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Atomistic simulation of ideal shear strength, point defects, and screw dislocations
in bcc transition metals: Mo as a prototype
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Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we
have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal
molybdenumMo). Many-body angular forces, which are important to the structural and mechanical properties
of such central transition metals with partially filleidbands, are accounted for in the present theory through
explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with
those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-
formation and activation energies are in excellent agreement with experimental results. The energetics of six
self-interstitial configurations have also been investigated (Thé) split dumbbell interstitial is found to have
the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measure-
ments. In ascending order, the sequence of energetically stable interstitials is predicted1tbObeplit
dumbbell, crowdion(111) split dumbbell, tetrahedral sit€001) split dumbbell, and octahedral site. In
addition, the migration paths for t{f& 10 dumbbell self-interstitial have been studied. The migration energies
are found to be 3-15 times higher than previous theoretical estimates obtained using simple radial-force
Finnis-Sinclair potentials. Finally, the atomic structure and energeti¢t1dy screw dislocations in Mo have
been investigated. We have found that the so-called “easy” core configuration has a lower formation energy
than the “hard” one, consistent with previous theoretical studies. The former has a distinctive threefold
symmetry with a spread out of the dislocation core along i) directions, an effect which is driven by the
strong angular forces present in these mef{&6163-18206)00434-1]

I. INTRODUCTION “glue” models such as Finnis-SinclaiFS potential§ and
embedded-atom-methd&AM) potentials’ It has been rec-

It is very important to understand both deformation andognized, however, that this is not adequate in general for the
defect properties of metals at the atomistic level in order tecentral bee transition metals, as discussed by Carfsand
develop larger length-scale theories of their mechanicaPthers. Accurate atomistic simulations of deformation and
properties. For example, the ideal shear strength of a metal fefect energetics in the bcc metals require the strong angular
an important parameter in modern theories of plasticity andorces present in these materials which arise from multi-ion
fracturel Likewise. accurate determination of the atomic 9-State interactions. In recent years, several interatomic po-

. 1 . _12 . . . .
core structure and energetics of isolated dislocations is bd€ntial schemés™*based on tight-binding theory and explic-
lieved to be crucial for the understanding of the low- itly containing angular-force contributions have been devel-

temperature plasticity of bcc metals. Although the rapid im-Oped for bee transition metals and applied successiully to

provement and development of experimental tools in recen?]tucjy structural phase .Stab'“ty’ _surface properties, a_n_d point
. : . efects. At the same time, Moriatfyhas derived multi-ion
years, e.g., the scanning tunneling microsc¢p&M), the

field ion microscopeFIM), the high-resolution transmission interatomic potentials for transition metals from first-
. ! i R . rinciples generalized pseudopotential the . For
electron microscop€HRTEM), etc., has significantly im- princip 9 P P eGP T

. ) atomistic simulations on the bcc metals, a simplified model
proved the prospects for directly observing the structures ogpT o MGPT has been developed using canorddaands

crystal defects at the atomic level, many details of thesgnq which produces entirely analytic three- and four-ion
structures remain beyond the scope of these tools. With thgotentials!4 !5 In the case of molybdenuriMo), MGPT po-
corresponding rapid development in high-performance comgentials have been successfully applied to the cohesive, struc-
puting capabilities and efficient numerical algorithms, how-tyral, elastic, vibrational, thermal, and melting properties of
ever, atomistic simulations based on realistic physical modthe bulk metat® In this paper, we have applied the same
els are becoming a powerful supplement to currentMGPT potentials to study ideal shear strength, vacancy and
experimental methods. self-interstitial formation and migration, and the structure of
The accurate atomistic simulation of deformations and(111) screw dislocations in Mo. We intend these calculations
crystal defects in metals requires the use of quantumto serve both as additional tests of the potentials in low-
mechanically based interatomic potentials which take intasymmetry bulk geometries and as an important first step to-
account the electronic structure of the metal in a meaningfulvards future studies on dislocation motion in bcc metal sys-
and systematic way. Most calculations of point defects andems, including the calculation of the Peierls barrier and its
dislocations in metafs® have used radial-force empirical po- environmental dependence.
tentials, including both pair potentials and many-body To our knowledge, the problems of ideal shear strength,
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self-interstitial migration, and screw-dislocation structure inpansiong,,, as well as the two-, three-, and four-ion inter-
bce transition metals have not been treated previously wititomic potentialsy,, v3, andv,, are volume dependent, but
angular-force interatomic potentials. In this regard, thestructure independerguantities and thugransferableto all
MGPT approach offers some clear advantages for the studyulk ion configurations. In the full GPT, however, the poten-
of such deformation and defects properties by atomistidials are both long-ranged and nonanalytic functionals, so
simulation, which can become very computationally inten-that the multidimensional potentiats; and v, cannot be
sive when realistic angular forces are included. As discussetgadily tabulated for application purposes. In the MGPT, the
previously*4the MGPT total energy functional containing potentialsv,, v3, andv 4 are systematically approximated by
three- and four-ion potentials has essentially the sam#troducing canonicall bands and other simplifications to
d-band physics as a tight-binding total-energy expansion ca@chieve short-ranged, analytic forms, which can then be ap-
ried out to the fourth moment of trieband density of states, Plied to both static and dynamic simulations. The radial-
which is the basis of the fourth-moment tight-binding fOrce, two-ion pair potentiab, is obtained as a sum of
(FMTB) interatomic potential schemes mentioned abbwé.  Simple-metalsp, _harq-core overlap, and tight-binding-like
However, thed-state matrix multiplication which is needed d-state contributions:

to evaluate thesg contributions is carried amaly.tically V(1) =03P(r) i) +od(r). 2
once and for all, in the MGPT, rather than numerically “on . _sp

the fly” as in the FMTB schemes. This leads to closed-form!n Ed- (2) Lhe simple-metal potential,” and the hard-core
expressions for the three- and four-ion MGPT potentialg?otentialvy® are retained directly from the first-principles
which are highly flexible, computationally efficient, and pro- GPT, while thed-state potentiab; is developed in the form
vide very accurate forces. Consequently, we expect the d_ a_ 2

