bcc Li!; the values ofLk are close to 1.20 and are
slightly greater for the fcc than the bcc structure of a given
element.

~5! In the neighborhood ofl51, the values of the bcc and
fcc shear modulim8 of a given metal are almost identical;

FIG. 2. Pressure and elastic moduli of the bcc and fcc alkali metals in hydrostatic tension~1 GPa51010 dyn/cm2!.
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over the full range of compression and tension, the bcc and
fcc functionsm8~l! behave qualitatively alike. In compres-
sion, the functionsm8~l! exhibit minima~or local minima!,
but remain positive~fcc Li is an exception!; thus~except for

fcc Li under very great compression!, there are no instabili-
ties of ‘‘type ~iii !.’’

~6! The functionsm~l! are particularly interesting, not
only when considered individually, but as regards the evident

FIG. 3. Gibbs energy difference and elastic moduli that control stability of the bcc and fcc alkali metals in hydrostatic loading; theL’s
terminate stability ranges~1 GPa51010 dyn/cm2!. The region of very high compression of~a! is shown in expanded view in Fig. 4.
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‘‘interplay’’ between the functionsm~l! of the two consid-
ered crystal structures. Although the shear modulusm of
each bcc metal~or mB! initially increases with pressure, un-
der continued loading the stable bcc ranges are terminated by
instabilities of ‘‘type~ii !’’ at l5LmB(M ) , wheremB becomes
negative; another bcc-stable range appears at even greater
pressures, wheremB becomes positive atLmB(L) . @Following
the notation of Milstein and Hill3,4 the symbolsLmB(L) ,
LmB(M ) , andLmB(R) are used to denote the values of stretch
at which the shear modulusm~l! of the bcc crystal changes
sign algebraically; the subscriptB indicates bcc and (L),
(M ), and (R) refer to the left-hand, middle, and right-hand
zeros, respectively, inm~l!; analogous notation applies to the
fcc structure.# The fcc shear modulimF tend to be small or
negative in regions wheremB is large and positive; and vice
versa. In the metals Li, Na, K, and Rb, stable fcc ranges
initially are terminated in compression, by ‘‘type-~ii !’’ insta-
bilities at l5LmF(M ) , and subsequently reappear, under in-
creased pressure, atl5LmF(L) , yielding an intermediate un-
stable fcc range. In Cs,mF becomes small, indicating ‘‘weak
stability’’ of the fcc configuration, in the analogous region of
stretch.

Since the variations of pressure with stretch for the fcc
and bcc phases are almost identical, the difference in Gibbs
energyDE of the two phasesat a given pressuremay be
represented on a plot where the stretchl is the independent
variable, as shown in Figs. 3~a!–3~e! and 4. For practical
purposes, the Gibbs energy differences are the differences in
binding energies per atom, since the pressure-volume prod-
ucts are almost identical at a given pressure or volume. For
each of the alkali metals, at relatively large values of stretch
~i.e., l.a in Figs. 3! DE is positive, so the fcc, or close-
packed, phase is favored thermodynamically, when com-
pared with bcc; over a broad intermediate range (b,l,a)
DE is negative, favoring bcc; at still greater compressions,
DE again becomes positive atl5b, and thus fcc again be-
comes the preferred phase~wherel,b!. In passing through

the series from Cs to Li, the states wherel5a, l5b, and
l5LmB(M ) are seen to occur at progressively lower values of
stretch; i.e., through this series, the curvesm~l! andDE~l!
are shifted toward the region of higher compression. It is
particularly interesting to note that the states ‘‘l5a,’’ where
the Gibbs energy difference vanishes~in Figs. 3!, occur in
regions of hydrostatic tension for K, Rb, and Cs and in com-
pression for Na and Li. Thus, although both the bcc and fcc
phases of all five alkali metals are elastically stable at zero
pressure, the thermodynamically preferred zero-pressure
structures~i.e., the structures with the lower Gibbs energy! at
low temperatures are indicated to be bcc for K, Rb, and Cs
and fcc for Li and Na, in good agreement with experiment
~i.e., the low-temperature phases of K, Rb, and Cs are indeed
bcc while Li and Na are closed packed similar to ‘‘faulted
fcc’’ !.

