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We investigate surface-related transport properties of high-temperature superconductors. We find the mean
vortex velocity under applied transport current determined by the activation energies for vortex penetration and
exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of su-
perconductor and the field and current dependencies of the transport activation energies. For a three-
dimensional superconductor the transport activation energy,Us

3D , is found to decrease with the external field,
H, and transport current,J, asUs

3D}H21/2 andUs
3D}J21/2, respectively. In the quasi-two-dimensional com-

pounds,Us
2D decays logarithmically with field and current. The interplay between the surface and the bulk

contributions to the transport properties, such as current-voltage characteristics, is discussed.
@S0163-1829~96!00530-9#

I. INTRODUCTION

The properties of the irreversible state of high-
temperature superconductors are strongly influenced by the
Bean-Livingston surface barrier.1 This barrier, which affects
the vortex entry in~and exit from! a superconductor in ex-
ternal magnetic fieldH, results from the competition be-
tween vortex attraction to the surface~‘‘mirror image’’ ef-
fect! and its repulsion from the surface due to the Lorentz
interaction with the shielding current. In order to enable flux
penetration into a superconductor, the shielding current
should be strong enough to pull the vortex away from its
mirror image over a distance of order of the coherence
length, j. This condition defines the penetration field,Hp ,
which exceeds the first critical field,Hc1 . For a perfect sur-
face one gets2 Hp.Hc.kHc1 /lnk, whereHc is the thermo-
dynamic field andk5l/j is the Ginzburg-Landau parameter
(l being the penetration depth!. For high-temperature super-
conductors, such as YBa2Cu3O72x ~YBCO! and
Bi2Sr2CaCu2O8 ~BSCCO! compounds,k is large (k.100),
thereforeHc /Hc1.k/ lnk.20, which implies a pronounced
surface effect. In real samples the barrier is diminished by
surface imperfections, thusHp lies somewhere in between:
Hc1,Hp,Hc .

3

The importance of the Bean-Livingston surface barrier in
high-temperature superconductors was recognized in Refs.
3–6. The dominant role of the surface barrier in the forma-
tion of the magnetization properties of clean untwinned
YBCO crystals at high temperatures was demonstrated by
Konczykowskiet al.,3 who observed the following.

~1! Vanishing of the magnetization (uMexitu!uMentryu) at
the descending branch of the magnetization loop due to the
disappearance of surface barrier for flux exit atH'B, where
B is the magnetic induction inside the sample, whereas most
bulk pinning ~Bean-like! models implyuMentryu.uMexitu.

~2! The homogeneous distribution of magnetic induction
B inside the sample demonstrated by the Hall probe

scanning,7 which agrees with the surface mechanism of irre-
versibility and contradicts any bulk pinning model.

~3! Almost complete shrinkage of the magnetization loop
DM5Mentry2Mexit and drastic reduction ofHp as a result of
a low-dose (.33104 displacements per atom! electron
irradiation,3 the transition temperatureTc remaining un-
changed. This effect of irradiation upon a surface barrier is
quite natural since the Frenkel pairs~vacancy1 displaced
atom! produced by irradiation migrate towards the surface
during annealing and form there an amorphous layer, de-
stroying the barrier. On the other hand, one cannot expect
reduction ofDM or Hp due to irradiation for any bulk pin-
ning model, since the latter anyway adds extra defects.

Other evidence for the role of the surface barrier was
obtained by the observation of the crossover, which separates
the bulk and the surface regimes in the magnetic relaxation
rate;8 analysis of critical fields and irreversibility line
H irr(T) in YBCO,5,9 BSCCO,10 Tl- ~Ref. 11! and
Hg-based12,13 compounds. The influence of the surface bar-
rier on the magnetization properties, flux structure inside a
superconductor, and vortex relaxation have been analyzed in
Refs. 14–18, where several methods to detect the surface
effects and to discriminate between the surface and the bulk
contributions to the magnetization were suggested.

