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Finite-temperature real-energy-axis solutions of the isotropic Eliashberg integral equations
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A fast, efficient algorithm has been developed for calculating the finite-temperature real-energy-axis solu-
tions of the Eliashberg integral equations for an arbitrary form of the electron-boson coupling function and
Coulomb repulsion. Using this algorithm, the complex superconducting gap furitigi), and the complex
renormalization functiorZ(w,T), have been obtained for a variety of forms of the electron-boson coupling
spectrum. In addition, by calculatinw,T) at finite temperatures, the superconducting critical temperature
has been obtained for a variety of model systems. These results compare well with the approximate analytic
expression derived by Allen and Dynes for valuea ¢éss than 0.75. The solution of the Eliashberg equations
has also been obtained for a model in which there are two well separated peaks in the electron-phonon coupling
spectrum. This form of coupling spectrum is found to be particularly effective in raising ttoé the model
system. Further, this model has been extended and the solution of the Eliashberg equations has been obtained
with an electron-boson coupling spectrum consisting of both an electron-phonon component and a high-energy
electronic electron-boson component. This form of the electron-boson coupling function may have special
significance in the field of high-temperature superconductiy#{p163-182606)09234-X

[. INTRODUCTION interpretive tool for experimentalists in the field of supercon-
ductivity largely because of the inherent complexity of the
The most detailed microscopic theory of superconductivequations themselves. The Eliashberg equations form a
ity, which accounts for virtually all experimentally observed coupled set of nonlinear integral equations which determine
phenomena in conventional phonon-mediated supercondudboth the complex superconducting gap functixi,T), and
ors, was derived by Eliashberg in 196(0fhe Eliashberg the complex renormalization functioB(w,T). In this for-
equations are a generalization of the microscopic theory ofnalism,A(w,T) reflects the strength of the electron-electron
superconductivity derived three years earlier by Bardeenpairing potential an&(w,T) reflects the enhancement of the
Cooper, and Schrieffe(BCS),? but which include the re- electron mass which results from the electron-phonon inter-
tarded effects of the electron-phonon interaction. In contrasaction in phonon-mediated superconductors.
to BCS theory, the Eliashberg equations describe the super- While these equations have been used over the past 30
conducting gap as a complex, energy-dependent functiopears for the treatment of tunneling data, optical spectra, and
whose structure reflects the energy dependence of the undenany other experiments, these have generally been done
lying electron-phonon interaction. Given the electron-only after certain approximations have been made. Recently,
phonon coupling spectrum, the magnitude of the screenethe need arose for a much more precise solution to these
electron-electron repulsion, and the electronic density otquation$'® such that they could describe the relative
states in the normal state, the results of the theory are reshanges in the density of electronic states in the supercon-
markably accurat2 Eliashberg theory accounts for most ex- ducting state accurate to approximately one part ih E@r-
perimentally observed phenomena in phonon-mediated sdier methods were found to be inadequate. The algorithms
perconductors, including the many significant deviationsdescribed here were developed to correct this inadequacy and
from weak-coupling BCS behavi8r> Among the most com- lead to solutions which are internally consistent to this accu-
mon experimentally determined quantities are measurementacy. These solutions cast new light on the physics of both
of the superconducting critical temperatdig, the supercon- high- and low-temperature superconductors and are dis-
ducting density of states, the temperature dependence of tleeissed in Sec. IV D.
superconducting gap, the temperature dependence of the Historically, two distinct methods have been developed
London penetration depth, the temperature dependence @ir solving the Eliashberg equations; a direct method which
the electronic specific heat, and the temperature dependente/olves evaluating the required integrals on the real-energy
of the electronic spin-lattice relaxation r&&. In principle,  axis until a self-consistent solution is obtained, and an indi-
these measurements yield information about the underlyingect method in which the problem is solved self-consistently
electron-pairing mechanism which results in the superconen the imaginary-energy axis. The latter approach is com-
ductivity. By providing a reliable, well-tested link between monly referred to as the Matsubara metidd-*The Mat-
experiment and theory, the Eliashberg integral equations arsubara method at low temperatures has the advantage of be-
an indispensable tool to experimentalists in the field of suing computationally more efficient because the
perconductivity. superconducting gap function at imaginary energdi¢sw),
Although Eliashberg theory is remarkably complete in itscan be obtained easily by summing over only a small number
description of the superconducting state given accurate inputf discrete poles located on the imaginary-energy &xls.
parameters, it remains relatively inaccessible as a commadmas the disadvantage, however, of being an inherently less
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intuitive method of solving the equations. Furthermore, instrong-coupling superconductors where, in addition to a re-
order to compare the results of the theory with experiment, itluction of the superconducting gap at finite temperatures,
is necessary to obtain the superconducting gap function othere is also a significant change in the functional form of
the real-energy axis. For exampl&(w) is required in the A(w,T). Alternatively, if the T, of the material is high
interpretation of the conductance versus bias voltage spe@nough so the phonon populations are significant at these
trum of a normal/insulator/superconduct®t/(/S) tunneling ~ €levated temperatures, then the additional structufednT)
junction®® Measurements such as these have provided th@t high temperatures must be included in the interpretation of
most convincing experimental proof that the superconductiveXPerimental results. This may be of particular importance in
ity in low-temperature superconductors is mediated stricthfN€ interpretation of experiments performed on the high-
via the electron-phonon interaction. Since the deviations iEMPerature cuprate superconductors. With critical tempera-

the tunneling conductance which result from the presence C}Fresl_on the or_ger of jct)r? K, anId/g|?nlflc?néﬁlecg?n-pthonon
A(w) are typically less than 1%, it is of great importance thatcOUP'INg as evidence rougiy unneling= and remto-

the calculated real-energy-axis gap function be of sufﬁcien'?'econd pulse-probe measureméfts,the interpretation of

accuracy. The earliest analytic continuation of the Matsubard"Y experiment performed on the high-temperature super-

gap function to the real-energy axis reproduced the magnl{_:onductors must take into account the temperature at which

tude of A(w,T) only at low energies and temperatufége- the measurement was carried out and properly solve for t_he
cause this method could not reproduce the structure iﬁssomated&(w,T). Because of the inherent problems associ-

