Anharmonic interatomic potentials of octahedral Pt-halogen complexes studied by extended x-ray-absorption fine structure

Toshihiko Yokoyama, Yoshiki Yonamoto, and Toshiaki Ohta

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Akito Ugawa

Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444, Japan

(Received 7 March 1996)

The temperature dependence of Pt L_{III} - and I *K*-edge extended x-ray-absorption fine-structure spectra of octahedrally coordinated Pt $X_6^{2-}(X=Cl, Br, and I)$ complexes has experimentally been investigated not only for the first-nearest-neighbor (NN) shells but for higher NN ones. The second- and third-order cumulants of a radial distribution function in the octahedral system have been evaluated quantum mechanically by employing the interatomic potential including the third-order force constants. The experimentally obtained second-order cumulants agree with the values expected by the vibrational data and the third-order cumulants have successfully given the anharmonic force constants. Contribution of the bending motions to the cumulants of higher NN shells is discussed in detail. $[$0163-1829(96)04934-X]$

I. INTRODUCTION

Extended x-ray-absorption fine-structure (EXAFS) spectroscopy has widely been utilized for structure analysis in various fields of science.¹ EXAFS contains information on local structures around x-ray-absorbing atoms, and usually gives coordination numbers and interatomic distances. Recently thermal motions have also become an attractive subject, which are given in higher-order moments of radial distribution functions. In order to treat asymmetric radial distribution functions due to anharmonicity, the cumulantexpansion technique² has been exploited as the most practical method and has extensively been used in moderately disordered systems for bulk³ and surface materials.⁴ The next step for further understanding of the disorder problem is to know direct relationship between the interatomic potential and the cumulants. Recently Rabus⁵ and Frenkel *et al.*⁶ have derived quantum-mechanical formulas including third-order anharmonicity for a simple diatomic system, while Miyanaga and Fujikawa⁷ have extended the theory to a onedimensional infinite chain including the third- and fourthorder cumulants.

In our previous study, 8 we have derived the formulas of the cumulants for a linear triatomic system and analyzed the temperature-dependent EXAFS spectra of diatomic $Br₂$, and linear triatomic $HgBr_2$, $HgCl_2$, $AuBr_2^-$, and $CuBr_2^-$. The anharmonic interatomic potentials have subsequently been determined from the obtained cumulants, and it has been emphasized that the many-atom treatment is essentially important to describe the thermal motions especially for the higher nearest-neighbor (NN) shells which have no chemical bonds with the x-ray-absorbing atom. In the linear molecular systems, the bending vibrational motion does not contribute to the cumulants within the first-order approximation, because the displacement vector for the bending motion is perpendicular to any bond direction. Since one should take account of only the stretching motions in the linear molecules, this yields significant simplification for the description of temperature dependence of EXAFS spectra. On the contrary, for all the other point-group systems, generally speaking, the bending motions should be taken into account beyond the first-NN shell. It has not yet been investigated whether the bending anharmonicity is important to describe the cumulants, although this should be an essential problem for further understanding of EXAFS spectroscopy.

In the present study, we have carried out quantum statistical calculations to derive the cumulants of the octahedrally coordinated system including the third-order anharmonicity in the interatomic potential. We have measured and analyzed the temperature dependence of Pt L_{III} - and I *K*-edge EXAFS spectra of a PtI_6^{2-} complex not only for the first-NN shell but for the second- and third-NN ones. We have also investigated Pt L_{III} -edge EXAFS of other octahedral Pt halogen complexes of PtCl²⁻ and PtBr₆²⁻ for comparative discussion. We will finally conclude whether only the stretching motion is necessary or the bending motion is also important to yield proper cumulants.

In Sec. II of this work, we briefly describe the experimental details on EXAFS and far-infrared spectroscopic measurements. Section III deals with the vibrational analysis to give the second-order force constants within the harmonic approximation, and the evaluation of the cumulants using the third-order anharmonic potential by applying the first-order perturbation theory of thermal averages. Section IV gives the results and discussion of the EXAFS analysis for the static structure analysis as well as the temperature dependence. Section V summarizes the concluding remarks.

II. EXPERIMENT

Temperature dependence of Pt *L*_{III}-edge EXAFS spectra of K_2PtCl_6 , K_2PtBr_6 , and K_2PtI_6 was investigated at BL-10B (Ref. 9) of the Photon Factory in the National Laboratory for High Energy Physics (KEK-PF, the ring energy of 2.5 GeV) and the stored ring current of $350-250$ mA), while I *K*-edge EXAFS of K_2PtI_6 was taken at BL-7C (Ref. 10) of KEK-PF

with the operating ring energy of 3.0 GeV and the stored current of 170–150 mA. All the EXAFS spectra were recorded with the transmission mode using a $Si(311)$ channel $cut (BL10B)$ or double-crystal $(BL7C)$ monochromator. Ionization chambers were employed for the measurements of intensities of incident (I_0) and transmitted (I) x rays, which were filled with N_2 and Ar, respectively, for the Pt L_{III} -edge EXAFS. In the case of I *K*-edge EXAFS, we used Ar and Kr gases for I_0 and *I* ionization chambers, respectively. Data acquisition periods were 1 s/point for Pt L_{III} edge and 2 s/point for I *K*-edge EXAFS.

