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We present in detail a functional renormalization group~FRG! study of a Landau-Ginzburg model of type-II
superconductors~generalized toN/2 complex fields! in an external magnetic field, both for a pure system and
also in the presence of quenched random impurities. If the coupling functions are restricted to the space of
functions with nonzero support only at reciprocal lattice vectors corresponding to the Abrikosov lattice, we find
a stable FRG fixed point in the presence of disorder for 1,N,4, identical to that of the disorderedO(N)
model ind22 dimensions. This implies a continuous transition from the vortex crystal to vortex liquid in the
presence of disorder, but only ford.4. The nonzero-temperature transition will disappear in physical dimen-
sions. The pure system has a stable fixed point only forN.4. Therefore the physical case (N52) is likely to
have a first-order transition in the absence of quenched disorder. We give a full discussion of both the
motivation of the model and the details of the FRG calculation. We also place our results in context with regard
to the current experimental scene concerning the high-Tc compounds. In particular, we discuss the relevance of
our results to the recently discovered critical end point in the phase diagram of Bi-Sr-Ca-Cu-O. The main
results of this analysis were previously reported in the form of a Letter@M.A. Moore and T.J. Newman, Phys.
Rev. Lett.75, 533 ~1995!#. @S0163-1829~96!01833-4#

I. INTRODUCTION

With the advent of the new high-Tc materials, there has
been a regeneration of interest in the nature of the ‘‘mixed
phase’’ in type-II superconductors. In conventional materi-
als, the effect of fluctuations is severely reduced due to both
the large coherence length and the relatively low tempera-
tures. The phase diagram is therefore quite simple: The
Meissner and normal phases are separated by a vortex crystal
phase in which the magnetic flux penetrates the sample in the
form of a triangular array — the Abrikosov lattice.1 In high-
Tc compounds, the much smaller coherence length, together
with the moderately high temperatures, allows fluctuations to
act much more strongly. This gives rise to the possibility of
a richer phase diagram. Interesting complications are also
induced by both the effects of disorder and of the strongly
layered structure of the new compounds.

The phenomenological approach to understanding the
phase diagram of the high-Tc compounds centers on the
Landau-Ginzburg free energy, which is written in terms of
two fields: the superconducting order parameterc and the
vector potentialA. Most theoretical efforts have been within
one of two complimentary approaches, namely, the London
picture and the lowest-Landau-level~LLL ! approximation.
The London picture focuses directly on the vortex lines, ig-
noring fluctuations of the amplitude of the order parameter.
This appears to be an adequate description for low fields,
where the vortex core is much smaller than the typical inter-
vortex separation, and the amplitude of the order parameter
may then be taken as approximately constant over most of
the system. Conversely, the LLL approach ignores fluctua-
tions in the vector potential and concentrates solely on order

parameter fluctuations. Furthermore, it is assumed that all
Landau levels except the lowest willsmoothly renormalize
the physics, thereby allowing one to work solely within the
LLL. This approach is well suited for the high-field regime
in strongly type-II superconductors, where the ratiok of the
London penetration depth to the coherence length is large.
Whether these two approaches overlap in their regimes of
validity appears to be an open question.

In this current work we wish to concentrate on the transi-
tion from the vortex liquid to the vortex crystal, which is the
fluctuation-corrected analog of the Abrikosov mean-field
transition from the normal metal to the Abrikosov flux lat-
tice, usually denoted byHc2(T). We shall work solely within
the LLL scheme. The two basic questions we wish to answer
are the following:~i! In the pure system, what is the nature of
the phase transition between vortex liquid and vortex crystal,
and ~ii ! how is this transition affected by the presence of
quenched random impurities? To address the first question
one must extend the original mean-field analysis of Abriko-
sov to take into account thermal fluctuations of the order
parameter. This was first attempted by Bre´zin, Nelson, and
Thiaville ~BNT! in 1985, using a functional renormalization
group~FRG! method.2 It was found in the early stages of the
present work that their representation of the FRG was not
always sensitive to the existence of a FRG fixed point~which
registers a possible continuous phase transition!, and there-
fore the question of the role of fluctuations was still open.
We use here a more sensitive representation of the FRG.

Our main conclusion is, however, the same as that of
BNT — no stable fixed point of the FRG exists, thereby
indicating that the vortex liquid to vortex crystal~VLVC !
transition for the pure system is probably first order. The
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second question regarding the role of disorder may be ad-
dressed by using similar FRG techniques. It is well known
that quenched disorder can often force a first-order transition
into a continuous one.3 An interesting example of this is the
transition from the normal metal to the Meissner phase
which, although first-order for a pure sample,4 is driven to a
continuous transition in the presence of disorder.5 Indeed, in
the current problem, we find that disorder dramatically
changes the FRG flow, and there exists a stable FRG fixed
point in this case, indicating that disorder can force the oth-
erwise first-order transition into a continuous one. However,
we have arguments which show that this continuous transi-
tion has a lower critical dimension of 4, which implies that
the physical superconductor~existing ind53) undergoes no
VLVC transition in the presence of weak disorder. The main
results of this work were presented in a recent Letter.6

The purpose of this paper is first to give a detailed deri-
vation of the results and second to discuss the relevance of
the results in the context of the present theoretical and ex-
perimental scene.

The outline of the paper is as follows. In the next section
we shall present the Landau-Ginzburg free energy functional
and discuss the simplifications which may be made under the
LLL approximation. Our treatment shall closely follow that
of BNT, but we include such a discussion here purely for
completeness. In Sec. III, we shall outline the procedure of
the FRG method. Again, we shall be following the presenta-
tion of BNT somewhat, although we shall find it necessary to
avoid their representation of the FRG for reasons mentioned
above. We shall present a representation which is more sen-
sitive to the existence of fixed points, and derive in some
detail the FRG flow equations for both the pure system and
the disordered system.

The next two sections may be omitted by the reader who
is mostly interested in the main results. In Sec. IV we present
our attempts to analytically derive the solution of the flow
equations. The special limits in which some progress is pos-
sible are the limitsN→` andN50. ~The variableN is often
used to allow the possibility of such solvable limits. It is
introduced by extending the complex order parameterc to a
set ofN/2 complex fieldsc i .) In the former case, we shall
make contact with recent calculations devoted to the large-
N limit of this model for arbitrary dimensions.7,8 The correc-
tions to the large-N limit will be shown here to be ill defined
in the thermodynamic limit, which we interpret as a precur-
sor of the VLVC transition. For the limiting case ofN50 we
shall see that the small-N corrections are nonanalytic. A scal-
ing approach is required to correctly extract the small-N be-
havior. The resulting flow equation for the scaling function
has a beautiful structure which we consider worthy of study
in its own right. The superconductor corresponds toN52
and is beyond brute force analytic treatment. In Sec. V, we
shall briefly discuss our~failed! attempts at numerically solv-
ing the flow equations for this case. Both discrete ‘‘time’’
iteration and Newton root-finding schemes shall be dis-
cussed.

The flow equations are made analytically tractable by the
application of a physical idea: Since the ordered state is that
of a vortex crystal, the fixed point of the model should have
some symmetry associated with this lattice structure. In Sec.
VI, we motivate and present the reciprocal lattice vector

~RLV! Ansatzfor the fixed point. The implications of this
Ansatzare discussed in Sec. VII, in which we present the
fixed point structure of the FRG flow~along with associated
critical exponents! for both the pure and disordered systems
within this RLV scheme. We end the paper with Sec. VIII,
which is devoted to a detailed discussion of our results in the
context of recent experiments and current theoretical under-
standing.

II. LANDAU-GINZBURG FREE ENERGY

In this section we shall motivate the LLL approximation
for the free energy, starting from the Landau-Ginzburg for-
mulation of superconductors. For simplicity we shall mostly
discuss the case of no disorder. Our presentation closely fol-
lows that of BNT, and the inclusion of such a detailed de-
scription here is for the sake of completeness.