A(w,T) at the phonon energies, it could not be used in anated with obtaining th_e Matsubgra_gap f%‘”c“o"‘ at high tem-
ratures, and analytically continuing this to the real-energy

inversion procedure to obtain the electron-phonon couplingg;. e . . .
spectrum. Recently, a method has been developed which ca IS, ob§a|n|ngA(§o,T) at high temperatqres IS mqst easily
in principle, accurately reproduck(w) from the Matsubara aé_compllshed using the real-energy-axis formulation of the
gap functiont’ Using this procedureA(w) can be obtained Eliashberg equations. . .

with no iterations in the limit of zero temperature. At finite We have developed a fast, computationally efficient algo-

temperatures, however, this method requires several iter&ithm for calculating the real-energy-axis, finite-temperature
tions to converge. In any case, obtaining the solution of thE,%olutlons to the Eliashberg equations with an arbitrary form

Eliashberg equations using the Matsubara method, and an%’t]i the electron-boson coupling function. We have used this

lytically continuing A(i ) to the real-energy axis, has been gﬁ;'g‘g;g iﬂgzlﬁéﬁ;& gf(glgc)t,r ::izcs gaﬁggg:iﬁéipec-
limited to relatively low temperatures. At intermediate tem- a. We find that the analytid, expression defined by

peratures, the sum over the imaginary-energy poles may n%\cMillanzo and later refined by Allen and Dynésprovides

converge as rapidly and the cutoff limit of this sum may .
affect both the resulting magnitude, and functional form of2N approximate value for 11, of these model systems. But,

the superconducting gap function on the real-energy *4xis. n order to obtain for these models a valueTgfwith suffi- .
The earliest solutions of the Eliashberg equations wer&'€nt accuracy to use the theory as a framework to describe

obtained by performing the required integrations on the real_expetrltr)‘nenta}l ddatat, f\.N.et f'?d that tthe EI_|rahs_hb_er% equatlotr:]s
energy axis>!8-2Usually, these solutions were obtained jn MUSt € solved at finite temperatures. This Is because the

the extreme limits of zero temperatiié® or at a tempera- value of T given by the expression of Alle(;hand Dynes can
ture very neafT,.'>% In each limit there exists significant differ from the actuall; by as much as 159%.

simplifications which dramatically reduce the difficulty in We also discuss the solutions of the Ellashber_g equations
based upon a model of the electron-boson coupling function

computing the solution. Finding the solution of the real-. hich th 0 I ted ks in th i
energy-axis Eliashberg equations involves the calculation oft Which thére are two well-separated peaks in the coupling

many principal part integrals. This task, though not difficult, slpec;trum.hWe fwsg predse'n'E[ reSLtj.ltS obtaéjnet(r:i] from ? péjr?:]y
may be time consuming, and unfortunately does not len ectron-phonon based interaction, an en exten N

itself to a straightforward computation. In the full finite- model to calculate the solution of the Eliashberg equations

temperature form of the real-energy-axis Eliashberg equapf”tsed upon a electron-boson coupling function which con-

tions it is necessary to calculate many thousands of principaﬁ'sts ofbothan electron-phonon interactiamdan electronic

part integrals, take into account the effects of finite tempera(_e'lec.tr'on-bospn mter action. 'Th|s model may have parﬂcu!ar
ture by including all Fermi and Bose thermal occupation.s'gn'f'cance in the field of high-temperature superconductiv-

factors, and properly account for all integrable singularitiesIty where the microscopic mechanism which is responsible

which may occur at energies near the superconducting gaf r the high critical temperatures of the cuprate supercon-
edge. uctors is not yet known.

In order to compare experimentally measured quantities
with the predictions of Eliashberg theory, it is often neces-
sary to calculaté\(w) at finite temperatures. Because experi-
ments are rarely carried out at zero temperature or at tem- In this development, we assume the conventional approxi-
peratures very close td., the solution of the Eliashberg mations upon which Eliashberg theory is developed are
equations at intermediate temperatures is required. This is, imppropriate. The most important of these being the validity
fact, less of a problem with weak-coupling phonon-mediatecf Migdal's theoreri in each model electron-boson coupling
superconductors becausdw,T) can be approximated by function. We also assume that the model material is isotro-
multiplying the zero-temperature gap function by a scalingpic. In this case, the electron-boson coupling speci@(ifl),
factor representing the known temperature dependence of thiepresents the strength of electron-boson coupling, at energy
BCS gap'® This approximation, however, is invalid for (), averaged over the Fermi surfadn the case where the

Il. FORMALISM



6650 M. J. HOLCOMB 54

superconductivity is solely mediated through the electron- |

phonon interaction,G({)) is more precisely written as
2(Q)F (Q) wherea?(Q) is the square of the electron-phonon
matrix element and=(Q2) is the phonon density of states.

. . 0.6
These assumptions result in the most popular form of the  G(Q)
real-energy-axis Eliashberg equations, that is, the form in 0.4
which the remaining integrations are strictly over energy

variables. Using these model assumptions, the finite
temperature, real-energy-axis Eliashberg equations as d
rived by Scalapinbcan be written as
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where A(w,T) is the complex, energy-, and temperature-
dependent superconducting gap functidd(w,T) is the

complex, energy-, and temperature-dependent renormaliz
tion function, G(2) is the generalized energy-dependent

electron-boson coupling function averaged over the Fermi

surface, u* is the screened Coulomb repulsiof{w) and
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FIG. 1. The energy-dependent electron-boson coupling function
used to illustrate the calculation procedures developed as a means
of solving the finite-temperature real-energy-axis Eliashberg equa-
tions. The coupling function shown is a cutoff Lorentzian peak
centered at 5.0 meV with a full width at half maximum of 1.0 meV.

An iterative procedure is typically used to solve such in-
tegral equations. I6(Q), u*, andT are known, then a guess
is made at the initial form oA(w,T). This first-order guess is
usually taken as a constant, real quantity with a magnitude
approximately that of a typical BCS gap. With this first-order
guess ofA(w,T), Z(w,T) is calculated using Ed2). Then, a
new A(w,T) is calculated using Ed1), the first-order guess
at A(w,T), and the newly calculated(w,T). This iteration
procedure is repeated until the newly calculatde, T) does
not differ significantly from the solution of the previous it-
eration.

