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High-frequency vortex response of anisotropic type-1l superconductors
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The theory of the self-consistent treatment of vortex dynamics developed by Coffey and Clem is extended
to the case of anisotropic type-ll superconductors. The vortex response to a microwave electromagnetic field is
theoretically investigated based on the associated complex rf magnetic permeability of anisotropic supercon-
ductors. Microwave dissipation due to vortex motion is studied as a function of the temperature, dc magnetic
field, and microwave frequency. Comparisons of numerical results between anisotropic and isotropic super-
conductors are also given. The influence of the thin edge of superconducting platelets on the microwave
properties is specifically examined as well. The extension presented provides the possible applicability in
studying the high-frequency response of real anisotropic high-temperature superconducting single-crystal
platelets in the mixed statES0163-182606)03725-3

[. INTRODUCTION (IL) for the vortex liquid. Their ac susceptibility has been
theoretically described by a dislocation-mediated flux-creep
Measurements of the vortex response to alternating magepproach, which includes elastic and plastic creeps. The plas-
netic fields or transport currents are commonly applied tdic creep comes from the dislocation of the flux-line lattice
investigate the vortex dynamics in type-1l superconductors(FLL), while elastic creep from elastic deformation of the
At present, there exist many experimental techniques t&LL. In a small driving field, it is expected that the plastic
probe the dissipation and screening such as the vibratingsreep will dominate. The high-frequency vortex response of
reed resonator? torsional oscillato? ac magnetic high-temperature superconductors has also been studied
permeability? and microwave surface impedaricé All the  based on the TAFF model reported by Y8He considered
ac measurements can be performed by superimposing apinned Abrikosov FLL of a superconducting single crystal
small ac field on a large dc field. A small ac field interactsnear the depinning threshold, and the microwave response
with the penetrated vortices near the surface of the specimemas investigated. As discussed elsewhere, Koshelev and
and deforms the vortex lattice therein, which in turn propa-Vinokur?* have calculated the Campbell penetration depth
gates into the interior of the superconductor. The propagatioand surface resistance of a pinned vortex lattice within the
is pushed forward through vortex interactions and slowedramework of collective pinning theo}=22A quite distinct
down by pinning and viscous drag forces. Accordingly, themodel in discussing the linear ac response of the viscous
dissipation and shielding properties of type-Il superconductflux-line liquid has recently been done by Chen and
ors are strongly dependent on the vortex dynamics. WittMarchetti?* To incorporate the vortex-vortex interaction to-
related measurements, the models for the pinning and motiogether with the nonlocality effect, they used the hydrody-
of vortices in the mixed state can be veriffeti:}t namic mode?® to describe the response of a flux liquid to an
In general, the ac response of superconductors in thac field. Because of the existence of the nonlocality arising
mixed state includes linear and nonlinear responses. In thigom the viscous forces, two different penetration depths are
linear response, the induced current density is proportional tstroduced which closely relate to the amplitude of the ac
a small ac field and independent of the amplitude of the apenetrating field. The hydrodynamic model is in contrast
field. If the current density is related to the amplitude, onewith the TAFF model, where nonlocality is rarely taken into
then speaks of a nonlinear response. In type-Il superconducaccount and only one ac penetration depth dominates the
ors, the existence of vortex pinning due to impurities will response. The response in the mixed state dominated by the
generally cause a nonlinear magnetic ac response above ttveo penetration depths has also been considered based on the
threshold amplitude of the driving fiefd. The crossover two-mode electrodynamics approach of Soatral?® Their
from a linear to nonlinear response has been investigatetivo-mode approach encompasses the nonlocal effects arising
from a unigue macroscopic viewpoint by van der Be¢lal.  from long-range intervortex interactions as well as the effects
12 The linear response in the regime of thermally assiste@f FLL elasticity. More recently, Sonin and Traffohave
flux flow is better understood in terms of the resistivefurther considered the influence of the Bean-Livingston bar-
staté®>~1° and London electrodynamics, whereas the Beanier on the surface impedance of a type-ll superconductor.
critical-state model is often used in the nonlinear regtfité.  The suppression of dissipation due to this barrier was pre-
In the thermally assisted flux floéTAFF) phenomenology, dicted.
the thermally activated depinning of the vortex lines is incor-  In addition to the above-described theoretical approaches,
porated based on the extension of the Bardeen-Stefd®n there are more treatments worthwhile mentioning. A more
flux flow model*® van der Beek and Ké3have successfully general analysis of the linear ac response incorporating the
utilized the TAFF model to reproduce the irreversibility line effects flux pinning, flux flow, and flux creep, together with
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nonlocality in type-Il superconductors, has been undertakepossible pronounced effects of thin edges of platei® to

by Brandt® and Coffey and Clerd®>**respectively. Making ~anisotropy on microwave properties will be discussed de-
use of a continuum method in the FLL, Brandt calculated thdailedly as well. Our results are expected to be applicable to
complex ac penetration depth, surface impedance, complgke study of the high-frequency response for highsuper-
resistivity, and magnetic ac permeability. Accordingly, theconducting single-crystal platelets especially in the parallel
ac response can be discussed. Based on a self-consistdigid configuration.

