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Transport properties of high-temperature superconductors: Surface vs bulk effect
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We investigate surface-related transport properties of high-temperature superconductors. We find the mean
vortex velocity under applied transport current determined by the activation energies for vortex penetration and
exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of su-
perconductor and the field and current dependencies of the transport activation energies. For a three-
dimensional superconductor the transport activation en&té?/, is found to decrease with the external field,

H, and transport currend, asU3P<H ™2 andU3P«J~ 2, respectively. In the quasi-two-dimensional com-
pounds,U§D decays logarithmically with field and current. The interplay between the surface and the bulk
contributions to the transport properties, such as current-voltage characteristics, is discussed.
[S0163-182696)00530-9

[. INTRODUCTION scanning, which agrees with the surface mechanism of irre-
versibility and contradicts any bulk pinning model.

The properties of the irreversible state of high- (3) AlImost complete shrinkage of the magnetization loop
temperature superconductors are strongly influenced by th&M =M ¢y, — M i and drastic reduction dfi, as a result of
Bean-Livingston surface barriéThis barrier, which affects a low-dose &3x10* displacements per atdmelectron
the vortex entry in(and exit from a superconductor in ex- jrradiation® the transition temperaturd, remaining un-
ternal magnetic fieldH, results from the competition be- changed. This effect of irradiation upon a surface barrier is
tween vortex attraction to the surfagémirror image” ef-  quite natural since the Frenkel paifgacancy+ displaced
fect) and its repulsion from the surface due to the Lorentzaton) produced by irradiation migrate towards the surface
interaction with the shielding current. In order to enable fluxduring annealing and form there an amorphous layer, de-
penetration into a superconductor, the shielding currengtroying the barrier. On the other hand, one cannot expect
should be strong enough to pull the vortex away from itsreduction ofAM or H, due to irradiation for any bulk pin-
mirror image over a distance of order of the coherenceiing model, since the latter anyway adds extra defects.
length, §&. This condition defines the penetration field, , Other evidence for the role of the surface barrier was
which exceeds the first critical fieltH ;. For a perfect sur- obtained by the observation of the crossover, which separates
face one gefSHp:ch kH¢p/Ink, whereH_ is the thermo-  the bulk and the surface regimes in the magnetic relaxation
dynamic field andc=\/¢ is the Ginzburg-Landau parameter rate® analysis of critical fields and irreversibility line
(N being the penetration depthor high-temperature super- H;,(T) in YBCOS® BSCCO!° TI- (Ref. 1) and
conductors, such as YBawO;, , (YBCO) and Hg-based!* compounds. The influence of the surface bar-
Bi,Sr,CaCyOg (BSCCO compoundsk is large (k=100), rier on the magnetization properties, flux structure inside a
thereforeH./H = k/Ink=20, which implies a pronounced superconductor, and vortex relaxation have been analyzed in
surface effect. In real samples the barrier is diminished byRefs. 14-18, where several methods to detect the surface
surface imperfections, thud, lies somewhere in between: effects and to discriminate between the surface and the bulk
He<Hp<H¢ 3 contributions to the magnetization were suggested.

The importance of the Bean-Livingston surface barrier in  In this paper we focus on the effect of the surface barrier
high-temperature superconductors was recognized in Refsn the transport properties, such as transport critical currents
3-6. The dominant role of the surface barrier in the forma-J. and current-voltage characteristics. We find the current
tion of the magnetization properties of clean untwinned(J), field (H), temperatureT), and sample geometry depen-
YBCO crystals at high temperatures was demonstrated bglencies of the surface activation energids, These depen-
Konczykowskiet al,® who observed the following. dencies prove to be quite different from those related to the

(1) Vanishing of the magnetizatior|Nl xi{ <|Menm)) @t bulk pinning and could help to distinguish between the sur-
the descending branch of the magnetization loop due to thteace and bulk contributions to transport characteristics in
disappearance of surface barrier for flux exiHat B, where  high-temperature superconductors. This provides better un-
B is the magnetic induction inside the sample, whereas mosterstanding of different regimes of vortex dynamics, such as
bulk pinning (Bean-like models imply|M gnir] =M ey - thermally assisted flux floWTAFF).