Figures 3 also display the critical role of the shear modu-
lus m and the interplay betweenm and the Gibbs energy
differenceDE. At l5a and atl5b, where both phases have
the same Gibbs energy and are equally favored thermody-
namically, the values ofmB andmF are very close. WheremB
is substantially greater thanmF, DE is strongly negative,
favoring the bcc structure; and vice versa wheremF is con-
siderably larger thanmB . Often the literature fails to distin-
guish between issues of ‘‘stability’’ and ‘‘thermodynami-
cally preferred phase;’’ the present results help clarify these
concepts. Consider, e.g., the bcc phase of Rb to be com-
pressed to a state whereLmB(M ),l,b, i.e., to where 0.670
,l,0.680 for the present computational model. Here the
fcc structure has a lower Gibbs energy, but the bcc crystal is
still elastically stable; it would take some ‘‘finite distur-
bance,’’ to cause a transformation from the bcc to the fcc
state. In principle, in the absence of disturbance, the metal
could remain in the elastically stable but thermodynamically
disfavored bcc structure; the closer the system is to the state
where l5LmB(M ) , the smaller the disturbance required to
cause the transition; atl5LmB(M ) , an infinitesimaldistur-
bance would trigger the transformation.~In an imperfect
crystal, i.e., an actual metal crystal, ‘‘internal disturbances’’
of some magnitude of course are unavoidable owing to lo-
calized stress raisers associated with defects.!

In the cases of K, Rb, and Cs, theoretically the stable bcc
structure thus transforms to fcc at compressions in the range
LmB(M ),l,b, with the transformation pressure greatest for
K and least for Cs, in good agreement with experiment.5

~Our calculations, suggesting a bcc to fcc transformation in
K under pressure, were in fact carried out before this was
observed experimentally.! The computations also show the
transitions to be associated with instabilities of type~ii !. Fur-
ther, there is experimental evidence that these fcc metals
again transform to other structures, at still higher pressures;
not all of these have been identified, although some may be
tetragonal and/or have eight nearest-neighbor atoms.5 Ac-
cordingly, the theoretical shear modulim of these fcc metals
under increasing pressure again vanish, suggesting such fur-
ther transformations. Our computed transformation pressures
~and volumes! for these metals are somewhat greater~and
smaller! than experiments would suggest. For example, ex-
perimentally the bcc→fcc transitions in K, Rb, and Cs are
observed at pressures ranging from about 2 GPa~for Cs! to
11 GPa~for K!,5 whereas theoretically the Gibbs energy dif-

FIG. 4. Expanded view of the theoretical behavior of Li@Fig.
3~a!# under very high compression; it is of interest to note that there
is a region~l,Lm8F(M )50.508! where bothm8 of the fcc structure
andm of the bcc structure are negative, and thus both structures are
unstable.

54 7023THEORETICAL STUDY OF SHEAR-MODULUS . . .



ference vanishes~atl5b! at pressures ranging from 14 to 37
GPa for these metals. This is within the range of other com-
putations, which have suggested corresponding theoretical
transformation pressures as high as about 50 GPa for K and
Rb.5 The numerical discrepancy between theory and experi-
ment may be variously explained. For example, Milstein
et al.19 have pointed out one possible source of discrepancy,
which may result from experimental technique, i.e., from
nonhydrostatic components of stress which may be present
in a high-pressure test. In particular, they used the present
pseudopotential model to study the stability of the alkali met-
als under uniaxial loading and found that bcc→fcc transi-
tions occur under both uniaxial tensile and uniaxial compres-
sive stresses, and the magnitudes of the uniaxial stresses
required to initiate the transitions in K, Rb, and Cs are close
to 2 orders of magnitude less than the ‘‘hydrostatic’’ pres-
sures at which the transitions are observed. This suggests19

‘‘that the combined effect of a relatively small uniaxial com-
ponent of stress ‘‘superimposed’’ on a large hydrostatic com-
pression could cause a bcc→fcc transition well before it
would occur in the absence of the uniaxial component.’’