treatment of vortex dynamics, Coffey and Clem undertook

an exhaustive investigation of the theory of ac magnetic per- Il. MODEL OF VORTEX DYNAMICS

meability and surface impedance to study the high-frequency AND ITS EXTENSION

linear response of superconductors. We are here only con- : : ; _34
cerned wiF:h the Coffé)y—CIem model. Applications ofythis We first briefly review the Coffey-Clem mod,

henomenoloaical model to hiah-temperatur rcond amely, the self-consistent theory of vortex dynamics. The
phenomenological mode: to nigh-temperature SUperconaucy, o, dynamics is treated self-consistently by including the
ors have been accomplished by many workers. Reven

Honlocal effects arising from the coupling of the supercurrent

et al. ° explained quantitatively the data of the surface resis- : ;
) : and vortex displacements. Taking account of the response of
tance of their samples, the high-YBa,Cu30;_, (YBCO) the normal fluid, the two-fluid model in the presence of mov-

(¥:123) films. Also, the parameters in the Coffey-Clem g vortices is generalized. Creep effects are described in

oo i
mo_del .SUCh as the Labusch constant, pinning fre_quency, antarms of the Brownian motion in a periodic potential; thereby
activation energy can be experimentally determined. In th dynamical complex mobility is obtained. The electrody-

ik I_ow-tgmperature regime, the mode| was used.t%amics of isotropic type-Il superconductors is governed by
extract the viscosity and Labusch constant, together Wltrfhe two-fluid equation, Ohm’s law for a normal fluid, Lon-

:Eelr defe?%enlt_:e,'otn tle;rzﬁerat.ure by Pamt;maet:aI: tln don equations, Ampe’s and Faraday’s laws, and the equa-
€ work ot Ywliaciet al,” the microwave Surlace resistance v, , ot motion for a vortex. The theory gives the complex ac

of YBCO films was also well described by this model. In the . =~ 29
field-dependent surface resistance, a crossover from ﬂ,%enetranon depth as follows:
pinning-dominated regime to flux-flow reginf@iscous force \2(B, T)—(i/2)§2 (Bo,T, ) 112
dominatedwas found. The crossover is a consequence ofthe  X(w,B,,T)= - 5 e 2 . (D
suppression of the pinning force due to the magnetic field. A 1+2iN%(Bo, T)/ 83(Bo, T, @)
similar study on another typical highs system, Bi:2212 \yhere \(B,,T) is the magnetic-field and temperature-
EE' élsgggﬁg%?lgnﬁicﬁce%]agaaei (?é?:t) Egll;igc?nypgrzrr]sgtuerrl i rSependent London penetration depdl is the normal-fluid

' . R Pe kin depth defined a&,= (2p ni/ mwow)*2 The b, in Eq.(1)
BSCCO single crystals was reported to be similar to theg ihe effective skin depth due too creep andcvortex motion

conventional superconductors. ; o~ 2 : .
The Coffey-Clem model is developed and suitable for iso-and Is expressed ab,.=(2p, / mow) ™, With effective resis

tropic superconductors. As far as high-superconductors tvity p,=Bodos,(«,Bo,T), and the dynamic mobility is
are concerned, the applicability in studying the ac, rf, or
microwave response is restricted to the case of a perpendicu- 1
lar field configuration. In this configuration, the magnetic w,(0,Bg, T)=—
field is applied perpendicularly to the main flat surfaces of n
both films and single-crystal platelets; namely, the field iswhere # is the viscous drag constant, the Labusch con-
parallel to thec axis. The vortex dynamics in this configu- stant, a=1,(»)/14(v), |, and |, are the modified Bessel
ration (vortices are parallel to the axis) is often considered functions of the first kind, with argument=Uy(B,T)/

as nearly isotropic because of the smaller anisotropy in thek,T, andU, is the activation barrier height of the potential.
ab plane. As discussed abo¥%é?* all experiments were The flux quantumg, and the static magnetic inductidy,
performed in this configuration. In order to avoid demagne-nside the superconductor are related via the intervortex
tization fields in single-crystal platelets in a perpendicularspacingao asBy~ ¢O/a(2). Also, the assumptions af, being
configuration, many workers have also investigated the samgch less than the sample dimension and much greater than
problems with an alternative, the parallel field the displacements of vortex motion have been made in ad-
configuratior®**~*¥In the parallel field, the vortices are par- vance. In the linear response theory, the displacements are
allel to theab plane and the vortex motion is highly aniso- typically less tha 1 A 1>?°Coffey and Clem also calculated

tropic. Hao and Clerit have theoretically studied the aniso- the complex penetration depth in the absence of flux creep,
tropic viscous flux motion in low fields in this configuration. gnd their result &

For the purpose of investigating the linear vortex response to

given as

-1

., (2

iw 1 -1
1+ U )

_+—
aky Ig(v)—l

ac fields in the anisotropic flux motion, the validity of X (w,Bg,T)

Coffey-Clem model needs reconsideration or modification.

