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We present in detail a functional renormalization grdBRG) study of a Landau-Ginzburg model of type-II
superconductoreneralized tdN/2 complex fieldgin an external magnetic field, both for a pure system and
also in the presence of quenched random impurities. If the coupling functions are restricted to the space of
functions with nonzero support only at reciprocal lattice vectors corresponding to the Abrikosov lattice, we find
a stable FRG fixed point in the presence of disorder farNi<4, identical to that of the disordered(N)
model ind—2 dimensions. This implies a continuous transition from the vortex crystal to vortex liquid in the
presence of disorder, but only fde>4. The nonzero-temperature transition will disappear in physical dimen-
sions. The pure system has a stable fixed point onl\\ferd. Therefore the physical casH € 2) is likely to
have a first-order transition in the absence of quenched disorder. We give a full discussion of both the
motivation of the model and the details of the FRG calculation. We also place our results in context with regard
to the current experimental scene concerning the fiigbempounds. In particular, we discuss the relevance of
our results to the recently discovered critical end point in the phase diagram of Bi-Sr-Ca-Cu-O. The main
results of this analysis were previously reported in the form of a LgtleA. Moore and T.J. Newman, Phys.

Rev. Lett.75, 533(1995]. [S0163-18206)01833-4

[. INTRODUCTION parameter fluctuations. Furthermore, it is assumed that all
Landau levels except the lowest wdmoothly renormalize
With the advent of the new highz materials, there has the physics, thereby allowing one to work solely within the
been a regeneration of interest in the nature of the “mixed.LL. This approach is well suited for the high-field regime
phase” in type-ll superconductors. In conventional materi-in strongly type-Il superconductors, where the ratiof the
als, the effect of fluctuations is severely reduced due to bothondon penetration depth to the coherence length is large.
the large coherence length and the relatively low temperawhether these two approaches overlap in their regimes of
tures. The phase diagram is therefore quite simple: Thealidity appears to be an open question.
Meissner and normal phases are separated by a vortex crystal In this current work we wish to concentrate on the transi-
phase in which the magnetic flux penetrates the sample in thion from the vortex liquid to the vortex crystal, which is the
form of a triangular array — the Abrikosov lattiédn high-  fluctuation-corrected analog of the Abrikosov mean-field
T, compounds, the much smaller coherence length, togethéransition from the normal metal to the Abrikosov flux lat-
with the moderately high temperatures, allows fluctuations tdice, usually denoted b .»(T). We shall work solely within
act much more strongly. This gives rise to the possibility ofthe LLL scheme. The two basic questions we wish to answer
a richer phase diagram. Interesting complications are alsare the following(i) In the pure system, what is the nature of
induced by both the effects of disorder and of the stronglythe phase transition between vortex liquid and vortex crystal,
layered structure of the new compounds. and (ii) how is this transition affected by the presence of
The phenomenological approach to understanding thguenched random impurities? To address the first question
phase diagram of the high: compounds centers on the one must extend the original mean-field analysis of Abriko-
Landau-Ginzburg free energy, which is written in terms ofsov to take into account thermal fluctuations of the order
two fields: the superconducting order parameteand the parameter. This was first attempted by Bre Nelson, and
vector potentialA. Most theoretical efforts have been within Thiaville (BNT) in 1985, using a functional renormalization
one of two complimentary approaches, namely, the Londorgroup(FRG) method? It was found in the early stages of the
picture and the lowest-Landau-levdlLL ) approximation. present work that their representation of the FRG was not
The London picture focuses directly on the vortex lines, ig-always sensitive to the existence of a FRG fixed poartich
noring fluctuations of the amplitude of the order parameterregisters a possible continuous phase transitiand there-
This appears to be an adequate description for low fielddore the question of the role of fluctuations was still open.
where the vortex core is much smaller than the typical interWe use here a more sensitive representation of the FRG.
vortex separation, and the amplitude of the order parameter Our main conclusion is, however, the same as that of
may then be taken as approximately constant over most dNT — no stable fixed point of the FRG exists, thereby
the system. Conversely, the LLL approach ignores fluctuaindicating that the vortex liquid to vortex cryst@/LVC)
tions in the vector potential and concentrates solely on ordeiransition for the pure system is probably first order. The
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second question regarding the role of disorder may be adRLV) Ansatzfor the fixed point. The implications of this
dressed by using similar FRG techniques. It is well knownAnsatzare discussed in Sec. VII, in which we present the
that quenched disorder can often force a first-order transitiofixed point structure of the FRG flovalong with associated
into a continuous on&An interesting example of this is the critical exponentsfor both the pure and disordered systems
transition from the normal metal to the Meissner phasewithin this RLV scheme. We end the paper with Sec. VIII,
which, although first-order for a pure samflis driven to a which is devoted to a detailed discussion of our results in the
continuous transition in the presence of disoftierdeed, in ~ Context of recent experiments and current theoretical under-
the current problem, we find that disorder dramaticallyStanding.
changes the FRG flow, and there exists a stable FRG fixed
point in this case, indicating that disorder can force the oth- Il. LANDAU-GINZBURG FREE ENERGY
erwise first-order transition into a continuous one. However, In this section we shall motivate the LLL approximation
we have arguments which show that this continuous transif- the tarting f the Land pGp burg for-
tion has a lower critical dimension of 4, which implies that or In€ free energy, starting irom the Landau-iinzourg tor
. e mulation of superconductors. For simplicity we shall mostly
the physical superconduct@xisting ind=3) undergoes no

VLVC transition in the presence of weak disorder. The maindlscuss the case of no d|sorder. Qur presentation clt_'.)sely fol-
: . lows that of BNT, and the inclusion of such a detailed de-
results of this work were presented in a recent Léxter.

scription here is for the sake of completeness.

The purpose of this paper is first to give a detailed deri- . X . .
vation of the results and second to discuss the relevance ?rf The starting point of the analysis is the Landau-Ginzburg

the results in the context of the present theoretical and ex c€ energy func'qonal for typ_e-ll supercond_uctcbrrs stan-
. dard notatior?, with the additional convention of setting
perimental scene. h=c—kg=1):
The outline of the paper is as follows. In the next section B '
we shall present the Landau-Ginzburg free energy functional f 1
ddr[

and discuss the simplifications which may be made under the F= [(V+ie*A)y|>+al | >+ bl |?| g ?

*
LLL approximation. Our treatment shall closely follow that 2m
of BNT, but we include such a discussion here purely for 1
completeness. In Sec. lll, we shall outline the procedure of + ﬂ(VXA—H)Z}, (1)
0

the FRG method. Again, we shall be following the presenta-
tion of BNT somewhat, although we shall find it necessary towhere{y;} are a set oN/2 complex order paramete(the
avoid their representation of the FRG for reasons mentionefinplicitly repeated indice$ and | are to be summed from
above. We shall present a representation which is more sen- to N/2), A is the vector potential, anHl is the external
sitive to the existence of fixed points, and derive in somemagnetic field. We have written the theory for arbitrary spa-
detail the FRG flow equations for both the pure system andial dimensionalityd. In the physical case ad=3, the ex-
the disordered system. ternal fieldH||z picks out a transverse plang,{) in which
The next two sections may be omitted by the reader whehe Abrikosov lattice is formed. In generd] we define the
is mostly interested in the main results. In Sec. IV we presenfield H to be directed in al—2 hyperplane, , so that the

our attempts to analytically derive the solution of the flow Aprikosov lattice is still confined to the two-dimensional
equations. The special limits in which some progress is pos¢x,y) plane transverse to this field.

sible are the limitdN— andN=0. (The variableN is often We wish to work in the LLL approximation. First, we

used to allow the pOSS|b|||ty of such solvable limits. It is assume that we may neg|ect fluctuations in the vector poten-
introduced by extending the complex order paramegtén a  tjal. We believe this to be a good approximation for high
set of N/2 complex fieldsy; .) In the former case, we shall external fields and for materials in which the ratio of the
make contact with recent calculations devoted to the larger ondon penetration depth to the coherence length is