Ill. ALGORITHM DESCRIPTION

In designing an efficient algorithm to calculate the solu-
tion of the Eliashberg equations it is useful to break down
Egs. (1) and (2) into individual computational tasks. These
individual tasks may then be carried out by developing effi-
cient integration procedures specific to each phase of the
computation. The algorithm we have developed to solve the
Eliashberg equatior$can be divided into two major com-
putational tasks; (1) evaluating K, (w,o’,T) and
K_(w,0',T), and (2) performing the iterative integrations
necessary to obtain a self-consistéxto,T). The former is
complicated by the occurrence of simple poles along the axis
of integration and the latter by the possible integrable singu-
larities at energies near the superconducting gap edge. We
will assume in the following development th@((2), T, and
w* are known quantities.

For the purpose of illustrating the various portions of the
algorithm, we sefu* equal to zero and tak&()) to be a
cutoff Lorentzian peak centered at 5.0 meV, with a full width
at half maximum of 1.0 meV and an amplitude of 1.0. This
electron-boson coupling spectrum is shown in Fig. 1. The
cutoff Lorentzian line shape has been used historically to
represent the energy-dependent electron-phonon interaction
%Veraged over the Fermi surfaCe.

A. The evaluation of K, (w,»’,T) and K_(w,w’,T)

n(w) are the Fermi and Bose occupation factors, respec- One of the most important computational tasks is the ac-

tively, and 3=1/kgT. Together, these equations form a non-
linear set of coupled integral equations which must be solve
self-consistently foA(w,T).

curate evaluation of th&  (w,®’,T) andK_(w,»’,T) in-
tegrals. These integrals are complicated by the fact that they
contain both Fermi and Bose thermal occupation factors, in
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FIG. 2. The zero-temperatuke. (w,w’,T) calculated using the
electron-boson coupling function of Fig. 1. The résolid line) and
imaginary(dashed linecomponents of these kernels are shown as
function of " for w equal to 0, 0.02, and 0.04 eV.

FIG. 3. The finite-temperatur .. (w,’,T) calculated using
the electron-boson coupling function of Fig. 1. The reallid line)
%nd imaginary(dashed linecomponents of these kernels are shown
at T=5 K, as a function of»’ for w equal to 0, 0.02, and 0.04 eV.
The slight broadening of these functions with increased temperature
addition to a number of simple poles which lie on the is most noticeable in the=0 kernel spectra.
energy axis. Although the literature implies that it is neces-
sary to calculate these principal part integrals within eachhere is a small, but significant, change in the form of the
iteration cycle'’ it is only necessary to evaluate these kernelskernel functions. In general, these functions tend to broaden
onceand store the values on an appropriate two-dimensionalightly with temperature. This broadening is most easily
grid spanning allw and o'. Since K,(w,0’,T) and seen in the finite temperatureK (w,0’,T) and
K_(w,w",T) contain neithetA(w,T) nor Z(w,T), their val- K_(w,»’,T) spectra withw~0 eV in Fig. 3.
uesdo not changealuring the iteration sequence, thus it is not
necessary to reevaluate the kernels during the iterative pro- B. The iterative integration of the Eliashberg equations
cedure used to find the self-consistent solutidy,T). This ) . . ,
feature dramatically reduces the time required to compute With bOth, the real and imaginary P?‘”S Kf+(“’"’.’ .’T)
the solution. a_ndK_(w,w ,T) calculated and stored in memory, it is pos-
We have named the procedure which calculates botﬁIble to calculat_e Ré[(‘f”.T.)]’ Im[Z(w,T)], Re[.A(“”T)]'
K,(w,0',T) andK_(w,0’,T) on a two-dimensional en- and In[A(w,T)] given an initial guess gﬁ(w,T). This part of
ergy grid over{w,0’] the initialization stage. For each ele- the algorithm is referredi to as thmra}tlon stage. ’Thet.era-
ment {w,»’} on this grid an integration over energ® fuon stage performs multlple mtegr_atlons over_thevarlgble
is performed and the results are stored in a dynamicallI I_Eqs.(l) and_(2) untll_a self-consistenh(w,T) is obtamed._
allocated memory location.  Since K., (w,o’,T) his process is complicated by the fact that the expressions

and K_(w,w’,T) consist of both real and imaginary

components, each {w,0'} position generated dur- Re A(o’,T) (5)
ing the Iinitialization stage contains values for Jo'?—A%(o',T)

ReK, (w,0",T)}, IMK (w,0",T)}, REK_(w,0’,T)},

and I{K_(w,w’,T)}. By storing these quantities in a di- and

rectly addressable memory location, these values may be ac-

cessed quickly during the subsequent iteration sequence. R ) 6
The real and imaginary componentskf (w,w’,T) and € m ©)

K_(w,w',T) evaluated using the electron-boson coupling '

spectrum of Fig. 1, are shown in Figs. 2 and 3. Figure 2which appear in Eq41) and(2) maypossess integrable sin-

shows the zero-temperature rdablid line) and imaginary gularities at energies approximately equal to the supercon-

(dashed linecomponents oK , (w,»’,T) andK _(w,»’,T)  ducting gap edge A,, defined as Re&(w,T)} at

evaluated aw~0 eV, ®=0.020 eV, andw=0.040 eV. Fig- w=ReA(0v~0,T)1.* More explicitly, A, is defined as the

ure 3 shows the sam€, (w,0’,T) andK_(w,»’,T) evalu-  magnitude of the real part af(w,T) evaluated at energy

ated at 5 K. The kernel functions can be seen to resemble thegual to the real part af(w,T) at energyw~0, and tempera-

structure of the coupling functiorG (), in that there is a ture,T. To accommodate this singular portion of the integral,

single peak(or derivative peak structure which moves to which will necessarily shift in energy with each iteration

higher »" with higher values ofw. A+ finite temperatures cycle until self-consistency is achieved, we have developed a

!
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singularity integrationroutine. This routine dynamically ad-

justs the integration grid such that an accurate evaluation of 0.0012 BCS

the singular part of the integral can be obtained. A@) (6V)  0mmmmmmmm e
Because the integrals involved in tlteration stage do

not contain any problematic regions except for the region 0.0012 , . ‘ ‘ ‘ :

near the possible singularity, the remaining portion of the 0.0012
iterative integration is rapidly evaluated using standard inte- ) N 1 iteration

gration procedures. In this algorithm, sufficient accuracy and Aw) (V) 0_-___,/ ______________________________
speed are obtained by using the trapezoidal rule in all regions

of the integration ovew’ where thesingularity integration 0.0012 I ‘ , :
procedures are not required. 0.0012