Therefore, the extension from isotropic to anisotropic super- )\Z(Bo-T)ﬂLD\EZ(Bo,T)—Zi 5;2(50,1',&,)]—1 12
conductors in this model appears to be of importance and =

_ 9y 2
interest. 1-2i\%(B,T)/ 6%(Bo, T, w)

Our purpose in this paper is to generalize the Coffey- &)
Clem model to be suited in the anisotropic superconductord-lere the pinning penetration deptiCampbell penetration
The linear response based on our derivations will be systendepth A, and flux-flow penetration degth ; are, respec-
atically analyzed in the microwave regime specifically. Thetively, defined by
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Bodo 2Bo o - 2u0h q, | coshk,y)
A= , &= : 4 - _ 2RO g My | 20y
¢ oKp " pono @ Bx.y.t) nZo =1 On e costtk,c)
Based on the key result, E(L) or (3), the high-frequency +Cog<% ) w e iot (8)
response is able to be analyzed from the associated surface ¢~/ costik,a)
impedance or complex magnetic permeabilit_y_ a(_:c_ording tQere ke,k, are expressed as
the geometry to which one refers. For a semi-infinite super-
conductor, we study the response through the surface imped- 1 232
. . 2 qn a
anceZ,=Rg+iXg, given by K2=mps+ —5 =5 9)
A2 €% \2
Z=Ry+iXs=iwuoh @By, T). (5 and
o o _ , 1 g
As for a slab with thickness@and right circular cylinder of Ki==+ 2 =3, (10
radiusc, the corresponding complex magnetic permeabilities e AN
are found to b& whereq,=(n+ ), n=0,1,2,3,.... Theky,\, are com-
plex penetration depths in theeandc directions, being de-
_ N c termined self-consistently. The total current density
Ms|ab=Etam‘<~), (6) J=%J,+yJ, can be directly calculated via Amge law
J=ug 'V XB; we have
and - c dn |\ sinh(kyy)
= —1)n — e | 277
o Jy Jxongo (—1) anycos( 2| costik,c)
2\ —-e—l a(e/M) (7) o} coshk,x)
’('LCY':? ! il 2N X —iwt
lo(c/N) sm( o y) cosik,a) e ' (11
respectively. o
The surface impedancg given in the Coffey-Clem J.=J E (—1)" sinl %x w
: ; i y—oyo a | coshk,c)
model can be described well in terms of the circuit represen- n=0 y
tation as analogous to the circuit representation of the tradi- a sinh(k,x)
tional two-fluid modef? The supercarrier contribution to the - —ky 5(%)/> X et (12)
impedance is represented by the kinetic indutter uo\2, On x ~ | coshik.a)

the flux pinning by an inductdr; = ¢oBo/ k), together with @ \yhere coefficients ard,o=2h,/c and J,o=2hy/a. The
damping resistop;=¢oBo/7, and the flux creep is repre- ejectric field E=XE,+JE, is easily obtained by Faraday's
sented by a creep resistpt= ¢oBow./k, in series with a3 vxE=—gB/0t,

l;. The crossover frequencyw, is defined as w,

=w0/[|g(v)—1]1/2, with  wo=(xp/7)11(¥)/1o(v). The * c q, | sinh(k,y)
. X . — —_1\n = BULIVE Bnssinh bl L5
complete circuit representation af due to vortex dynamics Ex= Eon (=1) kyCOE( a X coshik,c)
can be seen in Ref. 42. n=0 Gn y
We now generalize the Coffey-Clem theory to anisotropic {qn ) coshkx)] . .
case. We consider a uniaxial anisotropic type-Il supercon- —S n(;y) m e ', (13
ductor in the shape of a long rectangular rod whose length, X
width, and thickness arg|<Db, |x|<a, and|y|<c, respec- .
tively. The superconductor has been cooled in a dc magnetic E=-E 02 (—1)" sin %x cosfikyy)
field parallel to thez axis, producing a uniform vortices lat- A= a | coshk,c)
tice. The microwave fieldh,e™'“! is applied parallel to the .
four planes ak= *+a andy=*c, anduyhy<B,, the static _ ik 5(%)/> M g iot (14)
field in the interior of superconductor. This arrangement is dn © \ € costika) '

just the usual parallel field configuration in microwave tech-

nique such as in the cavity perturbation metfddeanwhile, The Eyo,Byo In Egs. (13) and(14) are evaluated as

the sample dimension_s are denoted as_the c_:rystallographic inOZhoc(azkiquﬁ) . 2h,
correspondences of hidgh: superconducting single-crystal E,o= > 77 =—iw,uo)\§—, (15)
platelets. The thickness is often prepared much less than the dn—acokiky ¢

width. We assume that the dynamic properties in &ie _ 22 2

plane are isotropic and the length of the rectangular rod is _lopgZhoa(cky+an) Xzz_ho (16)
large enough that the demagnetizing field can be neglected. yor qﬁ—a2c2k§k§ T lepoA T