In this paper we focus on the effect of the surface barrier
on the transport properties, such as transport critical currents
Jc and current-voltage characteristics. We find the current
(J), field (H), temperature (T), and sample geometry depen-
dencies of the surface activation energies,Us . These depen-
dencies prove to be quite different from those related to the
bulk pinning and could help to distinguish between the sur-
face and bulk contributions to transport characteristics in
high-temperature superconductors. This provides better un-
derstanding of different regimes of vortex dynamics, such as
thermally assisted flux flow~TAFF!.

The paper is organized as follows. In Sec. II we briefly
review the results on the surface-controlled irreversible mag-
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netization. In Sec. III we describe surface activation energies
determining flux exit and entry in three-dimensional~3D!
and 2D superconductors. Using these results we develop a
theory of the surface-related transport in Sec. IV.

II. SURFACE MAGNETIZATION

The energy barrier for a single vortex placed near a
superconductor-dielectric boundary was first considered by
Bean and Livingston1 ~see also Ref. 2!. The barrier for vor-
tex entry disappears atH5Hp.Hc1 , where the shielding
currentj becomes strong enough to pull a penetrating vortex
away from the surface at distancesx.j. The barrier for flux
exit disappears atj50 ~i.e., on removal of the external field:
H50), since the repulsion of a vortex from the surface due
to shielding currentj (x)5(cH/4pl)exp(2x/l) dominates at
x>l upon the ‘‘short-range’’ mirror image interactionS
}exp(22x/l).

In a general case the vortex lattice is already present in-
side a superconductor, and its interaction between the test
vortex, which enters or escapes the sample should be ac-
counted for. This problem was solved by Clem,14 who con-
sidered a continuous flux distribution inside a superconduc-
tor, and Ternovskii and Shekhata,15 who analyzed the stable
states of vortex lattice near the surface. The results obtained
by both approaches are similar. Both predict the existence of
a vortex-free region of the width

xf5lcosh21~H/B! ~1!

near the surface, as shown in Fig. 1. At equilibrium magne-
tization, whereB5Beq(H).H2Hc1 , one getsxf.a, where
a.(f0 /B)

1/2 is the vortex lattice constant, i.e., the vortex-
free region shrinks. Within the continuous approximation the
potential for a test vortex, shown in Fig. 1, can be written for
0,x,xf as

14

V~x!5
f0

4p
@h~x!2B2H1Heq~B!1S~x!#, ~2!

where

h~x!5Bcosh
xf2x

l
~3!

is the local magnetic field andS(x),0 describes the attrac-
tion between the vortex and its mirror image. For a straight
infinite vortex S(x)5S0(x)52(f0/4pl2)K0(2x/l) per
unit length, whereK0 is the Macdonald function.

For both Abrikosov lines~3D case! and two-dimensional
pancakes~2D case! the condition of elimination of the bar-
rier for flux entry atH.Hp is

14,15

men5H2AH22Hp
2S '

Hp
2

2H
at H@HpD , ~4!

wherem[H2B54pM . For the flux exit15

mex52
A3f0

48l2 '2
H*

2
, ~5!

where H*5f0/4pl25Hc1 /lnk. Thus umexu!Hc1
.H2Beq(H)[m eq, where meq.(H* /2)ln(Hc2 /B) is the
equilibrium magnetization. This result generalizes the Bean-
Livingston condition j50 for flux escape, which implies
mex50. The ‘‘continuous’’ approach14 providesmex of the
same order of smallness, but of an opposite sign. A recent
numerical study19 of flux dynamics in finite samples on the
basis of simulations of the time-dependent Ginzburg-Landau
equations confirm Eq.~5!. If the bulk pinning is negligible,
then the magnetization curvem(H) is due to the surface
barrier only, and its ascending and descending branches are
determined by Eqs.~4! and~5!, respectively. For greater de-
tail see Ref. 17.

Using Eq. ~4! and estimatingmeq.(H* /2)lnk5Hc1/2 at
Hp<H<Hc ,

6 one obtains forH.Hp

men

meq
.

Hp
2

Hc1H
.
Hp
2

Hc
2

Hc2

H lnk
~6!

