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Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we
have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal
molybdenum~Mo!. Many-body angular forces, which are important to the structural and mechanical properties
of such central transition metals with partially filledd bands, are accounted for in the present theory through
explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with
those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-
formation and activation energies are in excellent agreement with experimental results. The energetics of six
self-interstitial configurations have also been investigated. The^110& split dumbbell interstitial is found to have
the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measure-
ments. In ascending order, the sequence of energetically stable interstitials is predicted to be^110& split
dumbbell, crowdion,̂ 111& split dumbbell, tetrahedral site,̂001& split dumbbell, and octahedral site. In
addition, the migration paths for the^110& dumbbell self-interstitial have been studied. The migration energies
are found to be 3–15 times higher than previous theoretical estimates obtained using simple radial-force
Finnis-Sinclair potentials. Finally, the atomic structure and energetics of^111& screw dislocations in Mo have
been investigated. We have found that the so-called ‘‘easy’’ core configuration has a lower formation energy
than the ‘‘hard’’ one, consistent with previous theoretical studies. The former has a distinctive threefold
symmetry with a spread out of the dislocation core along the^112& directions, an effect which is driven by the
strong angular forces present in these metals.@S0163-1829~96!00434-1#

I. INTRODUCTION

It is very important to understand both deformation and
defect properties of metals at the atomistic level in order to
develop larger length-scale theories of their mechanical
properties. For example, the ideal shear strength of a metal is
an important parameter in modern theories of plasticity and
fracture.1 Likewise, accurate determination of the atomic
core structure and energetics of isolated dislocations is be-
lieved to be crucial for the understanding of the low-
temperature plasticity of bcc metals. Although the rapid im-
provement and development of experimental tools in recent
years, e.g., the scanning tunneling microscope~STM!, the
field ion microscope~FIM!, the high-resolution transmission
electron microscope~HRTEM!, etc., has significantly im-
proved the prospects for directly observing the structures of
crystal defects at the atomic level, many details of these
structures remain beyond the scope of these tools. With the
corresponding rapid development in high-performance com-
puting capabilities and efficient numerical algorithms, how-
ever, atomistic simulations based on realistic physical mod-
els are becoming a powerful supplement to current
experimental methods.

The accurate atomistic simulation of deformations and
crystal defects in metals requires the use of quantum-
mechanically based interatomic potentials which take into
account the electronic structure of the metal in a meaningful
and systematic way. Most calculations of point defects and
dislocations in metals2–5have used radial-force empirical po-
tentials, including both pair potentials and many-body

‘‘glue’’ models such as Finnis-Sinclair~FS! potentials6 and
embedded-atom-method~EAM! potentials.7 It has been rec-
ognized, however, that this is not adequate in general for the
central bcc transition metals, as discussed by Carlsson8 and
others. Accurate atomistic simulations of deformation and
defect energetics in the bcc metals require the strong angular
forces present in these materials which arise from multi-ion
d-state interactions. In recent years, several interatomic po-
tential schemes9–12based on tight-binding theory and explic-
itly containing angular-force contributions have been devel-
oped for bcc transition metals and applied successfully to
study structural phase stability, surface properties, and point
defects. At the same time, Moriarty13 has derived multi-ion
interatomic potentials for transition metals from first-
principles generalized pseudopotential theory~GPT!. For
atomistic simulations on the bcc metals, a simplified model
GPT or MGPT has been developed using canonicald bands
and which produces entirely analytic three- and four-ion
potentials.14,15 In the case of molybdenum~Mo!, MGPT po-
tentials have been successfully applied to the cohesive, struc-
tural, elastic, vibrational, thermal, and melting properties of
the bulk metal.15 In this paper, we have applied the same
MGPT potentials to study ideal shear strength, vacancy and
self-interstitial formation and migration, and the structure of
^111& screw dislocations in Mo. We intend these calculations
to serve both as additional tests of the potentials in low-
symmetry bulk geometries and as an important first step to-
wards future studies on dislocation motion in bcc metal sys-
tems, including the calculation of the Peierls barrier and its
environmental dependence.

To our knowledge, the problems of ideal shear strength,
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self-interstitial migration, and screw-dislocation structure in
bcc transition metals have not been treated previously with
angular-force interatomic potentials. In this regard, the
MGPT approach offers some clear advantages for the study
of such deformation and defects properties by atomistic
simulation, which can become very computationally inten-
sive when realistic angular forces are included. As discussed
previously,13,14 the MGPT total energy functional containing
three- and four-ion potentials has essentially the same
d-band physics as a tight-binding total-energy expansion car-
ried out to the fourth moment of thed-band density of states,
which is the basis of the fourth-moment tight-binding
~FMTB! interatomic potential schemes mentioned above.9–12

However, thed-state matrix multiplication which is needed
to evaluate these contributions is carried outanalytically,
once and for all, in the MGPT, rather than numerically ‘‘on
the fly’’ as in the FMTB schemes. This leads to closed-form
expressions for the three- and four-ion MGPT potentials
which are highly flexible, computationally efficient, and pro-
vide very accurate forces. Consequently, we expect the
MGPT approach to be somewhat faster than the FMTB
schemes, although both are necessarily slow compared to
short-ranged EAM or FS potentials. An explicit timing test
here has shown, for example, that the present MGPT poten-
tials are at least 40 times slower than simple FS potentials.
Full optimization of the MGPT has not yet been achieved,
however, and could provide significantly increased computa-
tional speed in the future.