By matching the boundary conditions at=*+a and
y==*c, the field inside the sample induced by applying a The corresponding normal-fluid current densily is
microwave field can be calculated. The result is given straightforwardly through the Ohmic relation
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J,= R‘Jnx'*_ glJny: o' E, with Jnx= 0nixEx and * (g, | coshk,y)
S _ n y
Jny=0 nyEy . Here we have assumed that the resistivity ten- sz—szoZO (= D)7 sin| % Costk,c)
sor ¢ is diagonal with entitiesr;, andoy, along thex and "= y
y directions, respectively. a On | sinh(kx) | .
The induced microwave current density in E¢kl) and — —keCog —y | ——|e 1, (22)
. . On ¢ 7 ) coshk,a)
(12) generates a Lorentz force acting on the vortices to os-
cillate back and forth near the surfaces of sample. The osciwhere the coefficients are found as
lation, in turn, propagates into the interior of superconductor, ~
which is impeded by viscous drag friction together with a Jo = 1 | 2mohory
restoring force. The governed equation for vortex motion in Sxo_,uo?\i c oUyo s
anisotropic superconductor is
. R 1 2,U,0h0)\§
7 U+ iu=JX o2, 17 szo—Mo)\g —a " Pothol-

where 7 is the viscosity tensor in the absence of creepThe main anisotropic complex penetration depﬁgsand

with diagonal elements), and 7, , i, the tensor of the re- ¥ including all the physics of vortex dynamics due to mi-
storing force constant with componenks, and «py, andu  crowave field, can then be obtained on the basis of the two-
the small vortex displacement deviating from its pinning site.g,)iqg equationd=J,+J;. Evaluation of thex component of

By letting u=Xuy(x,y,t)+Yuy(x,y,t) =Xuxof (.)€ "' the current density yields

+Yuyeg(x,y)e™'“" and substituting it along with Eqg$11)
and(12) into Eq.(17), we have

Na+(Aoi—2i6p8) M ’s
. T 12N 8y, ' @3
_[qn_| coshikyy) ,
= 1" —X| = h f
Uy uxonzo( 1)" sin 2 X costik,C) where we define
. B 2¢,B 2
B cod In sinhtk,x) eiot (18) Nox= Ofov 5= d)(z =, bﬁnyT- (29)
an * ¢’ coshk,a) HoKpy Mo®@ 7y Mo® O iy
Similarly, consideration of thgg component of the current
and density gives
o . _ )\2+()\*2_2i5;2)71 1/2
c gn | sinh(kyy) _| e cy y (25)
— —_1\n| —_ an c N2/ <2
Yy uyonzo( Y anycos(ax costik,c) 1-2iNe/
Here we use the definitions
—sin(%y COSMKX) | 1un (19
¢ 7/ costik,a) ’ > Bogo 2 2¢0Bo
cy™ fy nfx (26)

where u,, and uy, are given by U,g= ¢olyo/(—Twny o /_LOKPX Ho®Tx ot Onty

+ Kpy) anduyo= dodso/(—iwny+ Kpy). The similarity between Eq$23), (25), and(3) appears to be
The moving vortices generate a local magnetic flux denstimulated. However, some care should be taken in compar-

sity B,= — VX (Byx u), which will redistribute the current ing these three equations. The complex penetration depth in

density. The nonlocal effect due to vortex motion manifestdhe x direction, \,, is dependent on the restoring constant

itself in the modified London equation Kpy, Viscous coefficientn,, normal-fluid conductivity
onix, and London penetration depiy, whereas\; is on
VX(KJ )=—(B—B,) (20) Kpxs Mx» Oniy, and\.. These dependences elucidate the
S v/

basic features of anisotropic vortex motion and can be re-

o . . . . . garded as rules for transforming E@) to Egs.(23) and
Here the tensoA contains the information on the anisotropic ?25)_ 9 EG®) as. (23

figld—erendent Lorlldon pepgtration dgpths in ?“a”d_ ¢ The above derivations are accomplished under the consid-
directions A, and\; the entities argioh; anduohc, While  gration of no creep effect. In the case where the creep is
Js, the supercurrent density, is denotedJas XJg,+yJsy . included, the corresponding anisotropic complex penetration

Making use of Eqs(8), (18), and(19), we can obtain the  yonin X and. are easily produced according to the results
supercurrent density components andJs, on the basis of ¢ Coffey and Clem, Eqd1), (2), as well as the transforma-

Eq. (20). After a lengthy calculation, we have tion rules described above. For example, if one makes some
replacements in Eq1) with N—N\4, Sp— Onrys Oye— Oygy

B i ) c c dn | sinh(kyy) and Eq.(2), n— ny, kp— kpy, a Similar expression in Eq.
o= a0 20 (=17 -kycog X cosfk,t) (1) for X, is readily obtainable. Similar substitutions in Egs.
(1) and(2) lead to;.
_sin Gn_| costik,x) oot 21) Having obtained explicit forms of the anisotropic com-
c y coshik,a) ' plex penetration depths given in Eq23) and (25), the mi-
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crowave response in the mixed state is therefore readily in-