N limit of this model for arbitrary dimensionfs The correc-  |arge. In this case, the magnetic field will fluctuate only over
tions to the largeN limit will be shown here to be ill defined distances large compared with the intervortex separation, and
in the thermodynamic limit, which we interpret as a precur-we therefore consider it as uniform. It is worth mentioning
sor of the VLVC transition. For the limiting case Nf=0 we  that within the context of the renormalization group, the ex-
shall see that the smaN-corrections are nonanalytic. A scal- jstence of stable fixed points allows one to discuss the rel-
ing approach is required to correctly extract the srhblbe-  evance of new operators in the theory. We refer the reader to
havior. The resulting flow equation for the scaling function BNT, where it is explicitly demonstrated that gauge field
has a beautiful structure which we consider worthy of studyfluctuations arerrelevant operators if a fixed point exists

in its own right. The superconductor corresponds\te 2 within the LLL scheme. By choosing the “symmetric”

and is beyond brute force analytic treatment. In Sec. V, wejauge A,=H/2(—y,x;0), we reduce the free energy to the
shall briefly discuss ouffailed) attempts at numerically solv- form
ing the flow equations for this case. Both discrete “time”

iteration and Newton root-finding schemes shall be dis- p 1 - ) ) ol 12
cussed. F= [ d% 2m*|(V+|e Ao) i|*+al i |“+ bl |7 ] % |-
The flow equations are made analytically tractable by the 2

application of a physical idea: Since the ordered state is that

of a vortex crystal, the fixed point of the model should have Now that the magnetic field is taken as spatially uniform
some symmetry associated with this lattice structure. In Sedt is convenient to expand the order parameter in terms of
VI, we motivate and present the reciprocal lattice vectorLandau levels. These are the eigenfunctions of the operator
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1 We now address the inclusion of quenched random impu-
h0=ﬁ(iv+e*Ao)2 (3)  rities into the above formalism. We regard the disorder to
have the physical effect of inducing a local shift to the criti-
and are simple harmonic oscillator wave functionscal temperature. Therefore the original Landau-Ginzburg
Unm(x,y) [with  associated energy eigenvaluesfree energy is modified by replacing the paramedeby
En=(n+1/2)e*H/m*]. The indexn labels the energy ei- [a+ sa(r)]. The random fieldsa(r) is taken to be Gaussian
genvalue, whilem labels the degeneradyvhich is propor-  distributed with zero mean and correlator
tional to the system size in thes,y) pland. One may now (Sa(r)da(r’))=Aq6%r—r"). We shall regard the disorder
diagonalize the quadratic terms in the free energy by expande be weak, such that,<1. The standard ways to deal with

ing the order parameter in the Landau level basis such a disorder term are twofold. Since one is eventually
interested in some perturbative treatment of the free energy
(xyr=S ¢k (r U (Xy). 4 about the Gaussian theofgefined byFg,,J, one may re-
dixyir) % nm(")Unm(x.y) @ gard the terméda(r)|¢(r)|? as a second coupling term in

addition to the usual quartic interaction. One then perturbs in
both interactions and averages the perturbation expansions
1 . ' over the distribution ofa(r). The effect of such averaging
W|Vic;'m|2+(a+ En)lcnml?|- is to highlight the fact that the disorder may in fact be inter-
preted as an effectivguartic interactiof® with strength
(5) (—Ay). An alternative(yet mathematically identicaproce-
On reducing the size of the external field, the amplitude ofdure is to average over the disorder at the level of the parti-
the second term in the above expression first becomes zet®n function. Since the disorder is quenched, one must av-
for the modec}, ,, — this occurs for a value of the field equal €rage the logarithm of the partition functiofwhich is
to Heo(T) defined by the relatiofE,= —a(T). The higher exte_nswe and this is most easily achieved Wlth the use (_)f
Landau modes have positive coefficients at this value of théeplicas. The resulting free energy now contains the remains
external field. If one is interested in the critical region, the©f the disorder in terms of an effective quartic interaction,
higher Landau modes may therefore be negledtEde va-  @gain with strength £ Ao). For notational convenience we
lidity of this statement relies on the shift i, caused by Shall use the latter approach. We emphasize that the use of
inclusion of the quarti¢fluctuation terms not being greater replicas here is purely to “keep track” of the disorder in
than the bare separation of the Landau magiésich is pro- ~ Perturbation theory.
portional toH). This “Ginzburg criterion”-type analysis has 1 he effective free energy now takes the form
been studied in detafl with the conclusion that exclusion of

The quadratic part of the free energy now takes the form

I:quad:z J‘ddier
mm

all Landau modes except the lowest is a valid procedure for - _ a| 1 ok |2 |2 a|2| 1 a|2

a wide range of fields below the mean-field valdg,.] F Jd "l2m* |(Vie* A g1+ al ™+ bl g1 vyl

Naturally, these ideas are applicable under dhpriori as- 1

sumption of a continuous transition. — Aol |3 P2+ =— (VX A—H)?|, (9)
On restricting ones attention to the LLL, a great simplifi- ' ! 20

cation may be made to the form of the free energy, which Lo
will set the stage for all the FRG analysis to follow. In the where the order parameter has an exteplica index o

: which is to be implicitly summed from 1 td1. At the end of
symmetric gauge, th@=0 Landau levels may be repre- X . :
sented by the eigenfunctionm@0) the calculationM is to be set to zero. Following all of the

above steps as described for the pure system, we may use the
Uom=An(X+iy)Mexq — n2(x2+y?)/4], (6)  LLL approximation to simplify the above free energy to the
’ form
whereA,, is a normalization constant ang=e*H. Since

;i is now taken to be expressed only in terms of these LLL 42 w2 a2 -
modes, we see that the order parameter in the critical regioff = | d rf dzdZ [(|V, #|*+ 7 #|) exp(— nz* 212)
is simply an arbitrary function of=x+iy along with an

overall factor of exp—u?(x*+y?)/4]. Explicitly, we have +0ol B"1? 1 2expl — u?z* 2) — M| | ?] 1|
Gi(X,YiT ) = di(Zr ) exp( — u?z* 2/4), (7 Xexp(—u’z*2)]. (10
where ¢; is holomorphic in terms of (i.e., d¢;/9z* =0). This concludes our description of the model. In the next

In terms of the new order parametgr (suitably scalell  section we shall motivate the FRG by considering perturba-
we have the following elegant form of the free energy in thetjon theory for the above free energy. We shall then describe,

critical region: in some detail, the intricacies of the representation of the
FRG. The goal of the next section is to derive the most

F:f dd’zrf dzdZ [(|V, |2+ 7| &i|2) expl — u2z* 2/2) natural FRG flow equations for this model.
+dol il %] o[ 2exp( — u?z* 2)], (8) IIl. FUNCTIONAL RENORMALIZATION GROUP

where the parameter=2m*a(T)+e*H is proportional to For convenience we shall discuss the procedure of FRG
H—He. within the pure model4,=0). The influence of the disorder
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is easily accounted for once the correct FRG framework is

established. In order to study the effect of fluctuations on the J' dd_er dz,d71dz,dZ F (21,27 ,25,25 ) 7 (21 1 1)
Abrikosov mean-field transition, we follow the standard pro-

cedure of setting up a perturbation expansion around the X¢i(zl,ri)¢}*(z§ T 1) dj(Z,r ).