This paper is organized as follows. In Sec. II, we first
review the MGPT and discuss the specific potentials used in
this work for Mo. Then in Sec. III we apply these potentials
to the ideal shear strength of Mo. Our general simulation
method to treat bulk defects is discussed in Sec. IV together
with MGPT calculations of the formation and migration en-
ergies for an isolated vacancy and for various self-
interstitials. In Sec. V, we then apply the same techniques to
obtain the stable configuration and core structure of a
^111& screw dislocation. Finally, our conclusions are given
in Sec. VI.

II. MGPT INTERATOMIC POTENTIALS

The MGPT interatomic potentials used in this work are
based on first-principles generalized pseudopotential
theory.13 A brief summary of the MGPT formalism as it
applies here to Mo is given below; more complete details can
be found in the papers by Moriarty.14,15 The first-principles
GPT provides a rigorous real-space expansion of the total
energy of a bulk transition metal in the form

Etot~R1•••RN!5NEvol~V!1
1

2 ( 8
i , j

v2~ i j !

1
1

6 ( 8
i , j ,k

v3~ i jk !1
1

24 ( 8
i , j ,k,l

v4~ i jkl !,

~1!

whereR1•••RN denotes the positions on theN ions in the
metal,V is the atomic volume, and the prime on each sum
over ion positions excludes all self-interaction terms where
two indices are equal. The leading volume term in this ex-

pansion,Evol , as well as the two-, three-, and four-ion inter-
atomic potentials,v2, v3, andv4, are volume dependent, but
structure independentquantities and thustransferableto all
bulk ion configurations. In the full GPT, however, the poten-
tials are both long-ranged and nonanalytic functionals, so
that the multidimensional potentialsv3 and v4 cannot be
readily tabulated for application purposes. In the MGPT, the
potentialsv2, v3, andv4 are systematically approximated by
introducing canonicald bands and other simplifications to
achieve short-ranged, analytic forms, which can then be ap-
plied to both static and dynamic simulations. The radial-
force, two-ion pair potentialv2 is obtained as a sum of
simple-metalsp, hard-core overlap, and tight-binding-like
d-state contributions:

v2~r !5v2
sp~r !1v2

hc~r !1v2
d~r !. ~2!

In Eq. ~2! the simple-metal potentialv2
sp and the hard-core

potential v2
hc are retained directly from the first-principles

GPT, while thed-state potentialv2
d is developed in the form

v2
d5va@ f ~r !#42vb@ f ~r !#2, ~3!

where f (r ) is the radial component of the tight-binding ma-
trix element linking the two ions. For pure canonicald
bands,f (r )}r25, but this has been generalized to include an
r2p radial dependence and a smooth Gaussian cutoff beyond
a specified radiusR0:

f ~r !5H ~r 0 /r !p, r,R0 ,

~r 0 /r !pexp@2a~r /R021!2#, r.R0 .
~4!

Herer 051.8RWS, with RWS the Wigner-Seitz radius, and for
Mo R052.15RWS, a5125, andp54. The latter values of
R0 and a ensure thatf (r ) is negligible beyond second-
neighbor distances in the bcc structure, while the value of
p chosen is that most commensurate with the actuald bands
for Mo.

The angular-force three- and four-ion potentials,v3 and
v4, are obtained as the appropriate multi-ion generalizations
of v2

d . The potentialv3 is a three-dimensional function of the
separation distancesr 1, r 2, andr 3 linking three ions,

v3~r 1 ,r 2 ,r 3!5vcf ~r 1! f ~r 2! f ~r 3!L~u1 ,u2 ,u3!

1vd$@ f ~r 1! f ~r 2!#
2P~u3!

1@ f ~r 2! f ~r 3!#
2P~u1!

1@ f ~r 3! f ~r 1!#
2P~u2!%, ~5!

while the potentialv4 is a six-dimensional function of the six
separation distances linking four ions,

v4~r 1 ,r 2 ,r 3 ,r 4 ,r 5 ,r 6!

5ve@ f ~r 1! f ~r 2! f ~r 4! f ~r 5!M ~u1 ,u2 ,u3 ,u4 ,u5 ,u6!

1 f ~r 3! f ~r 2! f ~r 6! f ~r 5!M ~u7 ,u8 ,u9 ,u10,u5 ,u12!

1 f ~r 1! f ~r 6! f ~r 4! f ~r 3!M ~u11,u12,u5 ,u6 ,u3 ,u4!#.

~6!

The quantitiesL, P, andM in Eqs.~5! and~6! are universal
angular functions which depend only ond symmetry and
apply to all transition metals. These functions have exact
analytic representations which are given in Ref. 14. The ma-
jor computational effort comes in evaluating the four-ion an-
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gular functionM , which depends on six independent angles
and is necessarily complicated. While we have an exact and
efficient representation of this function, full optimization has
probably not yet been achieved and this is a goal for the
future.

The five remainingd-state coefficientsva , vb , vc , vd ,
andve in Eqs.~3!, ~5!, and~6! are material parameters which
depend primarily ond-band filling and width. The potential
terms with coefficientsva , vd , andve all contribute to the
fourth moment of thed-band density of states, while those
with coefficientsvb andvc contribute to the second and third
moments, respectively. In FMTB schemes the third-moment
terms are usually neglected, while the fourth-moment terms
are treated collectively and in fixed ratios. In the MGPT, on
the other hand, both of these conditions are relaxed and all
five coefficients are treated as independent parameters. This
serves in part to compensate for the neglect of explicit
d-state nonorthogonality andsp-d hybridization contribu-
tions to the potentials. The coefficients themselves may be
constrained by any desired combination of theory and ex-
periment. For the present Mo potentials,vc has been fixed by
theoretical considerations, whileva , vb , vd , and ve have
been fit to bulk experimental data, as described in Ref. 15.