Commercially available K_2PtCl_6 , K_2PtBr_6 , and K_2PtI_6 were used without further purification. The samples were diluted with boron nitride, pressed to make disks with a diameter of 12 mm, and cooled down to the temperatures using a closed-cycle refrigerator. Measurement temperatures *T* are listed in Figs. 2, 4, and 5 described below. The absorption jumps at the edges were less than 1.5 for all the samples, implying fewer effects of higher harmonics in the present ring energy of 2.5 GeV for Pt *L*III edge or 3.0 GeV for I *K* edge. The sample temperature was monitored by an electric resistance of a Si diode placed closely to the sample disk.

Because of a lack of vibrational spectra of the PtI_6^{2-} system, we have carried out the measurements of a far infrared spectrum of K_2PtI_6 . The spectrum was recorded in a similar manner described previously.8

III. THEORY

A. Dynamical matrix calculation

Prior to the calculation of the cumulants, one has to determine the nonperturbed eigenvalues and eigenfunctions within the framework of harmonic oscillators. Here we assume an octahedral system MX_6 with atomic masses M and *m* for central atom *M* and terminal atom *X*, respectively. To solve the dynamical matrix, we use the simple Urey-Bradley force field,¹¹ whose **G** and **F** matrices for each symmetry can be given $as¹²$

$$
A_{1g}: G(A_{1g}) = \mu_{B}, F(A_{1g}) = K + 4F,
$$

\n
$$
E_{g}: G(E_{g}) = \mu_{B}, F(E_{g}) = K + 0.7F,
$$

\n
$$
F_{1u}: G(F_{1u}) = \begin{pmatrix} 2\mu_{A} + \mu_{B} & -4\mu_{A}\tau \\ -4\mu_{A}\tau & 2(4\mu_{A} + \mu_{B})\tau^{2} \end{pmatrix}, F(F_{1u}) = \begin{pmatrix} K + 1.8F & 0.9r_{0}F \\ 0.9r_{0}F & r_{0}^{2}(H + 0.55F) \end{pmatrix},
$$

\n
$$
F_{2g}: G(F_{2g}) = 4\mu_{B}\tau^{2}, F(F_{2g}) = r_{0}^{2}(H + 0.55F),
$$

\n
$$
F_{2u}: G(F_{2u}) = 2\mu_{B}\tau^{2}, F(F_{2u}) + r_{0}^{2}(H + 0.55F),
$$

\n(1)

where $\mu_A = 1/M$, $\mu_B = 1/m$, $\tau = 1/r_0$, and r_0 is the equilibrium $M-X$ distance. K, F , and H are the second-order force constants for M - X stretching, X - X' interaction, and X - M - X' bending modes. The basis set for the above **GF** matrices is the internal symmetric coordinate **S**, which is given by a unitary transformation of the original internal vectors **X** of the *M*-*X* distance displacements (Δr_l) and the *X*-*M*-*X'* angle displacements $(r_0\Delta\phi_{lm})$, the dimension of the internal coordinate **X** or **S** being 18 including 3 rotational freedoms.

Since vibrational spectra directly give the eigenvalues of the **GF** matrix, one can obtain the force constants *K*, *F* and *H*, and the normal coordinate **Q** which is given by the linear combination of **X** as

$$
X = eQ, \tag{2}
$$

where **e** is the transformation matrix. Raman and infrared spectroscopic data of PtCl^{2–} and PtBr^{2–} can be referred to in the literature,¹³ while the infrared spectrum of $PtI₆²⁻$ was measured in this study. The resonance frequencies for PtI_6^{2-} were found at 185.5 and 84.9 cm^{-1} . The former is assigned to the antisymmetric stretching mode (f_{1u}) and the latter to the bending mode (f_{1u}) . Because the Raman data of PtI_6^{2-} are not available, we use the present EXAFS results of ΔC_2 for the first-NN Pt-I shell described below, in order to calculate the force constants K , F , and H . The results of the force constants are summarized in Table II discussed below, and the obtained normal coordinate **Q** will be used to calculate the cumulants.

B. Cumulant evaluation

Let us evaluate the first- to third-order cumulants for the system including the third-order anharmonic potential. We will describe the interatomic potential V in terms of Q such that

$$
V = \frac{1}{2} \sum_{p} \omega_p^2 Q_p^2 - \sum_{p \leq q \leq r} \alpha_{pqr} Q_p Q_q Q_r, \qquad (3)
$$

where the first term corresponds to the harmonic potential (ω_p is the *p*th normal vibrational frequency) and the second term can be regarded as a perturbed Hamiltonian H' , in which α_{par} is the third-order force constant.

In order to evaluate the second-order cumulants C_2 , one can use the harmonic approximation because the odd-order terms do not contribute to the even-order moments within the first-order perturbation theory. The thermal average of Q_iQ_j is known to be simply given as

$$
\langle Q_i Q_j \rangle = \frac{\hbar}{2 \omega_i} \frac{1 + z_i}{1 - z_i} \delta_{ij} = \sigma_i^2 \frac{1 + z_i}{1 - z_i} \delta_{ij}, \tag{4}
$$

where \hbar is the Planck constant divided by 2π , δ_{ij} the Kronecker's delta function, σ_i^2 is the zero-point vibrational amplitude of the *i*the mode, and $z_i = \exp[-\hbar \omega_i / k_B T]$ (k_B the Boltzmann constant and T the temperature).