(2) The homogeneous distribution of magnetic induction The paper is organized as follows. In Sec. Il we briefly
B inside the sample demonstrated by the Hall probeeview the results on the surface-controlled irreversible mag-
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is the local magnetic field an8(x) <0 describes the attrac-

Vi tion between the vortex and its mirror image. For a straight

’l | infinite  vortex S(x) =Sy(X) = — (do/4mA2)Ko(2X/\) per

i flux-free region | vortices unit length, whereK is the Macdonald function.

' For both Abrikosov lineg3D casé and two-dimensional
pancakeg2D casg the condition of elimination of the bar-
rier for flux entry atH>H, is'**°

0
_ 2 2 HFZ)
Mey=H —VH = H{ ~5H at H>H,|, 4
l
Z Xg X, ~ wherem=H—-B=47M. For the flux exit®

i ' V3¢ H*
FIG. 1. The potential energy of a straight test vortex near the Mey=— oo ~— =, (5)

surface for(a) flux entry; (b) flux exit. At x>x; the energy 48\ 2

fm_\/(x)(¢0=l—’|,ec(B)szmeqf m. _The_ regionx~ &, where th(_e where H* =d>0/47r)\2=Hcllan. Thus  |Med<Hey
mirror image” term S(x) is essential, is shown by a dashed line. ~H—Bog(H)=Meq, Where mee=(H*/2)In(He/B) is the
equilibrium magnetization. This result generalizes the Bean-
fivingston conditionj=0 for flux escape, which implies
Me=0. The “continuous” approactt providesm,, of the
me order of smallness, but of an opposite sign. A recent
numerical stud}’ of flux dynamics in finite samples on the
basis of simulations of the time-dependent Ginzburg-Landau
Il. SURFACE MAGNETIZATION equations confirm Eq(5). If the bulk pinning is negligible,
hen the magnetization curvea(H) is due to the surface
a;arrier only, and its ascending and descending branches are
determined by Eq94) and(5), respectively. For greater de-

netization. In Sec. Il we describe surface activation energie
determining flux exit and entry in three-dimension{@D)
and 2D superconductors. Using these results we develop
theory of the surface-related transport in Sec. IV.

The energy barrier for a single vortex placed near
superconductor-dielectric boundary was first considered b
Bean and Livingstoh(see also Ref.)2 The barrier for vor- .

: _ Ry tail see Ref. 17.
tex entry disappears &l =H,>H.,, where the shielding . q .  (H* 12 Ink=H/
currentj becomes strong enough to pull a penetrating vortex Lism<g Eq'ﬁ(4) an e§t|mat|ngneq—(H 2)Ink=Hc,/2 at
away from the surface at distances &. The barrier for flux  Hp=H=H.,” one obtains foH>H,

exit disappears gt=0 (i.e., on removal of the external field: HZ  H2
Men p p HcZ

H=0), since the repulsion of a vortex from the surface due . =~— (6)
to shielding currenf(x) = (cH/4m\)exp(~x/\) dominates at Meq HeH o HE Hink

Xx=\ upon the “short-range” mirror image interactiof g, 5 perfect surface, wheté,~H._, we get from Eq.(6)
scexp(—2%/\). P

Men/Meg=Hco /HINK, i.e., Mg(H) > mg(H) for the whole

_ In a general case the vortex I.attice is_ already present i”London regimeH<H,,. But usually the Bean-Livingston
side a superconductor, and its interaction between the te8hrrier is  diminished by surface imperfectnds:

vortex, which enters or escapes the sample should be a _ .
counted for. This problem was solved by Cléfnyho con- Vﬁgrl;blﬁii’;flil‘fdlghen MeH)= Me((H) at the surface irre
sidered a continuous flux distribution inside a superconduc-

tor, and Ternovskii and Shekhdfawho analyzed the stable H"™~H2/H,, (7)
states of vortex lattice near the surface. The results obtained P

by both approaches are similar. Both predict the existence oFhich was observed experimentafy.*+*

a vortex-free region of the width Due to vortex creep over the barrier, which is especially
pronounced for 2D pancakes, the whole magnetization curve
x¢=A\cosh 1(H/B) (1) described by Eq94) and (5) the effective penetration field

- . H, prove4*®to depend on temperature as
near the surface, as shown in Fig. 1. At equilibrium magne- P P P P

tization, wher_eB: Beo(H)>H —.Hcl, one gets_qza, where Hp=Hpoexp —T/Typ), 2D case, (8)
a=(¢,/B)¥? is the vortex lattice constant, i.e., the vortex-
free region shrinks. Within the continuous approximation the Hp=Hpo(Tap/T), 3D case, 9)
potential for a test vortex, shown in Fig. 1, can be written for . . ] )
0<x<x; ad* at a given experimental time window.