vestigated from the relevant effective magnetic permeability. 12 e 'u"llu'l T
The associated magnetic permeability for a rectan- L
gular rod is u=(B(x,y))upohg, where (B(X,y)) 10f
=(2ax2c) 1f° .2 B(x,y)dxdy. Using the spatial part in E A / [
Eq. (8) to evaluate the integration, we find SR T 1
. o8 \ph T ]
2 tanh(k,c) tanhk,a - I Vs
M:Z 1\2, 2 |:(y)+ EX)' (27) = [ \/ ]
=0 (n+3)%m v xa = 06 | \Y\/ — Slab ]
= L u / i
Before performing the numerical calculations, we wish to -z ¥ / \\\ _______ Square rod ]
illustrate some special considerations to reflect the generality - N n ]
of our results. In theoretical studies, one usually considers a v \X 1
slab geometry with thicknessc2 namely, 22—o0. Then the I SN ]
permeability in Eq(27) becomes o2l [/ TSI ]
F / \\~1::\\: \\\\
\a c i ,/ e
n= ?tam(}:) , (28 0.0 AR
0 2 4 6 8 10
which further reduces exactly to E() if the slab is isotro- s
pic. Moreover, Eq(28) reveals that the permeability of an !
anisotropic slab is clearly dependent ap instead ofh.. FIG. 1. Plot of permeabilities in Eq$29) and(6) as a function

_This is a consequence of the anisotropic property also showg c/s;, in the regime of flux-flow dynamics, wherd=(1

in the Meissner-state response from a conventional two-fluid-i)s,/2 and & is flux-flow penetration depth defined as
modef® and in the normal-state resporfsBy the way, in 2= 2B,/ uow. Herec is the half-thickness of the slab.
simplifying Eq. (27) to Eq. (28), the identity

1 2 Ill. RESULTS AND DISCUSSION

nan? 8 We now demonstrate some numerical results and discuss
those significant physics about the various vortex responses
has been used implicitly. If the rectangular rod consideredo a microwave field. The first case we consider is the iso-
here is an isotropic superconductor, then the permeability, ifropic superconducting rod whose complex permeability is
Eq. (27), reduces to given in Eq.(29). For simplicity, it is instructive to study the
- , , vortex dynamics dominated by flux flow. That is, the normal
s 2 tanh(k;c) N tanh(k,a) 29 fluid is neglected and the complex penetration depth in Eq.
r= e (n+1)272 Kyc kia |’ (3) becomes\=(1+i) 5;/2. Rearrangement of E¢R9) as a
_ — function of a/8; and ¢/ &; reveals thatu=pu'+iu” has a
wherek,=(A"2+qic” 9" andk)=(N"?+qgja 92 Ex-  minimum peak height0.366 in the imaginary pary” when
pression(29) is not the same as that of Coffey and Clem; seea/ §;=c/J;, the square rod. In the extreme case <, the
Ref. 31[Eq. (B8)]. Their permeability of an isotropic rect- slab has, however, a maximum peak in value of 0.417 in

angular rod is rewritten, in our notation, as u”. The results ofu”, ', and u”"/u’ as a function of
. c/ &; for these two special geometries are plotted in Fig. 1.
R c 3 2 tanh(k,a) - The imaginary pari” conveys the microwave loss of dissi-
n= Etan X +n=0 (n+1)272 k;3X2a (30 pation, which is of vital importance in the analysis of the

microwave response, whereas the real pdrtindicates the
The primary distinction between EgR9) and (30) lies in  flux screening. As can be seen in Fig. 1, the dissipation is
the different boundary conditions considered in finding therelated to the sample dimensions. In slab geometry, the po-
magnetic induction. The boundary conditions used in the pasition of the dissipation peak occursa@®;=1.13, while the

per of Coffey and Cleft are the continuity of magnetic square rod at/&;=1.67, a consequence of the skin size
induction only at two planes=*a and the reduction to effect. In other words, the corresponding peak frequency of
those for a slab aa—o. Our considerations here, however, the square rod is greater than the slab. As a matter of fact, the
are the continuity conditions of four planes>at =a and  peak frequency in the slab is the lowest and its correspond-
y==*c. It is thus evident that our result in expressi@®9)  ing peak height is, however, a maximum. The results clearly
seems more relevant to the study of the microwave responsducidate the dependence of microwave properties on geom-
in the parallel field configurations. Our results given in Eq.etry even in the isotropic superconductors. The linear re-
(27) for anisotropic superconductors and E@9) for the  sponse in the regime of flux flow is in fact nothing less than
isotropic one will be applied to investigate the vortex re-the resistive responséOhmic response or the TAFF
sponse together with the effects of the edges of thin plateletsesponsé:**°Also, if one wishes to investigate the irrevers-
For related permeabilities derived from a diffusion-typeibility line>%in the mixed states, the results here suggest
equation in the Meissner and normal states, we mention theome correlation with the geometry considered.

papers of Wu and Tsefityand Gough and Exoh. We go on to study the response of isotropic supercon-
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FIG. 2. Imaginary parts of permeabilities in E&9) of a plate- FIG. 3. Imaginary part of permeabilities in E@9) of a platelet
let and(6) of a slab as a function of reduced temperatisel/T,  and(6) of a slab, as a function of reduced temperatad /T for
for a fixed frequency 10 GHz at various reduced fieldsa fixed frequency 10 GHz at various reduced fields
b= Bo/Bcz(0)=0-0057 0.1, and 0.2. The complex penetration deptthBO/BCZ(O):O.OOS, 0.1, and 0.2. The complex penetration depth
\in Eqg. (3) is used in the case without flux creep. The thickness of\ in Eq. (1) is used in the case with flux creep. The thickness of the
the slab is 2=5 um and the thick platelet has a widtla21 mm,  slab is Z=5 um and the thick platelet has a widta21 mm,
thickness 2=50 um, while the thin platelet hasa&2=1 mm and  thickness 2=50 um, while the thin platelet hasa&2=1 mm and
2c=5 um. The material constants used are given in the text. ~ 2¢=5 um. The material constants used are given in the text.