A few selected bulk properties of Mo calculated using
these potentials are quoted in Table I and compared with
both experimental data16–18 and ab initio band-theory
results.14,19–21 The bulk modulus and the elastic constants
agree with experiment by construction, as these quantities
have been used in determining the potentials. The excellent

agreement with band theory achieved for the bcc-fcc energy
difference, on the other hand, is an important benchmark test
of the MGPT. Phonons are also well described except near
the @100# zone boundary, where a strong Kohn anomaly ab-
normally lowers the longitudinalL@100# frequency.20 In the
MGPT, the calculation of theL@100# phonon, as well as the
hcp-fcc energy difference, suffers from the suppression of
long-rangedd-state interactions both through Eq.~4! and by
the neglect of higher-order potentials beyondv4. Most other
bulk properties investigated for Mo are well described by the
MGPT potentials, however, including the pressure depen-
dence of the bulk modulus and elastic constants, the Debye
temperature, the Gru¨neisen parameter, and the high-
temperature melting properties, as previously discussed.15

The use of volume-dependent bulk potentials in deforma-
tion and defect calculations, as in the present applications,
raises the general question as to the importance of local vol-
ume changes in such calculations. While the GPT formalism
has been extended to take these effects into account,22 they
have been shown to be small (; 0.01 eV! in bcc metals for
the test case of the vacancy formation energy. We believe,
therefore, that these effects can be safely neglected in bulk
calculations. Operationally, all of the present applications are
carried out at a fixed total volume corresponding to the equi-
librium atomic volumeV0 5 105.1 a.u. of bcc Mo. The
volume termEvol is treated as a constant and the potentials
v2, v3, andv4 are applied at the atomic volumeV0.

III. IDEAL SHEAR STRENGTH

The calculation of the theoretical shear strength in bcc
transition metals on a quantum-mechanical basis has previ-
ously been considered by Paxtonet al.23 These authors de-
fine the shear strength of the perfect crystal to be the ideal
twin stresstc associated with the continuous homogeneous
deformation of the crystal into itself via the observed twin-
ning mode. This mode is specified by a shear directionh and
a normal planeK . For bcc crystals,h 5 @1̄1̄1# and
K5(112). In the absence of tensile relaxation normal toK ,
the atomic positions during the deformation can be very sim-
ply related to the amount of shearx. Specifically, the calcu-
lation may be carried out entirely using a single atom per
unit cell and periodic boundary conditions, with the basis
vectors of the sheared crystal given by

a15
1

2
@ 1̄11#1

1

6

x

s
@ 1̄1̄1#, ~7a!

a25
1

2
@11̄1#1

1

6

x

s
@ 1̄1̄1#, ~7b!

a35
1

2
@111̄#. ~7c!

At x5s51/A2, one has a15(1/3)@ 2̄12# and a2
5(1/3)@12̄2#, so that an exact bcc twin has been created.
Along the twinning path one calculates a symmetric energy
barrier,

W~x!5~Etot@x#2Etot@0# !/N, ~8!

with a barrier heightWc at x5s/2. The corresponding stress
is given by

TABLE I. Bulk properties of bcc Mo. Quantities and units: co-
hesive energyEcoh and structural energies in eV; bulk modulusB
and elastic constantsC11, C12, C44, and C8 in Mbar; phonon
frequenciesL, T1, T2 in THz. All quantities are evaluated at the
observed equilibrium atomic volume~105.1 a.u.!; phonons are
zone-boundary values except as indicated. Experimental data are
room-temperature results.

MGPT Experiment Band theory

Ecoh 29.03 26.82a 26.19b

B 2.64 2.64c 2.64b

C11 4.66 4.66c 4.40d

C44 1.10 1.10c 1.39d

C12 1.63 1.63c 1.62d

C8 1.51 1.52c 1.39d

bcc-fcc 20.41 20.41b

hcp-fcc 0.001 0.03b

L@
3
500] 9.34 7.61e

L@100# 9.20 5.52e 5.0f

L@110# 8.11 8.14e

T1@110# 6.13 5.73e 5.8g

T2@110# 4.02 4.56e 4.0g

L@
2
3
2
3
2
3] 6.32 6.16e 6.1f

aReference 16.
bReference 14.
cReference 17.
dReference 19.
eReference 18.
fReference 20.
gReference 21.
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t~x!5
1

V0

dW~x!

dx
. ~9!

The ideal shear strength is identified with the maximum cal-
culated stress along the twinning path,tc5t(xc), wherexc
is the critical shear separating regimes of elastic and plastic
deformation of the crystal. Paxtonet al.23 carried out this
procedure for five bcc transition metals, including Mo, using
a full-potential, linear-muffin-tin-orbital ~FP-LMTO!
electronic-structure method. These calculations were non-
self-consistent, however, and employed the so-called Harris-
Foulkes approximation, which they claim reproduces a full
self-consistent calculation oftc in V to within 5%. This sim-
plification also allowed these authors to consider relaxation
effects in the form of a small applied tensile straine
(0<e<6%). The impact of relaxation was found to be
small in all cases, however, and did not changetc by a
significant amount. In the present work, therefore, we have
considered only the unrelaxede50 case.