o3 Ill. SURFACE ACTIVATION ENERGIES

V(X)=—=[h(x)—B—H+H{B)+S(x)], 2
am A. Three-dimensional (3D) case

where The activation energies, related to the flux entdy at

Mep>M>Mgq and to flux exit Ue) at mey>m>mg, were

found in Ref. 17. A vortex surmounts the barrier by forma-

X§— X
h(x)=Bcos I © tion of a nucleugsemiloop, which further spreads along the
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surface, see Ref. 20. The analogous thermoactivation mecha7 and 20H.,=H*In(\/¢) was used instead df* In(X/¢),
nism has been discusséd*for the creep of vortices trapped which affects only the logarithmic factors and is not of great
by columnar defects. importance for further analysis. Equatidil) holds pro-

For superconductors with larg&, where the curve vided we neglect the elastic response of the vortex lattice,
H o B) is almost parallel to the linél=B at H>H_, we  which is deformed while a test vortex surmounts the barrier.
can substituted —He, for m—mgq in Eq. (2). Then the po- For a more precise description, including the possibility of
tential V(x), see Eq.(2), for a vortex nucleus acquires the collective effects, see Refs. 16 and 24.

form*’ Using Egs.(4), (5), and(10), we get
bo[B [ x;—x\? X Xo He [men [2
3D — — —_——=— — —_— —_—
VR (x) = 27121 x Mg M+S(X) |,  X<Xt, £ ¢ H, KMggq H (flux entry), (12
bo X X; Hg ymgm 2m ,
SD p— —_— —_——=— — = —
V=2(X) = —47T(meq m), X=X;, (10 & H, . VR (flux exit). (13
where we expandel(x) ~B+ B(x;—Xx)%/2\? atx;<\, see If m>meq, thenxy/x;=me,/m<1, as follows from Egs.

Eqg. (3). The latter condition holds everywhere in thgH) (12) and(13). Therefore the current density fax x, can be
diagram, except a small regidt—H <H,. The “mirror-  considered constant and equal to that flowing exactly at the
image” term S=H*In(x/x;) for the case of vortex nucleus surface:j = (c/4m)dh/dx|,_o=cVHm/(72y2)\), see Egs.
(semiloop is much less than the other terms in EB) ex- (1) and(3). Thus the nucleus has the shape of semiellfpse,
cept the small regiorn~ ¢, and thus can be neglectédf®?*  and its energy iscompare with Refs. 16 and 20
Note that this holds for 3D case only and is not valid for
pancakeg2D casg, which will be discussed further. ap. PN (H*)? [2\]?

The energy of a critical vortex nucleisemiloop can be Uen~ JTHm In} kMeq\/ i

32yT'Hm

expressed a2

at meg<m<H. (14)

2 (x H*In(x/
U3D=—f \/V 3D(X)(d)oz—q_r(";)—VSD(X) dx, A general integration of Eq11) results in a cumbersome
VIJo expression which includes elliptical functions. But a very
11 reasonable approximation for ath exceptm=m,, can be
whereX is the characteristic size of a nucleus along xhe obtained’ by neglecting the ternv®P(x) in comparison with
axis andI'=m./m,, is the effective mass anisotropy. For ¢oH* In(X/£)/27 in Eq.(11). Then, using Eqg10)—(13), one
flux entryX=x,, see Fig. 1, and for flux exk=x;. In Refs.  obtains the activation energies for flux entry,

w_ _boh \/( SN e e i
Uen 2 TH H*In|{ kmgq mH MMt 3 (M meo)ln\/a+m, (15)

and for flux exit, on m is quite different, which results in the different relax-
ation rates for vortex entry and exft.