Gaussian theory in powers of the quartic couplmg The
terms in the expansion are most conveniently represented
Feynman diagrams with the two basic components being th
propagatowr(q, ;z ,Z,) and the bare vertex. The propagator
is the inverse of the quadratic form in the energy functiona
(8). As shown by BNT, the propagator takes the fdumsing

a momentum representation for the-2 hyperplane trans-
verse to the X,y) plang

[ln principle one could mix the internal field labelsvith the
ansverse plane positions, akin to the cubic anisotropy term

that may be added to the stand&@¢{N) model. We shall not

|consider such terms hetéAs explicitly shown by BNT, un-

der the combined translational and gauge symmetries, the

general functiorF is constrained to have the form

F(21,2} ,22.25) = 9(|z1— 25| > exd — n?(|z1|*+ | 22|H) ]

2

o(q, ;25 2))= —5— 'u—exp(,uzz’l‘ z,/2), (11  The original theory with local quartic interaction corresponds
(i +7) 2m to the above coupling functiog taking the form of aé
function. To close the theory under renormalization has ne-
while the bare vertex is clearly given bygoexp(—u?z*2). cessitated changing thi® function to anarbitrary function.

If one tries to simply calculate the one-loop terms in theThe one-loop terms in the perturbation expansion will now
perturbation expansion, one finds the transverse momenturenormalize this function, and the usual flow equations for
integrals diverge whenl—2<4 (just as one would expect the coupling constants will take the form of nonlinear
for a quartic theory, except here the momenta are defined imtegro-differential equations.

a reduced space df—2 dimensions This condition sets the To implement the FRG we must therefore start with a free
upper critical dimensioml,=6. Ford>d, the perturbation energy functional of the form

expansion contains no divergences and the mean-field results

will be qualitatively unchanged. However, fat<d, the _ d-2 — 127?12 2 2

simple perturbation scheme breaks down. One way to pro- F_j d MJ dzdze +1* (V. gil*+7l¢i])

ceed is to utilize the renormalization group. It is important to

notice in the present theory that the renormalization group is +J' ddfzrif dzdz* o #ilzl?r2

required to “cure” the divergences that arise from critical

fluctuations in thed—2 transverse directions. The fluctua-

tions in the &,y) plane are not critical and the integrals over xf dz,dzs e #1212 (|2, — 2,|?)
(z,z*) may be regarded agomplicated coefficients to the
momentum integrals in the transverse directions. The fact X|i(zy,r )P i(22.7 )12 (13

that these coefficients are really functidio$ z andz*) will
eventually lead us to generalize the renormalization group to We have somewhat sketched over the motivation of the
a functional form. functional form of the above free energy. The reader is re-
Let us imagine proceeding with a renormalization groupferred to the original work of BNT for more details. Now
calculation using the dimensional regularization technitfue. that we have this functional form we shall describe the FRG
The perturbation expansion of the free energy functig@gal in much more detail, principally because there are some
may be considered as a loop expansion in powers ofubtleties which were previously overlooked.
e=6—d. On calculating the one-loop vertex corrections, one In order to derive the functional flow equatio func-
is faced with a severe probleffas described in detail by tional) for the coupling functiorg it is necessary to evaluate
BNT). The bare vertex carries an overall factor of the perturbative corrections to the form of the four-point cor-
exp(—u?z*2). The one-loop corrections must also carry thisrelator. At the bare level this function is simply the bare
factor in order to consistently renormalize the bare vertexvertex which is now of the form —g(|z;
However, this turns out not to be the case. Therefore one-z,|2)exd — u?(|z,|?+|z|%)/2]. At the level of one loop there
concludes that the theory described by ER).is not closed are essentially four diagrams which contribute. In Appendix
under renormalization. One must add more bare quartic opA we explicitly illustrate and evaluate these diagrams. Al-
erators(all differing by the function ofz and z* that they though the elegant analysis of BNT guarantees that the
carry as a prefactprto try to close the theory. These new renormalization of the vertex is now closed, it is still rather
operators will in turn generate their own family of new one- difficult to extract the renormalization of the vertex. For this
loop terms, until eventually one must admit that the theoryreason, it is necessary to introduce a representation of the
naturally contains an infinite number of marginal quartic op-coupling functiong which makes the renormalization trans-
erators. The only systematic way to proceed is to generalizparent. The choice of BNT was the following:
the theory in such a way that this infinite number of opera-
tors is simultaneously renormalized — this is achieved by 1
the FRG. g(u)zzfo
The theory defined in Eq48) contains a local quartic cou-
pling. To generalize this coupling as much as possible weéo the FRG will now appear in the form of a flow equation
consider a quartic interaction of the form for the “weight” function p(x). There are three points we

o0

Sp0eT—(uaou]. (14
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ing the coupling function to depend only on one variable,
i.e.,u=|z;—z,|?, will precludea priori any fixed points cor-
responding to the formation of a vortex crystal which, of
course, breaks the rotational invariance implicit in the repre-
sentation(14).

For these reasons it is necessary to make a new represen-
tation of the coupling functiorg. This new representation
must fulfil the following conditions(i) lead to a(numeri-
cally) tractable flow equation(ii) be sensitive to all fixed
points of the original coupling function, ar{di ) be sensitive
to the existence of a VLVC transition. It turns out that a
representation is available which not only satisfies the above
conditions, but which also has two more highly desirable
features, namely(i) allows some analytic treatment of the
FRG flow equation andii) is directly related to a measurable
physical quantity — the structure function for superconduct-
ing density-density correlations. After so much buildup, one

JE T T is slightly embarrassed to reveal that this representation is
o 'F 3 ; : S
o=/dx p(x) 08 F E nothing more than the Fourier transform of the original cou-
06 E E pling function. _
0 20 40 60 80,100 120 Explicitly, we define a functiorf (k) by
- T T(k)=2u%g(k)exd —k?/2u?] (15
FIG. 1. The functionp(x) under iteration for the casd— oo ©og M1

with e=1. After n=110 iterations, the function has developed os-
cillations over a very large region. These ever-growing oscillation
resemble a typical FRG flow instability, but the limit bf—o is

known to have a simple, stable FRG fixed point in other FRG th t bols and b f ta in th
representations. This is exemplified by following the integrabf use the momentum Symbois and p Tor momenta in the

p(x), as a function of iteration number. It is clearly heading transverse pla_lne. The momenta ysed for(thﬁ_lcal) trans-
smoothly towards its fixed point valuequal to 1/2 fore=1.) verse fluctuations ard—2 dimensional and will always be
denoted by, .

wish to make at this juncture. First, the flow equation ob- We now refer the reader to _Append|x A Wh_ere a ful
tained for p(x) is extremely complicated. This may sound derivation of the FRQ flow equatlon. is presented in terms of
like a minor quibble, but in reality the solution of such an the new representatiofi The resulting equation takes the
equation is highly nontrivial. Since the flow equation is form

bound to take the form of a nonlinear integro-differential ~ ~ — o ea

equation, the simpler the form of the equation, the higher the af(k)=ef—(N/2)f*—2fOf —2ff", (16)
chance of a satisfactory analysis. Second, and much mogg, ...

importantly, we must be sure that fixed point solutions for

the “physical” coupling function also correspond to fixed _ _ d2p _

point solutions for the representative functifin this case a(k)Oﬂ(k)EJ Z—E(p)ﬁ(k—p)cos?[(px k)/2]

p(x)]. Unfortunately, it turns out that the choice of BNT ™

does not fulfil this requirement. As an examlee refer the 17)
reader to the next section for detailhe solvable case of gnd

N— o indeed has a stable fixed point for the coupling func-

whereg is the Fourier transforniFT) of g(x,y). We stress
Shat this FT is defined in the two dimensionaly) plane, so
that the momentunk is two-dimensional. We shall always

tion g(u). This solution is nontrivial, and takes the form of a . d’p _
distribution @ (k)EJ o, @(p)cospxk), (18
9(|21—Zz|2)~652(21—22)6XF{—(MZ/Z)Viy]- with the definitionpx k= pyk,—pyky (we have also scaled

wave vectors byu).
Similarly, the case oN=0 may also be shown to give a  The analysis of the above flow equati@ingether with the
stable fixed point which is simplg(|z,—z,|?)=const. In analogous equation for the disordered gag#l occupy the
each case the weight functignis ill defined, and any nu- remainder of this paper. Before proceeding with the analysis
merical attempt to find the fixed point from the flow equationwe shall conclude the present section by generalizing the
for p will fail. We refer the reader to Fig. 1, where a numeri- flow equation to account for disorder.
cal demonstration of the failure of thgx) representation is Following the previous arguments of BNT concerning the
given for the caséN—<. Third, we mention a more subtle generation of an infinite number of marginal quartic opera-
point. The fixed point function may be expected to signal theors, the disorder quartic coupling introduced in ELQ) is
physical transition from a vortex liquid to a vortex crystal. In also seen to require generalization to a coupling function.
this case, we shall lose the rotational invariance of the theorfhe free energy functional analogous to E#f3) with the
when we are in the low-temperature phase. Therefore, allowinclusion of disorder is of the form
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F=J dd‘erJ' dzdz e #1472V | 22+ T|¢?|2)+f dd‘erJ dzldzle"‘z‘Zl'Z’zj dz,dzs e #1212 (|2, — 7,|?)