The first- and third-order cumulants C_1 and C_3 can be calculated using the first-order perturbation formula of thermal averages.^{6,8} The third-power moment $\langle Q_iQ_jQ_k\rangle$ is given as

$$
\langle Q_i Q_j Q_k \rangle = \frac{1}{Z_0} \sum_{p \leq q \leq r} \sum_{n,n'} \frac{z^n - z^{n'}}{E_n - E_{n'}}
$$

$$
\times \langle n | Q_i Q_j Q_k | n' \rangle \langle n' | - \alpha_{pqr} Q_p Q_q Q_r | n \rangle
$$

$$
= \sum_{p \leq q \leq r} Q_{ijk, pqr}^{(3)} \alpha_{pqr}, \qquad (5)
$$

where Z_0 is the partition function of the nonperturbed system, and E_n the eigenvalue of the nonperturbed state n . The state *n* contains 15 vibrational quantum numbers *n* $=(n_1, n_2, \ldots, n_{15})$ in the octahedral system, some of the levels being energetically degenerated. Although the analytical calculation of $Q^{(3)}$ is a tedious task, one can classify three different cases as follows. For $i \neq j \neq k$, when $p = i$, $q = j$, and $r = k$, one obtains a nonzero value as

$$
Q_{ijk,pqr}^{(3)} = \frac{2\sigma_i^2 \sigma_j^2 \sigma_k^2}{(1-z_i)(1-z_j)(1-z_k)} \left\{ \frac{1-z_iz_j z_k}{\hbar(\omega_i + \omega_j + \omega_k)} + \frac{z_k - z_i z_j}{\hbar(\omega_i + \omega_j - \omega_k)} + \frac{z_j - z_i z_k}{\hbar(\omega_i - \omega_j + \omega_k)} + \frac{z_i - z_j z_k}{\hbar(-\omega_i + \omega_j + \omega_k)} \right\},
$$
(6)

Because i, j and k are mutable with each other, the same expression is valid for $Q_{jik,pqr}^{(3)}$, etc. For $i \neq j = k$, three cases give nonzero values as in Eqs. $(7)-(9)$: when $p=i, q=r=j$ or $r=i$, $p=q=i$,

$$
Q_{ijj,pqr}^{(3)} = \frac{2\sigma_i^2 \sigma_j^4}{(1-z_i)(1-z_j)^2} \left\{ \frac{(1-z_i)(1+6z_i+z_i^2)}{\hbar \omega_i} + \frac{2(1-z_i z_j^2)}{\hbar(\omega_i+2\omega_j)} + \frac{2(z_i-z_j^2)}{\hbar(-\omega_i+2\omega_j)} \right\},
$$
(7)

when $p=q=r=i$,

$$
Q_{ijj, pqr}^{(3)} = \frac{6\sigma_i^2 \sigma_j^4}{\hbar \omega_i} \frac{1+z_i}{1-z_i} \frac{1+z_j}{1-z_j},
$$
 (8)

and when $p=i$, $q=r\neq i$, $\neq j$, or $r=i$, $p=q\neq i$, $\neq j$

$$
Q_{ijj,pqr}^{(3)} = \frac{2\sigma_i^2 \sigma_j^2 \sigma_q^2}{\hbar \omega_i} \frac{1+z_j}{1-z_j} \frac{1+z_q}{1-z_q}.
$$
 (9)

For $i=j=k$, two cases show nonzero values: when $p=q$ $=r=i$

$$
Q_{iii,pqr}^{(3)} = \frac{2\sigma_i^6}{\hbar \omega_i} \frac{11 + 38z_i + 11z_i^2}{(1 - z_i)^2},
$$
 (10)

and when $p=i$, $q=r\neq i$, $\neq j$ or $r=i$, $p=q\neq i$, $\neq j$,

$$
Q_{iii,pqr}^{(3)} = \frac{6\sigma_i^4 \sigma_q^2}{\hbar \omega_i} \frac{1+z_i}{1-z_i} \frac{1+z_q}{1-z_q}.
$$
 (11)

All the other elements vanish in Eq. (5) . For the first-order cumulant C_1 , which is defined as the thermal average of the distance displacement with respect to the equilibrium distance (the potential minimum), $\langle Q_i \rangle$ is similary given as

$$
\langle Q_i \rangle = \sum_{p \le q \le r} Q_{i,pqr}^{(1)} \alpha_{pqr}, \qquad (12)
$$

where $Q_{i, pqr}^{(1)}$ gives nonzero values when $p=q=r=i$

$$
Q_{i,pqr}^{(1)} = \frac{6\sigma_i^4}{\hbar\omega_i} \frac{1+z_i}{1-z_i},\tag{13}
$$

and when $p=i$, $q=r\neq i$, or $r=i$, $p=q\neq i$,

$$
Q_{i,pqr}^{(1)} = \frac{2\sigma_i^2 \sigma_q^2}{\hbar \omega_i} \frac{1+z_q}{1-z_q}.
$$
 (14)

All the other elements vanish in Eq. (12) .