. doAm 2m Near the equilibriumfi~mg) the critical nuclei for both
U~ ——=—=\/H*In| k\/—|. (16)  flux entry and exit have double-kink structlfteso that
2m\TH H

USR(Meg =U3(Meg =U 30 =2U, with

Equation(15) for the casem>m,, reduces to Eq(14) up to U~ dami2amJTH 1
a numerical factor #/8y2~0.83, which justifies the ap- = PokMegl4m ' an
proximation used above. With the logarithmic accuracy Eq§l5)—(17) coincide with

It is worth noting thatU ., and U, do not depend on the the expressions derived in Ref. 17. Here we assume that the
ratio H,/H., i.e., on surface damage. This occurs sincePiece of new vortex line created by the nucleus has the same
H,/H. is determined® by the surface imperfections of the line energy as existing vortices. Strictly speaking, this is
scale¢, whereas the vortex nucleation takes place at largeyalid only in the vortex liquid state. In the crystalline state,
scales ofX >¢ for most me,<m<mg,. In order to affect Penetration of a new vortex creates surface interstitial W!th
Egs. (14—(16), the surface damage should extend to the€xtra linear energy. This leads to crossover to the collective
depth of order> ¢, which is not the case for clean high- Penetration and divergency of the barrierms> meg.*°
temperature samples. Therefore the surface imperfections of For YBaCusO, the estimation ot gives
the depth¢, which are responsible for decreasing lof,
down fromH,_, have almost no effect on the surface activa- U3D( 7)IKT =
tion energiedJ ., andU,,. The dependence &f ., and U, ea ¢

T

JH

6x10%,
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wherer=(T.—T)/T., the fieldH is measured in Oe and we H m. —

used H=~B, I'=25, A=\o/\V1—(T/T) ~\o/2\/7 with ~U, In( P )— = (20)
Ao=1400 A andx~100. This shows that surface activa- y2mH H

tion energies for 3D superconductors are pronounced even af m< Meq WE get

T=T, and moderate fields. Therefore the surface irrevers-

ibility should dominate over the bulk one at high 2D dod

temperature$; especially aff>Ty,, whereTg, is the bulk Uex(m)~ —m, (21)
depinning temperaturé, as has been confirmed - o - 0
experimentally’ i.e., Ug,>=m, similarly to the 3D case. Bothlg, and Ug,

prove to be weaklylogarithmically field dependent.

B. Two-dimensional (2D) case For UZ; one gets an estimation, see E¢k9) and (21):
In strongly layered superconductors the pancake vortices ugg’( 7)/KT.=35r,

in different layers penetrate through the surface barrier inde-

pendently from each other. An analytical solution for the Where we used.,=2000 A, k=100, andH=H. This is

activation energy for such penetration can be obtained net 1€ast one order of magnitude less thagf, even at high

glecting lattice response to the penetrating vortérigid fields H>10* Oe. o .

lattice” approximation. Numerical analysfé shows that in The surface activation energiek, and U, for both 3D

the equilibrium this approximation is valid at fields @d 2D cases should be compared with that related to the
H<0.0H_,~H,. bulk pinning,U,, in order to elucidate which source of ir-

The energy of a pancake vorta®®(x) is described by _reversibility, the bull_< or the Sl_Jrface, governs th_e flux creep
Egs. (2) and (10) but, contrary to the 3D case, the mirror N the sample. For instance, in the magnetization measure-
image termS(x) cannot be neglected. This can be under-me”tss the .bulk a_nd the surface re.laxatlons are separated. in
stood as follows: In order to find the activation enetgg},f time, the first 7be|ng that chargcterlzed by the smallest actl-
for a pancake, one has to find the maximum\vBP(x) in- vation energy. At_the same time, th;a5 transport properties
stead of considering the semiloop energy, see(Ef). Ne- are mostly determined by the largast
glectingS(x), we get the maximum o¥(x) atx=0 (i.e., at Note that for both 2D and 3D castls=7=(T,—T)/T; at
x=¢), see Eqs(2) and (10), where the mirror image term T=Te.

S(x)«In(x; /X) becomes crucially important. Thus we should

consider the expansion of E(@) at distancex<x; :*® IV. TRANSPORT CRITICAL CURRENT  J,

AND SURFACE RESISTIVITY

_ $odjsX
c

2.94ax
, (19 A transport currend, flowing through a superconducting
3 sample, induces a vortex motion across the sample in a per-

where d is the period of the layered structure and pendicular direction, thus leading to energy dissipation and,

Uo=d(o/4m\)2. The first term in Eq.(18) stands for N turn, to the appearance of thg ngrmal resistaR_ceAt
S(x), and the numerical factar<1 describes the decrease J>.JC t.he flux motion is a nonactivation ﬂgx flow, ie., the
of S(x) due to surface damagas if the pancakes first ap- activation energy) = 0. At J<J, the motion is characterized

pear at distancé/2.94a apart from the surfage The pen- DY @ finiteU(J). BothJ. andU have been extensively stud-
etration field H. is determined from the condition 1€d for different kinds of the bulk pinning, see Ref. 27 as

ma{V?°(x)]<0 at B=0, which givesH,=0.76aH,. For reviews. In this section we derive the critical currents and
’ P ¢ activation energies related to the surface barrier and discuss
their interplay with the bulk pinning for 3D and 2D cases.
) Consider a superconducting slab of thickness