MGPT approach to be somewhat faster than the FMTB vz=val (DT =oel TN ©
schemes, although both are necessarily slow compared wheref(r) is the radial component of the tight-binding ma-
short-ranged EAM or FS potentials. An explicit timing test trix element linking the two ions. For pure canonicdl
here has shown, for example, that the present MGPT poter@ands,f(r)or ~%, but this has been generalized to include an
tials are at least 40 times slower than simple FS potentiald. " radial dependence and a smooth Gaussian cutoff beyond
Full optimization of the MGPT has not yet been achieved,2 SPecified radiuRy:

however, and_ could provide significantly increased computa- (rolr)P, r<Ro,
tional speed in the future. f(r)= o ) (4)
This paper is organized as follows. In Sec. Il, we first (ro/r)Pexd —a(r/Ro—1)°], r>Ry.

review the MGPT and discuss the specific potentials used iplerer ,=1.8R5, with Ryys the Wigner-Seitz radius, and for
this work for Mo. Then in Sec. Il we apply these potentials Mo Ry,=2.1Rs, «=125, andp=4. The latter values of

to the ideal shear strength of Mo. Our general simulatiorR, and « ensure thatf(r) is negligible beyond second-
method to treat bulk defects is discussed in Sec. IV togethameighbor distances in the bcc structure, while the value of
with MGPT calculations of the formation and migration en- p chosen is that most commensurate with the aaduahnds
ergies for an isolated vacancy and for various self-for Mo.

interstitials. In Sec. V, we then apply the same techniques to The angular-force three- and four-ion potentialg,and
obtain the stable configuration and core structure of a4, are obtained as the appropriate multi-ion generalizations
(111) screw dislocation. Finally, our conclusions are givenof v§. The potentiab is a three-dimensional function of the
in Sec. VI. separation distances, r,, andr; linking three ions,

v3(ry,ra,rg)=vcf(r)f(ro)f(rz)L(6,,0,,63)
+vd{[f(rl)f(r2)]2P( 03)

II. MGPT INTERATOMIC POTENTIALS

The MGPT interatomic potentials used in this work are

based on first-principles generalized pseudopotential +[f(ry)f(rz)1?P(6,)
theory® A brief summary of the MGPT formalism as it 5
applies here to Mo is given below; more complete details can +H[f(ra)f(r)1°P(62)}, ®)

be found in the papers by Moriart§:™ The first-principles  while the potentiab, is a six-dimensional function of the six
GPT provides a rigorous real-space expansion of the totajeparation distances linking four ions,

energy of a bulk transition metal in the form
v4(r1,r2,r3,74,05,le)

Etot(R1- - 'RN):NEvol(Q)+% iEj' va(ij) =ve[ F(r)f(ro)f(ra)f(rs)M(6y,6,,63,04,65,66)
+1(ra)f(ra)f(re)f(rs)M(67,6g,609,010,0s,6012)
+é iJEk, va(iik)+%1 .% v4(ijkl), +E(r)f(re)f(ra)f(r3)M(611,612,05,06,05,04)].
- o (6)
(1)

The quantitied., P, andM in Egs.(5) and(6) are universal
whereR; - - - Ry denotes the positions on ti¢ ions in the  angular functions which depend only ahsymmetry and
metal, ) is the atomic volume, and the prime on each sumapply to all transition metals. These functions have exact
over ion positions excludes all self-interaction terms whereanalytic representations which are given in Ref. 14. The ma-
two indices are equal. The leading volume term in this exjor computational effort comes in evaluating the four-ion an-
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TABLE I. Bulk properties of bcc Mo. Quantities and units: co- agreement with band theory achieved for the bce-fcc energy
hesive energyE .y, and structural energies in eV; bulk modulBs  difference, on the other hand, is an important benchmark test
and elastic constant€;;, Cy,, Cyy, and C' in Mbar; phonon  of the MGPT. Phonons are also well described except near
frequencies, Ty, T, in THz. All quantities are evaluated at the the[100] zone boundary, where a strong Kohn anomaly ab-
observed equilibrium atomic volumél05.1 a.u; phonons are normally lowers the longitudinal[ 100] frequencyz.o In the
zone-boundary values except as indicated. Experimental data afGPT, the calculation of the[100] phonon, as well as the
room-temperature results. hcp-fcc energy difference, suffers from the suppression of
long-rangedd-state interactions both through Eg) and by

MGPT Experiment Band theory the neglect of higher-order potentials beyand Most other

Econ ~9.03 —6.822 —6.19° bulk properties investigated for Mo are well described by the
B 2.64 2 64 2.64° MGPT potentials, however, including the pressure depen-
Cu 4.66 4.66 4.40¢ dence of the bulk modulus and elastic constants, the Debye
Cus 1.10 116 1.39¢ temperature, the Gneisen parameter, and the high-
C 1.63 16% 1.62¢ temperature melting properties, as prewously dls_cu§§ed.
c’ 151 1.5% 1.39¢ The use of volume-dependent bulk potentials in deforma-
bee-fec _041 _0.41b tio_n and defect calculati.ons, as in th_e present applications,
hep-fec 0.001 0.08 raises the gengral question as to the importance of local .voI-
L[200] 9.34 7 6P ume changes in such calculations. While the GPT formalism
L[iOO] 6.20 5.5 5.0f has been extended to take these effect§ into acébuiney