Using these elements [Eqs. $(6)–(11)$, (13) and (14)], one can numerically evaluate C_1 and C_3 for any NN shell. For this purpose, one should define the third-order force constants in Eq. (3) . In the case of the octahedral system, let us assume the anharmonic perturbed Hamiltonian as

$$
H' = -\sum_{l} K_3 \Delta r_l^3 - \sum_{lmn} F_{3,lmn} \Delta r_l \Delta r_m \Delta r_n
$$

$$
-\sum_{lm} H_3 (r_0 \Delta \phi_{lm})^3, \qquad (15)
$$

where K_3 , F_3 , and H_3 are the third-order force constants. The first and third terms correspond to the anharmonicity due to the stretching and bending motions, respectively. The second one is the cross term between the stretching motions, while the cross terms containing the bending motions are all neglected. Although several types of F_3 might exist depending on *l*, *m*, and *n*, we will afterward give some assumptions to fit the experimental data. Using $X = eQ$, the force constant α_{par} in Eq. (3) can be obtained.

Finally one can evaluate the cumulants. For instance, the first- to third-order cumulants for the second-NN *X*-*X* shell are given as

$$
C_1 = \frac{1}{12} \sum_{lm} \langle \Delta r_{lm} \rangle,
$$

\n
$$
C_2 = \frac{1}{12} \sum_{lm} \langle (\Delta r_{lm} - C_1)^2 \rangle \approx \frac{1}{12} \sum_{lm} \langle \Delta r_{lm}^2 \rangle,
$$
 (16)

$$
C_3 = \frac{1}{12} \sum_{lm} \left\langle (\Delta r_{lm} - C_1)^3 \right\rangle \cong \frac{1}{12} \sum_{lm} \left\langle \Delta r_{lm}^3 \right\rangle - 3 C_1 C_2,
$$

where

$$
\Delta \eta_m = \frac{\Delta r_l + \Delta r_m + r_0 \Delta \phi_{lm}}{\sqrt{2}}.
$$
\n(17)

Since Δr_l , Δr_m , and $\Delta \phi_{lm}$ are expressed by **e** and **Q**, numerical values of C_1 , C_2 , and C_3 are obtained straightforwardly using Eqs. (4) – (15) . Note that although the octahedral system is assumed here, these expressions in Eqs. (3) – (14) are completely general for any molecular structure and one should rewrite only final expressions as Eqs. $(15)–(17)$. These formulas are employed for the following analysis of the temperature dependence of the experimental EXAFS spectra.

IV. RESULTS OF EXAFS AND DISCUSSION

A. Structure analysis

The EXAFS oscillation function $kⁿ \chi(k)$ was obtained with well-established procedures: pre- and postedge background subtractions and subsequent normalization with the absorption coefficients given in the literature.^{1,14} The Pt L_{III} -edge EXAFS functions, $k^3 \chi(k)$ of K₂PtCl₆ and $k^2 \chi(k)$ of K₂PtBr₆ and K₂PtI₆, and the I *K*-edge function $k^2 \chi(k)$ of

FIG. 1. (a) L_{III} -edge EXAFS oscillation function $k^2\chi(k)$ of K₂PtCl₆ at 25 K (long-dashed line) and 300 K (short-dashed), together with the FEFF6 calculation at 25 K (solid); (b) Pt L_{III} -edge $k^2\chi(k)$ of K₂PtBr₆ at 71 K (long-dashed) and 300 K (short-dashed) with the calculation at 71 K (solid); (c) Pt L_{III} -edge $k^2 \chi(k)$ of K₂PtI₆ at 38 K (long-dashed) and 300 K (short-dashed) with the calculation at 38 K (solid); (d) I *K*-edge $k^2\chi(k)$ of K_2PtI_6 at 50 K (long-dashed) and 300 K (short-dashed) with the calculation at 50 K $(solid).$

 K_2PtI_6 are shown in Fig. 1, including the temperature dependence and the theoretical calculations described below. In all the spectra, the amplitude reduction at higher temperatures can clearly be seen especially at high *k* regions due to the enhancement of thermal vibration at higher temperatures.

The EXAFS functions were subsequently Fourier transformed into *r* space (each Δk_{FT} employed is given in Table I, these being depicted in Fig. 2. In all the Pt L_{III} -edge EXAFS two features are found; dominant peaks appearing at \sim 1.9–2.5 Å can be assigned to the first-NN Pt-*X* (*X* = Cl, Br, or I) single-scattering path (coordination number $N=6$) and weak features appearing at \sim 4–5 Å to the multiplescattering paths. As we have already discussed in the linear triatomic systems, 8 no single-scattering paths within the PtX₆ unit can be expected around 4–5 Å, and the weak feature should thus correspond only to the multiplescattering paths, in which several kinds of Pt-*X*-Pt-*X'*-Pt paths are possible. Dominant contribution is found in the collinear $X-Pt-X'$ cases since these paths contain

TABLE I. Results of structural analysis of the EXAFS data of $PtCl_6^{2-}$, $PtBr_6^{2-}$, and PtI_6^{2-} using theoretical standards given by FEFF6. *R* denotes the distance given by the crystallographic data, while R_{ex} is the distance determined by the present EXAFS data. The crystallographic data of $PtBr_6^{2-}$ are not available in the literature. C_2 was calculated from the vibrational data. Error bars includes both the experimental and fitting errors, but do not include accuracy of the theoretical standards.