ductors based on Eq$29), (6), (3), and (1). To numeri- netic field, on the other hand, are illustrated in Fig. 2, too. By
cally illustrate the dissipation as a function of temperaturejncreasing the reduced field, the peak shape is broadened and
magnetic field, and microwave frequency, we will usethe peak height is lowered for the slab or thin platelet. As for
the parameters on the order of those for the familiathe thick platelet, the increase in field will greatly increase
high-T. system YBCO. However, we do not simulate the loss, especially at a temperature just below The re-
the response for a specific sample. The parameters usetlts shown in Fig. 2 are obtained under the consideration of
in the study of Coffey and Cleth are reused at present. no-flux creep effect. In the case where creep is included
These are\=\(0)[1—(T/To)*] ¥4 1-[Bo/B. ()]} ¥2 (1], the corresponding results are depicted in Fig. 3. Obvi-
5%(80,1—,&)) =2p,(T) Bo/[Mo(DBcz(T)]a and 6ﬁf(Bo,T,w) ously, the |r_1clu§|0n of flux creep has promln_ently increased
— 82/1(By,T), where A(0)=1400 A T—901 K the d|SS|pat|om , see the scale. In the meantl_me, the effects
N A20 T > AP ' of the magnetic field have some notable differences from
Bcz(T):BCz(O)[l_(T/TC) I+ (7T, Pn(T) those shown in Fig. 2. The peak broadens more when the
=1.1xX10 °T+2x107° Qm, f(By,T)=1-[1—(T/T)*]  field increases, while the height essentially does not decrease
X{1-[Bo/B.,(T)]}, andB.,(0)=112T. The Labusch con- appreciably. Also, the temperature at the peak moves lower
stant iSKp:Kpo[l—(T/TCZ)Z]Z, kpo=2.1X10* Nm~2 and  as compared with Fig. 2. From the results of Figs. 2 and 3,
activation barrier heighU0=U[l—(T/TCZ)]3’ZBgl, where We deduce that Whether thPT creep is considered or not, the
U=015 eV-T and T, is temperature at which microwave properties of thin platel_ets can be S|mply_ de-
C2 i scribed by a slab with the same thickness, whereas in the
Bo=B.,(T). Also we define reduced field=B,/B.(0).  thick plate, care should be taken. That is, in microwave stud-
Figure 2 shows the imaginary parts of permeabilities as @es of isotropic superconducting thin platelets, the effect of
function of reduced temperature=T/ T, at various reduced thin edges is usually negligible. In Fig. 4, the relation of
fields at fixed 10 GHz, for the three different geometriesy” vst is again plotted at distinct frequenciesbat 0.01 for
considered. These results are plotted from E28), (6), and  a slab(thickness= 5 um). There, the solid lines indicate the
(3). It is interesting to observe that the dissipation peak nearesults of flux creepEqg. (1)], while dashed lines the results
T, disappears in the thick plateletidth = 1 mm, thickness without creed Eqg. (3)]. The flux creep has a salient influence
= 50 um), and the loss decreases sharply n€arand to  on w” specifically at frequencies of 1 and 10 GHz. At higher
zero. The overall behaviors of the sléhickness= 5 um)  frequencies the.” is, however, very weakly affected. These
and thin platelefthickness= 5 um, width = 1 mm) have  phenomena are due to the fact that the creep is detected at
essentially nothing different. The dissipation peaks ardow frequency>!? At frequencyf<f.= w /27, wherew, is
present, and losses are enhanced as a whole except at tettme flux-creep crossover frequency described earlier, the vor-
perature very neaf.. The effects of a statireducedi mag-  tex dynamics is dominated by thermally activated flux creep
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LN B A A A A

(With flux creep)
(Without flux creep)

0.3
0.2

0.1

0.0

FIG. 4. Imaginary part of permeability E¢6) as a function of

0.5

T T T T T T T T

With flux creep

FIG. 6. Plot of " of slab with N given in Eq.(1) vs reduced

reduced temperaturte=T/ T, for the cases where creep is both in- field bEBO/BCZ(O) at f=10 GHz for different reduced tempera-

cluded and excluded with fixed reduced fidde=0.01 at various
microwave frequencies. The slab thicknesgrd and material con-

stants are given in the text.

so that the complex penetration depth in Efj) strongly

turest=T/T.=0.6, 0.7, 0.8, 0.85, and 0.9. The slab thickness is 5
um and the material parameters used are given in the text.