The starting point of the analysis is the Landau-Ginzburg
free energy functional for type-II superconductors~in stan-
dard notation,9 with the additional convention of setting
\5c5kB51):

F5E ddr F 1

2m*
u~¹1 ie*A!c i u21auc i u21buc i u2uc j u2

1
1

2m0
~¹3A2H!2G , ~1!

where$c i% are a set ofN/2 complex order parameters~the
implicitly repeated indicesi and j are to be summed from
1 to N/2), A is the vector potential, andH is the external
magnetic field. We have written the theory for arbitrary spa-
tial dimensionalityd. In the physical case ofd53, the ex-
ternal fieldHi ẑ picks out a transverse plane (x,y) in which
the Abrikosov lattice is formed. In generald, we define the
field H to be directed in ad22 hyperplaner' , so that the
Abrikosov lattice is still confined to the two-dimensional
(x,y) plane transverse to this field.

We wish to work in the LLL approximation. First, we
assume that we may neglect fluctuations in the vector poten-
tial. We believe this to be a good approximation for high
external fields and for materials in which the ratio of the
London penetration depthl to the coherence lengthj is
large. In this case, the magnetic field will fluctuate only over
distances large compared with the intervortex separation, and
we therefore consider it as uniform. It is worth mentioning
that within the context of the renormalization group, the ex-
istence of stable fixed points allows one to discuss the rel-
evance of new operators in the theory. We refer the reader to
BNT, where it is explicitly demonstrated that gauge field
fluctuations areirrelevant operators if a fixed point exists
within the LLL scheme. By choosing the ‘‘symmetric’’
gauge,A05H/2(2y,x;0), we reduce the free energy to the
form

F5E ddr F 1

2m*
u~¹1 ie*A0!c i u21auc i u21buc i u2uc j u2G .

~2!

Now that the magnetic field is taken as spatially uniform
it is convenient to expand the order parameter in terms of
Landau levels. These are the eigenfunctions of the operator

6662 54T. J. NEWMAN AND M. A. MOORE



h05
1

2m*
~ i¹1e*A0!

2 ~3!

and are simple harmonic oscillator wave functions
Un,m(x,y) @with associated energy eigenvalues
En5(n11/2)e*H/m* #. The indexn labels the energy ei-
genvalue, whilem labels the degeneracy@which is propor-
tional to the system size in the (x,y) plane#. One may now
diagonalize the quadratic terms in the free energy by expand-
ing the order parameter in the Landau level basis

c i~x,y;r'!5(
n,m

cn,m
i ~r'!Un,m~x,y!. ~4!

The quadratic part of the free energy now takes the form

Fquad5(
n,m

E dd22r'F 1

2m*
u¹'cn,m

i u21~a1En!ucn,m
i u2G .

~5!

On reducing the size of the external field, the amplitude of
the second term in the above expression first becomes zero
for the modec0,m

i — this occurs for a value of the field equal
to Hc2(T) defined by the relationE052a(T). The higher
Landau modes have positive coefficients at this value of the
external field. If one is interested in the critical region, the
higher Landau modes may therefore be neglected.@The va-
lidity of this statement relies on the shift inHc2 caused by
inclusion of the quartic~fluctuation! terms not being greater
than the bare separation of the Landau modes~which is pro-
portional toH). This ‘‘Ginzburg criterion’’-type analysis has
been studied in detail10 with the conclusion that exclusion of
all Landau modes except the lowest is a valid procedure for
a wide range of fields below the mean-field valueHc2.#
Naturally, these ideas are applicable under thea priori as-
sumption of a continuous transition.

On restricting ones attention to the LLL, a great simplifi-
cation may be made to the form of the free energy, which
will set the stage for all the FRG analysis to follow. In the
symmetric gauge, then50 Landau levels may be repre-
sented by the eigenfunctions (m.0)

U0,m5Am~x1 iy !mexp@2m2~x21y2!/4#, ~6!

whereAm is a normalization constant andm2[e*H. Since
c i is now taken to be expressed only in terms of these LLL
modes, we see that the order parameter in the critical region
is simply an arbitrary function ofz5x1 iy along with an
overall factor of exp@2m2(x21y2)/4#. Explicitly, we have

c i~x,y;r'!5f i~z,r'!exp~2m2z* z/4!, ~7!

wheref i is holomorphic in terms ofz ~i.e., ]f i /]z*50).
In terms of the new order parameterf i ~suitably scaled!

we have the following elegant form of the free energy in the
critical region:

F5E dd22r E dzdz* @~ u¹'f i u21tuf i u2!exp~2m2z* z/2!

1g0uf i u2uf j u2exp~2m2z* z!#, ~8!

where the parametert52m* a(T)1e*H is proportional to
H2Hc2.

We now address the inclusion of quenched random impu-
rities into the above formalism. We regard the disorder to
have the physical effect of inducing a local shift to the criti-
cal temperature. Therefore the original Landau-Ginzburg
free energy is modified by replacing the parametera by
@a1da(r )#. The random fieldda(r ) is taken to be Gaussian
distributed with zero mean and correlator
^da(r )da(r 8)&5D0d

d(r2r 8). We shall regard the disorder
to be weak, such thatD0!1. The standard ways to deal with
such a disorder term are twofold. Since one is eventually
interested in some perturbative treatment of the free energy
about the Gaussian theory~defined byFquad), one may re-
gard the termda(r )uc i(r )u2 as a second coupling term in
addition to the usual quartic interaction. One then perturbs in
both interactions and averages the perturbation expansions
over the distribution ofda(r ). The effect of such averaging
is to highlight the fact that the disorder may in fact be inter-
preted as an effectivequartic interaction11 with strength
(2D0). An alternative~yet mathematically identical! proce-
dure is to average over the disorder at the level of the parti-
tion function. Since the disorder is quenched, one must av-
erage the logarithm of the partition function~which is
extensive! and this is most easily achieved with the use of
replicas. The resulting free energy now contains the remains
of the disorder in terms of an effective quartic interaction,
again with strength (2D0). For notational convenience we
shall use the latter approach. We emphasize that the use of
replicas here is purely to ‘‘keep track’’ of the disorder in
perturbation theory.

The effective free energy now takes the form

F5E ddr F 1

2m*
u~¹1 ie*A!c i

au21auc i
au21buc i

au2uc j
au2

2D0uc i
au2uc j

bu21
1

2m0
~¹3A2H!2G , ~9!

where the order parameter has an extra~replica! index a
which is to be implicitly summed from 1 toM . At the end of
the calculationM is to be set to zero. Following all of the
above steps as described for the pure system, we may use the
LLL approximation to simplify the above free energy to the
form

F5E dd22r E dzdz* @~ u¹'f i
au21tuf i

au2!exp~2m2z* z/2!

1g0uf i
au2uf j

au2exp~2m2z* z!2D0uf i
au2uf j

bu2

3exp~2m2z* z!#. ~10!

This concludes our description of the model. In the next
section we shall motivate the FRG by considering perturba-
tion theory for the above free energy. We shall then describe,
in some detail, the intricacies of the representation of the
FRG. The goal of the next section is to derive the most
natural FRG flow equations for this model.

III. FUNCTIONAL RENORMALIZATION GROUP

For convenience we shall discuss the procedure of FRG
within the pure model (D050). The influence of the disorder
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is easily accounted for once the correct FRG framework is
established. In order to study the effect of fluctuations on the
Abrikosov mean-field transition, we follow the standard pro-
cedure of setting up a perturbation expansion around the
Gaussian theory in powers of the quartic couplingg0. The
terms in the expansion are most conveniently represented as
Feynman diagrams with the two basic components being the
propagators(q' ;z1* ,z2) and the bare vertex. The propagator
is the inverse of the quadratic form in the energy functional
~8!. As shown by BNT, the propagator takes the form@using
a momentum representation for thed22 hyperplane trans-
verse to the (x,y) plane#

s~q' ;z1* ,z2!5
1

~q'
21t!

m2

2p
exp~m2z1* z2/2!, ~11!

while the bare vertex is clearly given by2g0exp(2m2z*z).
If one tries to simply calculate the one-loop terms in the

perturbation expansion, one finds the transverse momentum
integrals diverge whend22,4 ~just as one would expect
for a quartic theory, except here the momenta are defined in
a reduced space ofd22 dimensions!. This condition sets the
upper critical dimensiondu56. For d.du the perturbation
expansion contains no divergences and the mean-field results
will be qualitatively unchanged. However, ford,du the
simple perturbation scheme breaks down. One way to pro-
ceed is to utilize the renormalization group. It is important to
notice in the present theory that the renormalization group is
required to ‘‘cure’’ the divergences that arise from critical
fluctuations in thed22 transverse directions. The fluctua-
tions in the (x,y) plane are not critical and the integrals over
(z,z* ) may be regarded as~complicated! coefficients to the
momentum integrals in the transverse directions. The fact
that these coefficients are really functions~of z andz* ) will
eventually lead us to generalize the renormalization group to
a functional form.