2 iterations

C. The full calculation sequence Aw) (V) o
The outline of the complete sequence of calculations in-
volved in obtainingA(w,T) based upon th&(Q) shown in -0.0012 '
Fig. 1 is as follows. In this example we take bdthand u* 0.0012 A iterations
equal to zero. With these definitions G{Q2), u*, T, and the ]
upper-energy cutoff limit set to 0.04 eV, thaitialization Aw) (V) o
stage calculatek , (w,0’,T) andK_(w,w’,T), and stores
these values on a two-dimensional grid[afe’]. Then, the -0.0012 T 1
zeroeth-order guess &(w,T) is defined as a real, energy- 0.0012 10 iterations

independent BCS gap. This guess is taken to be 0.5 meV and
is shown as the BCA(w) in Fig. 4, where the solid and A(w) (eV) 07
dashed lines are the real and imaginary components of
A(w,T), respectively. With this zeroeth-order definition of -0.0012 L
A(w,T) andK _(w,o’,T), a first-orderZ(w,T) is calculated 0.0012
using Egq. (2).%° With this newly calculatedZ(w,T), 1
K. (w,0',T), and the zeroeth-order guessii»,T), a new A() (eV) o7
A(w,T) is calculated using Eq1). This A(w,T) is shown as
the first iteration in Fig. 4, where it can be seen that even o 001 002 003 0.04
after a single iteration there is considerable structure in the vV

functional form of A(w,T). Successive iterations of these ® (eV)

equations leads to the self-consistex(w,T). A complete

iteration sequence is shown in Fig. 4 wheve,T) is plotted FIG. 4. The realsolid line) and imaginary(dashed ling com-
after 1, 2, 4, 10, and 15 iterations. Typicall)(w,T) con-  ponents of the zero-temperatukéw) calculated during thiteration
verges to within 1% in less than 20 iterations. In the se-stage using the coupling function of Fig. 1. A BCS gap is used as
guence shown in Fig. A(w,T) has converged to within 5% the zeroeth-order guess Afw). The sequence continues to iterate
by the 10th iteration and to within 0.5% by the 15th. until the previously calculated\(w) is not significantly different
from the results of the latest iteration. In this exampléw) has
converged to within 5.0% of its final value by the tenth iteration and
to within 0.5% by the 15th.

Having developed a fast, convenient means of solving the
Eliashberg equations for arbitray(Q)), T, and u*, several Bogoliubov*® which included both a Coulomb repulsion term
model systems have been studied and the representatiaad a BCS-like pairing interaction. In BCS theory, the pair-
A(w,T) obtained. In the following section, we illustrate the ing interactionN(O)V is taken to be instantaneous and re-
reduction of the magnitude af(w,T) due to a finiteu*, the  sults in an energy-independent superconducting’dapthe
differences between a weak- and strong-couplki@,T) at  weak-coupling BCS limit of Eliashberg theory, the BCS
zero and finite temperatures, and how the spectral form gpairing interaction can be written as
G(Q) affects the superconducting critical temperatures of

Eliashberg superconductors. N(0)V = s

15 iterations

-0.0012

IV. RESULTS

@)

A. The effects of a finite screened Coulomb repulsiong* where\ is defined 2@

In phonon-mediated superconductivity, the repulsive po-
tential normally experienced between the electrons in the )\=2fx d_"’ G(w) ®
material is overcome by an effective attractive potential due 0 W '
to the retarded interaction of the electrons with the phonons. _ .
Calculations which took into account both the instantaneoudt” is defined a¥
Coulomb repulsionu* and the retarded electron-phonon in- 11
teraction were carried out by Morel and Anderson in 1862. =" 4
These calculations lead to similar results obtained by A
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A(w,T). The imaginary part oA(w,T) is indirectly changed
(a) by the finite u* through the self-consistency and causality
restrictions of the theory.

Although the magnitude of* plays a significant role in
Eliashberg theory, the experimental determination of this
quantity with precision is difficult. McMillan and Rowéll
determinedu* by allowing its magnitude to vary as a float-

u*=0 ing parameter in the inversion of/1/S tunneling data. Ulti-
-0.001 0 0.01 0.02 0.03 0.04 mately, the magnitude gi* is determined in this method by
o (eV) matching the experimentally determinadg, with a theoreti-
cal A, obtained from a triak’(Q)F (Q) and the floatingu*
(b) parametef’ Since the resulting magnitude 4§, is a strong
function of the magnitude of*, as can be seen from the
form of Eq. (1), the determination of the magnitude of the
_______________ Coulomb repulsion by this method is not very precise. A
better inversion method has been developed by Galkin
et al?8 in which the magnitude of* is not required during
u*=0.1 the inversion procedure used to obtaif{Q)F () from tun-
neling data. In this method, the magnitude (of is calcu-
lated analytically afteer®(Q)F(Q) has been determined.

=)
8

A) (eV)

0.001

Aw) (eV)

-0.001

0 0.01 0.02 0.03 0.04
w (eV)

B. Weak- versus strong-couplingA(w,T)
FIG. 5. The realsolid line) and imaginary(dashed ling com-

ponents of the zero-temperatukéw) based upon th&(Q) of Fig. The distinction between weak- and strong-coupling super-

1. (3) A(w) obtained withu* set equal to zero(b) A(w) obtained conductors is not clear cut, but in general is characterized by

with 1* equal 0.1. In addition to the overall reduction in the mag- the value of the ratio 2,(T=0)/kgT.. In weak-coupling
nitude of A(w) with finite w*, there is also a constant negative BCS superconductors this ratio is approximately 3.52, but in

component of A(w) at high energies reflecting the energy- Strong-coupling materials, such as lead and mercury, it is

independent Coulomb repu|si0n of the electrons. h|gher In addition, Strong-COUp”ng SUpEI’COﬂdUCtOfS possess
an electron-phonon coupling strength large enough that there
are observable changes at the phonon energies in the mea-

whereN(0) is the single spin density of electronic states atg red superconducting density of states definéd by