about 14 GHz. For frequencieg<f<f,, the vortex dy-
namics is dominated by flux pinning; is then independent

relies on the frequency. The creep effect is usually modeledf frequency. If the frequency i&>f,, the vortices are not
as a resistor in series with pinning inductors in a circuit reppinned at all, and the dissipation is consequently due to free
resentation. At a frequency well belofy, the vortices can viscous motion. Finally, the peak temperature in Fig. 4 in-

move freely with modified viscosityy+ (k,/w(), instead of

creases with increasing frequency. Moreover, the peak even-

7 only.*? The crossover frequency as a function of reducedually disappears at 100 GHz. In Fig. 6, we shp as a
temperature is shown in Fig. 5, where another characteristifunction of reduced static field at different temperatures. The

frequency fo= we/27 is also given. The maximuni. is

3.5x1010 -

3.0x10'° |
2.5x10'

2.0x10% |

frequencies(Hz)

1.5x10% |
10% [

5.0x10° |

FIG. 5. Temperature-dependent characteristic frequeneies
and @, when the creep is considered. Hem@,=(«p/7)
1(v)/1o(v) and o= wq /[13(v)—1]%2 with v=Uy(By,T)/2kgT.

Material parameters are given in the text.

peak is broadened more as the temperature decreases; how-
ever, the peak height changes appreciably. The reduced field
at theu” peak increases with decreasing temperature.

We now turn our attention to anisotropic superconductors.
As an instructive illustration, we again investigate the flux-
flow regime so that N;,—(1+i)d;/2 and N.—(1
+1)d;y/2. For convenience, we defin&k=c/d;, and
y=ald;y; then, the permeability in Eq27) of an aniso-
tropic rod can be expressed as

i 2 | tanH g4 (x?/y?) — 2ix?]
PoEd? Va2 (x2ly?) — 2ix?

(31)

VA (y2/x?) —2iy?

In the case off—« (a—x), the result reduces to that of a
slab described in Eq28) and has a dissipation pe&k417)
atx=c/ 8;,=1.13. Equatior(31) has a minimum peak when
x=Yy. The conditionrx=y reveals that the rod is equivalently

a square one, but not actually a square rod in shape. In this
equivalent square rod, the dissipation peak is a minimum. All
the behaviors are very similar to those given in Fig. 1. There-
fore, the thin edges should be dealt with carefully. Addition-
ally, the permeability in expressidl) is quite analogous to
the study of Gough and ExdriThey considered the normal-

tank qﬁ(yzlxz)—Ziyz]l



672 CHIEN-JANG WU AND TSEUNG-YUEN TSENG 54

state response of anisotropic superconductors in the parallel

: : ; AT ; 0.5 (T
field configuration. The permeability is derived from the an- L o 1
isotropic magnetic flux diffusion equation. The authors i We
pointed out the importance of thin edges on the microwave | b=0.01 -8 y=6 _ y=5 ~
response of a platelet crystal. Our result shown in B4) 0.4 |- 2a=imm y U
can reproduce all their discussion provided that [ 2c=Sum
Bo—B¢,(T), the upper critical field, because & ap-
proachesBCZ(T), this will imply a divergent\(Bg,T), 03|
which in turn makess — 8,=(2p/ uow)“? and X — (1 .
+i)8,/2, a penetration depth of the normal-state response. i

As for the general consideration of vortex dynamics, one 02+
can also execute similar calculations from E7). How- i
ever, some care should be taken before the execution. In the
parallel configuration, the vortex motion is anisotropic and i

. . 0.1

consequently the material parameters sucBg€0), viscos- L
ity, and London penetration are strongly dependent on the i
anisotropic ratioy=\./\,,= Vm./m,,. Besides, the field- i Y
orientation-dependent Labusch constagg and anisotropic °'°0_1 02 03 04 05 06 07 08 08 10
normal-state resistivities should also be taken into account ¢
altogether, remembering that the parameters used previously
in the analysis of the isotropic case are the in-plane ones. The 0.5 P e e AR
c-axis parameters now are given as follows. The zero- | With flux creep - ]
temperature upper critical fiel&. (0)=112y T, normal- - f::gg;rz ]
state resistivit§® p.=1.3/T+(3.2<10 °) T, Labusch con- 0.4 - 2a=1mm =8 __ 16 "N
stant® k,0=2.2<10° Nm~2, and the activation barrier [ 2c=10pm
height® U=0.15y eV T. Here the anisotropic ratig is re-
ported to be 5—8 for the high; superconductor YBC®' 03l

With these parameters, we can investigate the ac response of
anisotropic flux motion. Also, one is able to tell the different 0
of responses between anisotropic and isotropic supercon- L
ductors. The results with flux creep based on our generalized 0.2 -
Coffey-Clem model are shown in Figs. 7—9 where the results I
of the isotropic one ¥=1) are given for the purpose of
comparison. Figures(&) and 1b) display the dependence of 01l
u” on reduced temperature for two thicknesses=% and -
10 um of the platelet. As can be seen in Fida)7 the an-
isotropy makes thew” peak more broadened and the peak
temperature is lowered considerably compared with the iso-
tropic one. What is more, the peak height is also increased(b) ' ¢
appreciably. In the anisotropic ones, the peak temperature

decreases with increasing the anisotropy and no appreciable
change in peak height is observed. In Fih)7the inclusion mm, 2c=5 um atf=10 GHz andb=0.01. The material param-