Let us imagine proceeding with a renormalization group
calculation using the dimensional regularization technique.12

The perturbation expansion of the free energy functional~8!
may be considered as a loop expansion in powers of
e[62d. On calculating the one-loop vertex corrections, one
is faced with a severe problem~as described in detail by
BNT!. The bare vertex carries an overall factor of
exp(2m2z*z). The one-loop corrections must also carry this
factor in order to consistently renormalize the bare vertex.
However, this turns out not to be the case. Therefore one
concludes that the theory described by Eq.~8! is not closed
under renormalization. One must add more bare quartic op-
erators~all differing by the function ofz and z* that they
carry as a prefactor! to try to close the theory. These new
operators will in turn generate their own family of new one-
loop terms, until eventually one must admit that the theory
naturally contains an infinite number of marginal quartic op-
erators. The only systematic way to proceed is to generalize
the theory in such a way that this infinite number of opera-
tors is simultaneously renormalized — this is achieved by
the FRG.

The theory defined in Eq.~8! contains a local quartic cou-
pling. To generalize this coupling as much as possible we
consider a quartic interaction of the form

E dd22r E dz1dz1* dz2dz2*F~z1 ,z1* ,z2 ,z2* !f i* ~z1* ,r'!

3f i~z1 ,r'!f j* ~z2* ,r'!f j~z2 ,r'!.

@In principle one could mix the internal field labelsi with the
transverse plane positions, akin to the cubic anisotropy term
that may be added to the standardO(N) model. We shall not
consider such terms here.# As explicitly shown by BNT, un-
der the combined translational and gauge symmetries, the
general functionF is constrained to have the form

F~z1 ,z1* ,z2 ,z2* !5g~ uz12z2u2!exp@2m2~ uz1u21uz2u2!#.
~12!

The original theory with local quartic interaction corresponds
to the above coupling functiong taking the form of ad
function. To close the theory under renormalization has ne-
cessitated changing thisd function to anarbitrary function.
The one-loop terms in the perturbation expansion will now
renormalize this function, and the usual flow equations for
the coupling constants will take the form of nonlinear
integro-differential equations.

To implement the FRG we must therefore start with a free
energy functional of the form

F5E dd22r'E dzdz* e2m2uzu2/2~ u¹'f i u21tuf i u2!

1E dd22r'E dz1dz1* e
2m2uz1u2/2

3E dz2dz2* e
2m2uz2u2/2g~ uz12z2u2!

3uf i~z1 ,r'!u2uf j~z2 ,r'!u2. ~13!

We have somewhat sketched over the motivation of the
functional form of the above free energy. The reader is re-
ferred to the original work of BNT for more details. Now
that we have this functional form we shall describe the FRG
in much more detail, principally because there are some
subtleties which were previously overlooked.

In order to derive the functional flow equation (b func-
tional! for the coupling functiong it is necessary to evaluate
the perturbative corrections to the form of the four-point cor-
relator. At the bare level this function is simply the bare
vertex which is now of the form 2g(uz1
2z2u2)exp@2m2(uz1u21uz2u2)/2#. At the level of one loop there
are essentially four diagrams which contribute. In Appendix
A we explicitly illustrate and evaluate these diagrams. Al-
though the elegant analysis of BNT guarantees that the
renormalization of the vertex is now closed, it is still rather
difficult to extract the renormalization of the vertex. For this
reason, it is necessary to introduce a representation of the
coupling functiong which makes the renormalization trans-
parent. The choice of BNT was the following:

g~u!5
1

2E0
`dx

x
r~x!exp@2~m2/4x!u#. ~14!

So the FRG will now appear in the form of a flow equation
for the ‘‘weight’’ function r(x). There are three points we
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wish to make at this juncture. First, the flow equation ob-
tained forr(x) is extremely complicated. This may sound
like a minor quibble, but in reality the solution of such an
equation is highly nontrivial. Since the flow equation is
bound to take the form of a nonlinear integro-differential
equation, the simpler the form of the equation, the higher the
chance of a satisfactory analysis. Second, and much more
importantly, we must be sure that fixed point solutions for
the ‘‘physical’’ coupling function also correspond to fixed
point solutions for the representative function@in this case
r(x)#. Unfortunately, it turns out that the choice of BNT
does not fulfil this requirement. As an example~we refer the
reader to the next section for details! the solvable case of
N→` indeed has a stable fixed point for the coupling func-
tion g(u). This solution is nontrivial, and takes the form of a
distribution

g~ uz12z2u2!;ed2~z12z2!exp@2~m2/2!¹x,y
2 #.

Similarly, the case ofN50 may also be shown to give a
stable fixed point which is simplyg(uz12z2u2)5const. In
each case the weight functionr is ill defined, and any nu-
merical attempt to find the fixed point from the flow equation
for r will fail. We refer the reader to Fig. 1, where a numeri-
cal demonstration of the failure of ther(x) representation is
given for the caseN→`. Third, we mention a more subtle
point. The fixed point function may be expected to signal the
physical transition from a vortex liquid to a vortex crystal. In
this case, we shall lose the rotational invariance of the theory
when we are in the low-temperature phase. Therefore, allow-

ing the coupling function to depend only on one variable,
i.e.,u5uz12z2u2, will precludea priori any fixed points cor-
responding to the formation of a vortex crystal which, of
course, breaks the rotational invariance implicit in the repre-
sentation~14!.

For these reasons it is necessary to make a new represen-
tation of the coupling functiong. This new representation
must fulfil the following conditions:~i! lead to a~numeri-
cally! tractable flow equation,~ii ! be sensitive to all fixed
points of the original coupling function, and~iii ! be sensitive
to the existence of a VLVC transition. It turns out that a
representation is available which not only satisfies the above
conditions, but which also has two more highly desirable
features, namely,~i! allows some analytic treatment of the
FRG flow equation and~ii ! is directly related to a measurable
physical quantity — the structure function for superconduct-
ing density-density correlations. After so much buildup, one
is slightly embarrassed to reveal that this representation is
nothing more than the Fourier transform of the original cou-
pling function.

Explicitly, we define a functionf̃ (k) by

f̃ ~k!52m2g̃~k!exp@2k2/2m2#, ~15!

whereg̃ is the Fourier transform~FT! of g(x,y). We stress
that this FT is defined in the two dimensional (x,y) plane, so
that the momentumk is two-dimensional. We shall always
use the momentum symbolsk and p for momenta in the
transverse plane. The momenta used for the~critical! trans-
verse fluctuations ared22 dimensional and will always be
denoted byq'.

We now refer the reader to Appendix A where a full
derivation of the FRG flow equation is presented in terms of
the new representationf̃ . The resulting equation takes the
form

] l f̃ ~k!5e f̃2~N/2! f̃ 222 f̃s f̃22 f̃ f !, ~16!

where

ã~k!sb̃~k![E d2p

2p
ã~p!b̃~k2p!cos2@~p3k!/2#

~17!

and

a!~k![E d2p

2p
ã~p!cos~p3k!, ~18!

with the definitionp3k5pxky2pykx ~we have also scaled
wave vectors bym!.

The analysis of the above flow equation~together with the
analogous equation for the disordered case! will occupy the
remainder of this paper. Before proceeding with the analysis
we shall conclude the present section by generalizing the
flow equation to account for disorder.