the Fermi energyV is the BCS pairing potentialy,, is the
plasma frequency, and,, is the Debye energy of the mate-
rial. Thus, it can be seen from the form of E§), that the Ng(@)=Ny(o)R w
magnitude ofu* is dramatically reduced from the instanta- s N VoZ—A%(w)]’
neous Coulomb repulsion by the difference in propagation
times of the electron-electron and the electron-phononwhereNg(w) andNy(w) are the energy-dependent density of
interaction®® Typical values ofu* fall between 0.1 and 0.2 states of the materials. In strong-coupling superconductivity,
ev. the structure iM\(w,T) is large enough that there are observ-
The inclusion of a finiteu* in the solution of the Eliash- able variations inNg(w) at energies corresponding to the
berg equations results in two dramatic changes in the form ofinalogous structure iG({). However, even in the weak-
A(w,T). The most obvious of these is the direct reduction incoupling limit of Eliashberg theory, there is considerable
the real part ofA(w,T) as seen in Eqg(l1). This reduction in  structure in the associatefl(w,T). Unfortunately, experi-
the magnitude ofA(w,T) also reduces th&_ of the model. mental evidence of this type of structure in the gap is diffi-
The second, less obvious effect is that the real pat(afT) cult to obtain because of the small magnitude of the gap.
is nonzero at high energiésThis high-energy component of Thus in weak-coupling superconductors, in the absence of
A(w,T), though repulsive, is finite and independent of energyother high precision data, the BCS approximation is com-
due to the energy-independent Coulomb repulsion of thenonly used to describe the observed experimental quantities.
electrons. This phenomena is illustrated in Fig. 5 where the In the interpretation of experiments such as the tempera-
solid and dashed lines indicate the real and imaginary conmture dependence of the spin-lattice relaxation f&f8,the
ponents ofA(w), respectively. Th&s(Q) of Fig. 1 was used thermodynamic critical magnetic fiefd the London penetra-
for these zero-temperature calculations. Figutes&nd §b)  tion depth®> and the electronic specific heat of a
show the resulting\(w, T=0) for the model withu* equalto  superconductot>34it is important to use the proper form of
zero andu® equal to 0.1, respectively. In Fig(&® there is  A(w,T) because these quantities are evaluated by integrating
the usual structure iA(w,T=0) which reflects the structure A(w,T) over energyw. Thus, the changes in the functional
of G(Q)). But at approximately four times the energy of the form of A(w,T) which arise from the magnitude of the cou-
peak inG(Q), A(w,T=0) is seen to be zero. When* is  pling involved may be important in the interpretation.
finite, however, in addition to the overall reduction in mag- To illustrate this we have calculatefw,T) in both the
nitude of A(w, T=0), the real part ofA(w,T=0) is finite and weak- and strong-coupling limits of Eliashberg theory. The
negative at high energies. This can be seen to arise from theodel parameters and results of these calculations are shown
form of Eq.(1) whereu* only directly affects the real part of in Table I. Model A is a weak-coupling electron-phonon

(10



6654 M. J. HOLCOMB 54

TABLE |. Weak- and strong-coupling model parameters, along with the critical temperaiuaad
magnitude of the gap edge at zero temperatiyebtained from finite-temperature Eliashberg calculations.
Ay, wy, andl’y are the parameters used to describe the amplitude, energy, and width of the cutoff Lorentzian
peak used to model the electron-boson coupling funcff@ﬁ. is the approximate critical temperature of the
model obtained from the Allen and Dynes analytic expressionTfofEq. (11)]. This approximateT, is
obtained from the magnitude of the effective Coulomb repulgitnthe integrated coupling strength and
the logarithmic moment of the electron-boson coupling spectym

Model A, wy(meV) To(meV) w* N o, (meV) TAP(K) T, (K) Ag(meV) 2A9KT,

A 1.0 5.0 0.5 0.0 0.458 4.8 171 1.83 0.295 3.74
B 2.0 5.0 0.5 0.0 0.916 4.8 5.30 6.05 1.064 4.08

model with a A,(T=0)/kgT, ratio of 3.74, this is close to higher temperatures, particularly at temperatures fgatn
the BCS limit of 3.52. The resulting re&olid) and imagi- these instances, it is important to incorporate the finite-
nary (dashedl components ofA(w,T) based upon this cou- temperature characteristics of Eliashberg theory into the in-
pling model are shown in Fig.(8 in reduced coordinates terpretation of the experimental results. In Fig. 7 we show
A(w,T)/Ag(T=0) versudw—AyT=0))/wy Wherewy is en-  A(w,T) of the model coupling spectra in the weak- and
ergy of the Lorentzian peak used as the electron-phonon costrong-coupling limit atT=0.9T.. The difference in the
pling function. The gap function is plotted this way to allow functional form of the two Eliashberg gap functions is quite
for a direct comparison of the weak-coupliddw,T) with  dramatic. While it is true that the weak-couplindgw,T) may
the strong-coupling\(w,T) shown in Fig. &b), because the be well approximated by multiplying the zero temperature
structure inA(w,T) which results from the form o6(Q)) is  solution by the known temperature dependence of the BCS
located atwy+Aq(T) in the A(w,T) spectrunf. The strong-  gap[compare Figs. @) and 7a)], this approximation clearly
couplingA(w,T) is seen to have much more structure at mul-breaks down in the strong-coupling case shown in Fig).7
tiples of w, even at zero temperature. Clearly, this additionalThe strong-couplingA(w,T), in addition to having pro-
structure in the functional form oA(w,T) will effect the
interpretation of experiments.

Although the differences in the form df(w,T) are rather
subtle at low temperature, they become quite pronounced at

A(w)
Ag
A(w)
Ag
-3 T T T T T T T
o 1 2 3 4 5 6 171 8
(D-AO
wo
3 —— —
5 6 7 8

FIG. 7. The realsolid line) and imaginary(dashed ling com-
ponents ofA(w) at T=0.9T., plotted in reduced coordinates, based
upon the parameters shown in Tabléd). The weak-coupling\(w)
at T=0.9T, obtained from the parameters defined by Modein

FIG. 6. The realsolid line) and imaginary(dashed ling com- Table I. (b) The strong-coupling\(w) at T=0.9T. obtained from
ponents of the zero-temperatuMw), plotted in reduced coordi- the parameters defined by ModBlin Table I. While the finite-
nates, based upon the parameters shown in Taljle The weak- temperature weak-coupling(w) plotted in these reduced coordi-
couplingA(w) obtained from the parameters defined by Mo#léh nates is virtually identical to the zero-temperature solution, there are
Table I.(b) The strong-coupling\(w) obtained from the parameters significant differences between the zero- and finite-temperature
defined by ModeB in Table I. The strong-couplind(w) is seento  A(w) in the strong-coupling limit. One distinct difference is the
possess much more structure than the weak-couding at the  appearance of the negative peak in théAfw)} at energies below
harmonics of the peak iG(Q), wyg. g-

4
(D—AQ
wWo
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nounced structure at harmonics«f, also possesses a large

negative imaginary part af(w,T) at low energies. In certain (a)

instances, this structure may result in what is commonly re-

ferred to as gapless superconductivity. This is not because 21

there is noA(w,T), but rather because there is no well de- Z(w) /L

fined A,y in the superconducting density of states. That is,

there appear to be states at energies below the gap edge.