For a perfect surface, whereHp.Hc , we get from Eq.~6!
men/meq.Hc2 /H lnk, i.e.,men(H) . meq(H) for the whole
London regimeH!Hc2 . But usually the Bean-Livingston
barrier is diminished by surface imperfectness:3,6

Hc1,Hp,Hc . Thenmen(H)5 meq(H) at the surface irre-
versibility field18

H irr.Hp
2/Hc1 ~7!

which was observed experimentally.10,11,13

Due to vortex creep over the barrier, which is especially
pronounced for 2D pancakes, the whole magnetization curve
described by Eqs.~4! and ~5! the effective penetration field
Hp proves

4,18 to depend on temperature as

Hp5Hp0exp~2T/T2D!, 2D case, ~8!

Hp5Hp0~T3D /T!, 3D case, ~9!

at a given experimental time window.

III. SURFACE ACTIVATION ENERGIES

A. Three-dimensional „3D… case

The activation energies, related to the flux entry (Uen) at
men.m.meq and to flux exit (Uex) at m eq.m.mex were
found in Ref. 17. A vortex surmounts the barrier by forma-
tion of a nucleus~semiloop!, which further spreads along the

FIG. 1. The potential energy of a straight test vortex near the
surface for ~a! flux entry; ~b! flux exit. At x.xf the energy
4pV(x)/f05Heq(B)2H>meq2m. The regionx;j, where the
‘‘mirror image’’ term S(x) is essential, is shown by a dashed line.
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surface, see Ref. 20. The analogous thermoactivation mecha-
nism has been discussed21,22 for the creep of vortices trapped
by columnar defects.

For superconductors with largek, where the curve
H eq(B) is almost parallel to the lineH5B at H@Hc1 , we
can substituteH2Heq for m2meq in Eq. ~2!. Then the po-
tential V(x), see Eq.~2!, for a vortex nucleus acquires the
form17

V3D~x!5
f0

4p FB2 S xf2x

l D 21meq2m1S~x!G , x,xf ,

V3D~x!5
f0

4p
~meq2m!, x>xf , ~10!

where we expandedh(x)'B1B(xf2x)2/2l2 at xf,l, see
Eq. ~3!. The latter condition holds everywhere in them(H)
diagram, except a small regionH2Hp!Hp . The ‘‘mirror-
image’’ termS.H* ln(x/xf) for the case of vortex nucleus
~semiloop! is much less than the other terms in Eq.~2! ex-
cept the small regionx;j, and thus can be neglected.17,20,23

Note that this holds for 3D case only and is not valid for
pancakes~2D case!, which will be discussed further.

The energy of a critical vortex nucleus~semiloop! can be
expressed as16,20

U3D5
2

AG
E
0

x̃AV 3D~x!S f0H* ln~ x̃/j!

2p
2V3D~x! Ddx,

~11!

where x̃ is the characteristic size of a nucleus along thex
axis andG5mc /mab is the effective mass anisotropy. For
flux entry x̃5x0 , see Fig. 1, and for flux exitx̃5xf . In Refs.

17 and 20Hc15H* ln(l/j) was used instead ofH* ln(x̃/j),
which affects only the logarithmic factors and is not of great
importance for further analysis. Equation~11! holds pro-
vided we neglect the elastic response of the vortex lattice,
which is deformed while a test vortex surmounts the barrier.
For a more precise description, including the possibility of
collective effects, see Refs. 16 and 24.

Using Eqs.~4!, ~5!, and~10!, we get

x̃

j
5
x0
j

'
Hc

Hp
Amen

m
5kmeqA 2

mH
~flux entry!, ~12!

x̃

j
5
xf
j

'
Hc

Hp

Amenm

meq
5kA2m

H
~flux exit!. ~13!

If m@meq, thenx0 /xf5meq/m!1, as follows from Eqs.
~12! and~13!. Therefore the current density forx,x0 can be
considered constant and equal to that flowing exactly at the
surface:j s5(c/4p)dh/dxux505cAHm/(p2A2l), see Eqs.
~1! and~3!. Thus the nucleus has the shape of semiellipse,22

and its energy is~compare with Refs. 16 and 20!