X6z Pl ar D= [ ot%r, [ andzte # a2 [ dadzse s R (2, 22l dzr )P0z )P
19

As before we are obliged to make a representation of the _ e?(k 0)e!
coupling functionsy andA. We again use the FT represen- f(k,l)= '
tation, and along with the previously introducgdwe define

= . (24
e+ (e!—1)f(k,0)
~ e pr o We see that ak— the function approaches the stable fixed
D(k)=2u A(k)exd —k72u7], (20 point f4(k) =€, as long as the initial function is everywhere
whereA is the Fourier transform ok (x,y). In Appendix B nhonzero. Thedrgader IS encouragetlj to com||oar.e tp's rssult to
we illustrate the diagrams which contribute to the one-loopt at contalnerﬁ In a recent exact layeanalysis for this
renormalization of the coupling functiorfsand D. The re- same proble ._Contact between the two results may be
lting flow equations take the form made by regarding the FRG flow paramédtas related to the
sulting Tlow equat transverse momentum vig =e~'. The finiteN corrections
are highly nontrivial to calculate for arbitrary dimension.
However, our flow equatioii16) is valid for all N to first
- T P S order in e, and therefore we may easily study the firite-
9D(k)=eD—NDf+2DOD+2DD*—2Df", (21 corrections within this one-loop level. A surprise is in store.
with the same notation as used above. Let us concen_trate purely op the fixed point, and dgnote
Finally, we shall briefly mention the form of the one-loop the largeN solution by w(k)=limy_..fs. We then write
corrections to the propagator. These corrections contribute tbs=W+(1LN)fg+O(1/N2). The correction to the largh-
the fixed point value of the correlation length exponenin  fixed pointf; is then given by the equation
Appendix C we illustrate the diagrams required to one loop, _
for both the pure and disordered cases. It is seen that these 0=(e—2w)fg—4wOw—4ww*. (25
one-loop_corrections have a particularly elegant form in
terms off andD. Explicitly we havé® (to one-loop order

9 f(k)=ef —(N/2)f2—2fOf — 2ff*+4fOD + 2 D*,

We now recall thatv=e. It is seen that the termvOw in the
above equation diverges as the system @iz¢éhe x,y direc-
1 N tions) A. In other wordsthe finite-N corrections may not be
o P _'f'(o)+f(o)_D(0), (22) considered as small in the thermodynamic linfihe strict

v 2 order of limits that one must take is firAt—o followed by
N—o. We see that for the largs-limit to have meaning
within this order of limits, we are forced to abandon our
solution w=e€. The correct solution must simultaneously
solve the trivial equationv=w? and also keep the integral
IV. SOLVABLE LIMITS wOw finite in the thermodynamic limit. One such type of

In this section we shall concentrate on direct analytic apSolution is some sparse set of Kroneckefunctions. The
proaches to the FRG flow equation for the pure system, EqargeN limit is not sophisticated enough to resolve the exact
(16). For arbitrary values oN the flow equation is intrac- 0orm of w, butwe have the very interesting hint that the fixed
table, as it takes the form of a nonlinear integro-differentialPCint function may prefer to have some type of lattice struc-
equation. However, the two extreme casesNbf> and ~ tUre (a lattice of Kronecker spikes in this casén fact we
N=0 may be treated exactly. We shall discuss these tw§a" proceed a little further with this idea, anticipating some-

limits below, with emphasis placed on the singular form 0fwhat_the idegs to be _presented in Sec. VI. Let us assume that
the corrections in each case. the fixed point function chooses to take the form of some

regular lattice of Kronecker spikes. We write this as

where naturallyf andD are the inverse Fourier transforms
of the coupling functions andD.

A. N> €

_ 21—
As is usual for largeN calculations, it is first necessary to w(k)= 52(0)2 k=0, (26)
rescale the couplinfunction) by N, prior to taking the limit
of infinite N. So rescalingf —2f/N and takingN—«, we

have the flow equation

where the reciprocal lattice vectofBLV’s) {G} are as yet
undetermined. We now look to the form of theNl¢orrec-
tions. Referring to Eq(25) we see that one of the contribu-
of=ef—T2. (23) tions tof. is of the formww*. The functionw™* is essen-
tially the Fourier transform ofv. We then see that there are
This is a very simple equation and may be immediately in-only certain choices for the lattice constant of the RLV
tegrated to give which will maintain the same functional form for the correc-
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tion f as compared to the largé+esultw. The lattice con- - - ) - -

stant is fixed by demanding thatandw* be identical. This F(k)=F(k) +J (d“p/2m)F(p)F(k—p). (29

is guaranteed, for example, by either a square lattice with . ) o

spacinga?=(2) or alternatively a triangular lattice with N other words we require a function which is equal to the

spacinga®=4//3. These lattices correspond to the Squaresum of its square and its self—c;onvolutlon. Th|§ proplem has

and triangular lattice solutions of the mean-field theory conroved to be extremely nontrivial, and we consider it worthy

sidered by Abrikosov. of stu_dy_ln its own right. _ _ _
We should point out that there exists a controversy in the 11iS is not the place for an extended discussion of this

literature concerning the correct theory of the latgdimit ~ €guation. However, we shall make a few points. First, we
within the LLL approximation. The author of Ref. 7 finds a note that the RLVAnsatzprovides a whole class of solutions

continuous transition while the authors of Ref. 8 find the!© the above problem. In other words, Eg9) is solved by
transition to be first ordetfor d<6). We believe that in the 2Ny regular lattice of Kronekes functions(or appropriately

strictly infinite system the latter conclusion is valid and thathormalized Diracs functiong — there is no selection of

the difference in results probably lies in the commutation ofiatficé spacing. Second, we notice that a condition of solution
the N— limit and the thermodynamic limit, as demon- 'S that if a particular function satisfies E@9), then its Fou-

strated above from the one-loop FRG equation. rier transform must also satisfy the equatisnce the form
of the equation is invariant under a FTThe Abrikosov RLV

solutions are then seen as somewhat special as they auto-
matically fulfill this condition, being self-reciprocal under a

In the strict limit of N=0 the flow equation takes the FT. As a final point of interest, we may mention the results
form of a numerical study of the one-dimensional analog of the
above equation. We consider the equation

B.N—O

af(K)=ef —2fOT—2ff*. 27)