To test the present MGPT potentials for such large bulk
deformations, we have applied the abovee50 scheme to
Mo. We have calculatedW(x) at intervals of 0.01 over the
full range 0<x<s, and obtainedt(x) from numerical dif-
ferentiation via Eq.~9!. These results are plotted in Fig. 1.
Calculated values of the barrier heightWc , critical stress
tc , critical shearxc , and corresponding shear modulus

m t5~C112C121C44!/3 ~10!

are listed in Table II and compared with the results of Paxton
et al.23 The overall agreement is quite reasonable, although
our value oftc is about 25% larger than theirs. Figure 2
illustrates the contributions of the multi-ion potentials to our
calculatedW(x) and thereby the relative importance of the
angular forces. Whilev3 contributes almost nothing to
W(x) at anyx, v4 contributes about 50% atx5xc and about
33% to the total barrier heightWc .

It is also of interest to contrast our calculated results on
Mo both with the predictions of the elementary Frenkel
model of ideal shear strength and with corresponding results
for simple bcc metals possessing no angular forces. In the
Frenkel model,t(x) is assumed to have the simple sinu-
soidal form23

t~x!5
m ts

2p
sin~2px/s!, ~11!

which yieldsxc /s50.25 andtc /m t5s/2p;0.1. While the
latter are quite respectable first approximations to bcc tran-

FIG. 1. Ideal shear strength in bcc Mo, as calculated with the
present multi-ion MGPT interatomic potentials.~a! Energy barrier,
W(x); ~b! shear stress,t(x).

TABLE II. Ideal theoretical shear strength in bcc metals, with-
out tensile relaxation. Quantities and units: barrier heightWc in eV;
critical shearxc ; critical stresstc and shear modulusm t in GPa.

Mo Mo Mg a Na
FP-LMTOb MGPT GPT GPT

Wc 0.42 0.47 0.083 0.011
xc /s 0.26 0.27 0.25 0.25
tc 19 23.7 3.52 0.20
m t 137c 137.6 34.4 2.3
tc /m t 0.14 0.17 0.10 0.08

aCompressed metal:V/V050.723, where bcc Mg is mechanically
stable.
bNon-self-consistent calculations of Ref. 23.
cAssumed value.

FIG. 2. Contributions to the shear-strength energy barrier in bcc
Mo from the multi-ion MGPT potentialsv2, v3, andv4.
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sition metal results, the actual behavior in these metals is
somewhat more complex. As can be seen from Fig. 1, for
example, our calculatedt(x) for Mo, while necessarily os-
cillatory, is clearly not a sine function. In addition, the cal-
culatedtc /m t are consistently higher than 0.1, with values in
the range 0.12–0.17 for the cases studied by Paxtonet al.23

and a value of 0.17 here for Mo. This conclusion is rein-
forced when one considers simple bcc metals, which are well
described by radial forces alone. Using first-principles GPT
pair potentials for Mg~Ref. 24! and Na,25 we have repeated
the above calculations of ideal shear strength. The results are
summarized and compared with those for Mo in Table II. In
both metals the calculatedt(x) is much closer to a sine
function andtc /m t.0.1, so that Frenkel behavior is indeed
better approximated. At the same time, it is striking that
while tc increases by 2 orders of magnitude between Na and
Mo, tc /m t increases by only a factor of 2.

IV. POINT DEFECTS

The point defects studied here, i.e., the single isolated
vacancy and the self-interstitial, are modeled within a large
cubic simulation cell to which periodic boundary conditions
are applied in all three directions. Fixed boundary conditions
can also be used, but this requires considerably extra com-
puter memory and usually produces slower convergence with
respect to cell size, as we demonstrate below for the crow-
dion self-interstitial. The conjugate gradient method26 is used
to determine the stable structures through energy minimiza-
tion. The formation energy for a point defects is defined as

Ef5Etot@N#2NEcoh, ~12!

whereEtot@N# is the total energy of the simulated system,
N is the number of atoms in the simulation cell including the
defect, andEcoh is the cohesive energy~per atom! for bulk
bcc Mo.

To calculate the migration energy barrier, we march one
atom, which is either the interstitial atom or a nearest-
neighbor atom in the vacancy case, from its equilibrium site
towards a nearest-neighbor site or the vacancy site. During
the migration process, we allow the migrating atom to relax
in the plane perpendicular to the vector between its initial
and final positions. This ensures finding the minimum~opti-
mal! energy path for migration. Meanwhile, all other atoms
are fully relaxed, except for one atom on the corner of the
cell which is frozen to prevent a rigid shift of the simulation
cell behind the ‘‘marching’’ atom. One stationary point
~maximum! is found and it corresponds to the migrating
atom sitting at a saddle point (Etot5Esaddle) on the energy
surface. The migration energyEm is given by

Em5Esaddle2Emin , ~13!

whereEmin is the total energy of the defect at its equilibrium
site.