Uen
3D'

f0l~H* !2

32AGHm
F lnS kmeqA 2

mHD G2
at meq!m!H. ~14!

A general integration of Eq.~11! results in a cumbersome
expression which includes elliptical functions. But a very
reasonable approximation for allm exceptm>men can be
obtained17 by neglecting the termV3D(x) in comparison with
f0H* ln(x̃/j)/2p in Eq. ~11!. Then, using Eqs.~10!–~13!, one
obtains the activation energies for flux entry,

Uen
3D'

f0l

2pAGH
AH* lnS kmeqA 2

mHD FAmmeq1
1
2 ~m2meq!ln

Am2Ameq

Am1Ameq
G , ~15!

and for flux exit,

Uex
3D'

f0lm

2pAGH
AH* lnS kA2m

H D . ~16!

Equation~15! for the casem@meq reduces to Eq.~14! up to
a numerical factor 3p/8A2'0.83, which justifies the ap-
proximation used above.

It is worth noting thatUen andUex do not depend on the
ratio Hp /Hc , i.e., on surface damage. This occurs since
Hp /Hc is determined

3,6 by the surface imperfections of the
scalej, whereas the vortex nucleation takes place at larger
scales ofx̃ @j for mostmex,m,men. In order to affect
Eqs. ~14!–~16!, the surface damage should extend to the
depth of orderxf@j, which is not the case for clean high-
temperature samples. Therefore the surface imperfections of
the depthj, which are responsible for decreasing ofHp
down fromHc , have almost no effect on the surface activa-
tion energiesUen andUex. The dependence ofUen andUex

onm is quite different, which results in the different relax-
ation rates for vortex entry and exit.17

Near the equilibrium (m'meq) the critical nuclei for both
flux entry and exit have double-kink structure16 so that
Uen
3D(meq)5Uex

3D(meq)[Ueq
3D52Uk with

Uk'f0lmeq
3/2/4pAGH. ~17!

With the logarithmic accuracy Eqs.~15!–~17! coincide with
the expressions derived in Ref. 17. Here we assume that the
piece of new vortex line created by the nucleus has the same
line energy as existing vortices. Strictly speaking, this is
valid only in the vortex liquid state. In the crystalline state,
penetration of a new vortex creates surface interstitial with
extra linear energy. This leads to crossover to the collective
penetration and divergency of the barrier asm→meq.

16

For YBa2Cu3Ox the estimation ofUeq gives

Ueq
3D~t!/kTc.

t

AH
63104,
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wheret5(Tc2T)/Tc , the fieldH is measured in Oe and we
used H'B, G525, l5l0 /A12(T/Tc)

4'l0/2At with
l051400 Å andk'100. This shows that surface activa-
tion energies for 3D superconductors are pronounced even at
T.Tc and moderate fields. Therefore the surface irrevers-
ibility should dominate over the bulk one at high
temperatures,25 especially atT.Tdp, whereTdp is the bulk
depinning temperature,26 as has been confirmed
experimentally.3

B. Two-dimensional „2D… case

In strongly layered superconductors the pancake vortices
in different layers penetrate through the surface barrier inde-
pendently from each other. An analytical solution for the
activation energy for such penetration can be obtained ne-
glecting lattice response to the penetrating vortex~‘‘rigid
lattice’’ approximation!. Numerical analysis24 shows that in
the equilibrium this approximation is valid at fields
H<0.01Hc2;Hc .

The energy of a pancake vortexV2D(x) is described by
Eqs. ~2! and ~10! but, contrary to the 3D case, the mirror
image termS(x) cannot be neglected. This can be under-
stood as follows: In order to find the activation energyUen

2D

for a pancake, one has to find the maximum ofV2D(x) in-
stead of considering the semiloop energy, see Eq.~11!. Ne-
glectingS(x), we get the maximum ofV(x) at x50 ~i.e., at
x.j), see Eqs.~2! and ~10!, where the mirror image term
S(x)} ln(xf /x) becomes crucially important. Thus we should
consider the expansion of Eq.~2! at distancex!xf :

18

V2D~x!5U0lnS 2.94axj D2
f0d jsx

c
, ~18!

where d is the period of the layered structure and
U05d(f0/4pl)2. The first term in Eq.~18! stands for
S(x), and the numerical factora,1 describes the decrease
of S(x) due to surface damage~as if the pancakes first ap-
pear at distancej/2.94a apart from the surface!. The pen-
etration field Hp is determined from the condition
max@V2D(x)#,0 at B50, which givesHp50.76aHc . For
H.Hp we get

Uen
2D~m!'U0lnS Hp

A2mH
D . ~19!