This equation is trivially solved at the fixed point by f(x)=f(x)2+(2w)’1’2f dyf(y)f(x—y). (30
T (k)s=(mel2)5%(k). So the solutions of the infinits- and o
N=0 limits are in total contrast, being a constant and an the next section we shall give details of some numerical
S-function, respectively. We see that the finNefixed point  attempts to solve the full flow equation. One of the methods
(in particularN=2) must in some sense be a natural com-used was a Newton root-finding algorithfsee Sec. V for
promise between these two forms. If one tries to expandletaily. The application of this method to the above equation
about the above result in powersNdf then one finds that the produced astonishing results. There appear to be an infinite
O(N) corrections diverge with the system size. We have thenumber oflocalizedsolutions to Eq(30). A given solution is
same problem as encountered in the laxpdimit — the  selected according to the initial guess fed into the Newton
corrections are singular in the thermodynamic limit. algorithm. The solutions are stable to changes in the discrete
There are two approaches to the current difficulty. Firstgrid size, and are therefore not artifacts of the grid. We show
one may try some RLV solution to tHé=0 limit, and then in Fig. 2 an example of one of these localized solutions,
see if the smalN expansion is sensible. This is easily per-together with its self-convolution, so that the reader may
formed and one readily sees that the RLV solution does inappreciate the delicate balance achieved by the function in
deed exist in this limit, and is consistently “renormalized” creating “windows” within itself so as to reduce its self-
by smallN corrections, if one chooses the particular Abriko- convolution in the tails of the function.
sov RLV mentioned above. An interesting alternative is to

recognize that the smal- behavior is not analytic and to V. NUMERICAL ANALYSIS
make some scalingnsatzto cope with this. _ i )
Consider the full flow equatiofiL6) and make the rescal- In the previous section we have described our attempts at

direct analytic solution of the flow equation. We have seen
that for N—o and N=0, simple solutions are possible, but
(7|E(k)= eE(k)—(l/Z)EZ—Z th_at the corrections are singular in each case, as they dive_rge
with the system size. Since we are really interested in
5 - - N=2, which corresponds to the original model for the su-
X f (d*p/2m)F(p)F (k—p)cos(Npxk/2) perconductor, we have to resort to some numerical procedure
in order to solve the flow equatioiwe remind the reader
that our main results will in fact be discussed in the next two
sections where we use a physically motivatatsatzto ex-
) ) ) ~ tract results from the flow equatign.
Now takingN—0 in the above equation fd¥ produces the A numerical analysis of the FRG flow equation is an ex-
smallN form for the original functionf, as the scalingAn-  tremely nontrivial task as Eq16) takes the form of a non-
satzand the limitN— 0 do not commute. In this way we are linear, two-dimensional, integro-differential equation. We
able to examine the nonanalytic smblllbehavior of the cou-  have employed two different numerical techniques in an at-
pling function. Taking the limiN—0 in the above equation tempt to solve the equation. The first technique is a simple
simply removes the trigonometric terms. With suitable resdteration schemealso used in the original work of BNT
calings of F and momentum, the fixed point of the flow implemented by discretizing momentum spaceand the
equation is determined by the appealingly simple equation flow variable!l. For a given iteration stegproportional to

ing F (k) =Nf(NY%). We then have explicitly

—2F(K) J (d?p/2m)F (p)cog Npx k). (28)
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FIG. 3. An example of one of the infinitely many unstable fixed
points (found by use of the Newton root-finding schenfer the
coupling functionf(k) in the absence of disorder.

solutions. In Fig. 3 we present a typical example of such a
fixed point — its cross section bears a similarity to the one-
dimensional solution of the smal-problem discussed in the
previous section. The remaining difficulty with generating
fixed point solutions using the Newton method is that one
has no information concerning their stability, whereas the
represent the self-convolution 6{x). Note how the function cre- |t.erat|0n method only fm_d§ stable fixed Po'ms by construc-
ates “windows” within itself, so as to lessen its self-convolution in tion. To check the stability of the so_lu.tl'o.ns found by the'
the tails of the function. Newton method one has several possibilities. One method is
to simply diagonalize the stability matrix of the system of
I) one evaluates the integrals on the right-hand éRi¢S) of  equations and examine the eigenvalue spectrum. Alterna-
the flow equation, and therefore determin@gthin some tively, one may insert the fixed point solution into the itera-
precision the form of the functiorf (k,l) at the next iteration  tion algorithm and study the evolutio— a stable fixed point
step. One can improve the numerical stability of this procewill not evolve. Unfortunately we report that all of the solu-
dure by using Runge-Kutta algorithrisin following the  tions we found using the Newton method proved to be un-
flow of the equation in such an iterative manner, it is crucialstable.
to make a good initial “guess” for the function. If one starts  We repeated all of the above numerical analysis for the
too far away from gpossible fixed point, then the cumula- coupled flow equations containing the disorder functidn
tive errors picked up through iteration may well destabilizeThe generic behavior of the iteration method was rather simi-
the scheme before one has got close to the fixed point. For glr to that described above for weak disorder strer(géh,
choices of initial guess, we were unable to find any stablgna)| injtial guess foD). For larger values oD, the flow
fixed point. The generic behavior of the function under itera- a5 sgjll unstable, but in a different way. In contrast to the
tion is to develop propagating oscillations whose amplitudeg,revious case where the functions became unstable by devel-
grow exponentially fast. Within some finite time, the func- gping ever-growing oscillations, in this case, the instability
tion becomes nonnegligible at the grid boundary, and one ig35 characterized by the function simply growing in size,
obliged to halt the procedure. The runaway of the functionyith no oscillatory structure appearing. Again, the iteration

bears some similarity to that portrayed for the BNT weighty a5 abandoned when the functions became nonnegligible at
function in Fig. 1[although we should point out once more e grid boundary.

FIG. 2. One of the infinitely many localized solutions of Eq.
(30). The functionf(x) is given by the solid line, while the circles

that instabilities in the coupling functiop(x) which are The main results of our numerical analysis of the flow
present in the case dfi—c are spurious, since this case equations is thati) iteration of smooth functions invariably
supports the stable fixed poifit-€]. leads to instabilities angi) the flow space is extremely com-

A more attractive numerical procedure is that of “root plicated as it contains an infinite number of unstable fixed
finding” using a simple Newton schent&.One works di- points. The open question remains, of course, are there any
rectly at the fixed point, and therefore solves Etf) with  stable fixed points?
the LHS set equal to zero. By discretizing the momentum
space, one may regard the fixed-point equation as a large VI. RLV ANSATZ
number of coupled algebraic equations. The solution of such
a problem may then be regarded as a root-finding exercise From the last two sections, a rather forlorn picture has
and one may employ the Newton algorithfThis proce- emerged. The solvable limits &f— o andN=0 have been
dure is also sensitive to the original guess of the “roots,” assingular, so that no systematic expansion has been possible,
the Newton scheme is notoriously unstable if one starts toand the numerical analysis of the flow equation has yielded
far away from the true solution. By using this method weno conclusive results as to the existence of stable FRG fixed
were successful in finding many fixed point solutions of Eq.points. In such a situation, alnsatzis required.

(16). In fact we believe there to be an infinite number of such The one positive result we obtained from analyzing the
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solvable limits was that the flow equation contained informa- _

tion about the Abrikosov lattice. This was clear from the f(k)=2> A(G)6*k—G),

largeN limit, where we found that the only solution which ¢

was well defined in the thermodynamic limit was one pos-

sessing a lattice structure and that the Abrikosov lattice was _

selected by studying the finifé-corrections. It is then natu- D(k)zE B(G) 8 (k—G). (32

ral to try toconstructa fixed point solution for arbitrari} by G

considering solutions which are expressed in terms of a re-

ciprocal lattice, bearing in mind that the lattice is likely to be |n the next section we shall study the fixed point properties

that of Abrikosov. associated with such a form for the coupling functions.
Let us first consider the case without disorder — we refer

the reader to the relevant flow equatidr®) in Sec. Ill. We

make the RLVAnsatz VII. FIXED-POINT SOLUTIONS

_ One finds that the flow equations are immensely simpli-
f(k)=z A(G)8*(k—G), (31 fied by our particular choice of the RLV — the RLV of the
¢ Abrikosov lattice. For this choice the trigonometric terms in

where the vector§G! are a set of RLV's, but with no more e convolution-type integrals become equal to unity, and the
precise specification as yet. Inserting tAssatzinto the functionsf andD become self-reciprocal under the FT. Pro-

flow equation yields the interesting result that no new termgeeding with this choice of the RLV, it is possible to make

are generated if the RLV is chosen to be of Abrikosov form.@nalytic progress with the simpleAnsatz AG)=A,

More specifically, the RLV must be self-reciprocal under aB(G)=B, i.e., choosing the RLV coefficients to be indepen-

FT, implying (for example either a triangular lattice of spac- dent ofG. _ _ . _

ing a, with a?=4/3, or else a square lattice with spacing We shall proceed to derive the fixed points and their as-

a, satisfyinga2= 2. In other words, this form of the cou- sociated stab|l_|ty eigenvalues in some de_tall, for the disor-

pling function isclosedunder renormalization. dered case. Given the coupled flow equatit2® we make
There are several points to be made in relation to the RL\the Ansaze

Ansatz The first such point was already made in Sec. lll.

