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A fast, efficient algorithm has been developed for calculating the finite-temperature real-energy-axis solu-
tions of the Eliashberg integral equations for an arbitrary form of the electron-boson coupling function and
Coulomb repulsion. Using this algorithm, the complex superconducting gap functionD~v,T!, and the complex
renormalization functionZ(v,T), have been obtained for a variety of forms of the electron-boson coupling
spectrum. In addition, by calculatingD~v,T! at finite temperatures, the superconducting critical temperatureTc
has been obtained for a variety of model systems. These results compare well with the approximate analytic
expression derived by Allen and Dynes for values ofl less than 0.75. The solution of the Eliashberg equations
has also been obtained for a model in which there are two well separated peaks in the electron-phonon coupling
spectrum. This form of coupling spectrum is found to be particularly effective in raising theTc of the model
system. Further, this model has been extended and the solution of the Eliashberg equations has been obtained
with an electron-boson coupling spectrum consisting of both an electron-phonon component and a high-energy
electronic electron-boson component. This form of the electron-boson coupling function may have special
significance in the field of high-temperature superconductivity.@S0163-1829~96!09234-X#

I. INTRODUCTION

The most detailed microscopic theory of superconductiv-
ity, which accounts for virtually all experimentally observed
phenomena in conventional phonon-mediated superconduct-
ors, was derived by Eliashberg in 1960.1 The Eliashberg
equations are a generalization of the microscopic theory of
superconductivity derived three years earlier by Bardeen,
Cooper, and Schrieffer~BCS!,2 but which include the re-
tarded effects of the electron-phonon interaction. In contrast
to BCS theory, the Eliashberg equations describe the super-
conducting gap as a complex, energy-dependent function
whose structure reflects the energy dependence of the under-
lying electron-phonon interaction. Given the electron-
phonon coupling spectrum, the magnitude of the screened
electron-electron repulsion, and the electronic density of
states in the normal state, the results of the theory are re-
markably accurate.3 Eliashberg theory accounts for most ex-
perimentally observed phenomena in phonon-mediated su-
perconductors, including the many significant deviations
from weak-coupling BCS behavior.4,5 Among the most com-
mon experimentally determined quantities are measurements
of the superconducting critical temperatureTc , the supercon-
ducting density of states, the temperature dependence of the
superconducting gap, the temperature dependence of the
London penetration depth, the temperature dependence of
the electronic specific heat, and the temperature dependence
of the electronic spin-lattice relaxation rate.6–8 In principle,
these measurements yield information about the underlying
electron-pairing mechanism which results in the supercon-
ductivity. By providing a reliable, well-tested link between
experiment and theory, the Eliashberg integral equations are
an indispensable tool to experimentalists in the field of su-
perconductivity.

Although Eliashberg theory is remarkably complete in its
description of the superconducting state given accurate input
parameters, it remains relatively inaccessible as a common

interpretive tool for experimentalists in the field of supercon-
ductivity largely because of the inherent complexity of the
equations themselves. The Eliashberg equations form a
coupled set of nonlinear integral equations which determine
both the complex superconducting gap functionD~v,T!, and
the complex renormalization functionZ(v,T). In this for-
malism,D~v,T! reflects the strength of the electron-electron
pairing potential andZ(v,T) reflects the enhancement of the
electron mass which results from the electron-phonon inter-
action in phonon-mediated superconductors.

While these equations have been used over the past 30
years for the treatment of tunneling data, optical spectra, and
many other experiments, these have generally been done
only after certain approximations have been made. Recently,
the need arose for a much more precise solution to these
equations9,10 such that they could describe the relative
changes in the density of electronic states in the supercon-
ducting state accurate to approximately one part in 105. Ear-
lier methods were found to be inadequate. The algorithms
described here were developed to correct this inadequacy and
lead to solutions which are internally consistent to this accu-
racy. These solutions cast new light on the physics of both
high- and low-temperature superconductors and are dis-
cussed in Sec. IV D.