A. Vacancy

Using MGPT interatomic potentials, we have calculated
the formation and migration energies of a single isolated Mo
vacancy. A simulation cell of size 5a35a35a, wherea is a
lattice constant of Mo, was created with a total of 249 atoms

plus one vacancy in the center. The calculation is carried out
at zero temperature and constrained with a constant volume
condition. In Table III we list the unrelaxed and relaxed va-
cancy formation energy,Ev

f that we obtain for Mo. Our re-
laxed formation energy of 2.9 eV is only about 4% lower
than the unrelaxed value and in excellent agreement with
experimental result measured by Maieret al.27 Our unre-
laxed and relaxed values also agree with the results obtained
by Foiles11 using a FMTB scheme. In both the MGPT and
FMTB treatments, the unrelaxed formation energy was used
as a constraining parameter in determining the potentials, so
the consistency and agreement with experiment is not unex-
pected. For comparison, Harder and Bacon4 obtained a value
of 2.5 eV using the original Finnis-Sinclair potential, de-
noted as FS~1! in Table III, while the full tight-binding cal-
culation of Ohtaet al.28 gave a much lower value of 0.9 eV.
In order to check any size effect of the simulation cell on our
result, a larger cell with 685 total atoms has also been used.
We found that the formation energy so obtained is almost
identical to that of the 249-atom cell (,1% difference!.

In the calculation of the vacancy migration energy,Ev
m ,

we constrained the migrating atom, a nearest neighbor of the
vacancy, to lie on a plane which is perpendicular to the mi-
gration path alonĝ111&. As indicated in Table III, our cal-
culated migration energy for Mo is 1.6 eV, as compared with
1.9 eV obtained by Foiles11 with FMTB potentials and 1.3
eV obtained by Harder and Bacon4 with FS~1!. Experimen-
tally, only the activation energy,Qv , which is the sum of
vacancy formation and migration energies, can be measured.
Using our calculated values ofEv

f andEv
m we find that the

activation energyQv is 4.5 eV for Mo, in excellent agree-
ment with the measured result, and somewhat better than the
values of 4.8 and 3.9 eV obtained by Foiles11 and by Harder
and Bacon,4 respectively.

TABLE IV. Percentage displacements of nearest-neighbor~NN!
shells to a relaxed Mo vacancy, as obtained in the present MGPT
calculations.

Shell Unrelaxed Relaxed %

First NN 0.866025a 0.850189a 21.83
Second NN 1.000000a 1.004617a 10.46
Third NN 1.414214a 1.415590a 10.10
Fourth NN 1.658312a 1.657589a 20.04
Fifth NN 1.732051a 1.724861a 20.42
Sixth NN 2.000000a 2.000256a 10.01
Seventh NN 2.179449a 2.178924a 20.02

TABLE III. Single vacancy formation energyEv
f , migration en-

ergyEv
m , and activation energyQv for Mo, in eV.

MGPT FMTBa FS~1! b Experimentc

Ev
f ~unrelaxed! 3.0 3.0

Ev
f ~relaxed! 2.9 2.9 2.5 3.0 (6 0.3!

Ev
m 1.6 1.9 1.3

Qv 4.5 4.8 3.9 4.5 (6 0.3!

aReference 11.
bReference 4.
cReference 27.
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While the effects of relaxation are small, we have found
that the displacement of atoms around the relaxed vacancy
follows a clear oscillatory pattern, with an inward contrac-
tion of the first-neighbor shell by about 1.8%. Table IV in-
dicates the change in radius of the first seven nearest-
neighbor~NN! shells to the vacancy site. In particular, the
displacements follow contraction, expansion, expansion,
contraction, contraction, expansion, and contraction. A quali-
tatively similar relaxation pattern for the first two shells was
obtained by Matthai and Bacon3 with the FS~1! potential.
The tight-binding calculation of Ohtaet al.,28 on the other
hand, showed little or no relaxation of the first shell and an
inward relaxation of the outer shells.

B. Self-interstitials

We have carried out MGPT calculations on Mo self-
interstitials for the various possible high-symmetry positions
in a bcc structure. Six different configurations have been
considered which include octahedral, tetrahedral, and crow-
dion sites, and split dumbbell sites along the^110&, ^001&,
and^111& directions. These interstitials are shown in Fig. 3.
All six configurations are metastable and the calculated equi-
librium positions are given in Table V. Due to the large
strain fields generated by such interstitial defects, it is impor-
tant to check the convergence of the formation energy,Ei

f ,
with respect to simulation cell size in constant volume cal-
culations. We have considered four cells (6a36a36a with
432 atoms, 7a37a37a with 686 atoms, 8a38a38a with
1024 atoms and 9a39a39a with 1458 atoms! to calculate
the formation energy. Table VI shows the convergence of
Ei
f for the crowdion self-interstitial with respect to the size of

the simulation cell, using both periodic boundary conditions
and fixed boundary conditions. In the latter case, the system
must include a large surrounding outer region, where the
atomic positions are fixed at their bulk bcc values, in addi-
tion to the inner simulation region, where the atomic posi-
tions are fully relaxed. Table VI shows the calculated forma-
tion energy for four simulation cells with different-sized
inner regions. Although the two methods indeed appear to be
uniformly converging toward the same result, for any given
cell size we obtain a higher, and hence less converged, for-
mation energy with fixed boundary conditions than with pe-
riodic boundary conditions. Another major drawback in us-
ing fixed boundary conditions is that they require a very
large outer region to satisfy the interatomic-potential cutoff
(;2.1a) for the inner-region boundary atoms. For example,
a simulation cell with 1458 atoms in the inner region still

needs an additional 4000 atoms in the outer region to satisfy
the cutoff. This consequently slows down the calculation due
to large additional computer memory required.