These contributions below, arise from the form ofA(w,T) 17~ T=0

and are a natural result of finite-temperature Eliashberg 0 . T ~

theory. Physically, they arise from the recombination of ther- ;

mally excited quasiparticle states with the emission of

phonons near the gap edge. This process is reflected in the 3

negative peak in the imaginary part &lw,T) at energies (b)

below wy. This phenomenon can lead to the loss of certain

coherence properties commonly associated with a BCS su-

perconducting state. In particular, the absence of the Hebel- Z(w) .

Slichter peaf® in the nuclear-spin-relaxation rate can be 14

attributed to the finite-temperature form afw,T),2%3 and - T=0

not necessarily to exotic electron pairing mechanisms.
In addition to significant differences in the functional o 1 2 3 4 5 6 71 8

form of the weak- and strong-couplify », T), there are also w-Ag

similar differences in the weak- and strong-coupling ®o

Z(w,T). Although mass renormalization effects are unim-

portant in the interpretation of many experiments, the form F|G. 8. The realsolid line) and imaginary(dashed ling com-

of Z(w,T) must be taken into account, for example, whenponents of the zero-temperatuZéw), plotted in reduced coordi-

evaluating measurements of the discontinuity in the elecnates, based upon the parameters shown in Tali® The weak-

tronic specific heat af . ,**3*the temperature dependence of couplingZ(w) obtained from the parameters defined by Motléh

the thermodynamic critical fieldf and the temperature de- Table I.(b) The strong-coupling(w) obtained from the parameters

pendence of the London penetration defﬁth_ defined by ModelB in Table I. Except for the difference in the
To illustrate the difference iZ(w,T) in the weak- and magnitude of the coupling, both of these functions are quite similar.

strong-coupling limits of Eliashberg theory, we plot in Fig. 8 In general,Z(w) displays peaks at energies near the peak of the

both the realsolid) and imaginary(dashedl components of underlying electron-boson coupling function.

Z(w,T) versus[w—AyT=0))/w, for the model systems of . .

Table I. The zero-temperature renormalization function, inmodel can be calculated accurately without having to resort

the weak- and strong-coupling limits, is shown in Figg)8 tO approximate analytic expressions for the critical tempera-

and 8b), respectively. It is seen that, except for the increasdure. In 1968, McMillai® formulated an analytic expression

in magnitude oZ(w, T) in the strong-coupling case, the two for T given\, u*, and the average phonon frequer{ey.

renormalization functions are quite similar. In each case, thd he McMillan formula was extended by Allen and Dynes in

function peaks at approximately, and tends to either unity 1975;° with the main difference being the replacement of

[Re{Z(w,T)}] or zero[Im{Z(w,T)}] at high . the (w) prefactor with the logarithmic moment of the phonon
Figure 9 shows that, as with(w,T) at higher tempera- SPectrumwy,. The analytic expression formulated by Allen

tures, there are dramatic differences in the weak- and strongnd Dynes is the most common formula used to calculate

Coup”ng Z((l),T) at temperatures nea'|f'c . The respective apprOXImate critical temperatures. Itis USUa”y written as

weak- and strong-coupling(w,T) at 0.9T, are shown in

Figs. 9a8) and 9b). While the finite-temperature weak- KaT :@ p(— 1.041+)) ) (11)

coupling Z(w,T) shown in Fig. 9a) is essentially the same Ble 1.2 A—p*(1+0.620))°

as the zero-temperature cd$eg. 8@a)] the strong-coupling with

Z(w,T) shows additional structure at low energies. Again,

this structure reflects phonon emission processes which can 2 = de

occur at finite temperatures. This structur&ifw, T) should wln:exp(— j — G(w)ln(w)), (12

be taken into account in the interpretation of experiments NJo o

whose results are influenced by renormalization effects, suc * : ; ;
as those discussed above. Qnd w* and\ defined by Eqs(8) and (9), respectively. Al

though this expression is reasonably accurate as a prelimi-
nary estimate for the superconducting critical temperature,
the T, calculated with this expression is inadequate to de-

One of the distinct advantages of having an efficient al-scribe many experiments because of an approximately 15%
gorithm available to calculat&(w,T) for arbitraryG(Q), u*, uncertainty** Because critical temperatures are routinely
and T, is that it can be used to aid in the interpretation ofmeasured with a precision better than 1%, the Allen and
experiments beyond the usual BCS model. A self-consisteriDynes analytic expression fdr, is not accurate enough to
check of a proposed mod&(Q)) is that it accurately repro- explain the temperature-dependent effects observed in many
duce the measured,. With this algorithm, theT. of any  experiments.

C. Calculations of the superconducting critical temperature
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FIG. 9. The realsolid line) and imaginary(dashed ling com-
ponents oZ(w) at T=0.9T., plotted in reduced coordinates, based -0.0008 0
upon the parameters shown in Tabléa). The weak-coupling(w) 0 0.02 1
at T=0.9T obtained from the parameters defined by MoAein o (eV.) 0.04 2 T (K)

Table I. (b) The strong-couplindZ(w) at T=0.9T, obtained from
the parameters defined by Modglin Table I. Similar to the weak-
coupling A(w), the finite-temperature weak-couplifw) plotted

in these reduced coordinates is virtually identical to the zero-
temperatureZ (w). The strong-coupling(w) at finite temperatures,

FIG. 10. The full temperature dependenceAdév) based upon
theG(Q)) in Fig. 1.(a) The real part ofA(w) versus temperaturéb)

however, is seen to possess additional structure at energies beI(;We imaginary part ofA(w) versus temperature. Thg; of the

the peak inG().

lapses to zero.