Following the previous arguments of BNT concerning the
generation of an infinite number of marginal quartic opera-
tors, the disorder quartic coupling introduced in Eq.~10! is
also seen to require generalization to a coupling function.
The free energy functional analogous to Eq.~13! with the
inclusion of disorder is of the form

FIG. 1. The functionr(x) under iteration for the caseN→`
with e51. After n5110 iterations, the function has developed os-
cillations over a very large region. These ever-growing oscillations
resemble a typical FRG flow instability, but the limit ofN→` is
known to have a simple, stable FRG fixed point in other FRG
representations. This is exemplified by following the integrals, of
r(x), as a function of iteration number. It is clearly heading
smoothly towards its fixed point value~equal to 1/2 fore51.!
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F5E dd22r'E dzdz* e2m2uzu2/2~ u¹'f i
au21tuf i

au2!1E dd22r'E dz1dz1* e
2m2uz1u2/2E dz2dz2* e

2m2uz2u2/2g~ uz12z2u2!

3uf i
a~z1,r'!u2uf j

a~z2,r'!u22E dd22r'E dz1dz1* e
2m2uz1u2/2E dz2dz2* e

2m2uz2u2/2D~ uz12z2u2!uf i
a~z1,r'!u2uf j

b~z2,r'!u2.

~19!

As before we are obliged to make a representation of the
coupling functionsg andD. We again use the FT represen-
tation, and along with the previously introducedf̃ , we define

D̃~k!52m2D̃~k!exp@2k2/2m2#, ~20!

whereD̃ is the Fourier transform ofD(x,y). In Appendix B
we illustrate the diagrams which contribute to the one-loop
renormalization of the coupling functionsf̃ and D̃. The re-
sulting flow equations take the form

] l f̃ ~k!5e f̃2~N/2! f̃ 222 f̃s f̃22 f̃ f !14 f̃sD̃12 f̃ D!,

] l D̃~k!5eD̃2ND̃f̃12D̃sD̃12D̃D!22D̃ f !, ~21!

with the same notation as used above.
Finally, we shall briefly mention the form of the one-loop

corrections to the propagator. These corrections contribute to
the fixed point value of the correlation length exponentn. In
Appendix C we illustrate the diagrams required to one loop,
for both the pure and disordered cases. It is seen that these
one-loop corrections have a particularly elegant form in
terms of f̃ and D̃. Explicitly we have13 ~to one-loop order!

22
1

n
5
N

2
f̃ ~0!1 f ~0!2D~0!, ~22!

where naturallyf andD are the inverse Fourier transforms
of the coupling functionsf̃ and D̃.

IV. SOLVABLE LIMITS

In this section we shall concentrate on direct analytic ap-
proaches to the FRG flow equation for the pure system, Eq.
~16!. For arbitrary values ofN the flow equation is intrac-
table, as it takes the form of a nonlinear integro-differential
equation. However, the two extreme cases ofN→` and
N50 may be treated exactly. We shall discuss these two
limits below, with emphasis placed on the singular form of
the corrections in each case.

A. N˜`

As is usual for large-N calculations, it is first necessary to
rescale the coupling~function! by N, prior to taking the limit
of infinite N. So rescalingf̃→2 f̃ /N and takingN→`, we
have the flow equation

] l f̃5e f̃2 f̃ 2. ~23!

This is a very simple equation and may be immediately in-
tegrated to give

f̃ ~k,l !5
e f̃ ~k,0!ee l

e1~ee l21! f̃ ~k,0!
. ~24!

We see that asl→` the function approaches the stable fixed
point f̃ s(k)5e, as long as the initial function is everywhere
nonzero. The reader is encouraged to compare this result to
that contained in a recent exact large-N analysis for this
same problem.7 Contact between the two results may be
made by regarding the FRG flow parameterl as related to the
transverse momentum viaq'5e2 l . The finiteN corrections
are highly nontrivial to calculate for arbitrary dimension.
However, our flow equation~16! is valid for all N to first
order in e, and therefore we may easily study the finite-N
corrections within this one-loop level. A surprise is in store.

Let us concentrate purely on the fixed point, and denote
the large-N solution byw(k)5 limN→` f̃ s . We then write
f̃ s5w1(1/N) f̃ s81O(1/N2). The correction to the large-N
fixed point f̃ s8 is then given by the equation

05~e22w! f̃ s824wsw24ww.. ~25!

We now recall thatw5e. It is seen that the termwsw in the
above equation diverges as the system size~in thex,y direc-
tions! A. In other words,the finite-N corrections may not be
considered as small in the thermodynamic limit. The strict
order of limits that one must take is firstA→` followed by
N→`. We see that for the large-N limit to have meaning
within this order of limits, we are forced to abandon our
solution w5e. The correct solution must simultaneously
solve the trivial equationw5w2 and also keep the integral
wsw finite in the thermodynamic limit. One such type of
solution is some sparse set of Kroneckerd functions. The
large-N limit is not sophisticated enough to resolve the exact
form ofw, but we have the very interesting hint that the fixed
point function may prefer to have some type of lattice struc-
ture ~a lattice of Kronecker spikes in this case!. In fact we
can proceed a little further with this idea, anticipating some-
what the ideas to be presented in Sec. VI. Let us assume that
the fixed point function chooses to take the form of some
regular lattice of Kronecker spikes. We write this as

w~k!5
e

d2~0!(G d2~k2G!, ~26!

where the reciprocal lattice vectors~RLV’s! $G% are as yet
undetermined. We now look to the form of the 1/N correc-
tions. Referring to Eq.~25! we see that one of the contribu-
tions to f s8 is of the formww.. The functionw. is essen-
tially the Fourier transform ofw. We then see that there are
only certain choices for the lattice constant of the RLV
which will maintain the same functional form for the correc-
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tion f s8 as compared to the large-N resultw. The lattice con-
stant is fixed by demanding thatw andw. be identical. This
is guaranteed, for example, by either a square lattice with
spacinga25(2p) or alternatively a triangular lattice with
spacinga254p/A3. These lattices correspond to the square
and triangular lattice solutions of the mean-field theory con-
sidered by Abrikosov.

We should point out that there exists a controversy in the
literature concerning the correct theory of the large-N limit
within the LLL approximation. The author of Ref. 7 finds a
continuous transition while the authors of Ref. 8 find the
transition to be first order~for d,6). We believe that in the
strictly infinite system the latter conclusion is valid and that
the difference in results probably lies in the commutation of
the N→` limit and the thermodynamic limit, as demon-
strated above from the one-loop FRG equation.

B. N˜0

In the strict limit of N50 the flow equation takes the
form

] l f̃ ~k!5e f̃22 f̃s f̃22 f̃ f.. ~27!

This equation is trivially solved at the fixed point by
f̃ (k)s5(pe/2)d2(k). So the solutions of the infinite-N and
N50 limits are in total contrast, being a constant and a
d-function, respectively. We see that the finite-N fixed point
~in particularN52) must in some sense be a natural com-
promise between these two forms. If one tries to expand
about the above result in powers ofN, then one finds that the
O(N) corrections diverge with the system size. We have the
same problem as encountered in the large-N limit — the
corrections are singular in the thermodynamic limit.

There are two approaches to the current difficulty. First,
one may try some RLV solution to theN50 limit, and then
see if the small-N expansion is sensible. This is easily per-
formed and one readily sees that the RLV solution does in-
deed exist in this limit, and is consistently ‘‘renormalized’’
by small-N corrections, if one chooses the particular Abriko-
sov RLV mentioned above. An interesting alternative is to
recognize that the small-N behavior is not analytic and to
make some scalingAnsatzto cope with this.

Consider the full flow equation~16! and make the rescal-
ing F̃(k)5N f̃(N1/2k). We then have explicitly

] l F̃~k!5eF̃~k!2~1/2!F̃222

3E ~d2p/2p!F̃~p!F̃~k2p!cos2~Np3k/2!

22F̃~k!E ~d2p/2p!F̃~p!cos~Np3k!. ~28!

Now takingN→0 in the above equation forF̃ produces the
small-N form for the original functionf̃ , as the scalingAn-
satzand the limitN→0 do not commute. In this way we are
able to examine the nonanalytic small-N behavior of the cou-
pling function. Taking the limitN→0 in the above equation
simply removes the trigonometric terms. With suitable res-
calings of F̃ and momentum, the fixed point of the flow
equation is determined by the appealingly simple equation

F̃~k!5F̃~k!21E ~d2p/2p!F̃~p!F̃~k2p!. ~29!