We see thatUen
2D depends onm only logarithmically, unlike

the 3D case.
The activation energy for vortex exit,Uex

2D(m eq), in the
equilibrium coincides withUen

2D(meq)[U eq
2D . Out of equilib-

rium, the energy change to put an extra pancake vortex into
the superconductor is given by2f0d(m2meq)/4p. Here, as
in the case of 3D vortices, we neglect the energy of the
elastic deformation in the vortex lattice due to penetration of
an extra pancake which is justified far from equilibrium or
above the melting temperature of the lattice. ThereforeUex

2D

can be estimated atmeq2m!meq as

Uex
2D~m!5Uen

2D~m!2
f0d~m eq2m!

4p

'U0F lnS Hp

A2mH
D 2

meq2m

H* G . ~20!

At m!meq we get

Uex
2D~m!'

f0d

4p
m, ~21!

i.e., Uex
2D}m, similarly to the 3D case. BothUen

2D andUex
2D

prove to be weakly~logarithmically! field dependent.
For Ueq

2D one gets an estimation, see Eqs.~19! and ~21!:

Ueq
2D~t!/kTc.35t,

where we usedl052000 Å , k'100, andH.Hc . This is
at least one order of magnitude less thanUeq

3D , even at high
fieldsH.104 Oe.

The surface activation energiesUen andUex for both 3D
and 2D cases should be compared with that related to the
bulk pinning,Ub , in order to elucidate which source of ir-
reversibility, the bulk or the surface, governs the flux creep
in the sample. For instance, in the magnetization measure-
ments the bulk and the surface relaxations are separated in
time,8 the first being that characterized by the smallest acti-
vation energy.17 At the same time, the transport properties
are mostly determined by the largestU.25

Note that for both 2D and 3D casesU}t5(Tc2T)/Tc at
T→Tc .

IV. TRANSPORT CRITICAL CURRENT Jc
AND SURFACE RESISTIVITY

A transport currentJ, flowing through a superconducting
sample, induces a vortex motion across the sample in a per-
pendicular direction, thus leading to energy dissipation and,
in turn, to the appearance of the normal resistanceR. At
J.Jc the flux motion is a nonactivation flux flow, i.e., the
activation energyU50. At J,Jc the motion is characterized
by a finiteU(J). Both Jc andU have been extensively stud-
ied for different kinds of the bulk pinning, see Ref. 27 as
reviews. In this section we derive the critical currents and
activation energies related to the surface barrier and discuss
their interplay with the bulk pinning for 3D and 2D cases.

Consider a superconducting slab of thickness
w (0,x,w), as shown in Fig. 2, in a magnetic field
H.Hp parallel to thez axis, where a transport currentJ
flows alongy. Let all the relaxation processes be completed,
so in the absence ofJ we havem5meq and the surface
activation energyUeq is determined by Eqs.~17! and~21! ~at
m5meq) for 3D and 2D superconductors, respectively.

The transport currentJ results in asymmetry of the exter-
nal fieldH at the sides of the slab. In the geometry shown in
Fig. 2, the fieldH in on the left side (x50), where vortices
enter into the slab, becomes larger thanH, while at the op-
posite side (x5w), where vortices exit outside, the field
Hout,H. From the Maxwell equationdH/dx54p j /c,
where j (x) is the density of the transport current, we get

DH[H in2Hout5min2mout5
4p

c
J[ J̃, ~22!

wheremin5H in2B, mout5Hout2B, andJ5*0
wj (x)dx.

54 6753TRANSPORT PROPERTIES OF HIGH-TEMPERATURE . . .