' : ' have been shown to be smat-(0.01 eVj in bcc metals for
L[110 8.11 8.1# the test case of the vacancy formation energy. We believe,
T,[110) 6.13 5.1¥ 5.89 therefore, that these effects can be safely neglected in bulk
T2[110] 4.02 4.56 4.09 calculations. Operationally, all of the present applications are
L[555 6.32 6.16° 6.1 carried out at a fixed total volume corresponding to the equi-
Reference 16. librium atomic V(_)IumeQO = 105.1 a.u. of bcc Mo. Thg
bReference 14. volume termE,, is tre'c_lted as a const.ant and the potentials
Reference 17. vy, U3, andv, are applied at the atomic volunie,.
d
_Reference 19. IIl. IDEAL SHEAR STRENGTH
Reference 18.
'Reference 20. The calculation of the theoretical shear strength in bcc
9Reference 21. transition metals on a quantum-mechanical basis has previ-

) ] o ously been considered by Paxtehal? These authors de-
gular functionM, which depends on six independent anglesfine the shear strength of the perfect crystal to be the ideal
and is necessarily complicated. While we have an exact angyin stressr, associated with the continuous homogeneous
efficient representation of this function, full optimization has geformation of the crystal into itself via the observed twin-
probably not yet been achieved and this is a goal for thqqing mode. This mode is specified by a shear directjand
future. o o a normal planeK. For bcc crystals, = [111] and

The five remainingd-state coefficients,, vy, ve, vas  K=(112). In the absence of tensile relaxation normakto
andv. in Egs.(3), (5), and(6) are material parameters which the atomic positions during the deformation can be very sim-
depend primarily ord-band filling and width. The potential ply related to the amount of sherr Specifically, the calcu-

fourth moment of thed-band density of states, while those it cell and periodic boundary conditions, with the basis

with coefficientsv, andv ¢ contribute to the second and third yectors of the sheared crystal given by
moments, respectively. In FMTB schemes the third-moment

terms are usually neglected, while the fourth-moment terms 1— 1x —

are treated collectively and in fixed ratios. In the MGPT, on a1=§[111]+ 6 5[111]’ (7a)
the other hand, both of these conditions are relaxed and all

five coefficients are treated as independent parameters. This 1 — 1x—

serves in part to compensate for the neglect of explicit 3225[1]-1”55[111]' (7b)

d-state nonorthogonality andp-d hybridization contribu-

tions to the potentials. The coefficients themselves may be 1 —

constrained by any desired combination of theory and ex- 3325[111]- (79

periment. For the present Mo potentialg,has been fixed by —

theoretical considerations, white,, v,, vy, andv, have At Xx=s=1/2, one has a,=(1/3)[212] and &

been fit to bulk experimental data, as described in Ref. 15.=(1/3)[122], so that an exact bcc twin has been created.
A few selected bulk properties of Mo calculated usingAlong the twinning path one calculates a symmetric energy

these potentials are c;}(ugtlegd in Table | and compared witharrier,

both experimental datd~° and ab initio band-theory

results!*1°=?! The bulk modulus and the elastic constants W(X) = (Etof X]~ Erad O1)/N, ®

agree with experiment by construction, as these quantitiewith a barrier heightV, at x=s/2. The corresponding stress

have been used in determining the potentials. The excellerig given by
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TABLE Il. Ideal theoretical shear strength in bcc metals, with-
out tensile relaxation. Quantities and units: barrier heilghin eV;
critical shearx,; critical stressr. and shear modulug; in GPa.

Mo Mo Mg 2 Na
FP-LMTOP MGPT GPT GPT

W, 0.42 0.47 0.083 0.011
Xc/s 0.26 0.27 0.25 0.25
e 19 23.7 3.52 0.20
e 137¢ 137.6 34.4 2.3
m 0.14 0.17 0.10 0.08

Energy barrier (eV)

dCompressed metaf)/Q,=0.723, where bcc Mg is mechanically
stable.
bNon-self-consistent calculations of Ref. 23.

i o ] CAssumed value.
20 7
I (b) (x) ]

#i=(C113—=C1o+Cyy)/3 (10

] are listed in Table Il and compared with the results of Paxton
' et al?® The overall agreement is quite reasonable, although
3 ] our value of 7, is about 25% larger than theirs. Figure 2
“10F . illustrates the contributions of the multi-ion potentials to our
i ] calculatedW(x) and thereby the relative importance of the
20k . angular forces. Whilev; contributes almost nothing to
} . W(x) at anyx, v, contributes about 50% at=Xx. and about
gl e e 33% to the total barrier heighw/, .
0 0.2 0.4 0.6 0.8 1 It is also of interest to contrast our calculated results on
Relative shear x/s Mo both with the predictions of the elementary Frenkel
model of ideal shear strength and with corresponding results
FIG. 1. Ideal shear strength in bcc Mo, as calculated with thefOr Simple bcc metals possessing no angular forces. In the
present multi-ion MGPT interatomic potentials) Energy barrier, ~Frenkel model,7(x) is assumed to have the simple sinu-
W(x); (b) shear stressy(x). soidal fornf®