Since we are hoping to describe the VLVC transition, we

may expect the coupling function to take a fixed point form T(k):AE 52 (k—G),

which breaks rotational invariance, such as the RLV form. G

Another point to consider is the meaning of the runaway

flows found numerically for initial guesses of the coupling

function which were smooth funct'ions. AIthough. one may 5(k)=BE 82(k—G), (33

regard these flows as signaling a first-order transition, this is G

based more on prejudice than anything else. It is equally

possible that the flow is simply heading towards a strong- : . .

coupling fixed point. We regard the RUXnsatzas the cor- where we choose the reciprocal lattice to be a square lattice

. _ 1/2 . . . .

rect form of the coupling function at this strong-coupling of spac_lnga—(ZTr)_ - This particular choice is purely for
fixed point. In other words, the correcis®” theory for this convenience. At this one-loop level, the only relevant char-
system is such that the co’upling function takes nonzero Var'_acteristic of the reciprocal lattice is its self-reciprocity under

i ; ; 1/2
ues only at values of momentum which are coincident with & FT. Therefore the square lattice with Spa‘;‘,?g@”)
vector of a reciprocal lattice. Of course such a model cannd nd the t”?:r;?é"ar Iatt|c§ with spaciag=(4/3)™*will have
describe the liquid phase. In that respect it is similar to somé eAsame p|>ropfe[]t|es.t lculate the t in the fi
of the theories of two-dimensional melting which, being ex- S an examplé of now 1o calcufate the terms n the fiow
pressed in terms of Burgers vectors, can only in a straighttduations with this form of the coupling functions, consider
forward way describe the crystalline phasee, e.g., Nelson the convolution ternfOf, defined explicitly in Eq(17):
and Halperif®). While we have been unable to derive this
RLV model starting from Eq(13), we feel it captures the d%p
essence of the symmetries broken in the transition and hence  Of= AZE 2 —8(p—G)6*(k—p—G')
because of “universality” arguments provides a way of cal- G ¢ 2
culating critical exponents, etc., at the transition, should it be
a continuous one. Strong support for the RLV model is pro- X oL
vided by the work of Yeo and Moot&where the function

(k) has been studied in the pure case in two dimensions A2

within the well-known strong-coupling approximation in :ZE E 5%(k—G'). (39

which all the parquet diagrams are summed. At criticality G ¢

(which in this approximation is at zero temperajuir€k) has

the RLV form. We must fix the value of the free sum over reciprocal lattice
For the full model including disorder, we make the simul- vectors. This is conveniently done by considering the RLV

taneousAnsdze sum over exgk-G). We have

L k
2P
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> explik-G)= >, explik,ma+ik,na)
G m,n

=(2m?% 2 (ka—2mm')d(kya—2mn’)

m’,n’

2
_CTS 2k-G)=243, F(k-G).
a G G

(35

Settingk=0 in the above we see th&lgz=275%(0). Re-
turning to Eq.(34) we then have

7Of=A252(0)% 5(k—G). (36)

Similar manipulations with the other terms in E@1)
then yield the flow equations fok and B:

9, A=eA—[(N/2)A%+2A2+2A2— 4AB— 2AB]6%(0),

9,B=eB—[NAB—2B?-2B%+2AB]5%0) (37)

[where we have kept all the contributions separate to allow

easy cross-reference with the original flow equaii@h].
One easily finds fixed point values f8randB, leading to
fixed point solutions for the coupling functions of the form

~ €
e nrme e

B3 W-Ne s 2n_s).

(N-1)6%(0)% 38

The allowed range of the paramefdris now 1<N<4, in

order to ensure the nonnegativity of the coupling functions.
The one-loop correction to the correlation length expo-

nent is given by 21/v=(N/2)'f~(0)+f(O)—D(O), and we
therefore have at the above fixed point

1
=2

; —me‘i‘O(Ez).

(39

To address the question of stability of this fixed point, we
consider perturbations to the coupling functions. In order to
remain within the space of coupling functions consistent
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= €en—Nfy—4f 0% 2fsp*— 25+ 4 OF
+4D 0%+ 2f & +2D%7,
9 €= e€E—NTff—ND7+4D O+ 2D &
+2DfE- 2D n* - 2fLE. (41)

Calculating the momentum integrals in the above equations,
we may write the flow equations in terms of the RLV coef-
ficientsa and g:

da=ae—(N+2)As8%(0)+2Bs%(0)]—23,[3A—2B]
+63,5A,

8,B=Ble— (N+2)A5%(0)—2B5*(0)]—-NBS*(0)a—23,B

+63,B, (42)
where we have defined
277210)5%) a(G,1),
2m3,(1)=2, B(G,)). (43)

G

To analyze these equations we first sum each equation
over the RLV. This yields two coupled equations for the
quantities>,; and, which we write in the form

(9|2i:1—‘i,j2j y i,j:1,2, (44)
where the matrid’ has the form
€ —2(N+38) 24
I's o+ . (49
8(N—1)\ —=(N+2)(4—N) 4(4—N)

The two eigenvalues of this matrix are found to be
_ (4=N)e B 16
1= TNy MeT e (46)

Both eigenvalues are negative only wheraNl<4. There-
fore we see that for this range &f, the quantitiesS; will
decay exponentially fast to zero under the flow of the FRG.

We may therefore negleci; and X, in the flow Egs.
(42). It is then easy to see that evolves according to

(4—N)e

07|a/=—m0( (47)

with the RLV model, the perturbations must in turn be re-and therefore decays exponentially fast to zero for

stricted to the RLV. We writd =+ 7 andD =D+ & with
the explicit definitions

T(k,l)z?s(k)+% a(G,1)8%(k—G),

5(k,|):55(k)+%) B(G,1)5%(k—G). (40)

1<N<4, with decay rate equal to the stability eigenvalue
IN1|. Finally, neglectingx in the flow equation fo3 we see
that B8 also decays to zero in exponential fashion for
1<N<4, again with decay rate equal {d,|. So we con-
clude that the fixed-point solutiorfs andDg given in Egs.
(38) are stable against arbitrary RLV perturbations in the
parameter range<dIN<4 (which encompasses the physical
case ofN=2 for the superconductpr

Interestingly, the value of the correlation length exponent
and the value of the stability eigenvalueg and X, (which

In terms of these perturbations we have the flow equationare related to correction-to-scaling expongriie the same
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as those obtained for the simpD¥N) model in the presence a jump in the magnetizatigrseems to terminate at a critical

of disorder! but in two dimensions lowe(Note that in this  end point at finiteH and nonzero temperature. If these results

articlee=6-d.) are confirmed, it means that the low-temperature phase has
One may also use this RLVnsatzin the absence of the same symmetries as the normal vortex liquid as one can

disorder, i.e. Eq(16). Performing precisely analogous stepspass between the two around the critical end point without

to those outlined above, one finds the fOllOWing results. On%rossing a phase line _just as in the conventional |iquid-gas

obtains a fixed point solution transition. Thus the phase transition would indeed seem to be
between a normal liquid region and a “vortex slush” region,
- 2€ . . . o ; .
f= > (k—G), (48  inwhich there exists “long” short-range crystalline order. A
(N+8)5°(0)%c low-temperature phase of this character was suggested in
. P Ref. 19.
The value ofv at this fixed point is given b . . : )
g P g y There is much experimental evidence also for a first-order
1 (N+2) ) transition in untwinned crystals of Y-Ba-Cu-@.g., Safar
PREENTEE €+0(€%), (49 et al?Y). Most of the experiments are transport measurements

which show that there is a line in the-T diagram at which
identical with that obtained from the pu®(N) model’  there is a sharp drop in the resistivity. This kink in the mag-
[again in two lower dimensions, i.e., a pu@N) model netoresistance becomes smeared at higher fields and the
with e=4—d]. The stability analysis for the pure case re- finite-resistivity curve displays Ohmic behaviSrGoing to
veals an eigenvalue spectrum characterized by two differeriigher fields increases the effective strength of the disorder

eigenvalues, with values so that the direct introduction of point disorder via electron
irradiation would be expected to mirror the effects seen in
1:w’ ,=—e. (50  high fields. Fendrictet al,”* found that electron irradiation
4(N+38) led to a suppression of the drop and a temperature depen-