In view of the above consideration, the qualitative agree-
ment between theory and experiment is considered excellent
and the quantitative agreement, ‘‘reasonably good.’’ How-
ever, another possible source of the numerical discrepancy
between the calculated and observed bcc→fcc transition
pressures in the heavier alkali metals may be that the pseudo-
potential model does not fully account for repulsion between
core electrons under very high pressures. As a first approxi-
mation,d-band overlap in simple metals may be represented
by Born-Mayer~BM! repulsive interactions,20–22i.e., by add-
ing an overlap energy term of the form

1

2 (
r
AexpF2BS rr n21D G

to the binding energy, whereA andB are positive constants
andr n is the nearest-neighbor distance in the unstressed bcc
configuration. This overlap energy term was included in the
present study for selected computations with Cs and Rb. It
was found that, for appropriate choices of the parametersA
and B, the theoretical values ofLmB(M ) and b can be in-
creased considerably~without changing appreciably the
computed low-pressure behavior!, to bring them more in line
with what would be expected experimentally~the results in
Figs. 1–4 were computed without this interaction!. For ex-
ample, with the inclusion of BM interactions for the cases of
A50.7531025 Ry for Rb andA52.231025 Ry for the Cs,
with B520 ~for both Cs and Rb!, the Gibbs energies of the
bcc and fcc phases become equal atl5b50.856 for Cs and
l5b50.778 for Rb, with the corresponding pressures at
these points equal to 2.7 GPa for Cs and 9.6 GPa for Rb; the
bcc structures then become unstable atLmB(M )50.774 for Cs
andLmB(M )50.718 for Rb, with corresponding pressures of
8.5 and 20.5 GPa, respectively. The Born-Mayer interactions
were introduced without altering the pseudopotential param-
eters; the effect of these interactions on various unstressed
properties~i.e., atl51! of the bcc structure is seen from the
following list, which is in the format@property: value for Cs
without the BM interactions, value for Cs with the BM in-
teractions; value for Rb without. . . , . . . Rbwith . . . #.

@Ebind in Ry: 20.344,20.344;20.368,20.368#, @lattice pa-
rameter in Bohr radii: 11.4205, 11.4399; 10.5388, 10.5441#,
@k in GPa: 22.4, 23.2; 30.2, 30.5#, @m in GPa: 2.47, 2.40;
3.34, 3.31#, @m8 in GPa: 16.6, 17.2; 23.4, 23.7#, @dk/dP:
3.72, 3.85; 3.77, 3.81#, @dm/dP: 0.271, 0.241; 0.268, 0.258#,
@dm8/dP: 1.07, 1.24; 1.16, 1.21#, @d2k/dP2 in ~GPa!21:
21.9, 21.6; 21.3, 21.2#, @d2m/dP2 in ~GPa!21: 20.33,
20.34; 20.23, 20.23#, and @d2m8/dP2 in ~GPa!21: 21.7,
21.4; 21.3, 21.3# ~corresponding experimental values are
listed in Tables I and II of Ref. 1!.

Also, our theoretical results are in good agreement with
the experimental observation that Na transforms from the
close-packed structure to bcc at a relatively low pressure,
with the bcc and close-packed structures coexisting over a
large range of pressure.5,6 That is, the Gibbs energies of the
bcc and fcc structures of Na become equal~at l5a! at a
relatively small pressure, although here the transformation
does not seem to be associated with the vanishing of a shear
modulus, since bothmB and mF are appreciably large and
positive at statea, and remain so over large ranges of com-
pression. This ‘‘strong’’ elastic stability of both phases is
thus also consistent with the observed ‘‘coexistence’’ of the
two apparently stable phases. As in the case of the higher
pressure bcc→fcc transformations in Cs, Rb, and K, the in-
dicated theoretical transformation pressure in Na is some-
what greater than what experiment would suggest; i.e., at
low temperature, Na is found to transform to bcc in the range
0.1–0.2 GPa,5 whereas the state ‘‘l5a’’ resides at about
0.90 GPa in the pseudopotential model of Na. A further
bcc→fcc transition in Na is suggested at very high pressures,
but has not, as yet, been observed. According to the model
computations, Li also undergoes a close-packed→bcc transi-
tion that is ‘‘sluggish’’ and this occurs at greater pressures
than those at which the analogous transition occurs in Na.
Experimentally, Li is thought to undergo a crystallographic
phase change at 7 K and 26 GPa, based on resistance
curves.5 Since the points wherel5a occur wherel.1 in K,
Rb, and Cs, these metals would also be expected to undergo
similar ‘‘sluggish’’ transformations from bcc to close
packed, but in regions of hydrostatic tension. It is noteworthy
~and perhaps contrary to one’s intuition! that increasing
compressionstabilizes the bcc structure~which is usually
thought of as ‘‘more open’’! at the expense of fcc; this in-
creasing stabilization of bcc occurs over large ranges of ten-
sion and compression~i.e., where the slope ofDE is positive
in Figs. 3!.