Shear stress (GPa)
o

rx)= - IO © T(x):’;—fsin(zwx/s), (1D

Q, dx

which yieldsx./s=0.25 andr./u,=s/2w~0.1. While the
The ideal shear strength is identified with the maximum calatter are quite respectable first approximations to bcc tran-
culated stress along the twinning path= 7(x.), wherex,
is the critical shear separating regimes of elastic and plastic .
deformation of the crystal. Paxtoet al?® carried out this 0.5- 1
procedure for five bcc transition metals, including Mo, using
a full-potential, linear-muffin-tin-orbital (FP-LMTO)
electronic-structure method. These calculations were non-
self-consistent, however, and employed the so-called Harris-
Foulkes approximation, which they claim reproduces a full
self-consistent calculation ef, in V to within 5%. This sim-
plification also allowed these authors to consider relaxation
effects in the form of a small applied tensile stragn
(0=<e=<6%). Theimpact of relaxation was found to be
small in all cases, however, and did not changeby a
significant amount. In the present work, therefore, we have
considered only the unrelaxed=0 case.

To test the present MGPT potentials for such large bulk

deformations, we have applied the abaxe 0 scheme to
Mo. We have calculatetlV(x) at intervals of 0.01 over the

Energy barrier (eV)

full range Os=x=<s, and obtainedr(x) from numerical dif- Relative shear x/s
ferentiation via Eq(9). These results are plotted in Fig. 1.
Calculated values of the barrier heighit., critical stress FIG. 2. Contributions to the shear-strength energy barrier in bcc

7., critical shearx., and corresponding shear modulus Mo from the multi-ion MGPT potentials,, v3, andv,.
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sition metal results, the actual behavior in these metals is TABLE lIl. Single vacancy formation enerdg! , migration en-
somewhat more complex. As can be seen from Fig. 1, foergyE;', and activation energ®, for Mo, in eV.

example, our calculated(x) for Mo, while necessarily os-
cillatory, is clearly not a sine function. In addition, the cal- MGPT FMTB® FS1)® Experimenf
culatedr./u, are consistently higher than 0.1, with values in

. E! (unrelaxe 3.0 3.0
the range 0.12—0.17 for the cases studied by Pastai? ’f’( J
. o . E, (relaxed 29 2.9 25 3.0£ 0.3
and a value of 0.17 here for Mo. This conclusion is rein-_2, 16 19 13
forced when one considers simple bcc metals, which are welt” ' ' ’
4.5 4.8 3.9 45¢ 0.3

described by radial forces alone. Using first-principles GPT~v

pair potentials for Mg(Ref. 24 and Na’> we have repeated areference 11.
the above calculations of ideal shear strength. The results asgqterence 4.

summarized and compared with those for Mo in Table Il. INcggference 27.
both metals the calculated(x) is much closer to a sine

function andr./u;=0.1, so that Frenkel behavior is indeed plus one vacancy in the center. The calculation is carried out
better approximated. At the same time, it is striking thatat zero temperature and constrained with a constant volume
while 7. increases by 2 orders of magnitude between Na andondition. In Table IIl we list the unrelaxed and relaxed va-

Mo, 7./ u, increases by only a factor of 2. cancy formation energ;E,f] that we obtain for Mo. Our re-
laxed formation energy of 2.9 eV is only about 4% lower
IV. POINT DEFECTS than the unrelaxed value and in excellent agreement with

experimental result measured by Maieral?’ Our unre-
The point defects studied here, i.e., the single isolategaxed and relaxed values also agree with the results obtained
vacancy and the self-interstitial, are modeled within a largeyy Foiled? using a FMTB scheme. In both the MGPT and
cubic simulation cell to which pel’iodiC boundary conditions FMTB treatments’ the unrelaxed formation energy was used
are applied in all three directions. Fixed boundary conditionsgs a constraining parameter in determining the potentials, so
can also be used, but this requires considerably extra comhe consistency and agreement with experiment is not unex-
puter memory and usually produces slower convergence WitBected. For comparison, Harder and Bdcobtained a value
respect to cell size, as we demonstrate below for the crowof 2.5 eV using the original Finnis-Sinclair potential, de-
dion self-interstitial. The conjugate gradient metffdd used  noted as FQ&) in Table II, while the full tight-binding cal-
to determine the stable structures through energy minimizacu|ation of Ohtaet a|.28 gave a much lower value of 0.9 eV.
tion. The formation energy for a point defects is defined as|n order to check any size effect of the simulation cell on our
Ef—E [NT—NE 12 result, a larger cell with 685 total atoms has also been used.
ol N1 coh (12) We found that the formation energy so obtained is almost
where E,,[N] is the total energy of the simulated system,identical to that of the 249-atom celk(1% differencg.
N is the number of atoms in the simulation cell including the  In the calculation of the vacancy migration energy,,
defect, ancE.,, is the cohesive energiper atom for bulk ~ we constrained the migrating atom, a nearest neighbor of the
bcc Mo. vacancy, to lie on a plane which is perpendicular to the mi-
To calculate the migration energy barrier, we march onegration path along111). As indicated in Table Ill, our cal-
atom, which is either the interstitial atom or a nearest-culated migration energy for Mo is 1.6 eV, as compared with
neighbor atom in the vacancy case, from its equilibrium sitel.9 eV obtained by Foilé$ with FMTB potentials and 1.3
towards a nearest-neighbor site or the vacancy site. DuringV obtained by Harder and Bacbwith FS(1). Experimen-
the migration process, we allow the migrating atom to relaxtally, only the activation energyQ,, which is the sum of
in the plane perpendicular to the vector between its initialvacancy formation and migration energies, can be measured.
and final positions. This ensures finding the minim(opti-  Using our calculated values ﬁi andE]' we find that the
mal) energy path for migration. Meanwhile, all other atomsactivation energyQ, is 4.5 eV for Mo, in excellent agree-
are fully relaxed, except for one atom on the corner of thement with the measured result, and somewhat better than the
cell which is frozen to prevent a rigid shift of the simulation values of 4.8 and 3.9 eV obtained by Foifeand by Harder
cell behind the “marching” atom. One stationary point and Bacorf respectively.
(maximun) is found and it corresponds to the migrating
atom sitting at a saddle poinE{,;=E,qq9d On the energy
surface. The migration enerdy™ is given by