The superconducting critical temperature is the tempera-
ture at whichA(w,T) equals zero. Thus, we can fifid for a
model G(Q) and u* by solving for A(w,T) at a variety of
temperatures and find the temperature at whi¢h,T) col-
lapses to zero. This is illustrated in Fig. 10 for the mode
G(Q) shown in Fig. 1, where we show the rd&ig. 10a)]
and imaginary[Fig. 10b)] components ofA(w,T) at tem-
peratures up to 2 K. Th&, is determined by plotting\, at
each temperature and, for the weak-coupling models, fitting
the data to the temperature dependence of a BC$'§4fhe
temperature dependence/yffor this model is shown in Fig.

11, where the solid line represents the BCS temperature-
dependent gap. The critical temperature of this model was
determined to be 1.83 K.

We have calculated . for a number of electron-phonon
coupling function®’ with x*, equal to zero and 0.15. For
each model, the zero-temperatuxéw,T) is calculated, then
higher temperature solutions are obtained ufitilcan be
determined from the characteristic collapseAgf We find
that T, can usually be obtained accurately by calculating
A(w,T) at four or five different temperatures. In Fig. 12 we
plot T./wy, versusk for these model solutions, along with the

0.4

0.34

0.2

AO (meV)

0.1

BCS —

1

2

Temperature (K)

model is obtained by finding the temperature at whidlw) col-

cant deviation between our results and the Allen and Dynes
expression fofT., and that for a givenw,,, in general, the
analytic expression fof; yields a lower value than the ac-
ftual T.. Because this error in the value of the critical tem-

Allen and Dynes analytic expression fbg 2 We find good FIG. 11. The temperature dependence of the superconducting
agreement between these results for a variety of forms ofap edge based upon ti&((Q) in Fig. 1. TheT, is obtained by
G(Q) indicating that thew,, prefactor describes well the en- fitting the temperature-dependent magnitude 2f (O) to the
ergy dependence of the coupling function forless than  known temperature dependence of the BCS gap functionTT lué
approximately 0.75. At higher values kf there is a signifi-  this model was determined to be 1.83 K using this procedure.
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FIG. 12. T /w, versus\ for a variety of forms ofG(Q2). The
open circlegO) represent the results obtained by calculatingTtpe FIG. 13. The joint electron-phonon based pairing mechanism.
of thg m_odel using the full flnlte-te_mperature Eliashberg equatl_ons(a) A model G(Q) consisting of two well separated regions of sig-
and finding the temperature at whid collapses to zero. The solid  pificant coupling strength(b) The zero-temperatur&(w) obtained
line represents the approximate analytic expressiorT foderived using theG(Q) in (a). The parameters and results of these calcula-
by Allen and Dynes. tions are shown in joint electron-phonon coupling section of Table

Il

perature increases dramatically for valuesnofreater than
0.75, the full finite-temperature calculation must be carriedenergy coupling is neglected, tfie of the model drops to
out when comparing the results of Eliashberg theory to ex4.83 K, a reduction of nearly a factor of 2. Alternatively, if
periment with materials of moderate- to strong-couplingthe low-energy contribution t&G () is neglected, the model
strength. is not superconductingt any temperaturelt is a remark-
able, unexpected consequence of Eliashberg theory that the
inclusion of a very weak, high-energy coupling would be so
effective in raising therl. of the model. While it has been

A particularly interesting form of the electron-boson cou- known for many years that any increase in the amplitude of
pling spectrum is one in which there are two distinct energyG(Q) will result in an increase in th&, of the materiafi**°
regions where there is significant coupling strength. Thist was not clear how thepectral formof a givenG(Q}) could
type of coupling spectrum is referred to as the joint mechaenhanceT,. It is clear from these results that there is a
nism of superconductivity’ There are many examples of dramatic enhancement of the superconducting critical tem-
superconducting materials which possess this general type perature with the inclusion of the weakly coupled high-
electron-boson coupling spectrum. These include elementa&nergy interaction ifG({)). We find that this is a general
metals such as lead and indidnNb;Sn, NBAl, and other  result of Eliashberg theory, that is, that the sum of the critical
A15 materialé® and NbN and other refractory materffis temperatures of the individual components of a joint cou-
which possess significant electron-phonon coupling strengthling function is always less than tfle of the full G(Q).
at both low and high regions of the phonon spectrum. More This joint electron-boson coupling function approach can
recently, this type of mechanism has been suggested as the further extended to describe the results of Eliashberg
operative mechanism of superconductivity in theCl  theory based upon a model interaction which consists of both
materialst>** where there may be both low-energy inter- an electron-phonon interaction and a high-energy electronic
sphere, as well as high-energy intrasphere vibrational modeslectron-boson interaction. We have found that this model is
which are responsible for the pairing. required in the interpretation of recently measured optical

We first consider the generalized joint electron-phonondata. We have previously reported the results of a series of
coupling function shown in Fig. 18). The zero-temperature optical  experiments where we  measured the
A(w,T) of this model is shown in Fig. 1B), where it is seen superconducting—normal-state reflectance raRg/Ry) of
that there is considerable structureAfw,T) at energies be- Tl,Ba,CaCu;0,,, Tl,Ba,CaCyOg, (BiPh),SrCaCu;04y,
tween the peaks i%B(2). Using procedures outlined in the and YBgCu;O; for photon energies between 0.3 and 5.0
previous section we calculate tig of this model system to eV.>'° We interpreted the experimental data using finite-
be approximately 3.48 K. The significance of this form of temperature Eliashberg theory and the strong-coupling ex-
G(Q) is dramatically illustrated when we decompose thetension of Mattis-Bardeen theory developed by N&AY.
coupling into single-peak coupling functions and calculateThe results indicate that the operative electron-boson cou-
the critical temperatures of each individual peak. The parampling spectrum of these materials consists of both an
eters used in these calculations, and the results are given @lectron-phonon component and a high-energy electron-
Table Il. From these results it is apparent that if the high-boson component located between 1.6 and 2.1 eV.

D. The two-component electron-boson coupling spectrum
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TABLE Il. Results of finite-temperature Eliashberg calculations based upon a two-component electron-boson coupling spectrum. The
parameters in the table are defined in Table I.