of anisotr_opy again lowers _the_ peak temperatqre, but not 83ers used are described in the téki. Plot of u” in Eq. (27) of a
large as in(@). The results indicate that the microwave re- ociangular rod, 2=1 mm, =10 um at f=10 GHz and

sponse is strongly dependent on the material anisotropy angl g g1
sample size. The magnetic field dependence of the micro-

wave dissipation is shown in Fig. 8. Figur¢aBillustrates ) . )
that the anisotropy has narrowed the curveudfand the  TOPY has highly enhanced the microwave losses. Besides, the

peak is confined arouno=0.01 atf=10 GHz andt=0.6. disappearance in the” peak in the isotropic superconductor
As the field increases, the dissipation in the anisotropic sufOW emerges in the anisotropic ones as shown in Figs. 9
perconductor is depressed much in comparison with the is@@nd 9b). The effect of sample size on the’ peak is also
tropic one. The same condition for a thicker platelet,0bserved in these two figures. The increase in thickness of
2c=10 um, causes the.” curve to be more broadened as the sample makes the peak shape more sharp and the peak
depicted in Fig. &). Furthermore, the peak heights are de-frequency is localized near 5 GHz.

creased appreciably with increasingn anisotropic case in According to the Figs. 7-9, the influence of anisotropy
this condition. The influence of anisotropy @i’ as func-  together with sample size on the' peak has been clearly
tions of reduced temperature and static field appears to belucidated so far. The results suggest the importance of an-
quite different. One is that the curve is broadened in Fig. Asotropy in the analysis of the microwave response of high-
and the other narrowed in Fig. 8. Finally, we demonstrate théemperature superconducting platelet crystals in the parallel
frequency-dependent” in Fig. 9. Apparently, the anisot- field configuration.

FIG. 7. (a) Plot of u” in Eq. (27) of a rectangular rod, 2=1
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FIG. 8. (a) Field-dependent imaginary part pfin Eq. (27) of a

rectangular rod, =1 mm, Z=5 um at T=0.6T; and f=10

GHz. (b) Field-dependent imaginary part @f in Eq. (27) of a

rectangular rod, @=1 mm, Z=10 um at T=0.6T; and f=10
GHz.

FIG. 9. (a) Frequency-dependent imaginary parjoin Eq.(27)
of a rectangular rod, =1 mm, =5 um at T=0.6T, and
b=0.01. (b) Frequency-dependent imaginary partwoin Eq. (27)
of a rectangular rod, 2=1 mm, =10 um at T=0.6T, and
b=0.01.

IV. SUMMARY L. . . . .
mentally determining the anisotropic properties such as vis-

We have extended the Coffey-Clem model to the aniso€osity, Labusch constant, normal-fluid resistivity, and so
tropic case. The idea of a self-consistent treatment of vorteforth.
dynamics as well as the anisotropic London electrodynamics Numerical studies indicate some fundamental information
establish the basis for our extension. The permeability in Egabout the vortex response to a microwave field. If the vortex
(27) acts as a good candidate for the microwave response alynamics is dominated by flux flow, then the response be-
anisotropic superconducting single crystals in the shape diaves as a resistive one. Accordingly, the microwave prop-
platelets in the parallel field configuration. The permeabilityerties of platelike single crystals are highly related to the thin
depends on the anisotropic complex penetration depthgdges of samples for both isotropic and anisotropic super-
which are determined by a self-consistent treatment of vortegonductors because of the skin size effect. A square rod in
dynamics. Our results in Eq$23) and (25) provide some the isotropic case or an equivalent square rod in anisotropic
conversion relations from isotropic to anisotropic superconsuperconductors gives the possible minimum peak height
ductors within the framework of the Coffey-Clem model. and the highest peak frequency. Therefore, one can prepare
Besides, our derivations provide a possible tool for experisuitable sample dimensions to get the minimum peak and in
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turn the anisotropic viscosity is able to be extracted. Fois strongly dependent on the anisotropic vortex motion to-
material parameters on the order of high-temperature supegether with the sample dimension.

conductors, the YBCO system, the inclusion of flux creep The generality here encompasses all the isotropic results
effectively enhances the dissipation heavily and makes thgiven by Coffey and Clerit previously and the special con-
peak height essentially unchanged at various static magnetgideration such as the anisotropic normal-state response pro-
fields. The dependence of vortex dynamics on microwaverided by Gough and ExchThe extension also provides the
frequency is also numerically illustrated to indicate the factpossibility of studying highly anisotropic high: supercon-

that the creep is detected at the low-frequency regime. Atluctors, the BSCCO system. In BSCCO, the creep is more
very high frequency, the dissipation peak becomes verpronounced because of its relatively low activation energy.
sharp and moves closely b, ; eventually the peak shape Regarding the interpretation, the irreversibility line in the
vanishes. Our results specifically indicate the effects of thirmixed state, the extension here gives more possible depen-
edges of plates should be noted in the microwave study. Tdence on sample geometry, too.

obtain the dissipation peak, it is indicated that a thin platelet
would be in preference to a thick platelet. Also, the consid-
eration of anisotropy makes the microwave properties of the
anisotropic quite different from those of the isotropic super- The work is supported by the National Scientific Council
conductors. It therefore reveals that the microwave responghrough Grant No. NSC85-2112-M009-037.
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