		Sample Edge T K Pair Δk_{FT} ΔR_{fit} Δk_{fit} S_0^2 R (\AA) $R_{\text{FX}}(\text{\AA})$ C_2 (\AA^2)			
		PtCl ₆ ² Pt-L _{III} 25 Pt-Cl 3.0–13.7 1.65–2.35 4.0–13.5 0.93(5) 2.316 ^a 2.318(5) 0.001 65			
		PtBr ₆ ² Pt-L _{III} 71 Pt-Br 2.9-14.7 1.80-2.60 4.0-14.5 0.90(5) 2.472(5) 0.001 36			
		Pt-Br-Pt $2.9-14.7$ $4.10-5.10$ $5.0-13.0$ $1.04(10)$ $4.932(5)$ 0.00231			
		PtI ₆ ² Pt _{-L_{III} 38 Pt-I 2.9–16.0 1.95–2.80 4.0–16.0 0.93(5) 2.673^b 2.673(5) 0.001 34}			
		Pt-I-Pt $2.9-16.0$ $4.70-5.40$ $4.0-16.0$ $1.08(10)$ 5.346^b $5.351(5)$ 0.00204			
		PtI ₆ ² I-K 50 I-Pt 3.4-16.7 1.90-2,85 4.0-16.0 1.12(10) 2.673 ^b 2.667(5) 0.001 36			
		I-I 3.4-16.7 3.10-3.80 4.0-16.0 1.01(10) 3.780 ^b 3.773(5) 0.003 69			
		I-Pt-I 3.4-16.7 4.60-5.40 4.0-16.0 1.21(10) 5.346 ^b 5.338(5) 0.002 11			

a Reference 16. ^bReference 17.

FIG. 2. Fourier transforms corresponding to Fig. 1. (a) K_2PtCl_6 (Pt- L_{III}) at 25 K (longdashed), 201 K (short-dashed) and 300 K (dotted), together with the FEFF6 calculation (solid); (b) K_2PtBr_6 (Pt- L_{III}) at 71 K (long-dashed), 147 K (dotted), 201 K (dot-dashed), 257 K (dotted), and 305 K (short-dashed) with the FEFF6 calculation (solid); (c) K_2PtI_6 (Pt- L_{III}) at 38 K (longdashed), 205 K (dotted), and 300 K (shortdashed) with the FEFF6 calculation (solid); (d) K_2PtI_6 (I-K) at 50 K (long-dashed), 130 K (dotted), $190 K$ (dot-dashed), $250 K$ (dotted), and 300 K (short-dashed) with the FEFF6 calculation (solid).

the focusing forward-scattering effect with Pt, while the other less important paths include the Pt scattering angles of 90° or 180°. Although the Fourier transform concerning I *K*-edge EXAFS of Ptl_6^{2-} [Fig. 2(d)] shows more complicated features, the assignments can be done rather straightforwardly; the first peak at \sim 2.5 Å corresponds to the first-NN I-Pt shell $(N=1)$, the second peak at \sim 3.5 Å to the second NN I-I shell $(N=4)$, and the third peak at \sim 5.1 Å to the I-Pt-I shell. Here we can neglect the double-scattering contribution corresponding to the triangular I-Pt-I'-I path where the I-Pt and Pt-I' directions are perpendicular to each other. Similarly to the Pt L_{III} -edge EXAFS, the observed third peak should contain mainly the collinear cases as the I-I'-I singlescattering (atoms I, Pt, and I' locate collinearly), the I-Pt-I'-I double scattering (once forward scattering with Pt) and the I-Pt-I'-Pt-I triple scattering (twice forward scattering with Pt). Most features in Figs. $2(c)$ and $2(d)$ are accompanied by the side lobes due to nonlinear *k* dependence of the phase shifts typical for heavy scatterers at Pt and I.

In order to obtain structural parameters and also to verify the reliability of the present theoretical standards, calculations were performed using the FEFF6 program package.¹⁵ This calculation requires only two undetermined parameters to reproduce EXAFS spectra, which are S_0^2 and ΔE_0 . ΔE_0 is the shift of the edge energy which has tentatively been chosen at the inflection point of the experimental data, and S_0^2 is the intrinsic reduction factor of the EXAFS function. The interatomic distances R were taken from the crystallographic data^{16,17} and the mean-square relative displacements C_2 were calculated from the harmonic vibrational analysis described below. C_3 was neglected for simplicity. Since crystallographic data of PtBr $_6^2$ ⁻ were not available, we used *R* also as a fitting parameter. Figures 1 and 2 include the results of the FEFF6 calculations for the lowest temperature of the corresponding experimental spectrum. Agreements between the experimental and theoretical spectra are found to be excellent.