VZD(x)=U0|n(

H>H, we get

(19 W (0<x<w), as shown in Fig. 2, in a magnetic field
H>H, parallel to thez axis, where a transport curredt

H
ugﬁ(m)~uo|n< P

V2mH/
- - . flows alongy. Let all the relaxation processes be completed,
We see that)g, depends om only logarithmically, unlike  so in the absence of we havem=m,, and the surface

the 3D case. activation energyl .4 is determined by Eq¢17) and(21) (at
The activation energy for vortex einﬁE(meo), in the  m=m,y) for 3D and 2D superconductors, respectively.
equilibrium coincides withJZ7(meg)=U 25 . Out of equilib- The transport current results in asymmetry of the exter-

rium, the energy change to put an extra pancake vortex intoal fieldH at the sides of the slab. In the geometry shown in
the superconductor is given by¢od(m—mgg) /4. Here, as  Fig. 2, the fieldH;, on the left side X=0), where vortices

in the case of 3D vortices, we neglect the energy of theenter into the slab, becomes larger titénwhile at the op-
elastic deformation in the vortex lattice due to penetration ofposite side X=w), where vortices exit outside, the field
an extra pancake which is justified far from equilibrium or H,<H. From the Maxwell equationdH/dx=4j/c,
above the melting temperature of the lattice. Theretd;EB wherej(x) is the density of the transport current, we get
can be estimated a@g,—M<me, as Ao
¢0d(meq_m) AHEHin_Hout:min_mout:T‘JEJy (22

2D vy — 112Dy
Uex (M) =Ugn(m) A7 wherem;,=H;,—B, mq,=Hg,—B, andJ=[{j(x)dx.
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U(J)=Ug( meq+3in) =Ue( meq_’jout) =Up(] b)- (30

[ o
{— @— -

Y Similarly, the bulk and surface activation energies are equal

-3 — 1 ® ® 3 for the vortex relaxation process, see Ref. 17.
‘@ Pin ib outf -= The total critical currentl; at low temperatures, which
o &— ® - = includes both surface and bulk contribution, is determined by
5 Y o 5 the conditionU ¢,= Ug=U=0, see.IEq(.3b0), which. melies
H;, x B % H oue Megt Jin=Men, Meg— Jou=Mex, andj°=j;, wherej is the
é 8— ©®— 8 = bulk critical current density. Thereford,=JS+J2, where
\ 2 JS andJ?= jPw is the surface and bulk critical currents. For
- &= e J3, using Egs(4) and(5) we gef®
o . . 4 ~
FIG. 2. Distribution of a transport current in superconducting — = =m.—m.~H—JH%2—H? (3D
c ¢ c en ex p

slab. For the case of no bulk pinnijf= 0. The arrow correspond-
ing to J;, is longer thand,, in order to emphasizé,> J, at large .
currentsJ>m, for both 3D and 2D cases, see discussion in theAt H>H,, Eq.(31) is reduced to
text. )
cHy

SN —_—
Je 8wH’

The total transport curreidtflowing in the slab splits into (32

two contributions,
- i.e., the surface transport critical current is inversely propor-
J=J"+J7 (23 tional to the external fieldH.
whereJ® is the surface contribution antf=j°w is the bulk At J>Jg most current flows in the bulk of the sample, and
one (° being the current density in the bulkin turn, J  the surface effect on the current-voltage curve is negligible.
consists of two componentd®=J;,+Jo.., see Fig. 2. Obvi- At J<JZ one has to solve the system of equati@—(26),
ously, which requires knowledge of the dependehtgj®). How-
ever, the general feature of Eq23)—(26) is that for the case
'jinzmin—meq, (24) of pure surface resistivitywhere the bulk pinning is negli-
gible) the activation energy = U4(J), and, in turn, the volt-
Tou= Meq— Mouts (25)  ageis a function of théotal transport currend through the
_ sample. For a pure bulk resistivity = U,(j®) is actually a
where Jinouy= (47/¢) Jin(out) - function of the currentlensity j=J/w. Thus use of samples
The magnitudes al;,, J,,; andJ® are determined by the from the same batch, but of different thickness, can help to
condition of continuity of flux motion through the slab, determine which kind of pinning, surface or bulk, is domi-