In other words we require a function which is equal to the
sum of its square and its self-convolution. This problem has
proved to be extremely nontrivial, and we consider it worthy
of study in its own right.

This is not the place for an extended discussion of this
equation. However, we shall make a few points. First, we
note that the RLVAnsatzprovides a whole class of solutions
to the above problem. In other words, Eq.~29! is solved by
any regular lattice of Kronekerd functions~or appropriately
normalized Diracd functions! — there is no selection of
lattice spacing. Second, we notice that a condition of solution
is that if a particular function satisfies Eq.~29!, then its Fou-
rier transform must also satisfy the equation~since the form
of the equation is invariant under a FT!. The Abrikosov RLV
solutions are then seen as somewhat special as they auto-
matically fulfill this condition, being self-reciprocal under a
FT. As a final point of interest, we may mention the results
of a numerical study of the one-dimensional analog of the
above equation. We consider the equation

f ~x!5 f ~x!21~2p!21/2E
2`

`

dy f~y! f ~x2y!. ~30!

In the next section we shall give details of some numerical
attempts to solve the full flow equation. One of the methods
used was a Newton root-finding algorithm~see Sec. V for
details!. The application of this method to the above equation
produced astonishing results. There appear to be an infinite
number oflocalizedsolutions to Eq.~30!. A given solution is
selected according to the initial guess fed into the Newton
algorithm. The solutions are stable to changes in the discrete
grid size, and are therefore not artifacts of the grid. We show
in Fig. 2 an example of one of these localized solutions,
together with its self-convolution, so that the reader may
appreciate the delicate balance achieved by the function in
creating ‘‘windows’’ within itself so as to reduce its self-
convolution in the tails of the function.

V. NUMERICAL ANALYSIS

In the previous section we have described our attempts at
direct analytic solution of the flow equation. We have seen
that forN→` andN50, simple solutions are possible, but
that the corrections are singular in each case, as they diverge
with the system size. Since we are really interested in
N52, which corresponds to the original model for the su-
perconductor, we have to resort to some numerical procedure
in order to solve the flow equation.~We remind the reader
that our main results will in fact be discussed in the next two
sections where we use a physically motivatedAnsatzto ex-
tract results from the flow equation.!

A numerical analysis of the FRG flow equation is an ex-
tremely nontrivial task as Eq.~16! takes the form of a non-
linear, two-dimensional, integro-differential equation. We
have employed two different numerical techniques in an at-
tempt to solve the equation. The first technique is a simple
iteration scheme~also used in the original work of BNT!,
implemented by discretizing momentum spacek and the
flow variable l . For a given iteration step~proportional to
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l ) one evaluates the integrals on the right-hand side~RHS! of
the flow equation, and therefore determines~within some
precision! the form of the functionf (k,l ) at the next iteration
step. One can improve the numerical stability of this proce-
dure by using Runge-Kutta algorithms.14 In following the
flow of the equation in such an iterative manner, it is crucial
to make a good initial ‘‘guess’’ for the function. If one starts
too far away from a~possible! fixed point, then the cumula-
tive errors picked up through iteration may well destabilize
the scheme before one has got close to the fixed point. For all
choices of initial guess, we were unable to find any stable
fixed point. The generic behavior of the function under itera-
tion is to develop propagating oscillations whose amplitudes
grow exponentially fast. Within some finite time, the func-
tion becomes nonnegligible at the grid boundary, and one is
obliged to halt the procedure. The runaway of the function
bears some similarity to that portrayed for the BNT weight
function in Fig. 1@although we should point out once more
that instabilities in the coupling functionr(x) which are
present in the case ofN→` are spurious, since this case
supports the stable fixed pointf̃5e#.

A more attractive numerical procedure is that of ‘‘root
finding’’ using a simple Newton scheme.14 One works di-
rectly at the fixed point, and therefore solves Eq.~16! with
the LHS set equal to zero. By discretizing the momentum
space, one may regard the fixed-point equation as a large
number of coupled algebraic equations. The solution of such
a problem may then be regarded as a root-finding exercise
and one may employ the Newton algorithm.14 This proce-
dure is also sensitive to the original guess of the ‘‘roots,’’ as
the Newton scheme is notoriously unstable if one starts too
far away from the true solution. By using this method we
were successful in finding many fixed point solutions of Eq.
~16!. In fact we believe there to be an infinite number of such

solutions. In Fig. 3 we present a typical example of such a
fixed point — its cross section bears a similarity to the one-
dimensional solution of the small-N problem discussed in the
previous section. The remaining difficulty with generating
fixed point solutions using the Newton method is that one
has no information concerning their stability, whereas the
iteration method only finds stable fixed points by construc-
tion. To check the stability of the solutions found by the
Newton method one has several possibilities. One method is
to simply diagonalize the stability matrix of the system of
equations and examine the eigenvalue spectrum. Alterna-
tively, one may insert the fixed point solution into the itera-
tion algorithm and study the evolution — a stable fixed point
will not evolve. Unfortunately we report that all of the solu-
tions we found using the Newton method proved to be un-
stable.

We repeated all of the above numerical analysis for the
coupled flow equations containing the disorder functionD̃.
The generic behavior of the iteration method was rather simi-
lar to that described above for weak disorder strength~i.e.,
small initial guess forD̃!. For larger values ofD̃, the flow
was still unstable, but in a different way. In contrast to the
previous case where the functions became unstable by devel-
oping ever-growing oscillations, in this case, the instability
was characterized by the function simply growing in size,
with no oscillatory structure appearing. Again, the iteration
was abandoned when the functions became nonnegligible at
the grid boundary.

The main results of our numerical analysis of the flow
equations is that~i! iteration of smooth functions invariably
leads to instabilities and~ii ! the flow space is extremely com-
plicated as it contains an infinite number of unstable fixed
points. The open question remains, of course, are there any
stable fixed points?

VI. RLV ANSATZ

From the last two sections, a rather forlorn picture has
emerged. The solvable limits ofN→` andN50 have been
singular, so that no systematic expansion has been possible,
and the numerical analysis of the flow equation has yielded
no conclusive results as to the existence of stable FRG fixed
points. In such a situation, anAnsatzis required.

The one positive result we obtained from analyzing the

FIG. 2. One of the infinitely many localized solutions of Eq.
~30!. The functionf (x) is given by the solid line, while the circles
represent the self-convolution off (x). Note how the function cre-
ates ‘‘windows’’ within itself, so as to lessen its self-convolution in
the tails of the function.

FIG. 3. An example of one of the infinitely many unstable fixed
points ~found by use of the Newton root-finding scheme! for the
coupling functionf̃ (k) in the absence of disorder.
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solvable limits was that the flow equation contained informa-
tion about the Abrikosov lattice. This was clear from the
large-N limit, where we found that the only solution which
was well defined in the thermodynamic limit was one pos-
sessing a lattice structure and that the Abrikosov lattice was
selected by studying the finite-N corrections. It is then natu-
ral to try toconstructa fixed point solution for arbitraryN by
considering solutions which are expressed in terms of a re-
ciprocal lattice, bearing in mind that the lattice is likely to be
that of Abrikosov.

Let us first consider the case without disorder — we refer
the reader to the relevant flow equation~16! in Sec. III. We
make the RLVAnsatz

f̃ ~k!5(
G

A~G!d2~k2G!, ~31!

where the vectors$G% are a set of RLV’s, but with no more
precise specification as yet. Inserting thisAnsatz into the
flow equation yields the interesting result that no new terms
are generated if the RLV is chosen to be of Abrikosov form.
More specifically, the RLV must be self-reciprocal under a
FT, implying ~for example! either a triangular lattice of spac-
ing a, with a254p/3, or else a square lattice with spacing
a, satisfyinga252p. In other words, this form of the cou-
pling function isclosedunder renormalization.