The total transport currentJ flowing in the slab splits into
two contributions,

J5Js1Jb, ~23!

whereJs is the surface contribution andJb5 j bw is the bulk
one (j b being the current density in the bulk!. In turn, Js

consists of two components:Js5Jin1Jout, see Fig. 2. Obvi-
ously,

J̃ in5min2meq, ~24!

J̃out5meq2mout, ~25!

whereJ̃in(out)5(4p/c)Jin(out) .
The magnitudes ofJin , Jout andJ

b are determined by the
condition of continuity of flux motion through the slab,
which can be written as

D in~Jin!5Dout~Jout!5Db~ j
b!5E/c, ~26!

whereD in(Jin), Dout(Jout), andDb5Bv are the flux currents
at the surfaces and in the bulk (v being the mean flux veloc-
ity in the bulk! andE is the electric field. The average vortex
flux through both surfaces is determined by the balance be-
tween entry and exit processes shifted by the transport cur-
rent J. The resulting current-voltage characteristicJ(E) can
be obtained by solution of Eq.~26! with respect to current
components and substitution of the result into Eq.~23!.

In strongly nonlinear creep regime the flux currents are
determined by the corresponding energy barriers as

D in5Buv exp@2Uen~meq1 J̃ in!/T#, ~27!

Dout5Buv exp@2Uex~meq2 J̃ out!/T#, ~28!

Db5Buv exp@2Ub~ j b!/T#, ~29!

whereu andv are the characteristic hopping distance and
frequency, respectively, andUen(m), Uex(m) were derived
in Sec. III. Neglecting the difference in the preexponential
factors for the surface and the bulk, the redistribution of
current is determined by the condition of constant activation
energyU(J) at both surfaces and the bulk:

U~J!5Uen~meq1 J̃in!5Uex~meq2 J̃out!5Ub~ j
b!. ~30!

Similarly, the bulk and surface activation energies are equal
for the vortex relaxation process, see Ref. 17.

The total critical currentJc at low temperatures, which
includes both surface and bulk contribution, is determined by
the conditionUen5Uex5Ub50, see Eq.~30!, which implies
meq1 J̃in5men, meq2 J̃out5mex, and j

b5 j c
b , wherej c

b is the
bulk critical current density. ThereforeJc5Jc

s1Jc
b , where

Jc
s andJc

b5 j c
bw is the surface and bulk critical currents. For

Jc
s , using Eqs.~4! and ~5! we get25

4p

c
Jc
s[ J̃c

s5men2mex'H2AH22Hp
2. ~31!

At H@Hp , Eq. ~31! is reduced to

Jc
s'

cHp
2

8pH
, ~32!

i.e., the surface transport critical current is inversely propor-
tional to the external fieldH.

At J@Jc
s most current flows in the bulk of the sample, and

the surface effect on the current-voltage curve is negligible.
At J<Jc

s one has to solve the system of equations~23!–~26!,
which requires knowledge of the dependenceUb( j

b). How-
ever, the general feature of Eqs.~23!–~26! is that for the case
of pure surface resistivity~where the bulk pinning is negli-
gible! the activation energyU5Us(J), and, in turn, the volt-
age is a function of thetotal transport currentJ through the
sample. For a pure bulk resistivityU5Ub( j

b) is actually a
function of the currentdensity j5J/w. Thus use of samples
from the same batch, but of different thickness, can help to
determine which kind of pinning, surface or bulk, is domi-
nant. The crossover between bulk and surface transport re-
gimes with changing field, temperature, or current was ob-
served experimentally in thin MoGe films.28 Below we find
functional form of current-voltage curves for 3D and 2D su-
perconductors.