Historically, two distinct methods have been developed
for solving the Eliashberg equations; a direct method which
involves evaluating the required integrals on the real-energy
axis until a self-consistent solution is obtained, and an indi-
rect method in which the problem is solved self-consistently
on the imaginary-energy axis. The latter approach is com-
monly referred to as the Matsubara method.3,11–14The Mat-
subara method at low temperatures has the advantage of be-
ing computationally more efficient because the
superconducting gap function at imaginary energiesD( iv),
can be obtained easily by summing over only a small number
of discrete poles located on the imaginary-energy axis.13 It
has the disadvantage, however, of being an inherently less
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intuitive method of solving the equations. Furthermore, in
order to compare the results of the theory with experiment, it
is necessary to obtain the superconducting gap function on
the real-energy axis. For example,D~v! is required in the
interpretation of the conductance versus bias voltage spec-
trum of a normal/insulator/superconductor (N/I /S) tunneling
junction.5,15 Measurements such as these have provided the
most convincing experimental proof that the superconductiv-
ity in low-temperature superconductors is mediated strictly
via the electron-phonon interaction. Since the deviations in
the tunneling conductance which result from the presence of
D~v! are typically less than 1%, it is of great importance that
the calculated real-energy-axis gap function be of sufficient
accuracy. The earliest analytic continuation of the Matsubara
gap function to the real-energy axis reproduced the magni-
tude ofD~v,T! only at low energies and temperatures.16 Be-
cause this method could not reproduce the structure in
D~v,T! at the phonon energies, it could not be used in an
inversion procedure to obtain the electron-phonon coupling
spectrum. Recently, a method has been developed which can,
in principle, accurately reproduceD~v! from the Matsubara
gap function.17 Using this procedure,D~v! can be obtained
with no iterations in the limit of zero temperature. At finite
temperatures, however, this method requires several itera-
tions to converge. In any case, obtaining the solution of the
Eliashberg equations using the Matsubara method, and ana-
lytically continuingD( iv) to the real-energy axis, has been
limited to relatively low temperatures. At intermediate tem-
peratures, the sum over the imaginary-energy poles may not
converge as rapidly and the cutoff limit of this sum may
affect both the resulting magnitude, and functional form of
the superconducting gap function on the real-energy axis.14

The earliest solutions of the Eliashberg equations were
obtained by performing the required integrations on the real-
energy axis.15,18–20Usually, these solutions were obtained in
the extreme limits of zero temperature15,18 or at a tempera-
ture very nearTc .

19,20 In each limit there exists significant
simplifications which dramatically reduce the difficulty in
computing the solution. Finding the solution of the real-
energy-axis Eliashberg equations involves the calculation of
many principal part integrals. This task, though not difficult,
may be time consuming, and unfortunately does not lend
itself to a straightforward computation. In the full finite-
temperature form of the real-energy-axis Eliashberg equa-
tions it is necessary to calculate many thousands of principal
part integrals, take into account the effects of finite tempera-
ture by including all Fermi and Bose thermal occupation
factors, and properly account for all integrable singularities
which may occur at energies near the superconducting gap
edge.

In order to compare experimentally measured quantities
with the predictions of Eliashberg theory, it is often neces-
sary to calculateD~v! at finite temperatures. Because experi-
ments are rarely carried out at zero temperature or at tem-
peratures very close toTc , the solution of the Eliashberg
equations at intermediate temperatures is required. This is, in
fact, less of a problem with weak-coupling phonon-mediated
superconductors becauseD~v,T! can be approximated by
multiplying the zero-temperature gap function by a scaling
factor representing the known temperature dependence of the
BCS gap.19 This approximation, however, is invalid for

strong-coupling superconductors where, in addition to a re-
duction of the superconducting gap at finite temperatures,
there is also a significant change in the functional form of
D~v,T!. Alternatively, if the Tc of the material is high
enough so the phonon populations are significant at these
elevated temperatures, then the additional structure inD~v,T!
at high temperatures must be included in the interpretation of
experimental results. This may be of particular importance in
the interpretation of experiments performed on the high-
temperature cuprate superconductors. With critical tempera-
tures on the order of 100 K, and significant electron-phonon
coupling as evidenced throughN/I /S tunneling21 and femto-
second pulse-probe measurements,22,23 the interpretation of
any experiment performed on the high-temperature super-
conductors must take into account the temperature at which
the measurement was carried out and properly solve for the
associatedD~v,T!. Because of the inherent problems associ-
ated with obtaining the Matsubara gap function at high tem-
peratures, and analytically continuing this to the real-energy
axis, obtainingD~v,T! at high temperatures is most easily
accomplished using the real-energy-axis formulation of the
Eliashberg equations.