There are several points to be made in relation to the RLV
Ansatz. The first such point was already made in Sec. III.
Since we are hoping to describe the VLVC transition, we
may expect the coupling function to take a fixed point form
which breaks rotational invariance, such as the RLV form.
Another point to consider is the meaning of the runaway
flows found numerically for initial guesses of the coupling
function which were smooth functions. Although one may
regard these flows as signaling a first-order transition, this is
based more on prejudice than anything else. It is equally
possible that the flow is simply heading towards a strong-
coupling fixed point. We regard the RLVAnsatzas the cor-
rect form of the coupling function at this strong-coupling
fixed point. In other words, the correct ‘‘f4’’ theory for this
system is such that the coupling function takes nonzero val-
ues only at values of momentum which are coincident with a
vector of a reciprocal lattice. Of course such a model cannot
describe the liquid phase. In that respect it is similar to some
of the theories of two-dimensional melting which, being ex-
pressed in terms of Burgers vectors, can only in a straight-
forward way describe the crystalline phase~see, e.g., Nelson
and Halperin15!. While we have been unable to derive this
RLV model starting from Eq.~13!, we feel it captures the
essence of the symmetries broken in the transition and hence
because of ‘‘universality’’ arguments provides a way of cal-
culating critical exponents, etc., at the transition, should it be
a continuous one. Strong support for the RLV model is pro-
vided by the work of Yeo and Moore16 where the function
f̃ (k) has been studied in the pure case in two dimensions
within the well-known strong-coupling approximation in
which all the parquet diagrams are summed. At criticality
~which in this approximation is at zero temperature! f̃ (k) has
the RLV form.

For the full model including disorder, we make the simul-
taneousAnsätze

f̃ ~k!5(
G

A~G!d2~k2G!,

D̃~k!5(
G

B~G!d2~k2G!. ~32!

In the next section we shall study the fixed point properties
associated with such a form for the coupling functions.

VII. FIXED-POINT SOLUTIONS

One finds that the flow equations are immensely simpli-
fied by our particular choice of the RLV — the RLV of the
Abrikosov lattice. For this choice the trigonometric terms in
the convolution-type integrals become equal to unity, and the
functions f̃ andD̃ become self-reciprocal under the FT. Pro-
ceeding with this choice of the RLV, it is possible to make
analytic progress with the simpleAnsatz A(G)5A,
B(G)5B, i.e., choosing the RLV coefficients to be indepen-
dent ofG.

We shall proceed to derive the fixed points and their as-
sociated stability eigenvalues in some detail, for the disor-
dered case. Given the coupled flow equations~21! we make
theAnsätze

f̃ ~k!5A(
G

d2~k2G!,

D̃~k!5B(
G

d2~k2G!, ~33!

where we choose the reciprocal lattice to be a square lattice
of spacinga5(2p)1/2. This particular choice is purely for
convenience. At this one-loop level, the only relevant char-
acteristic of the reciprocal lattice is its self-reciprocity under
a FT. Therefore the square lattice with spacinga5(2p)1/2

and the triangular lattice with spacinga5(4p/3)1/2 will have
the same FRG properties.

As an example of how to calculate the terms in the flow
equations with this form of the coupling functions, consider
the convolution termf̃s f̃ , defined explicitly in Eq.~17!:

f ˜s f̃5A2(
G

(
G8

E d2p

2p
d~p2G!d2~k2p2G8!

3cos2S 12 p3kD
5

A2

2p(
G

(
G8

d2~k2G8!. ~34!

We must fix the value of the free sum over reciprocal lattice
vectors. This is conveniently done by considering the RLV
sum over exp(ik•G). We have
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(
G

exp~ ik•G!5(
m,n

exp~ ikxma1 ikyna!

5~2p!2 (
m8,n8

d~kxa22pm8!d~kya22pn8!

5
~2p!2

a2 (
G

d2~k2G!52p(
G

d2~k2G!.

~35!

Settingk50 in the above we see that(G52pd2(0). Re-
turning to Eq.~34! we then have

f̃ s f̃5A2d2~0!(
G

d2~k2G!. ~36!

Similar manipulations with the other terms in Eq.~21!
then yield the flow equations forA andB:

] lA5eA2@~N/2!A212A212A224AB22AB#d2~0!,

] lB5eB2@NAB22B222B212AB#d2~0! ~37!

@where we have kept all the contributions separate to allow
easy cross-reference with the original flow equation~21!#.

One easily finds fixed point values forA andB, leading to
fixed point solutions for the coupling functions of the form

f̃ s5
e

2~N21!d2~0!(G d2~k2G!,

D̃s5
~42N!e

8~N21!d2~0!(G d2~k2G!. ~38!

The allowed range of the parameterN is now 1,N,4, in
order to ensure the nonnegativity of the coupling functions.

The one-loop correction to the correlation length expo-
nent is given by 221/n5(N/2) f̃ (0)1 f (0)2D(0), and we
therefore have at the above fixed point

1

n
522

3N

8~N21!
e1O~e2!. ~39!

To address the question of stability of this fixed point, we
consider perturbations to the coupling functions. In order to
remain within the space of coupling functions consistent
with the RLV model, the perturbations must in turn be re-
stricted to the RLV. We writef̃5 f̃ s1h̃ andD̃5D̃s1 j̃ with
the explicit definitions

f̃ ~k,l !5 f̃ s~k!1(
G

a~G,l !d2~k2G!,

D̃~k,l !5D̃s~k!1(
G

b~G,l !d2~k2G!. ~40!

In terms of these perturbations we have the flow equations

] l h̃5eh̃2N f̃sh̃24 f̃ ssh̃22 f̃ sh
!22 f s

!h̃14 f̃ ss j̃

14D̃ssh̃12 f̃ sj
!12Ds

!h̃,

] l j̃5ej̃2N f̃sj̃2ND̃sh̃14D̃ss j̃12D̃sj
!

12Ds
!j̃22D̃sh

!22 f s
!j̃. ~41!

Calculating the momentum integrals in the above equations,
we may write the flow equations in terms of the RLV coef-
ficientsa andb:

] la5a@e2~N12!Ad2~0!12Bd2~0!#22S1@3A22B#

16S2A,

] lb5b@e2~N12!Ad2~0!22Bd2~0!#2NBd2~0!a22S1B

16S2B, ~42!

where we have defined

2pS1~ l ![(
G

a~G,l !,

2pS2~ l ![(
G

b~G,l !. ~43!

To analyze these equations we first sum each equation
over the RLV. This yields two coupled equations for the
quantitiesS1 andS2 which we write in the form

] lS i5G i , jS j , i , j51,2, ~44!

where the matrixG has the form

G5
e

8~N21! S 22~N18! 24

2~N12!~42N! 4~42N!
D . ~45!

The two eigenvalues of this matrix are found to be

l152
~42N!e

4~N21!
, l252e. ~46!

Both eigenvalues are negative only when 1,N,4. There-
fore we see that for this range ofN, the quantitiesS i will
decay exponentially fast to zero under the flow of the FRG.

We may therefore neglectS1 and S2 in the flow Eqs.
~42!. It is then easy to see thata evolves according to

] la52
~42N!e

4~N21!
a ~47!

and therefore decays exponentially fast to zero for
1,N,4, with decay rate equal to the stability eigenvalue
ul1u. Finally, neglectinga in the flow equation forb we see
that b also decays to zero in exponential fashion for
1,N,4, again with decay rate equal toul1u. So we con-
clude that the fixed-point solutionsf̃ s and D̃s given in Eqs.
~38! are stable against arbitrary RLV perturbations in the
parameter range 1,N,4 ~which encompasses the physical
case ofN52 for the superconductor!.

Interestingly, the value of the correlation length exponent
and the value of the stability eigenvaluesl1 andl2 ~which
are related to correction-to-scaling exponents! are the same
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as those obtained for the simpleO(N) model in the presence
of disorder,11 but in two dimensions lower.~Note that in this
article e562d.!

One may also use this RLVAnsatz in the absence of
disorder, i.e. Eq.~16!. Performing precisely analogous steps
to those outlined above, one finds the following results. One
obtains a fixed point solution

f̃ s5
2e

~N18!d2~0!(G d2~k2G!, ~48!