A refinement of the interatomic distance was subsequently carried out by means of the single-shell curve-fitting analysis in *k* space. After the inverse Fourier transformation of the shell of interest, the extracted $kⁿ \chi(k)$ was fitted using the backscattering amplitude and the phase shift derived by the present FEFF6 calculation. The ΔR_{fit} and Δk_{fit} ranges employed are tabulated in Table I. Here only three fitting parameters of S_0^2 , R, and ΔE_0 were employed (C_2 was fixed to the values given by the vibrational analysis), while the number of independent data points estimated by the well-known formula of $N_I = 2\Delta k\Delta R/\pi + 1$ should be sufficiently larger for all the shells analyzed. Note that here we have allowed S_0^2 variation depending on each shell, which was inhibited in the FEFF simulation depicted in Figs. 1 and 2. Conclusively we found excellent agreement with the crystallographic distances not only for the first but for higher NN shells, as shown in Table I, indicating high reliability of the FEFF calculation.

One should, however, be careful to a possible superposition of the $p \rightarrow s$ transition in the Pt L_{III} -edge EXAFS analysis since FEFF6 includes only the major $p \rightarrow d$ component. In order to estimate the effect of the $p \rightarrow s$ transition, we have evaluated both the $p \rightarrow s$ and $p \rightarrow d$ component by changing the absorber phase shifts given in the FEFF6 code. It was found that although the phases are noticeably different between each other, the amplitude of the $p \rightarrow s$ component is too small to analyze since the ratio of the transition intensity $(I_{p\rightarrow s}/I_{p\rightarrow d})$ has been assumed to a common value of 0.02.¹ From the curve-fitting analysis including the two components we have found no meaningful differences in the results (the first-NN distance and coordination number differ only by 0.001 Å and 1% , respectively). We can conclusively remark that the above analysis taking account of only the $p \rightarrow d$ component is sufficient for the present discussion. It is also noted that in the present study we have measured both the Pt L_{III} and I *K*-edge EXAFS for PtI²⁻ and have obtained the identical results (see Table I and also Fig. 5 and Table II

FIG. 3. Filtered $k^2\chi(k)$ of I K-edge EXAFS for (a) the first-NN I-Pt shell, (b) the second-NN I-I shell, and (c) the third-NN I-Pt-I shell, at temperatures of 50 K (solid), 130 K (long-dashed), 190 K $~\rm{(short-dashed)}$, 250 K $~\rm{(dotted)}$, and 300 K $~\rm{(dot-dashed)}$.

given below), this justifying the omission of the $p \rightarrow s$ component in the polarization-averaged L_{III} -edge EXAFS.

B. Analysis of temperature dependence

The temperature dependence of the EXAFS spectra was subsequently analyzed by means of the amplitude-ratio and phase-difference methods or the curve-fitting method. In this analysis, we employed the lowest-temperature data as empirical standards, and therefore we can estimate the difference of the second- and third-order cumulants between the lowest and higher temperatures. The ΔR_{fit} and Δk_{fit} ranges were basically the same as in the above structure analysis, and the fitting parameters are ΔR , ΔC_2 , and ΔC_3 . Since the temperature-dependent analysis requires higher quality of the data than the distance estimation, we have consequently succeeded only in the analysis of the first-NN shells in the Pt L_{III} -edge EXAFS and the first- to third-NN shells in the I *K*-edge EXAFS, all of which show intense EXAFS oscillations up to sufficiently high *k* regions.

The filtered $k^2\chi(k)$ for the first- to third-NN shells in the I *K*-edge EXAFS of K_2PtI_6 are shown in Fig. 3. One can find the amplitude reduction at higher temperatures, which originates from the enhancement of C_2 . The phase delay is also found especially for the second-NN shell $[Fig. 3(b)],$ which is associated with C_3 . In the analysis of the second- and third-NN shells of the I *K*-edge EXAFS, we also assumed

FIG. 4. Temperature dependence of (a) C_2 and (b) C_3 for the first-NN Pt-Cl shell of PtCl $^{2-}_{6}$ (solid circles for experimental data and solid line for calculated data) and for the first-NN Pt-Br shell of PtBr $_6^{2-}$ (open circles and dashed line). For the experimentally obtained C_2 and C_3 , the calculated values at the lowest temperatures (25 K for PtCl²⁻ and 71 K for PtBr²⁻) are added.

the single-shell contributions. For the $I-I'$ pair, we have neglected multiple-scattering contributions such as a triangular I-Pt-I'-I path (\angle IPtI'=90°), as mentioned above. For the third-NN I-Pt-I'-Pt-I shell, all the paths except the \angle IPtI'=180° cases have been neglected. Since these three collinear components (single-, double-, and triple-scattering I-Pt-I' paths) show exactly the same cumulants, 8 we can perform the single-shell analysis similarly to the first-NN analysis. C_2 and C_3 of the first-NN Pt-X shells in PtCl₆² and PtBr $_6^{2-}$ are plotted in Fig. 4 and the results of the first- to third-NN shells of $P t I_6^{2-}$ are depicted in Fig. 5, where the calculated values discussed below are also given. In Figs. 4 and 5, the calculated C_2 and C_3 values at the lowest temperature were added to the experimentally obtained ΔC_2 and ΔC_3 to yield the absolute values at higher temperatures. The temperature dependence of ΔR is so small as the error bar, and is omitted because of less reliability for quantitative discussion of the interatomic potential.