Clearly the fixed point is only stable fot>4, and one may dence for the resistivity appropriate to a vortex liquwith

therefore not make the direct connection to the poga&l) N evidence for a vortex glass transitioft seems possible
model, sinceN=4 plays no special role in that casén- that if the complications produced in Y-Ba-Cu-O by the

triguingly, the value of the eigenvalues for the pure superStrong hysteresis effects could be removed, then the resulting
conductor are the same as those for the Heisenberg fixgthase diagram might be similar to that found by Zeldov

point in the disordere®(N) model*!] et al, for Bi-Sr-Ca-Cu-O.
To what extent are our results consistent with these ex-

perimental findings? Our most important result is in the pres-

ence of disorder one does not expect there to be a low-
We now turn to the implications of our calculations. For temperature phase with long-range order of either the phase

N=2 in the presence of disorder they suggest that our probODLRO) or the density(crystalline order. Furthermore, if

lem is in the same universality class as the disordere@ne rather boldly assumes that no other phases exist below

O(N) model in two dimensions lower. Thus, in the presenCe&our dimensions in the presence of weak disorctirong

of disorder, one would not expect there to be a phase transgisorder might be needed to produce gauge glass behavior

tion below four dimensions to a state with both off-diagonalihen the argument of Moot®for the pure case and that of

long-range ordefODLRO) and crystalline order. This result | 5.kin!8 for the case of point disorder would imply that the
is consistent with the old argument of Larkirwhich shows low-temperature phase can only be of the “vortex slush”

that disorder removes .crystalhrje order below fqur ‘.j'men'variety and a phase diagram involving a critical end point
sions. It suggests that if there is a phase transition in thre

. . - &€hould then be of little surprise. Of course, the form of the
dimensions from the vortex liquid state to some other state ctual first-order line in thel-T diaaram is likelv to depend
then this state cannot be crystalline, but must be a form o? g y b

vortex ‘“slush” in which the crystalline order only exists on thehgrr;]o_unt otfdd_'SOTer Strgsegtl’ t?e anlsgt(r;opy,l etlc.é_ na
over a finite length scale and that at the transition there is gay which 1S not directly obtainable from a caicuration
jump in the degree of short-range crystalline order. of the type used in this paper, which is only really useful for

In the absence of disorder, we have been unable to fin€Scribing continuous phase transitions.
for N=2 any stable fixed points even within the RLV model, !N fact, if the phase diagram of Zeld@t al. is generally -
and deduce that the original conclusion of BNT that the tranvalid, the only continuous transition is that associated with
sition becomes first order below six dimensions is likely tothe critical end point itself. The order parameter associated
be correct. One of us has shoWithat thermal excitation of With the transition is a scalait is essentially|y|? whose
phase fluctuations does not permit the simultaneous existhermal average is proportional to the magnetisatibience
ence of ODLRO and the vortex lattice fdx<4 for the pure the critical exponents associated with the critical end point
case. Thus it seems likely that 4 is a special dimension fowould be expected to be those of the random field Ising
both pure and disordered systems. model as the disorder is coupled directly to the order param-

The recent magnetization measurements of Zeldoeter.(We are indebted to D.S. Fisher for this observajion.
et al,?° on Bi-Sr-Ca-Cu-O provide very strong evidence thatSince the exponeng of the random field model is extremely
a first-order transition line exists. A striking feature of their close to zerd? this would explain why at the end point the
data is that the line in thel-T diagram(across which there is magnetization jump did not apparently go to zero.

VIIl. DISCUSSION AND CONCLUSIONS
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APPENDIX A 2 2,
In this first appendix we shall present a detailed derivaton > ==-=--=----
of the FRG flow equatiori16) for the case of no disorder. zy pad
From the form of the free energy functiondl3) we see that (b)

the bare propagator has the form
FIG. 5. The bare four-point correlation functi@y, p,.— par-
2 ticular attention must be paid to distinguishing the two symmetry

1 m
- _ 2%
o(q, ;27 ,25)= —(Qi ) _2’7TeXF(M z72,/2), (Al) channelga) and (b).

while the bare verte{which is now a function of the

(X,y)-plane coordinatgss given by The first point to make is that we must be careful to dis-
tinguish between two different “symmetry channel§te-
—9(|za—25|?) exd — u?(|z4|?+]|2?)]. (A2)  noted by(a) and(b)] which exist for this function. Since the

vertex is nonlocal, we have two distinct pairings of the plane
These diagrammatic elements are illustrated in Fig. 4. Weariables ¢;,2,,73 ,z;), as shown in Fig. 5. When we come
shall be using standard dimensional regularization  to evaluate the one-loop corrections, our representation must
e=6—d) along with the minimal subtraction methdfl. be such that there is an unambiguous renormalization of a
Therefore, from one-loop perturbation theory we shall attairgiven symmetry channel from a given one-loop diagram.
a renormalization of the vertex of the symbolic form (Such an unambiguous renormalization is not available
within the representation of BNT — the question of whether
this invalidates their flow equation is not presently clear.

gR(s)zg(s)+(1/e)f ds,ds,F(S,51,52)9(S1)9(S,) Before evaluating the bare diagrams, we must choose a
representation for the vertex functign As mentioned in the
+0(g3). (A3)  main text, we shall work with the Fourier transform of this

function

The prefactor of ¥ just comes from the integral over the

internal transverse momentaf dimensiond—2), whereas A

the nontrivial kerneF is obtained by considering the internal

integration over the “plane” variables. 7, UTETI, 9 E,,3 ]

[}

To see how we arrive at such a renormalization of the !
! i

vertex, consider the perturbative calculation of the four-point

]
I
correlation function 2, n’{;nz N 7
. . . W,=8
Ca(d1,21;02,22303,23 ;04,25) A
E<¢i(Q1121)¢j(Q2122)¢i*(Q3yZ§)¢T(Q4'ZZ)>- B c
e e —
r2 ! z¥ z, Z;
T 30
. L 22 29 %
e o a4
ql WB=B W(_=10N
2y 2y, D
Zy 22
e i
ol 23, |
_________ z¥ z¥
Z 2y, )
! Wy=16

FIG. 4. The two basic diagrammatic elements used in the per- FIG. 6. The four one-loop contributions @5, along with their
turbation expansion: the propagatefq, ;z} ,z,) and the bare ver- combinatoric weights. We have indicated the internal plane labels
tex. in the first diagram to allow comparison with E@5).
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“g‘(k):(llzw)J d2rg(r)e'cr. E(K)=(1/27T)J dzdZg(z,z*)exdi(K*z+Kz*)/2].