A. 3D case

In the equilibrium vortex liquid state the flux currents
D in(out) , see Eq.~26!, are linear with respect toJin(out) and
determined by the surface kinks and antikinks. The surface
kink is a piece of vortex line in the flux-free region ending at
the surface. At zero transport current the equilibrium concen-
tration of kinks ~antikinks! is determined by
nk5nk0exp(2Uk /T). Extra surface currentJin(out) drives
kinks and antikinks in opposite directions with velocity
v5f0J/chxf giving rise to net flux currents

D in~out!52f0nkv5
2f0nk0
c2hxf

exp~2Uk /T!Jin~out! , ~33!

whereh is the viscosity coefficient of the vortex line di-
rected orthogonally to the surface. This means that small
transport current flowing along the sample should be distrib-
uted equally between the surfaces, and surface resistivity
Rs5E/(Jin1Jout) is given by

FIG. 2. Distribution of a transport current in superconducting
slab. For the case of no bulk pinningj b50. The arrow correspond-
ing to Jin is longer thanJout in order to emphasizeJin.Jout at large
currentsJ̃@meq for both 3D and 2D cases, see discussion in the
text.
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Rs5rflow
Bnk0
f0xf

exp~2Uk /T!, ~34!

whererflowBf0 /c
2h is the flux-flow resistivity for field or-

thogonal to the surface. It is important to note that the linear
surface resistivity is finite only above the melting tempera-
ture of the vortex lattice. If an ordered vortex configuration is
present in the bulk, then free surface kinks are topologically
forbidden.

The linear regime holds until one can neglect current gen-
eration of kinks and antikinks, i.e., until energy of the kink is
smaller than the energy of critical nucleiUen

3D andUex
3D . In

the opposite limit penetration rates are determined by forma-
tion of critical nuclei and given by Eqs.~27! and ~28!. In
order to find the surface activation energyUs as a function of
Js in this regime, we have to solve Eqs.~30!, ~22!, and~23!,
usingUen(m), Uex(m) derived in Sec. III. After straightfor-
ward calculations we get at small surface transport currents
J̃ s!meq:

J̃ in
2
ln
4meq

J̃in
5 J̃s. ~35!

Under the logarithm in Eq.~35! one can estimateJ̃in. J̃s,
thus J̃in. J̃s/ ln(4meq/ J̃

s) at J̃s!meq. As follows from Eq.
~35!, J̃in / J̃

s→0 andJ̃ out/ J̃
s→1 at J̃s→0, which means that

in the limit of small currents all the surface transport current
flows along the ‘‘flux out’’ ~vortex exit! side of the sample.
Thus

Us
3D~ J̃s!5Ueq

3D2AJ̃s ~ J̃s!meq!,

where A5(f0l/2pAGH)AH* ln(kA2meq/H), see Eqs.
~16! and ~17!.

At J̃s@meq we get

J̃ in' J̃s2meq1
2
3Am eq

3 / J̃s,

min' J̃s@11 2
3 ~m eq/ J̃

s!3/2#. J̃s, ~36!

J̃out'meq2
2
3Ameq

3 / J̃s,

mout'
2
3Ameq

3 / J̃s, ~37!

and

Us
3D~ J̃s!'Amout'

2
3 AAmeq

3 / J̃s, ~38!

see Eq. ~16!. Contrary to the case of small currents,
at J̃s@meq we get J̃in@ J̃out, i.e., most current flows along
the ‘‘flux in’’ ~vortex entry! side.

The dependencies ofJin , Jout, andUs
3D on Js, determined

by Eqs.~35!–~38! are shown in Fig. 3.

B. 2D case

For 2D superconductor carrying transport current the rates
of flux entry and exit can be written as

D in5D0FexpS 2
Uen
2D~meq1 J̃in!

T D
2expS 2

Uex
2D~meq1 J̃ in!

T D G , ~39!

Dout52D0FexpS 2
Uen
2D~m eq2 J̃out!

T D
2expS 2

Uex
2D~meq2 J̃ out!

T D G , ~40!

whereUen
2D(m) andUex

2D(m) are the barriers for flux entry
and flux exit given by Eqs.~19! and ~20!. Here, unlike the
3D case, we took into account the ‘‘backward’’ jumps of
pancakes from lower potential to the higher one~against the
Lorentz force!. The backward processes are restricted for 3D
vortex lines, where a vortex surmounts the barrier by forma-
tion a nucleus, since such a nucleus cannot be formed if
V(x).0 at allx, see Sec. III. For 2D pancakes, which enter
and exit the sample separately, the backward jumps can be
essential. As for the 3D case in steady state

D in~ J̃in!5Dout~ J̃out!5E/c. ~41!