The value ofn at this fixed point is given by

1

n
522

~N12!

~N18!
e1O~e2!, ~49!

identical with that obtained from the pureO(N) model17

@again in two lower dimensions, i.e., a pureO(N) model
with e542d#. The stability analysis for the pure case re-
veals an eigenvalue spectrum characterized by two different
eigenvalues, with values

l15
~42N!e

4~N18!
, l252e. ~50!

Clearly the fixed point is only stable forN.4, and one may
therefore not make the direct connection to the pureO(N)
model, sinceN54 plays no special role in that case.@In-
triguingly, the value of the eigenvalues for the pure super-
conductor are the same as those for the Heisenberg fixed
point in the disorderedO(N) model.11#

VIII. DISCUSSION AND CONCLUSIONS

We now turn to the implications of our calculations. For
N52 in the presence of disorder they suggest that our prob-
lem is in the same universality class as the disordered
O(N) model in two dimensions lower. Thus, in the presence
of disorder, one would not expect there to be a phase transi-
tion below four dimensions to a state with both off-diagonal
long-range order~ODLRO! and crystalline order. This result
is consistent with the old argument of Larkin18 which shows
that disorder removes crystalline order below four dimen-
sions. It suggests that if there is a phase transition in three
dimensions from the vortex liquid state to some other state,
then this state cannot be crystalline, but must be a form of
vortex ‘‘slush’’ in which the crystalline order only exists
over a finite length scale and that at the transition there is a
jump in the degree of short-range crystalline order.

In the absence of disorder, we have been unable to find
for N52 any stable fixed points even within the RLV model,
and deduce that the original conclusion of BNT that the tran-
sition becomes first order below six dimensions is likely to
be correct. One of us has shown19 that thermal excitation of
phase fluctuations does not permit the simultaneous exist-
ence of ODLRO and the vortex lattice ford,4 for the pure
case. Thus it seems likely that 4 is a special dimension for
both pure and disordered systems.

The recent magnetization measurements of Zeldov
et al.,20 on Bi-Sr-Ca-Cu-O provide very strong evidence that
a first-order transition line exists. A striking feature of their
data is that the line in theH-T diagram~across which there is

a jump in the magnetization! seems to terminate at a critical
end point at finiteH and nonzero temperature. If these results
are confirmed, it means that the low-temperature phase has
the same symmetries as the normal vortex liquid as one can
pass between the two around the critical end point without
crossing a phase line — just as in the conventional liquid-gas
transition. Thus the phase transition would indeed seem to be
between a normal liquid region and a ‘‘vortex slush’’ region,
in which there exists ‘‘long’’ short-range crystalline order. A
low-temperature phase of this character was suggested in
Ref. 19.

There is much experimental evidence also for a first-order
transition in untwinned crystals of Y-Ba-Cu-O~e.g., Safar
et al.21!. Most of the experiments are transport measurements
which show that there is a line in theH-T diagram at which
there is a sharp drop in the resistivity. This kink in the mag-
netoresistance becomes smeared at higher fields and the
finite-resistivity curve displays Ohmic behavior.22 Going to
higher fields increases the effective strength of the disorder
so that the direct introduction of point disorder via electron
irradiation would be expected to mirror the effects seen in
high fields. Fendrichet al.,23 found that electron irradiation
led to a suppression of the drop and a temperature depen-
dence for the resistivity appropriate to a vortex liquid~with
no evidence for a vortex glass transition!. It seems possible
that if the complications produced in Y-Ba-Cu-O by the
strong hysteresis effects could be removed, then the resulting
phase diagram might be similar to that found by Zeldov
et al., for Bi-Sr-Ca-Cu-O.

To what extent are our results consistent with these ex-
perimental findings? Our most important result is in the pres-
ence of disorder one does not expect there to be a low-
temperature phase with long-range order of either the phase
~ODLRO! or the density~crystalline order!. Furthermore, if
one rather boldly assumes that no other phases exist below
four dimensions in the presence of weak disorder~strong
disorder might be needed to produce gauge glass behavior!,
then the argument of Moore19 for the pure case and that of
Larkin18 for the case of point disorder would imply that the
low-temperature phase can only be of the ‘‘vortex slush’’
variety and a phase diagram involving a critical end point
should then be of little surprise. Of course, the form of the
actual first-order line in theH-T diagram is likely to depend
on the amount of disorder present, the anisotropy, etc., in a
way which is not directly obtainable from a RG calculation
of the type used in this paper, which is only really useful for
describing continuous phase transitions.

In fact, if the phase diagram of Zeldovet al. is generally
valid, the only continuous transition is that associated with
the critical end point itself. The order parameter associated
with the transition is a scalar~it is essentiallyucu2 whose
thermal average is proportional to the magnetisation!. Hence
the critical exponents associated with the critical end point
would be expected to be those of the random field Ising
model as the disorder is coupled directly to the order param-
eter. ~We are indebted to D.S. Fisher for this observation.!
Since the exponentb of the random field model is extremely
close to zero,24 this would explain why at the end point the
magnetization jump did not apparently go to zero.
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APPENDIX A

In this first appendix we shall present a detailed derivation
of the FRG flow equation~16! for the case of no disorder.
From the form of the free energy functional~13! we see that
the bare propagator has the form

s~q' ;z1* ,z2!5
1

~q'
21t!

m2

2p
exp~m2z1* z2/2!, ~A1!

while the bare vertex@which is now a function of the
(x,y)-plane coordinates# is given by

2g~ uz12z2u2!exp@2m2~ uz1u21uz2u2!#. ~A2!

These diagrammatic elements are illustrated in Fig. 4. We
shall be using standard dimensional regularization~in
e562d) along with the minimal subtraction method.12

Therefore, from one-loop perturbation theory we shall attain
a renormalization of the vertex of the symbolic form

gR~s!5g~s!1~1/e!E ds1ds2F~s,s1 ,s2!g~s1!g~s2!

1O~g3!. ~A3!

The prefactor of 1/e just comes from the integral over the
internal transverse momenta~of dimensiond22), whereas
the nontrivial kernelF is obtained by considering the internal
integration over the ‘‘plane’’ variables.

To see how we arrive at such a renormalization of the
vertex, consider the perturbative calculation of the four-point
correlation function

C4~q1 ,z1 ;q2 ,z2 ;q3 ,z3* ;q4 ,z4* !

[^f i~q1 ,z1!f j~q2 ,z2!f i* ~q3 ,z3* !f j* ~q4 ,z4* !&.

The first point to make is that we must be careful to dis-
tinguish between two different ‘‘symmetry channels’’@de-
noted by~a! and~b!# which exist for this function. Since the
vertex is nonlocal, we have two distinct pairings of the plane
variables (z1 ,z2 ,z3* ,z4* ), as shown in Fig. 5. When we come
to evaluate the one-loop corrections, our representation must
be such that there is an unambiguous renormalization of a
given symmetry channel from a given one-loop diagram.
~Such an unambiguous renormalization is not available
within the representation of BNT — the question of whether
this invalidates their flow equation is not presently clear.!

Before evaluating the bare diagrams, we must choose a
representation for the vertex functiong. As mentioned in the
main text, we shall work with the Fourier transform of this
function

FIG. 4. The two basic diagrammatic elements used in the per-
turbation expansion: the propagators(q' ;z1* ,z2) and the bare ver-
tex.

FIG. 5. The bare four-point correlation functionC4,bare— par-
ticular attention must be paid to distinguishing the two symmetry
channels~a! and ~b!.

FIG. 6. The four one-loop contributions toC4
a , along with their

combinatoric weights. We have indicated the internal plane labels
in the first diagram to allow comparison with Eq.~A5!.
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g̃~k!5~1/2p!E d2rg~r !eik•r.

It is convenient to reexpress this FT in terms of complex
momentaK5kx1 iky as

g̃~K !5~1/2p!E dzdz* g~z,z* !exp@ i ~K* z1Kz* !/2#.

The bare diagram~a! may then be evaluated to give~up to
a factor of the transverse parts of the four external propaga-
tors!

C4,bare
a 522S m2

2p2 D expFm2~z1z3*1z2z4* !