The bare diagrane) may then be evaluated to givep to
It is convenient to reexpress this FT in terms of complexa factor of the transverse parts of the four external propaga-
momentakK =k, +ik, as tors)

J'deK* KK*  iK*(zy—2,) IK(Z5—2Z))

2 2 * *
M m(2123 +2,7;) - n
) p{ 5 g(K,K*)expg — Mz 5 5 . (A4)

Ci,bare: - 2( ﬁ 2

The reader may be confused that we are not calculating the usual one-particle-irreducible functions. It is necessary in this
calculation to attach the external propagators in order to give an identifiable “plane” label to each leg of the vertex. The
transverse momentum part of the external propagators is irrelevant to the calculation and will be omitted. The expression for
the bare diagrantb) may be obtained by interchangizg andz, (or equivalentlyzy andzy).

In Fig. 6 we show the four one-loop diagrams which will renormalize the bare diagram in chan@€hé diagrams
contributing to channel B may be obtained by interchanging the lahetnd z,.) All these diagrams contain an identical
internal integral over the transverse momenta. This integral has the form

f di72q, 1 1
(2m* 2 (q?+7) [(q] +0,)%+ 7]

and has a singular contribution equal8g_,/e [whereSy is the surface area of a unit hyperspherel idimensions, divided
by (27)9]. The constansSy_, may be absorbed into the coupling function and will henceforth be omitted.
The internal integrals over the plane variables may be most easily done using the following formula for Gaussian integrals:

J d"zd"z* ex] — u?(zZf Mijz—af z— 2 b)) 1= (w/ pn?)"(deM) ~exp( u?af M b;).

We shall follow the evaluation of diagram A rather closely, and then simply quote the results for the remaining three
diagrams. So referring to diagram A, we have the explicit expression

a (—Dwa( p?\° % * 2 2 2 2 2 2
6C4,A=T o fd771d771"'d774d774equu (| mal?+ 1722+ m3l*+ [ 7419 /219(| 71— 72/?)
X g(| 73— a2 exd u?( 7y Zo+ 95 2o+ 1aZs + naZi + 95 1+ 74 12)12], (A5)

wherew, is a combinatoric factor equal to 8. We now replace the two coupling functions by their FT's and then explicitly
evaluate the fourfold Gaussian integrals over,(7). The resulting integrals may then be expressed in the form

a | M u(2175 +2,23)
€Can=4 277 2

dedK* KK* iK*(21-2) iK(Z-2])])
om TR T2 2 2

dP,dP}
Wf 2

*

dP,dP} _ ~
Xf 5 G(P1,P1)T(P2,P3) 8(K— Py~ Py) 8(K* — Pf — P3)exi (|K|2~|P1|2~|P|2~ P1P})/2u%].

(AB)

On comparing the above expression with that for the bare fun¢fidn we see that the functiog( K,K*) is renormalized
from diagram A by an amounig, given by

pe dP,dP} [ dP,dP}
€ gA__47TJ 2 f 2

—P1P3)12u]. (A7)

G(P1,P1)G(P2,P3)8(K—Py—Py) 8(K* — Pt —P3)ex (|K|?—|Pq|2—|P,|?
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In terms of vector notationk(,k,) this contribution may be
written as > ------ <
d’p_ )
65§A=—2fﬁg(p)g(k—p)exr{—p-(p—k)/u] ——e —~e
| 1

X cog (pX k)/ u?], (A8) et o LI .
wherepXx k= pyk,—pyky.

In a precisely analogous fashion one may calculate the >Q_< >-- '
contributions from diagrams B, C, and D, resulting in the

following expressions:

65§B=—2f Z—:Q(mg(k—p)exd—p-(p—k>/u2], ; ; ><

(A9)

€5Gc=— N,u,zfj(k)zexq _ k2/2M2) (A10) FIG. 8. The bare and one-loop diagrams required for the renor-

malization of the coupling functiof.
and

~ d2p~ 2 2 2
eé‘§D=—4g(k)f§g(p)exp(—p 12u~)cod (pX K)/ u<]. >,W‘M<

(A11)

Given these one-loop renormalizations of the coupling
function, we then have thg functional g g % g

B[G]=— €g+[ 8ga+ 80+ 8Gc+ 80p]+0(T°). (A12)

Interpreting theB-functional as a FRG flowin terms of a -
scaling variableb=¢') we may write a differential flow >_-Qw< >w.<
equation of the formd,g= — B[g]. Finally, we define a more

convenient coupling function via

- — 2m 2 FIG. 9. The bare and one-loop diagrams required for the renor-
f(k)=2u"g(k)exd —k/2u7] (A13)  majization of the coupling functioB.

and then rescale all momenta with respecjutoThis com- ' ' ' o
pletes the derivation of the flow equati¢hé) given in the ~Wwe have two bare vertices which are illustrated in Fig. 7.
main body of the text. As before, we use these vertices to construct the four-

point correlation function. Actually, we now require two dif-
APPENDIX B ferent correlation functions in order to renormalize the two
bare vertices. These correlation functions differ in that one
In this appendix we illustrate the diagrams which contrib-has four identical replica labelsrpaa) and will be used to
ute to one loop to the renormalization of the four-point cor-fing the renormalization of the coupling functiénwhile the
relation function, in the presence of disorder. There will begther has two pairs of replica labela:¢38) and will be
no explicit calculation in this appendix as the calculationsused to find the renormalization Bf As before we have two

may be easily reconstructed using the examples given in thg ., ety channels related to the external plane labeling of

previous appendix. In the presence of disorder, the IabeIing1e diagrams
of diagrams becomes a little more complicated as we now | Figs. 8 énd 9 we show the bare and one-loop contribu-

fhave repllcaflndlt_:es. IRefﬁmng _the r);adelrgto the formhof thqions to these four-point correlation functions. Note there are
ree energy functional in the main tepq. (19)], we see that  , ufree_joop” contributions from the disorder vertex due to

the replica limitM — 0 (whereM is the number of replicak.
.. Following the details of Appendix A, one may finally
7,1, 5.)% arrive at the coupled flow equations given in the main text, in

2,1, Z3,j, X Eq (21)

APPENDIX C

In this final appendix we illustrate the diagrams contrib-
uting at one loop to the two-point correlation function. By
considering these contributions we derive the relation be-
tween the fixed point value of the coupling functions, and the
FIG. 7. The two bare vertices in the disorder calculation. ~ shift of the correlation exponent from its bare value of 2.
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Again, we replace the coupling function by its FT and per-
form the internal Gaussian integrals. In this way, one obtains
for diagram(i)

u
2
Comparing this expression to the bare propagator, we see
that the inverse mass/is renormalized by diagrarti) by

an amount K/ e7o) ©%g(0).
One may show that the analogous contributions from dia-

2 7_6 €2

€

N

70

27g(0)exp u?z} 2,/2). (C2)

F_IG. 10. 'I_'he three one-_loo_p contribu@ions to the two-point_ cor-grams(ii) and (iii ) are given by
relation function. We have indicated the internal plane labels in the

first diagram to allow comparison with E¢C1).

The two-point correlation function at the bare level is
simply given by the propagater(q, ;z; ,z,). The one-loop

corrections are illustrated in Fig. 10. Note that there is n@nd

tadpole contribution from the disorder vertébecause of the
replica limit). We shall explicitly evaluate the first diagram,
and simply quote the results for the remaining two.

In the limit of the external transverse momentum going to

zero, we have for diagrani) (after performing the usual
internal momentum integral

-5 “—2)3(—1>Téd2fd dnidrn.dns
TS 2 mun Unun,

X g(| 71— 1212 exd w?(| 74|+ | m2]?)12]

X exd u?(| ol *+ 2} ni+2,7m1)/12], (CyY
where we have added a zero subscript to emphasize that

- —2 k)e A —k2/2,LL2
0 2 g( ) X )
—_— —2 A(k —k2/2 2
o 2 ( )GXK M )

respectively. _ _
In terms of the functions andD we finally have

ERNECNES

d%k~ 2k
ZD(k))
+0(f2fD,D?).

5 f(K)—

1

TR

1 1
_+_
70

(C3

Following the usual line of argument, this relation may be
reexpressed in terms of the shift to the correlation length

it is to be renormalized by these one-loop contributionsexponent, as given in the main text in Eg§2).
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