C. Force constants

The analysis of C_2 can be performed with the harmonic approximation. For $PrCl_6^{2-}$ and $PtBr_6^{2-}$, *K*, *F*, and *H* have been given by the vibrational data and we can straightforwardly evaluate C_2 for the first-NN Pt-Cl or Pt-Br shell. As shown in Fig. $4(a)$, the experimental data given by EXAFS agrees quite well with the expected values, indicating that C_2 is correctly provided with the harmonic interatomic potential determined by the vibrational data. For Pt_6^{2-} , because of lack of a Raman spectrum we have only two IR frequencies, implying one more experimental datum required. Here we have employed C_2 for the first-NN I-Pt shell, which is dependent on *K* and *F*. These three experimental data lead to

FIG. 5. Temperature dependence of C_2 and C_3 for the first-NN I-Pt (solid line), the second-NN I-I (long-dashed), and the third-NN I-Pt-I (short-dashed) shells. Data points with error bars correspond to the experimental data given by the Pt L_{III} - and I *K*-edge EXAFS analyses. For the experimentally obtained C_2 and C_3 , the calculated values at the lowest temperatures (38 K for Pt L_{III} and 50 K for $I K$) are added in order to compare the calculated lines.

the harmonic force constants, as given in Table II. In the case of I *K*-edge EXAFS, we can also discuss C_2 of the secondand third-NN shells. For the second-NN I-I shells, Fig. $5(a)$ shows excellent agreement between the experimental and calculated values, while the calculation for the third-NN I-Pt-I shell is found to underestimate C_2 slightly. Although this might be within the error bars, the slight deviation would arise from somewhat poor approximation of the **GF** matrix in Eq. (1) , in which several kinds of cross terms are described using only one parameter *F*.

In order to discuss the contribution of the bending motion to C_2 of the second-NN I-I shell, let us neglect the bending

TABLE II. Second- and third-order force constants of $PtCl_6^{2-}$, PtBr₆², and PtI₆². The second-order constants *K*, *F*, and *H* $(mdyn/A$ units) were determined by the vibrational spectra. For Pt_6^2 , since the Raman data are not available, we used the IR frequencies and the EXAFS results of ΔC_2 for the first-NN Pt-I shell to determine the constants. The third-order constants K_3 , F_3 , and H_3 (mdyn/ \AA^2 units) were given by the present EXAFS analysis. For the determination of K_3 of PtCl^{2–} and PtBr₆^{2–}, $F_3=0$ was assumed, while for $P tI_6^{2-}$ both results are given.

		Harmonic		Anharmonic			
Sample	Κ	F	Н	K_3	F ₃	H_3	
$PtCl_6^{2-}$	1.829	0.148	0.0938	3.4(7)	$(0.0)^{a}$		
PtBr $\frac{9}{6}$	1.485	0.138	0.0291	3.7(4)	$(0.0)^{a}$		
PtI ₆ ^{2–}	1.00	0.20	0.019	2.2(3)	$(0.0)^{a}$		
	1.00	0.20	0.019	2.5(3)	1.1(2)	0.021(2)	

force constant *H* in the calculation. C_2 at 300 K is thus estimated to be 1.69×10^{-2} Å², which is by 15% larger than the value of 1.47×10^{-2} Å², obtained by the appropriate analysis including H . C_2 of the first-NN shell also changes by 2% due to the coupling of the F_{1u} stretching and bending modes, while C_2 of the third-NN shell does not vary at all. These results imply that the contribution of the bending mode plays a minor role even for the second-NN I-I shell where the bending mode directly affects.

For the determination of the anharmonic potential parameters, let us first neglect the cross terms concerning F_3 . From the first-NN Pt-*X* shells, one can determine K_3 in the absence of F_3 because the bending anharmonicity H_3 does not affect the first-NN shell. The obtained values are tabulated in Table II. Although in the cases of $PtCl_6^{2-}$ and PtBr₆² one cannot include F_3 because of a lack of the other NN information, the analysis of $P tI_6^{2-}$ can be performed using C_3 of the third-NN I-Pt-I shell. It might be quite important to take F_3 into account since in the analysis of the vibrational data the harmonic force constant *F* plays an essentially important role. Actually in the absence of the *F* contribution the C_3 values of the first-NN I-Pt and the third-NN I-Pt-I shells are not consistent with each other; C_3 of the third-NN shell was found to be by as much as \sim 40% underestimated assuming F_3 =0. In order to obtain F_3 , we should give some assumption of F_3 , which has basically four different types in the octahedral system. Here we have tried two possibilities; first all F_3 values are assumed to be the same, and second $F_{3,lmn}$ ($l \neq m \neq n$) is neglected and the other F_3 values are assumed to be the same. These two assumptions do not exhibit noticeable difference in the bending contribution discussed below and we will thus hereafter mention the results only in the case that all the F_3 values are equal to each other. On that condition, as given in Table II, one can consequently estimate $K_3 = 2.5(3)$ (mdyn/Å²) and $F_3 = 1.1(2)$ (mdyn/ \AA^2) from C_3 of the first- and third-NN shells of PtI $_6^{2-}$. Since the resultant K_3 value was slightly modified comparing to $K_3 = 2.2$ (mdyn/Å.²) obtained in the analysis of the first-NN shell assuming $F_3=0$, these previous values should be regarded as effective ones. Figure 5 shows also the C_3 curves of the first- and third-NN shells calculated including F_3 .