Based on this detailed test, we have chosen a 1024-atom
cell to use in all our remaining calculations with periodic
boundary conditions. The resulting formation energies for
the six interstitial configurations are listed in Table V. We
find the ^110& split dumbbell to have the lowest formation
energy,Ei

f 5 10.9 eV at6(0.26, 0.26, 0.0)a, in agreement
with the configuration found by x-ray diffuse scattering
measurements.29 In ascending order, the sequence of ener-
getically stable interstitials iŝ110& split dumbbell, crow-
dion, ^111& split dumbbell, tetrahedral site,̂001& split
dumbbell, and octahedral site. Table V also lists the results
on self-interstitial formation energies in Mo calculated by
Harder and Bacon4 using the original Finnis-Sinclair poten-
tial, FS~1!. Obviously, MGPT yields much higher values
than FS~1!, and this is a direct reflection of the strong angu-
lar forces present in the former potentials, which disfavor
non-bcc angles. On the other hand, for the^110& split dumb-
bell, Foiles11 obtained a formation energy of only 6.2 eV
with his FMTB scheme, which is actually 0.8 eVlower than
the FS~1! result. This emphasizes that interstitial energies are
sensitive to the short-range details of the interatomic poten-
tials as well as to the angular forces.

An asymmetric metastable configuration at6(0.3182,
0.1958, 0.0182)a, which is rotated from thê110& dumbbell
position6(0.26, 0.26, 0.0)a, has been reported previously
with the lowest formation energy by Thetford30 using a
modified Finnis-Sinclair potential, FS~2!. To check this so-
called bent configuration, we also broke the symmetry of the
^110& dumbbell and relaxed the structure. However, our cal-
culations revealed that the bent interstitial is an unstable con-
figuration which will eventually return to the original^110&
dumbbell position.

TABLE V. Self-interstitial formation energyEi
f of six interstitial sites for Mo, in eV.

Ei
f

Interstitial configurtation Position in bcc lattice MGPT FS~1! a

^110& split dumbbell 6(0.26,0.26,0.00)a 10.9 7.0
Crowdion (0.25,0.25,0.25)a 13.9 7.2
^111& split dumbbell 6(0.22,0.22,20.22)a 14.2 7.3
Tetrahedral (0.50,0.25,0.00)a 14.9 7.6
^001& split dumbbell 6(0.38,0.00,0.00)a 16.3 7.2
Octahedral (0.50,0.50,0.00)a 17.5 7.6

aReference 4.

TABLE VI. Convergence of crowdion interstitial formation en-
ergy, in eV, using both periodic boundary conditions~PBC! and
fixed boundary conditions~FBC!. Here the cell size for FBC refers
to the inner region, where all atomic positions are fully relaxed, as
in the case of PBC.

Ei
f~crowdion!

Cell size Number of atoms PBC FBC

6a36a36a 432 14.04 14.26
7a37a37a 686 13.93 14.11
8a38a38a 1024 13.88 14.03
9a39a39a 1458 13.85 13.97
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We have studied three migration mechanisms for a
^110& split dumbbell interstitial migrating alonĝ111& direc-
tions ~Fig. 4!. PathsA and B involve migrations of the
dumbbell center to one of its nearest-neighbor sites along
^111& with a jump lengthA3/2a. The difference between
pathsA andB is that the orientation of the dumbbell will
rotate to another̂110& direction in pathB ~jump plus rota-
tion mechanism!, while it will remain the same in pathA
~parallel jump mechanism!. In pathC the dumbbell will not
change its orientation, only the center will make a double
jump along^111&. As shown in Table VII, we find that path
B easily possesses the lowest migration energy barrier in
Mo, 0.76 eV, as compared with values over 2 eV for paths
A andC. At the same time, the magnitudes of the MGPT
migration energies are 3–15 times higher than previous theo-
retical estimates4,5 obtained using the simple radial-force
Finnis-Sinclair potentials for Mo, FS~1!, and FS~2!. This
again reveals the influence of the strong angular forces in the
MGPT potentials.

V. Š111‹ SCREW DISLOCATIONS

In calculating the structure of â111& screw dislocation,
we construct a slab with thez direction parallel to the Bur-
gers vectorb, which is alonĝ 111&. Thex andy directions
are chosen alonĝ112& and^110&, respectively~see Fig. 5!.
Periodic boundary conditions are applied in thez direction
only, in order to simulate an infinite straight screw disloca-
tion. In thex andy directions, we use fixed boundary con-
ditions. In doing so, we must as above divide the system into
two regions: an inner region and an outer region. The dislo-

cation core is contained in the inner region, where atomic
positions are fully relaxed. The outer region surrounds the
inner region and in it atomic positions are fixed according to
the initial displacements generated by anisotropic elasticity
theory.31 Simulation cells of different total sizes ranging
from 600 atoms up to 2160 atoms have been considered in
the calculation. Due to the large distortion caused by the
dislocation, however, a large simulation cell is required to
yield a stable core. Except as indicated, we here present re-
sults obtained from a 1946-atom system with 1074 atoms in
the inner region.

Two stable dislocation-core configurations in bcc Mo
have been investigated in detail, each with the core center
located at the gravitational center of a triangle surrounded by
three^111& atom rows. The first one of these is the so-called
‘‘hard’’-core ^111& screw dislocation with the Burgers vec-
tor b in the positivez direction. In this configuration, the
bulk ordering of the three neighborinĝ111& atom rows

TABLE VII. Migration energyEi
m for the ^110& split dumbbell

interstitial for Mo, in eV.