TABLE IV. Percentage displacements of nearest-neiglibl)
shells to a relaxed Mo vacancy, as obtained in the present MGPT

calculations.
EM=E —Emin, 13

saddle  =min (13 Shell Unrelaxed Relaxed %

whereE,i, is the total energy of the defect at its equilibrium —
site min 9y q First NN 0.866025 0.85018a —-1.83
' Second NN 1.0000G0 1.004612a +0.46
AV Third NN 1.414214 1.41559@ +0.10
- vacancy Fourth NN 1.658312 1.65758@ ~0.04
Using MGPT interatomic potentials, we have calculatedrifth NN 1.732054 1.724864 -0.42
the formation and migration energies of a single isolated Masixth NN 2.000008a 2.000256 +0.01
vacancy. A simulation cell of sizesbx 5aX 5a, whereaisa  Seventh NN 2179449 2.178924 ~0.02

lattice constant of Mo, was created with a total of 249 atoms
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TABLE V. Self-interstitial formation enerngif of six interstitial sites for Mo, in eV.

Ef
Interstitial configurtation Position in bcc lattice MGPT @s?
(110 split dumbbell +(0.26,0.26,0.09 10.9 7.0
Crowdion (0.25,0.25,0.25) 13.9 7.2
(111 split dumbbell +(0.22,0.22:-0.22)a 14.2 7.3
Tetrahedral (0.50,0.25,0.00) 14.9 7.6
(001 split dumbbell +(0.38,0.00,0.09 16.3 7.2
Octahedral (0.50,0.50,0.08) 175 7.6

aReference 4.

While the effects of relaxation are small, we have foundneeds an additional 4000 atoms in the outer region to satisfy
that the displacement of atoms around the relaxed vacandie cutoff. This consequently slows down the calculation due
follows a clear oscillatory pattern, with an inward contrac-to large additional computer memory required.
tion of the first-neighbor shell by about 1.8%. Table IV in-  Based on this detailed test, we have chosen a 1024-atom
dicates the change in radius of the first seven nearesgell to use in all our remaining calculations with periodic
neighbor(NN) shells to the vacancy site. In particular, the Poundary conditions. The resulting formation energies for
displacements follow contraction, expansion, expansionthe Six mterstmal. configurations are listed in Table V. _We
contraction, contraction, expansion, and contraction. A qualifind the (110 split dumbbell to have the lowest formation
tatively similar relaxation pattern for the first two shells was€nergy.Ej = 10.9 eV at+(0.26, 0.26, 0.03, in agreement
obtained by Matthai and Bacdmwith the FS1) potential. with the configuration foynd by x-ray diffuse scattering
The tight-binding calculation of Ohtat al,2% on the other ~Measuremen .In ascending order, the sequence of ener-

hand, showed little or no relaxation of the first shell and andetically stable interstitials ig110) split dumbbell, crow-
inward relaxation of the outer shells. dion, (111) split dumbbell, tetrahedral S|te§_00]> split
dumbbell, and octahedral site. Table V also lists the results

) N on self-interstitial formation energies in Mo calculated by
B. Self-interstitials Harder and Bacdhusing the original Finnis-Sinclair poten-
We have carried out MGPT calculations on Mo self-tial, FS1). Obviously, MGPT yields much higher values
interstitials for the various possible high-symmetry positionsthan F$1), and this is a direct reflection of the strong angu-
in a bce structure. Six different configurations have beerar forces present in the former potentials, which disfavor
considered which include octahedral, tetrahedral, and crowaon-bcc angles. On the other hand, for {480 split dumb-
dion sites, and split dumbbell sites along 10, (001),  bell, Foiles" obtained a formation energy of only 6.2 eV
and(111) directions. These interstitials are shown in Fig. 3.with his FMTB scheme, which is actually 0.8 édver than
All six configurations are metastable and the calculated equithe F§1) result. This emphasizes that interstitial energies are
librium positions are given in Table V. Due to the large sensitive to the short-range details of the interatomic poten-
strain fields generated by such interstitial defects, it is importials as well as to the angular forces.
tant to check the convergence of the formation enefgy, An asymmetric metastable configuration at(0.3182,
with respect to simulation cell size in constant volume cal-0.1958, 0.01823, which is rotated from the¢110) dumbbell
culations. We have considered four cella(66ax 6a with ~ Position +(0.26, 0.26, 0.0, has been reported previously
432 atoms, X 7aX 7a with 686 atoms, 8x 8ax 8a with  With the lowest formation energy by Thetfdfdusing a
1024 atoms and &x 9ax 9a with 1458 atomsto calculate modified Finnis-Sinclair potential, k8. To check this so-
the formation energy. Table VI shows the convergence ofalled bent configuration, we also broke the symmetry of the
E! for the crowdion self-interstitial with respect to the size of (110 dumbbell and relaxed the structure. However, our cal-
the simulation cell, using both periodic boundary conditionsC,UIat'O,nS rev.ealed.that the bent interstitial is an.u.nstable con-
and fixed boundary conditions. In the latter case, the systerfiguration which will eventually return to the original 10)
must include a large surrounding outer region, where th&umbbell position.
atomic positions are fixed at their bulk bce values, in addi-  TABLE VI. Convergence of crowdion interstitial formation en-
tion to the inner simulation region, where the atomic pOSi'ergy, in eV, using both periodic boundary conditiof®BC) and
tions are fully relaxed. Table VI shows the calculated forma-ixed boundary condition&BC). Here the cell size for FBC refers
tion energy for four simulation cells with different-sized to the inner region, where all atomic positions are fully relaxed, as
inner regions. Although the two methods indeed appear to b the case of PBC.
uniformly converging toward the same result, for any given
cell size we obtain a higher, and hence less converged, for- E/ (crowdion
mation energy with fixed boundary conditions than with pe-Cell size Number of atoms PBC FBC
riodic boundary conditions. Another major drawback in us-
ing fixed boundary conditions is that they require a very®3x6ax6a 432 14.04 14.26
large outer region to satisfy the interatomic-potential cutoff/2x7ax7a 686 13.93 14.11
(~2.1a) for the inner-region boundary atoms. For example,8a*8ax8a 1024 13.88 14.03
a simulation cell with 1458 atoms in the inner region still 9ax9ax9a 1458 13.85 13.97
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TABLE VII. Migration energyE[" for the (110 split dumbbell