With the assumption of K_3 and F_3 obtained above, H_3 is immediately calculated from C_3 of the second-NN I-I shell as $0.021(2)$ (mdyn/ \AA^2). As mentioned above, the second-NN I-I shell contains information on K_3 , F_3 , and H_3 . When we neglect H_3 and take only K_3 and F_3 into account for the second-NN I-I shell, the C_3 value at 300 K is estimated to be 0.454×10^{-3} Å², which is by 19% smaller than the appropriate value of 0.562×10^{-2} \AA^2 . Note that C_3 of the first- and third-NN shells are not at all dependent on H_3 . The present results imply that the anharmonicity of the I-I shell originates mainly from the stretching mode $({\sim}81\%)$ and partly from the bending vibration, this being a similar conclusion to the C_2 case $({\sim}85%)$.

V. CONCLUSIONS

We have derived the formulas to give cumulants determined by EXAFS, assuming the third-order anharmonic potential with a general form. Although we have investigated the octahedral system here, these formulas can basically be applied to any molecular structure. In the PtX_6^{2-} system studied, C_2 agrees with the values expected from the vibrational data not only for the first-NN shells but for the second- and third-NN coordinations. The third-order Pt-*X* stretching force constants K_3 have successfully been determined from C_3 of the first-NN Pt-*X* shells, if we neglect the cross terms concerning F_3 . From the I *K*-edge EXAFS analysis of PtI $_6^{2-}$, we have also obtained information on the anharmonicity of the second- and third-NN shells. C_3 of the third-NN I-PT-I shell indicated that the force constant F_3 should be included, consequently leading to the K_3 and F_3 values. The resultant *K*³ value is slightly modified. For the second-NN I-I shell in $PtI₆²⁻$, we have discussed the contribution of the bending

- 1See, for instance, *X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES*, edited by D. C. Koningsberger and R. Prins (Wiley, New York, 1988).
- 2 G. Bunker, Nucl. Instrum. Methods **207**, 437 (1983).
- 3See, for instance, T. Yokoyama, T. Satsukawa, and T. Ohta, Jpn. J. Appl. Phys. 28, 1905 (1989); T. Yokoyama and T. Ohta, *ibid.* 29, 2052 (1990); L. Tröger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, and K. Baberschke, Phys. Rev. B **49**, 888 $(1994).$
- 4T. Yokoyama, H. Hamamatsu, Y. Kitajima, Y. Takata, S. Yagi, and T. Ohta, Surf. Sci. 313, 197 (1994); T. Lederer, D. Arvanitis, M. Tischer, G. Comelli, L. Tröger, and K. Baberschke, Phys. Rev. B 48, 11 277 (1993).
- 5 H. Rabus, Ph.D. thesis, Freie Universität Berlin, 1991.
- 6 A. I. Frenkel and J. J. Rehr, Phys. Rev. B 48, 585 (1993).
- 7 T. Fujikawa and T. Miyanaga, J. Phys. Soc. Jpn. 62 , 4108 (1993); T. Miyanaga and T. Fujikawa, **63**, 1036 (1994).
- 8T. Yokoyama, K. Kobayashi, T. Ohta, and A. Ugawa, Phys. Rev. B 53, 6111 (1996).
- 9 H. Oyanagi, T. Matsushita, M. Ito, and H. Kuroda (unpublished);

modes and found that for both C_2 and C_3 , the bending vibrations concerning H and H_3 play minor roles and the stretching modes are more important.

ACKNOWLEDGMENTS

The present authors gratefully acknowledge K. Kobayashi, H. Hamamatsu, S. Takenaka, and O. Endo for their help during the EXAFS measurements. We are also grateful to the Photon Factory staffs, Professor M. Nomura and Dr. N. Usami, who are in charge of Beamlines 7C and 10B. This work was carried out under the approval of Photon Factory Program Advisory Committee (PF-PAC No. 94G226).

M. Nomura (unpublished).

- 10 M. Nomura and A. Koyama (unpublished).
- 11 ^H. C. Urey and C. A. Bradley, Phys. Rev. 38, 1969 (1931).
- 12K. Nakamoto, *Infrared Spectra of Inorganic and Coordination Compounds*, 4th ed. (Wiley, New York, 1986); C. W. F. Pistorius, J. Chem. Phys. **29**, 1328 (1958).
- ¹³ J. Hiraishi and T. Shimanouchi, Spectrochim. Acta **22**, 1483 ~1966!; D. M. Adams and D. M. Morris, J. Chem. Soc. A **1967**, 1666 (1967); J. Hiraishi, I. Nakagawa, and T. Shimanouchi, Spectrochim. Acta **20**, 819 (1964).
- ¹⁴T. Yokoyama, H. Hamamatsu, and T. Ohta, EXAFS Analysis Program EXAFSH Ver. 2.1, The University of Tokyo, 1993.
- ¹⁵ J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991); S. I. Zabinsky, J. J. Rehr, A. Ankdinov, R. C. Albers, and M. J. Eller, Phys. Rev. B **52**, 2995 $(1995).$
- 16H. Takazawa, S. Ohba, and Y. Saito, Acta Crystallogr. Sect. B **46**, 166 (1990).
- ¹⁷G. Thiele, C. Mrozek, D. Kamerer, and K. Wittmann, Z. Naturforsch Teil B 38, 905 (1983).