Ei
m

Path of migration MGPT FS~1! a FS~2! b

A: parallel jump 2.52 0.18 0.25
B: jump 1 rotation 0.76 0.16 0.23
C: two parallel jumps 2.12 0.24

aReference 4.
bReference 5.

FIG. 3. High-symmetry interstitial configurations in bcc Mo:~a!
^110& split dumbbell, ~b! ^001& split dumbbell, ~c! ^111& split
dumbbell,~d! tetrahedral site,~e! octahedral site, and~f! crowdion
site.

FIG. 4. Schematic of self-migration paths (A, B, andC) for the
^110& split dumbbell interstitial.

FIG. 5. Top view (̂ 111&) and side view (̂110&) of the ^111&
screw dislocations in Mo. Side views are only two rows of atoms
which contain the dislocation center~dashed-line region in the top
view!. The stacking sequences of one$110% plane for the bulk bcc
structure and for the ‘‘hard’’- and ‘‘easy’’-core dislocations are
shown in the side view.
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which are closest to the core center is destroyed and atoms
from those three rows are aligned into the same$111% planes,
as shown in Fig. 5. As also shown in that figure, the stacking
sequence of atom rows for bulk bcc Mo isABCABC. . .
along ^112& in a $110% plane, but this sequence changes to
ABCCAB. . . for the ‘‘hard’’-core dislocation. The second
configuration we have considered is the so-called ‘‘easy’’
core^111& screw dislocation. This configuration has its Bur-
gers vector in the opposite direction to the ‘‘hard’’ one, with
both dislocation-core centers located on the same site. The
bulk ordering of the three atom rows surrounding the core
center is preserved but reversed in sense, leading to a stack-
ing sequence ofABCBCA. . . along ^112& in a $110%
plane, as shown in Fig. 5. Using the angular-force MGPT
potentials, we have found that the ‘‘easy’’ core configuration
in Mo has a lower formation energy than the ‘‘hard’’ one,
which is consistent with previous theoretical studies using
empirical pair potentials2. We have also found that the inner-
region atoms are relaxed in all three directions, especially the
x and y directions. The magnitude of the largest in-plane
relaxation is about one-tenth of the Burgers vector. At the
same time, the forces on the inner boundary atoms located
between the inner and outer regions are negligible with mag-
nitudes;1023 eV/Å. In addition, we have considered dis-
placed locations for the dislocation-core center along a
^111& atom row and in the surrounding vicinity. We have
found that these displaced centers all produce dislocation
configurations with higher formation energies. This indicates
that the energetically favored structure for a^111& screw
dislocation is indeed one with its center located at the as-
sumed gravitational center of a triangle surrounded by three
^111& atom rows.

Kimura et al.32 have also reported full tight-binding cal-
culations on^111& screw dislocation-core structures in Mo.
Two kinds of core configurations have been calculated. The
first they denote as the nondegenerate unpolarized core. This
dislocation is introduced by displacing atoms according to
isotropic linear elasticity theory. Unfortunately, they did not
distinguish their dislocation cores with regard to the ‘‘hard’’
or ‘‘easy’’ direction, i.e., whether the Burgers vectorb is in
the positivez or negativez direction, as discussed above.
Their nondegenerate unpolarized core, however, was calcu-
lated to be stable and its detailed differential displacement
field appears to correspond to our ‘‘hard-core’’ configura-
tion. The second configuration they have considered is de-
noted as a doubly degenerate polarized core. This dislocation
is constructed from the nondegenerate core by uniformly dis-
placing three neighborinĝ111& atom rows which are closest
to the core center in the1z direction by an amountDz1 and
three second-nearest-neighboring^111& atom rows of the
core in the2z direction by an amountDz2. Thus the doubly
degenerate core possesses a similar stacking sequence to the
nondegenerate core. Using assumed values ofDz1 and
Dz2, they calculated the total energy of a doubly degenerate
core and concluded it was an energetically unfavorable struc-
ture. In order to make a more complete comparison, we also
constructed such doubly degenerate dislocations from our
relaxed ‘‘hard’’ and ‘‘easy’’ cores, respectively. Our final
results indicate the doubly degenerate cores are not stable
structures and will eventually relax to their initial ‘‘hard’’ or

‘‘easy’’ configurations, in agreement with the tight-binding
calculation.

In the general elasticity theory, the formation energyEf

of a dislocation in a cubic crystal is a linear function of
ln(R/Rc), whereR is the outer cutoff radius of a cylinder
which contains the dislocation core at its center. The inner
cutoff radiusRc is defined as the core radius. We note the
formation energyEf includes two parts:~1! the core energy
stored inside theRc , Ecore

f ; plus ~2! the energy stored in the
region betweenRc andR, Eouter

f . For a^111& screw disloca-
tion in bcc Mo, anisotropic elasticity theory31 yields the re-
sult

Ef5Eouter
f 1Ecore

f 5
Ksb

3

4p
ln~R/Rc!1Ecore

f , ~14!

whereKs is related to the anisotropic shear modulus and can
be written as

Ks5@S11/S44~S11S442S15
2 !#1/2. ~15!