There are few studies~of the behavior of the bulk and
shear moduli of metals under pressure! with which the
present work may be compared, although other investigators
have reported ‘‘shear modulus instabilities’’ in silicon23 and
in a quartz24 under pressure. The earlier work with Morse
functions3,4 did not exhibit transitions from stability to insta-
bility under increasing compression, although there are some
remarkable similarities among the mechanical behaviors of
the Morse function crystals and the pseudopotential model
crystals. For example, the Morse model bcc shear moduli
mB~l! were found to be negative throughout an intermediate
range of stretch values, and positive under both large com-
pressions~smalll! and large expansions~largel!, not unlike
the present functionsmB~l!. However, in the Morse model
computations, the ranges of negative values ofmB~l! either
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were entirely in the region of tension, i.e.l.1 ~in which
cases the bcc crystals were stable atl51 and did not become
unstable under compression! or the ‘‘negative ranges’’ in-
cluded the zero-pressure state atl51 ~then the bcc crystals
were unstable atl51, but eventually became stable under
increasing pressure!. The characteristic behavior of the
Morse model bcc and fcc crystals depended on the ‘‘range
parameter,’’ lnb; for a given value of lnb, theP vs l andk
vs l curves were almost identical for the bcc and fcc struc-
tures, as in the present study. Values of lnb'2.9–3.3 model
the zero-pressure elastic properties and the pressure volume
behavior of the alkali metals fairly well~see Figs. 7 and 8 of
Ref. 1!. For example, the ratio of the shear modulim/m8 for
bcc Morse model crystals at zero pressure varies from about
0.1 ~for lnb53.3! to 0.14 ~for lnb52.9!; the experimental
range is also about 0.1~for Li ! to 0.14~for K!. Also, for this
range of values of lnb, the bcc moduli are all positive ini-
tially, and in tension they pass through zero in the orderk, m,
m8 as l increases, withk vanishing atl'1.2, in excellent
agreement with the behavior of the alkali metals in the
pseudopotential model. For Li, which has the smallest zero-
pressure shear moduli ratio,m passes through zero beforek
in the pseudopotential computations under tension; here
again there is qualitative agreement with the Morse model;

i.e., for Morse model bcc crystals with small shear moduli
ratios ~specifically, m/m8&0.05, which occurs when
lnb*3.91!, m~l! becomes negative beforek~l! as l in-
creases, in tension.

Finally, we mention an additional theoretical study25 that
deals with post-bifurcation phenomena. First-order bifurca-
tion theory~i.e., inclusive of the second-order elastic moduli!
predicts that the homogeneous eigenmode~associated with
loss of stability whenk.0, m8.0, andm50! makes the lat-
tice orthorhombic with no variation of volume,2,3 i.e., the
initial departure of a previously stable cubic cell of edges
a15a25a3 from its primary equilibrium path is given by
da11da21da350, with cell edges remaining mutually or-
thogonal. In the forthcoming work,~i! it is found that equi-
librium tetragonalpaths, under hydrostatic pressure, link the
respective cubic paths at the states wheremB50 andmF50;
~ii ! a general relation derived among third order moduli at
the branch point proves that homogeneous branching of a
cubic crystal under hydrostatic loading atm50 must be from
cubic to tetragonal;~iii ! calculations of the third-order
moduli atm50 verify this relation. This is important owing
to the possible existence of tetragonal phases in some of the
alkali metals under very high pressures.5

*Present address: NASA-AMES Research Center, Moffett Field,
California 94035-1000.
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