These conditions determine the redistribution of current be-
tween surfaces and determine the current-voltage curves.
One can distinguish several current regimes. At very small
transport current,J̃s!T/f0d, it distributes equally between
the surfaces and the surface resistivityRs5E/(Jin1Jout) is
linear and given by

Rs5
f0dD0

2T
expS 2

Ueq
2D

T D . ~42!

The surface dominates in the linear transport for narrow
enough sample or/and at low enough temperatures:

w,rb /Rs5
2Trb

f0dD0
expSUeq

2D

T D , ~43!

FIG. 3. Dependencies of the current componentsJin /J
s,

Jout /J
s and the surface activation energyUs

3D(Js)/Ueq
3D on the sur-

face transport currentJs for the 3D case.
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wherew is the width of the sample andrb is the bulk linear
resistivity.

At J̃s@T/f0d the backward jumps can be neglected and
we obtain

D in'D0 expS 2
Uen
2D~meq1 J̃in!

T D ,
Dout'D0 expS 2

Uex
2D~meq2 J̃out!

T D , ~44!

and surface resistivity becomes strongly nonlinear. Using
Eqs.~19!, ~20!, and~41!, the distribution of the moderate, but
not very weak, currentT/f0d! J̃s!meq between the flux
entry and flux exit sides of the sample can be estimated as

J̃ in'
HcH*

2B S E

cD0
D 2T/U0

2meq, ~45!

J̃out'meq2
4pT

f0d
ln
cD0

E
2
H*

2
lnF lnmeq

H*
1
2T

U0
ln
cD0

E G ,
~46!

whereJc
s is the surface critical current given by Eq.~32!.

For large currentsJ̃s@meq one finds

J̃ in' J̃s2meq1H* ln~Hp /A2J̃sH !, ~47!

J̃out'meq2H* ln~Hp /A2J̃sH !! J̃in , ~48!

and

Us
2D~ J̃s!'U0ln~Hp /A2J̃sH !.

As for 3D superconductors, in the limit of large currents
J̃ s@meqmost transport current flows along the ‘‘flux entry’’
side of the slab.

Complete current-voltage curve in the nonlinear regime
can be written as

J~E!5
Ew

rb
10.6Jc

sS E

cD0
D 2T/U0

2
cT

f0d
ln
cD0

E

2
cH*

8p
lnF lnmeq

H*
1
2T

U0
ln
cD0

E G at J̃s,m eq ~49!

and

J~E!5
Ew

rb
10.6Jc

sS E

cD0
D 2T/U0

at J̃s.meq. ~50!

With increase of transport current a larger fraction of current
goes to the bulk:Jb/J→1. When the electric field exceeds
the typical valuerbJc

s/w, the surface effect on vortex trans-
port becomes weak. This type of behavior was indeed ob-
served experimentally.28

V. CONCLUSIONS

We considered the contribution of the surface~Bean-
Livingston! barriers to critical transport currents and activa-
tion energies in high-temperature superconductors. For both
3D ~e.g., YBCO! and 2D~e.g., BSCCO! compounds the sur-
face transport critical currentJc

s}1/H at H.Hp . This cur-
rent should be added to the bulk critical currentJc

b in order to
find the totalJc . The surface activation energiesUs

3D and
Us
2D prove to be quite different. The characteristic dependen-

cies ofUs
3D on current and external field areUs

3D}1/AJH,
whereasUs

2D shows a much weaker~logarithmic! depen-
dence:Us

2D} ln(HpA4p/cJH). A weak transport currentJ,
which induces the fields less thanmeq;Hc1 , can be distrib-
uted between the flux entry and exit sides differently depend-
ing on dimensionality~2D or 3D! and weakness ofJ,
whereas a large current~with self-fields greater thanmeq)
flows mainly along the ‘‘flux entry side’’ for both 3D and 2D
superconductors, providedmen@meq.
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