The S11, S44, and S15 are modified elastic compliances
which are related to the standard elastic compliancess11,
s44, ands15 and to the elastic constants of the cubic crystal.
The details ofS11, S44, andS15 can be found in Ref. 31.
Using the MGPT values of the three elastic constantsC11,
C12, andC44 listed in Table I, we calculateKs51.357 Mbar.
To make a quantitative correspondence between Eq.~14! and
our atomistic calculations, we have first tentatively set
Rc52b, the approximate expected value of the core radius.
We have then computed the MGPT formation energyEf of
the ‘‘easy’’-core^111& screw dislocation as a function of the
radiusR of a cylinder which contains the dislocation core.
We define this cylinder to coincide with the inner region of
our simulation cell, so that the axis of the cylinder passes
through the dislocation core center. By increasing the radius
R, we have thereby generated a plot ofEf /b vs ln(R/2b), as

FIG. 6. Plot ofEf /b vs ln(R/2b) from the present MGPT calcu-
lations ~points!. The fitted MGPT points above ln(R/2b)520.144
are shown as a solid straight line.
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displayed in Fig. 6. In this plot we find a large amount of
scatter for small values ofR. When ln(R/2b)>20.144, how-
ever, the data conform well to a straight line. At that point,
R51.73b, which is indeed close to the assumed value of
2b for the core radius. The corresponding core energy
Ecore
f /b is about 0.80 eV/Å, withb5A3a/252.72 Å. By fit-

ting those points with ln(R/2b)>20.144 to a straight line,
we further infer via Eq.~14! a value ofKs51.406 Mbar from
our MGPT calculations, in good agreement with the above
elasticity-theory prediction.

The differential displacement~DD! method2 has been
used to elaborate the detailed characteristics of our final
MGPT dislocation-core configurations. In the DD method
the ^111& component of the relative displacement of neigh-
boring atoms due to the dislocation~i.e., the total relative
displacement less than that in the perfect lattice! is drawn as
an arrow between the corresponding atoms. For each atom
the differential displacements of the six nearest-neighbor at-
oms in thê 111& projection, corresponding to the^111& dis-
placements in the three$110% planes~i.e., along threê112&
directions!, can be shown. The DD map for the MGPT
‘‘hard’’-core configuration is very similar to that generated
from anisotropic elasticity theory, as shown in Fig. 7. Both
results are also very similar to the nondegenerate core previ-
ously calculated by Kimuraet al.,32 as mentioned above. The
DD map of the MGPT ‘‘easy’’ core, on the other hand, is
much different than that predicted by anisotropic elasticity
theory. Substantial atomic rearrangement occurs after the
core region is fully relaxed. The high symmetry of the

anisotropic-elastic core is broken and a threefold symmetric
core which spreads out along the three^112& directions is
obtained, as illustrated in Fig. 8. The threefold symmetry of
the core extensions is reminiscent of Hirsch’s early sugges-
tion of a threefold dissociation of the core into three partial
dislocations. Such a conclusion was also reached in earlier
theoretical studies.2,33

One significant question is raised from these calculations:
why does the ‘‘easy’’^111& screw dislocation spread out
along the ^112& directions? A simple argument which is
based on tracking the change of nearest-neighbor~NN! bond
lengths and bond angles has been developed to help answer
this complicated question. A detailed comparison has been
made between the bond lengths and bond angles of the
anisotropic-elastic dislocation core~without spread out! and
the MGPT dislocation core~with spread out!. For the three
atoms surrounding the dislocation center, we have found that
all of their NN bond lengths except one are closer to the bcc
value in the MGPT core~see Table VIII!. Most importantly,
the NN bond angles are found to be closer to those of the
bulk bcc structure when the dislocation spreads out along the
three^112& directions~see Table IX!. This is a reflection of
the strong MGPT angular forces which favor the bcc bond
angles. Thus it is energetically favorable for an ‘‘easy’’
^111& screw dislocation to be spread out in such a way as to
restore the bulklike structure.

VI. CONCLUSIONS

In summary, we have systematically studied ideal shear
strength, vacancy and self-interstitial formation and migra-

FIG. 7. The^111& projection of the differen-
tial displacement~DD! map of the ‘‘hard’’-core
configuration from ~a! anisotropic elasticity
theory and~b! MGPT interatomic potentials.

FIG. 8. The^111& projection of the differen-
tial displacement~DD! map of the ‘‘easy’’-core
configuration from ~a! anisotropic elasticity
theory and~b! MGPT interatomic potentials.
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tion, and the core structure of^111& screw dislocations in the
bcc transition metal Mo, using multi-ion MGPT interatomic
potentials derived from first-principles generalized pseudo-
potential theory. Our calculated shear strength agrees well
with previous theoretical results obtained from full
electronic-structure calculations, while our calculated va-
cancy formation and activation energies are in excellent
agreement with experimental results. The^110& split dumb-
bell interstitial is found to have the lowest formation energy,
also in agreement with experiment, and with a calculated
migration energy much larger than previous theoretical esti-
mates. The atomic structures of^111& screw dislocations in
Mo have been investigated, and it is found that the stable
dislocation core structure involves spread out along the three
^112& directions. A simple argument based on bond coordi-
nation and bond angles has been proposed to explain this
spread out. In the future, we intend to extend this work to the
study of dislocation mobility, including the calculation of the

Peierls barrier, and to treat additional bcc metals such as
tantalum.

More generally, we expect that bothab initio and model
GPT interatomic potentials can be developed and applied to
a wide variety of metallic systems and mechanical phenom-
ena. For example, with suitable local-environment
modulation,22 MGPT potentials should be able to address the
problems of fracture and crack propagation in bcc transition
metals. In addition, the first-principles GPT is currently be-
ing extended to binary intermetallics, so that compounds and
alloys will be treatable in the future. In this regard,ab initio
GPT potentials for the 3d transition-metal aluminides are
being developed as the first application of this capability.
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