which can be written as nant. The crossover between bulk and surface transport re-
) gimes with changing field, temperature, or current was ob-
Din(Jin) =Doul Jou) = Dp(j?) =Elc, (26)  served experimentally in thin MoGe filni& Below we find
functional form of current-voltage curves for 3D and 2D su-

whereD,(Jin), DoulJouwd, @andDy=Buv are the flux currents
at the surfaces and in the bulk peing the mean flux veloc-
ity in the bulk) andE is the electric field. The average vortex
flux through both surfaces is determined by the balance be- A. 3D case

tween entry and exit processes shifted by the transport cur- | the equilibrium vortex liquid state the flux currents
rentJ. The resulting g:urrent-voltage.charactensI(cE) can p nouy» S€€ Eq(26), are linear with respect tdj oy and

be obtained by solution of Eq26) with respect to current  getermined by the surface kinks and antikinks. The surface

perconductors.

components and substitution of the result into Exp). kink is a piece of vortex line in the flux-free region ending at
In strongly nonlinear creep regime the flux currents arene syrface. At zero transport current the equilibrium concen-
determined by the corresponding energy barriers as tration of kinks (antikinkg is determined by
B ~ n=nNyeexp(—U,/T). Extra surface currenti, o, drives
Din=Buw ex] — UeMegt Jin)/T], @27 kinks and antikinks in opposite directions with velocity
~ v= ¢oJ/cyx; giving rise to net flux currents
Dou=Buw exd —UedMeg—J oud/T1, (28
. 2¢gn
Db: Buw exﬁ: - Ub(J b)/T]v (29) Din(out): 2¢onkv = ¢O ko eX[X - Uk/T)Jin(Out) , (33)

c Xy
whereu and w are the characteristic hopping distance and

frequency, respectively, and.(m), U.(m) were derived where % is the viscosity coefficient of the vortex line di-

in Sec. lll. Neglecting the difference in the preexponentialrected orthogonally to the surface. This means that small
factors for the surface and the bulk, the redistribution oftransport current flowing along the sample should be distrib-
current is determined by the condition of constant activatioruted equally between the surfaces, and surface resistivity
energyU(J) at both surfaces and the bulk: R=E/(Jin+Jow) is given by
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B B Nko
Rs= Pflowm exp(—U,/T), (34

where pgonBdo/c?7 is the flux-flow resistivity for field or-
thogonal to the surface. It is important to note that the linear
surface resistivity is finite only above the melting tempera-
ture of the vortex lattice. If an ordered vortex configuration is
present in the bulk, then free surface kinks are topologically
forbidden.

The linear regime holds until one can neglect current gen-
eration of kinks and antikinks, i.e., until energy of the kink is .
smaller than the energy of critical nucleict and UZR. In s Vs Weq
the opposite limit penetration rates are determined by forma-
tion of critical nuclei and given by Eq€$27) and (28). In
order to find the surface activation eneldy as a function of
J% in this regime, we have to solve Eq80), (22), and(23),

08 -

06 -

04

02

00 1L n 1 " 1 L J

usingU(m), Ug(m) derived in Sec. lll. After straightfor- 0 5 10 15

v~v§1rd calculations we get at small surface transport currents (4rlc) (%I gq)

JP<mgq:
~ FIG. 3. Dependencies of the current componedts/J®,
ﬂ|n4ineq et (35) Jou/J® and the surface activation energh?°(J%)/U3, on the sur-
2, face transport current® for the 3D case.

Under the logarithm in Eq(35) one can estimatginzjs, 0 ~

thus Jj,=J%In(4m.,/J°) at I°<mgy. As follows from Eg. D.——D ex;{ _ Uen(meq_‘]out))

(35), J;y/I°—0 andJ o,/ I°—1 atJ>—0, which means that out 0 T

in the limit of small currents all the surface transport current 2D ~

flows along the “flux out” (vortex exiy side of the sample. _ _ Uex(Meg—J ou)

Thus ex T ' (40

U9 =UL-ATF (JI°<myy), ,
s (3)=Ueq ( ed where U22(m) and U2(m) are the barriers for flux entry

where A=(go\/2m /FH)\/H*In(K /2meq/H), see Egs. and flux exit given by Eqs(19) and (20). Here, unlike the