interstitial for Mo, in eV.
=
Path of migration MGPT FQ) 2 FS2)°
(a) (b) (©)

O
1 &
'm
LANS
.A,?
~
@ positions are fully relaxed. The outer region surrounds the

(& ®
FIG. 3. High-symmetry interstitial configurations in bee Me) inner region and in it atomic positions are fixed according to

(110 split dumbbell, (b) (002 split dumbbell, (¢) (111 split the initial displacements generated by anisotropic elasticity

dumbbell,(d) tetrahedral site(e) octahedral site, an¢f) crowdion theory.™ Simulation cells of different total sizes rgnglng .
site. from 600 atoms up to 2160 atoms have been considered in

the calculation. Due to the large distortion caused by the

We have studied three migration mechanisms for glislocation, however, a large simulation cell is required to
(110 split dumbbell interstitial migrating alongl11) direc- ~ Yield a stable core. Except as indicated, we here present re-
tions (Fig. 4. PathsA and B involve migrations of the Sults obtained from a 1946-atom system with 1074 atoms in

dumbbell center to one of its nearest-neighbor sites alon§€ inner region.

(111) with a jump length/3/2a. The difference between Two stable dislocation-core configurations in bcc Mo
pathsA and B is that the orientation of the dumbbell will have been investigated in detail, each with the core center

rotate to anothef110) direction in pathB (jump plus rota- located at the gravitational center of a triangle surrounded by
tion mechanisi) while it will remain the same in pati three(111) atom rows. The first one of these is the so-called

(parallel jump mechanismin pathC the dumbbell will not  hard’-core (111) screw dislocation with the Burgers vec-
change its orientation, only the center will make a double!®' P in the positivez direction. In this configuration, the
jump along(111). As shown in Table VII, we find that path bulk ordering of the three neighboringl11) atom rows
B easily possesses the lowest migration energy barrier in
Mo, 0.76 eV, as compared with values over 2 eV for paths
A and C. At the same time, the magnitudes of the MGPT
migration energies are 3—15 times higher than previous theo-
retical estimatés® obtained using the simple radial-force
Finnis-Sinclair potentials for Mo, F%), and F$2). This
again reveals the influence of the strong angular forces in the
MGPT potentials.

A: parallel jump 2.52 0.18 0.25
B: jump + rotation 0.76 0.16 0.23
C: two parallel jumps 2.12 0.24

%Reference 4.
bReference 5.

cation core is contained in the inner region, where atomic

<111> view

V. (111) SCREW DISLOCATIONS <110> view
Bulk
In calculating the structure of @11y screw dislocation, BOB®O
we construct a slab with the direction parallel to the Bur-
gers vectom, which is along(111). Thex andy directions "Hard" core
are chosen alon@l12 and(110), respectively(see Fig. 5. BOCO®

Periodic boundary conditions are applied in thelirection
only, in order to simulate an infinite straight screw disloca-
tion. In thex andy directions, we use fixed boundary con-

ditions. In doing so, we must as above divide the system into "Easy" core
two regions: an inner region and an outer region. The dislo- BOEO

SuE)
I—>

FIG. 5. Top view (111)) and side view (110)) of the (111)
® screw dislocations in Mo. Side views are only two rows of atoms
B C which contain the dislocation centé&tashed-line region in the top
view). The stacking sequences of ofie @ plane for the bulk bcc
FIG. 4. Schematic of self-migration path&,(B, andC) for the structure and for the “hard”’- and “easy”-core dislocations are
(110 split dumbbell interstitial. shown in the side view.
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which are closest to the core center is destroyed and atomgasy” configurations, in agreement with the tight-binding
from those three rows are aligned into the sdfifel} planes, calculation.