Model A, wpeV) To(€V) A w(eV) Ti(eV) u* A V) TK T (K AgmeV) 2AgkT,

Joint 1.0 0.005 0.0005 1.0 0.025 0.0005 0.0 0.549 0.0063 3.26 3.48 0.555 3.70
e-ph 1.0 0.005 0.0005 0.0 0.458 0.0048 1.70 1.83 0.295 3.74
coupling 1.0 0.025 0.0005 0.0 0.090 0.0248 0.0 0.0 0.0

Joint 1.9 0.050 0.007 0.835 1.60 0.20 0.15 1.495 0.1003 1129 1181 24.4 4.80
HTS 1.9 0.050 0.007 0.15 1.134 0.0461 35.7 44.8 8.657 4.49
coupling 0.835 1.60 0.20 0.15 0.361 1.563 5.23 20.5 4.723 5.34

An electron-boson coupling function consisting of both anare shown in Fig. 14. Note the expandedcale from zero to
electron-phonon component and a high-energy electroni0.5 eV. The parameters used in these calculations, and the
electron-boson component has been suggested as a possitdeults of the finite-temperature calculations, are shown un-
mechanism for highF, superconductivity®*The basic idea  der the joint high-temperature superconductivi§TS) cou-
of the model is that th& of a superconductor may be raised pling section of Table 1. Both of the peaks in this coupling
by increasing the energy of the interaction which mediategynction are described by cutoff Lorentzians. Figurgal4
the pairing of the elect_rons. This was suggested by Little inghows theG(Q) of this model which consists of a broad
the context of organic superconduct®tsthen later by  glectron-phonon component centered at 50 meV and a high-

. 51 .
Ginzburg;" and by Allender, Bray, and Bardeéhjn the energy electron-boson component centered at 1.6 eV. The
context of layered systenfsind has been refined through the zero-temperaturd (w) based upon this model interaction is

years>” In the following model calculations we extend the shown in Fig. 14b). As in the joint electron-phonon based

joint elgctron-phonon coupling spectrum o'f the previous SeCi’nteraction, there is significant structure Adw) at energies
tion to include both an electron-phonon interaction and a

electronic electron-boson interaction. Implicit to these calcu- etween the peaks dB((}). Specifically, the real part of

lations is the assumption that Eliashberg theory is an approé(“’)’ although slightly negative at energies immediately

priate framework within which to describe the superconduc200Ve the phonon energies, is positive and nearly constant up

tivity of this model. Furthermore, we neglect any effects ofto approximately 0.5 eV. This feature will manifest itself in a

anisotropy although these are known to be a significant fac?egative magnitLide Of* obtained from the inversion of
tor in the cuprate superconductors. tunneling spectrd’ This arises because typical tunneling ex-

The generalized coupling function used in these calculaP€riments only probe energies up to approximately 100 meV.

tions and the resulting(w,T) calculated at zero temperature Thus, a negative.* implies the existence of a higher-energy
component of the electron-boson coupling function which is,

necessarily, compatible with the electron-phonon interaction.

200 The critical temperatures of the fut(Q2), and the indi-
(a) vidual components of3((), for this model are shown in
Table Il. As in the joint electron-phonon based interaction,
G(w) 1.001 the inclusion of the high-energy component of the coupling

function is dramatic. Th& . of the purely electron-phonon
based interaction is calculated to be 44.8 K, while that of the
high-energy electron-boson interaction is 20.5 K. The full
G(Q), however, has a critical temperature of 118.1 K, similar
to the observed . of the cuprate superconductors. Again, the
T, of the full G(Q)) is much greater than the sum of its

% individual components.
g This result demonstrates the importance of the electron-
8 phonon interaction in high-temperature superconductivity.
< The overall conclusion is that a very modest coupling inter-
-0.10 i 1 : action at high energy, in addition to a moderate electron-
000 025 050 25 45 6.5 phonon interaction, can give rise to critical temperatures of

o (eV) the order of 100 K¥* This mechanism is slightly different
from previously proposed theories of high-temperature su-

FIG. 14. The joint HTS electron-boson-based pairing mechaPerconductivity in that it does not depend solely on the high-
nism. (@) A model G(Q) consisting of an electron-phonon interac- ENErgy electron-boson interaction to account for the figh
tion andan electronic electron-boson interaction centered at 1.6 evRather, it is the cooperative nature of both the electron-
(b) The zero-temperatur&(w) obtained using th&(Q) in (a). The ~ phonon interaction and the electronic electron-boson interac-
parameters and results of these calculations are shown in joint HTHon which results in significantly increased critical tempera-
coupling section of Table II. tures.
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V. SUMMARY Eliashberg calculations, we proposed the existence of a joint
In this paper we have described the numerical integratio glectron-boson coupling mechanism. By assuming that the
pap 9 IE)perative electron-boson coupling function consisted of both

tec;hniques used to s_olve the' finite-tgmperature real—energ%l—n electron-phonon component and a high-energy electron-
axis Eliashberg equations. This algorithm was developed as Lson interaction. we were able to solve for both the tem-

:TrkeJia:?aSr Off(;)r?;ag;'?ﬁeaerre'%?rgr:_egésslg}r;(zgj kl)iise?ur?(l:at(i)onna;n dperature and energy dependence of the structure observed in
y piing the high precision superconducting-to normal-state reflec-

the magnitude of the effectiv.e Coulomb repulsion. we ha_we[ance ratio of these materidf$Based upon our mod&(Q)
presented a number of solutions of the Eliashberg equanon[ﬁe observed structure in the optical spectra and the ﬁigh

\évtzlrcsh gLucsgrgg (;ge Tag?ﬁr{na\éfvggghgf;ﬁ:,igg'nngﬂ%frﬁrg;n “are natural consequences of the theory, thus demonstrating
' s ' the importance of the finite-temperature Eliashberg descrip-

Alw,T). . . . . )
’ . . . . . tion of the superconducting state in experiments which can-
The Eliashberg formalism provides an important link be—not be accounted for in the usual BCS description.

tween experiment and theory, provided the correct input to
the theory is known. The results of experiments which can-
not be accounted for within the BCS formalism may often be
accounted for within the full Eliashberg description of the
superconducting state. The algorithm described in this paper The author would like to thank Professor William A.

was developed to aid in the interpretation of these experitittle and Professor James P. Collman for many valuable
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