(16) and (17). 3D case, we took into account the “backward” jumps of
At I5>m.. we get pancakes from lower potential to the higher dagainst the
ed Lorentz force. The backward processes are restricted for 3D
j’inmj's_ Megt gx/m?’ec(\)s, vortex lines, wherfe a vortex surmounts the barrier by formaj
_ _ _ tion a nucleus, since such a nucleus cannot be formed if
mi,~J 1+ %(meq/JS)3/2]:JS, (36) V(x)>0 at allx, see Sec. lll. For 2D pancakes, which enter
and exit the sample separately, the backward jumps can be
T o™ Meg— 2ym? {3, essential. As for the 3D case in steady state
2 3 /1S
Moy~ 5V Mgy J%, 3 ~ ~
out— 3 ec{ S Din(Jin) =DoulJow = E/c. (41)
and
UgD(js)“Amout“ %A\/m_g’c{jg, (38) These conditions determine the redistribution of current be-

tween surfaces and determine the current-voltage curves.
see Eg.(16). Contrary to the case of small currents, One can distinguish several current regimes. At very small
at J%>mg, we getdj,>Jy, i.€., most current flows along transport current)><T/¢qd, it distributes equally between
the “flux in” (vortex entry side. the surfaces and the surface resistiviky=E/(Ji,+ Jou) IS
The dependencies df,, Jou, andUZP onJ5, determined  linear and given by
by Egs.(35—(38) are shown in Fig. 3.

B. 2D case ro $odDo &G
sTo2T T )

(42)
For 2D superconductor carrying transport current the rates
of flux entry and exit can be written as

F{ UgE( meq+3in)
s I

The surface dominates in the linear transport for narrow

D. =D enough sample or/and at low enough temperatures:
in—“o0

2D 1
_ eX[{ _ Uex(meq+J in) (43)

T

2Tp,  [UZg
} (39 W<Pb/Rs—meXD( T |
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wherew is the width of the sample ang, is the bulk linear
resistivity.

At I5>T/ ¢od the backward jumps can be neglected and

we obtain
UZ(mg it Jip)
Din=Dg ex;{ w '
U2 (mgg— 4.
Dou~Do exp(——ex = °“‘)), (44)

L. BURLACHKOV, A. E. KOSHELEV, AND V. M. VINOKUR

and

E )2T/UO

J(E EW+06JS
( )—p— Dy

at Js> Meg.  (50)

With increase of transport current a larger fraction of current
goes to the bulkd®/J—1. When the electric field exceeds
the typical valuep,J3/w, the surface effect on vortex trans-
port becomes weak. This type of behavior was indeed ob-
served experimentalP

and surface resistivity becomes strongly nonlinear. Using

Eqgs.(19), (20), and(41), the distribution of the moderate, but

not very weak, currenl/¢od<J*<m, between the flux

V. CONCLUSIONS

entry and flux exit sides of the sample can be estimated as We considered the contribution of the surfa@@ean-

_ HCH* E 2T/Ugy
Jin~ 2B C_Do> — Meg, (45
5 47TTI cDy H* n Megq 2TI cDg
o~ Meq™ 3" E 2 | "H* U, E |
(46)

whereJ; is the surface critical current given by E@2).
For large currentg®>m,, one finds

Ti=35— Mgt H* IN(H, /\2T°H), (47)
Jou=Meq— H*IN(H, /V23°H)<J;,, (48)

and

UZP(3%)~Uoln(H,/y23°H).

As for 3D superconductors, in the limit of large currents
Js> Mgy Most transport current flows along the “flux entry”

side of the slab.

Livingston) barriers to critical transport currents and activa-
tion energies in high-temperature superconductors. For both
3D (e.g., YBCQ and 2D(e.g., BSCCQ®compounds the sur-
face transport critical currentgc1/H at H>H,. This cur-
rent should be added to the bulk critical currdbin order to
find the totalJ.. The surface activation energies®® and
U§D prove to be quite different. The characteristic dependen-
cies of U3P on current and external field atg¢3P=1/,/JH,
WhereasugD shows a much weakeflogarithmig depen-
dence:UZ =In(H,\4m/cJH). A weak transport curren,
which induces the fields less tham,~H;, can be distrib-
uted between the flux entry and exit sides differently depend-
ing on dimensionality(2D or 3D) and weakness ofl,
whereas a large curreitwith self-fields greater thamg)
flows mainly along the “flux entry side” for both 3D and 2D
superconductors, providede> Mgq.
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