as shown in Fig. 5. As also shown in that figure, the stacking In the general elasticity theory, the formation enekfy

sequence of atom rows for bulk bcc Mo ASBCABC. .. of a dislocation in a cubic crystal is a linear function of
along (112 in a {110 plane, but this sequence changes tolN(R/R;), whereR is the outer cutoff radius of a cylinder
ABCCAB. .. forthe “hard’-core dislocation. The second Which contains the dislocation core at its center. The inner

configuration we have considered is the so-called ueasyncutoff radiusRc is fd.efined as the core radius. We note the
core(111) screw dislocation. This configuration has its Bur- formation energye mcf:ludes two parts(1) the core energy
gers vector in the opposite direction to the “hard” one, with Stored inside th&., Ecge; ?'US (2) the energy stored in the
both dislocation-core centers located on the same site. THEJION betweerR; andR, E . For a(111) screw disloca-
bulk ordering of the three atom rows surrounding the coréion in bec Mo, anisotropic elasticity theotyyields the re-
center is preserved but reversed in sense, leading to a staclt

ing sequence ofABCBCA... along(112 in a {110 K b3

plane, as shown in Fig. 5. Using the angular-force MGPT Ef=Ef o+ EI;ore:S_In(R/Rc)+EI;ore1 (14)
potentials, we have found that the “easy” core configuration am

in Mo has a lower formation energy than the “hard” one,
which is consistent with previous theoretical studies usin
empirical pair potentiafs We have also found that the inner-
region atoms are relaxed in all Fhree directions, espe_cially the K= Sy1/Sus S11Suu— Szis)]l/z_ (15)

x andy directions. The magnitude of the largest in-plane

relaxation is about one-tenth of the Burgers vector. At theThe S;;, Ss, and S;5 are modified elastic compliances
same time, the forces on the inner boundary atoms locateghich are related to the standard elastic compliarsies
between the inner and outer regions are negligible with magss4, ands;s and to the elastic constants of the cubic crystal.
nitudes~10"2 eV/A. In addition, we have considered dis- The details ofS;;, S;4, and S5 can be found in Ref. 31.
placed locations for the dislocation-core center along aJsing the MGPT values of the three elastic constaiys,
(111) atom row and in the surrounding vicinity. We have Ci2, andCyylisted in Table I, we calculaté=1.357 Mbar.
found that these displaced centers all produce dislocatioh© make a quantitative correspondence betweer{Egand
configurations with higher formation energies. This indicatesPUr atomistic calculations, we have first tentatively set
that the energetically favored structure for(a11) screw Rc=2b, the approximate expected value of the core radius.
dislocation is indeed one with its center located at the asWe have then computed the MGPT formation enefdyof

sumed gravitational center of a triangle surrounded by threghe “easy”-core(111) screw dislocation as a function of the
(111) atom rows. radiusR of a cylinder which contains the dislocation core.

Kimura et al®? have also reported full tight-binding cal- We define this cylinder to coincide with the inner region of
culations on(111) screw dislocation-core structures in Mo. our simulation cell, so that the axis of the cylinder passes
Two kinds of core configurations have been calculated. Théhrough the dislocation core center. By increasing the radius
first they denote as the nondegenerate unpolarized core. TH& We have thereby generated a plotEgfb vs In(R/2b), as
dislocation is introduced by displacing atoms according to

whereKg is related to the anisotropic shear modulus and can
%be written as

isotropic linear elasticity theory. Unfortunately, they did not 1.8 T
distinguish their dislocation cores with regard to the “hard” L ¢ ]
or “easy” direction, i.e., whether the Burgers vectoiis in 16 £ = 0.8880+0.5186In(R/2b) 5
the positivez or negativez direction, as discussed above. —

Their nondegenerate unpolarized core, however, was calcu- 14 [ .
lated to be stable and its detailed differential displacement __ L

field appears to correspond to our “hard-core” configura- °§ 12 [ -
tion. The second configuration they have considered is de- 2@ i ]
noted as a doubly degenerate polarized core. This dislocation,_ 1L ]
is constructed from the nondegenerate core by uniformly dis- W |< L

placing three neighboringl11) atom rows which are closest 08 [ -
to the core center in the z direction by an amoumtz; and L

three second-nearest-neighboriggll) atom rows of the 06 [ .
core in the—z direction by an amoumk z,. Thus the doubly i

degenerate core possesses a similar stacking sequence to the 04 [ .
nondegenerate core. Using assumed valuesAnf and L < ]
Az,, they calculated the total energy of a doubly degenerate 02 Lo ol s L b e
core and concluded it was an energetically unfavorable struc- 15 A 0.5 0 0.5 1 1.5 2
ture. In order to make a more complete comparison, we also In(R/2b)

constructed such doubly degenerate dislocations from our

relaxed “hard” and “easy” cores, respectively. Our final  FIG. 6. Plot ofE/b vs In(R/2b) from the present MGPT calcu-
results indicate the doubly degenerate cores are not stabigions (points. The fited MGPT points above IR(2b) = —0.144
structures and will eventually relax to their initial “hard” or are shown as a solid straight line.
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FIG. 7. The(111) projection of the differen-
tial displacementDD) map of the “hard”-core
configuration from (a) anisotropic elasticity
theory and(b) MGPT interatomic potentials.

displayed in Fig. 6. In this plot we find a large amount of anisotropic-elastic core is broken and a threefold symmetric
scatter for small values &. When InR/2b) = —0.144, how-  core which spreads out along the thrgl2) directions is
ever, the data conform well to a straight line. At that point,obtained, as illustrated in Fig. 8. The threefold symmetry of
R=1.73, which is indeed close to the assumed value ofthe core extensions is reminiscent of Hirsch’s early sugges-
2b for the core radius. The corresponding core energ)ﬁipn of a threefold dissociatio_n of the core into threg partia}l
E(fzoer is about 0.80 eV/A, witth= \/3a/2=2.72 A. By fit- dislocations. Such a conclusion was also reached in earlier

. - 33
ting those points with IMR2b)= —0.144 to a straight line, thege“c?" s_}ud|et%. ion is raised from th culations:
we further infer via Eq(14) a value ofK ;= 1.406 Mbar from ne signiticant question IS raised irom hese caiculations.