2 G E dKdK*

2p
g̃~K,K* !expF2

KK*

m2 2
iK * ~z12z2!

2
2
iK ~z3*2z4* !

2 G . ~A4!

The reader may be confused that we are not calculating the usual one-particle-irreducible functions. It is necessary in this
calculation to attach the external propagators in order to give an identifiable ‘‘plane’’ label to each leg of the vertex. The
transverse momentum part of the external propagators is irrelevant to the calculation and will be omitted. The expression for
the bare diagram~b! may be obtained by interchangingz1 andz2 ~or equivalentlyz3* andz4* ).

In Fig. 6 we show the four one-loop diagrams which will renormalize the bare diagram in channel A.~The diagrams
contributing to channel B may be obtained by interchanging the labelsz1 and z2.! All these diagrams contain an identical
internal integral over the transverse momenta. This integral has the form

E dd22q'

~2p!d22

1

~q'
21t!

1

@~q'8 1q'!21t#

and has a singular contribution equal toSd22 /e @whereSd is the surface area of a unit hypersphere ind dimensions, divided
by (2p)d#. The constantSd22 may be absorbed into the coupling function and will henceforth be omitted.

The internal integrals over the plane variables may be most easily done using the following formula for Gaussian integrals:

E dnzdnz* exp@2m2~zi*Mi j zj2ai* zi2zi* bi !#5~p/m2!n~detM !21exp~m2ai*Mi j
21bj !.

We shall follow the evaluation of diagram A rather closely, and then simply quote the results for the remaining three
diagrams. So referring to diagram A, we have the explicit expression

eC4,A
a 5

~21!2wA

2! S m2

2p D 6E dh1dh1* •••dh4dh4* exp@m2~ uh1u21uh2u21uh3u21uh4u2!/2#g~ uh12h2u2!

3g~ uh32h4u2!exp@m2~h1* z11h2* z21h3z3*1h4z4*1h3*h11h4*h2!/2#, ~A5!

wherewA is a combinatoric factor equal to 8. We now replace the two coupling functions by their FT’s and then explicitly
evaluate the fourfold Gaussian integrals over (h i ,h i* ). The resulting integrals may then be expressed in the form

eC4,A
a 54S m2

2p2D expFm2~z1z3*1z2z4* !

2 G E dKdK*

2p
expF2

KK*

m2 2
iK * ~z12z2!

2
2
iK ~z3*2z4* !

2 G2pE dP1dP1*

2p

3E dP2dP2*

2p
g̃~P1 ,P1* !g̃~P2 ,P2* !d~K2P12P2!d~K*2P1*2P2* !exp@~ uKu22uP1u22uP2u22P1P2* !/2m2#.

~A6!

On comparing the above expression with that for the bare function~A4!, we see that the functiong̃(K,K* ) is renormalized
from diagram A by an amountdg̃A given by

edg̃A524pE dP1dP1*

2p E dP2dP2*

2p
g̃~P1 ,P1* !g̃~P2 ,P2* !d~K2P12P2!d~K*2P1*2P2* !exp@~ uKu22uP1u22uP2u2

2P1P2* !/2m2#. ~A7!
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In terms of vector notation (kx ,ky) this contribution may be
written as

edg̃A522E d2p

2p
g̃~p!g̃~k2p!exp@2p•~p2k!/m2#

3cos@~p3k!/m2#, ~A8!

wherep3k[pxky2pykx .
In a precisely analogous fashion one may calculate the

contributions from diagrams B, C, and D, resulting in the
following expressions:

edg̃B522E d2p

2p
g̃~p!g̃~k2p!exp@2p•~p2k!/m2#,

~A9!

edg̃C52Nm2g̃~k!2exp~2k2/2m2! ~A10!

and

edg̃D524g̃~k!E d2p

2p
g̃~p!exp~2p2/2m2!cos@~p3k!/m2#.

~A11!

Given these one-loop renormalizations of the coupling
function, we then have theb functional

b@ g̃#52eg̃1@dg̃A1dg̃B1dg̃C1dg̃D#1O~ g̃3!. ~A12!

Interpreting theb-functional as a FRG flow~in terms of a
scaling variableb5el) we may write a differential flow
equation of the form] l g̃52b@ g̃#. Finally, we define a more
convenient coupling function via

f̃ ~k!52m2g̃~k!exp@2k2/2m2# ~A13!

and then rescale all momenta with respect tom. This com-
pletes the derivation of the flow equation~16! given in the
main body of the text.

APPENDIX B

In this appendix we illustrate the diagrams which contrib-
ute to one loop to the renormalization of the four-point cor-
relation function, in the presence of disorder. There will be
no explicit calculation in this appendix as the calculations
may be easily reconstructed using the examples given in the
previous appendix. In the presence of disorder, the labeling
of diagrams becomes a little more complicated as we now
have replica indices. Referring the reader to the form of the
free energy functional in the main text@Eq. ~19!#, we see that

we have two bare vertices which are illustrated in Fig. 7.
As before, we use these vertices to construct the four-

point correlation function. Actually, we now require two dif-
ferent correlation functions in order to renormalize the two
bare vertices. These correlation functions differ in that one
has four identical replica labels (aaaa) and will be used to
find the renormalization of the coupling functionf̃ , while the
other has two pairs of replica labels (aabb) and will be
used to find the renormalization ofD̃. As before we have two
symmetry channels related to the external plane labeling of
the diagrams.

In Figs. 8 and 9 we show the bare and one-loop contribu-
tions to these four-point correlation functions. Note there are
no ‘‘free-loop’’ contributions from the disorder vertex due to
the replica limitM→0 ~whereM is the number of replicas.!

Following the details of Appendix A, one may finally
arrive at the coupled flow equations given in the main text, in
Eq. ~21!.

APPENDIX C

In this final appendix we illustrate the diagrams contrib-
uting at one loop to the two-point correlation function. By
considering these contributions we derive the relation be-
tween the fixed point value of the coupling functions, and the
shift of the correlation exponentn from its bare value of 2.FIG. 7. The two bare vertices in the disorder calculation.

FIG. 8. The bare and one-loop diagrams required for the renor-
malization of the coupling functionf̃ .

FIG. 9. The bare and one-loop diagrams required for the renor-
malization of the coupling functionD̃.
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The two-point correlation function at the bare level is
simply given by the propagators(q' ;z1* ,z2). The one-loop
corrections are illustrated in Fig. 10. Note that there is no
tadpole contribution from the disorder vertex~because of the
replica limit!. We shall explicitly evaluate the first diagram,
and simply quote the results for the remaining two.

In the limit of the external transverse momentum going to
zero, we have for diagram~i! ~after performing the usual
internal momentum integral!

2
N

t0
2 S m2

2p D 3~21!
t0
12e/2

e E dh1dh1* dh2dh2*

3g~ uh12h2u2!exp@m2~ uh1u21uh2u2!/2#

3exp@m2~ uh2u21z1*h11z2h1* !/2#, ~C1!

where we have added a zero subscript tot to emphasize that
it is to be renormalized by these one-loop contributions.

Again, we replace the coupling function by its FT and per-
form the internal Gaussian integrals. In this way, one obtains
for diagram~i!

N

t0
S m2

2p D 2 t0
2e/2

e
2pg̃~0!exp~m2z1* z2/2!. ~C2!

Comparing this expression to the bare propagator, we see
that the inverse mass 1/t0 is renormalized by diagram~i! by
an amount (N/et0)m

2g̃(0).
One may show that the analogous contributions from dia-

grams~ii ! and ~iii ! are given by

2

et0
E d2k

2p
g̃~k!exp~2k2/2m2!

and

22

et0
E d2k

2p
D̃~k!exp~2k2/2m2!

respectively.
In terms of the functionsf̃ and D̃ we finally have

1

tR
5

1

t0
1

1

et0
SN f̃~0!1E d2k

2p
f̃ ~k!2E d2k

2p
D̃~k! D

1O~ f̃ 2, f̃ D̃,D̃2!. ~C3!

Following the usual line of argument, this relation may be
reexpressed in terms of the shift to the correlation length
exponent, as given in the main text in Eq.~22!.
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