: 4 . why does the “easy”’(111) screw dislocation spread out
gtgsﬂhﬂt:(ii;;rhgggupl)?ggiﬁi’or good agreement with the abovealong the(112 directions? A simple argument which is

The differential displacementDD) method has been based on tracking the change of nearest-neiglikity) bond

. g . lengths and bond angles has been developed to help answer
used to elaborate the detailed characteristics of our f'natﬁis complicated question. A detailed comparison has been

MGPT dislocation-core configurgtion_s. In the DD met_hodmawle between the bond lengths and bond angles of the
the (111) component of the relative displacement of neigh-apjsotropic-elastic dislocation cotwithout spread outand
boring atoms due to the dislocatidne., the total relative the MGPT dislocation coréwith spread oUt For the three
displacement less than that in the perfect lajtisedrawn as  atoms surrounding the dislocation center, we have found that
an arrow between the corresponding atoms. For each atogil of their NN bond lengths except one are closer to the bcc
the differential displacements of the six nearest-neighbor atvalue in the MGPT coré¢see Table VIIJ. Most importantly,
oms in the(111) projection, corresponding to tRd11) dis- the NN bond angles are found to be closer to those of the
placements in the thred 10 planes(i.e., along thre€112) bulk bcc structure when the dislocation spreads out along the
directiong, can be shown. The DD map for the MGPT three(112) directions(see Table IX This is a reflection of
“hard”-core configuration is very similar to that generated the strong MGPT angular forces which favor the bcc bond
from anisotropic elasticity theory, as shown in Fig. 7. Bothangles. Thus it is energetically favorable for an “easy”
results are also very similar to the nondegenerate core prev111) screw dislocation to be spread out in such a way as to
ously calculated by Kimurat al,? as mentioned above. The restore the bulklike structure.

DD map of the MGPT *“easy” core, on the other hand, is
much different than that predicted by anisotropic elasticity
theory. Substantial atomic rearrangement occurs after the In summary, we have systematically studied ideal shear
core region is fully relaxed. The high symmetry of the strength, vacancy and self-interstitial formation and migra-

VI. CONCLUSIONS

C e @ O e O e ®© O e
N [ ) ¥ N ¥ % ¥
®-O0O-@ -0 ®-0-0-0
A \ / | A N
O-@<@®<0- O [ga O- @e<~—® -0-®
VAN 2 @ - s / N 7 FIG. 8. The(111) projection of the differen-
0 - -0 Oc U >0 - tial displacement{DD) map of the “easy”-core
» N v\ s 7 N K \ 7 7o configuration from (a) anisotropic elasticity

C-e-0-0- e theory and(b) MGPT interatomic potentials.
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TABLE VIIl. Percentage difference of NN bond lengths for TABLE IX. Major changes of angles between NN bonds for
atoms which surrounds the dislocation center compared with a peatoms which surrounds the dislocation.
fect bcc structure.

bcc structure Anisotropic elastic theory MGPT
Anisotropic elastic theory MGPT

70.5 67.8 70.7
—3.3% —1.0% 90.0 80.1 86.0
-3.3% —1.5% 109.5 99.9 105.8
—-1.7% +1.3 % 180.0 122.3 117.8
—-1.7% +1.5%
+2.3% +1.8% dnvolved the spread out alonf@.12) directions.
+2.3% +5.1%

Peierls barrier, and to treat additional bcc metals such as
tantalum.

More generally, we expect that boé initio and model
tion, and the core structure ¢111) screw dislocations in the GPT interatomic potentials can be developed and applied to
bce transition metal Mo, using multi-ion MGPT interatomic @ wide variety of metallic systems and mechanical phenom-
potentials derived from first-principles generalized pseudo€ha. For example, with suitable local-environment

i odulation?> MGPT potentials should be able to address the
potential theory. Our calculated shear strength agrees well ' p

with previous theoretical results obtained from full Problems of fracture and crack propagation in bce transition
metals. In addition, the first-principles GPT is currently be-

electronic-structure calculations, while our calculated va- tended to bi int tall that d d
cancy formation and activation energies are in excellent’d €Xt€NAe€d 10 binary intermetaliics, So that compounds an

agreement with experimental results. THELO) split dumb- alloys will be; treatable in the fut.u_re. In this regagi; initio
bell interstitial is found to have the lowest formation energy,GP.T potentials for the d; transﬂpn—metal alymlnldes. are
also in agreement with experiment, and with a calculated®®!"9 developed as the first application of this capability.
migration energy much larger than previous theoretical esti-
mates. The atomic structures {#11) screw dislocations in
Mo have been investigated, and it is found that the stable The authors wish to thank Dr. A. T. Paxton for helpful
dislocation core structure involves spread out along the thrediscussions on the calculation of ideal shear strength and for
(112 directions. A simple argument based on bond coordisuggesting this application as a useful test of the MGPT
nation and bond angles has been proposed to explain thotentials. This work was performed under the auspices of
spread out. In the future, we intend to extend this work to theéhe U.S. Department of Energy by the Lawrence Livermore
study of dislocation mobility, including the calculation of the National Laboratory under Contract No. W-7405-ENG-48.
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