We have developed a fast, computationally efficient algo-
rithm for calculating the real-energy-axis, finite-temperature
solutions to the Eliashberg equations with an arbitrary form
of the electron-boson coupling function. We have used this
algorithm to calculateD~v,T!, Z(v,T), andTc of model sys-
tems based upon a variety of electron-boson coupling spec-
tra. We find that the analyticTc expression defined by
McMillan20 and later refined by Allen and Dynes13 provides
an approximate value for theTc of these model systems. But,
in order to obtain for these models a value ofTc with suffi-
cient accuracy to use the theory as a framework to describe
experimental data, we find that the Eliashberg equations
must be solved at finite temperatures. This is because the
value ofTc given by the expression of Allen and Dynes can
differ from the actualTc by as much as 15%.14

We also discuss the solutions of the Eliashberg equations
based upon a model of the electron-boson coupling function
in which there are two well-separated peaks in the coupling
spectrum. We first present results obtained from a purely
electron-phonon based interaction, and then extend the
model to calculate the solution of the Eliashberg equations
based upon a electron-boson coupling function which con-
sists ofbothan electron-phonon interactionandan electronic
electron-boson interaction. This model may have particular
significance in the field of high-temperature superconductiv-
ity where the microscopic mechanism which is responsible
for the high critical temperatures of the cuprate supercon-
ductors is not yet known.

II. FORMALISM

In this development, we assume the conventional approxi-
mations upon which Eliashberg theory is developed are
appropriate.1 The most important of these being the validity
of Migdal’s theorem3 in each model electron-boson coupling
function. We also assume that the model material is isotro-
pic. In this case, the electron-boson coupling spectrumG~V!,
represents the strength of electron-boson coupling, at energy
V, averaged over the Fermi surface.15 In the case where the
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superconductivity is solely mediated through the electron-
phonon interaction,G~V! is more precisely written as
a2~V!F~V! wherea2~V! is the square of the electron-phonon
matrix element andF~V! is the phonon density of states.
These assumptions result in the most popular form of the
real-energy-axis Eliashberg equations, that is, the form in
which the remaining integrations are strictly over energy
variables. Using these model assumptions, the finite-
temperature, real-energy-axis Eliashberg equations as de-
rived by Scalapino4 can be written as

D~v,T!5
1

Z~v,T!
E
0

`

dv8ReH D~v8,T!

Av822D2~v8,T!
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and

f ~v!5S 1

exp~bv!11D , n~v!5S 1

exp~bv!21D ,
where D~v,T! is the complex, energy-, and temperature-
dependent superconducting gap function,Z(v,T) is the
complex, energy-, and temperature-dependent renormaliza-
tion function, G~V! is the generalized energy-dependent
electron-boson coupling function averaged over the Fermi
surface,m* is the screened Coulomb repulsion,f ~v! and
n~v! are the Fermi and Bose occupation factors, respec-
tively, andb51/kBT. Together, these equations form a non-
linear set of coupled integral equations which must be solved
self-consistently forD~v,T!.

An iterative procedure is typically used to solve such in-
tegral equations. IfG~V!, m* , andT are known, then a guess
is made at the initial form ofD~v,T!. This first-order guess is
usually taken as a constant, real quantity with a magnitude
approximately that of a typical BCS gap. With this first-order
guess ofD~v,T!, Z(v,T) is calculated using Eq.~2!. Then, a
newD~v,T! is calculated using Eq.~1!, the first-order guess
at D~v,T!, and the newly calculatedZ(v,T). This iteration
procedure is repeated until the newly calculatedD~v,T! does
not differ significantly from the solution of the previous it-
eration.

III. ALGORITHM DESCRIPTION

In designing an efficient algorithm to calculate the solu-
tion of the Eliashberg equations it is useful to break down
Eqs. ~1! and ~2! into individual computational tasks. These
individual tasks may then be carried out by developing effi-
cient integration procedures specific to each phase of the
computation. The algorithm we have developed to solve the
Eliashberg equations24 can be divided into two major com-
putational tasks; ~1! evaluating K1(v,v8,T) and
K2(v,v8,T), and ~2! performing the iterative integrations
necessary to obtain a self-consistentD~v,T!. The former is
complicated by the occurrence of simple poles along the axis
of integration and the latter by the possible integrable singu-
larities at energies near the superconducting gap edge. We
will assume in the following development thatG~V!, T, and
m* are known quantities.

For the purpose of illustrating the various portions of the
algorithm, we setm* equal to zero and takeG~V! to be a
cutoff Lorentzian peak centered at 5.0 meV, with a full width
at half maximum of 1.0 meV and an amplitude of 1.0. This
electron-boson coupling spectrum is shown in Fig. 1. The
cutoff Lorentzian line shape has been used historically to
represent the energy-dependent electron-phonon interaction
averaged over the Fermi surface.15

A. The evaluation ofK1„v,v8,T… and K2„v,v8,T…

One of the most important computational tasks is the ac-
curate evaluation of theK1(v,v8,T) andK2(v,v8,T) in-
tegrals. These integrals are complicated by the fact that they
contain both Fermi and Bose thermal occupation factors, in

FIG. 1. The energy-dependent electron-boson coupling function
used to illustrate the calculation procedures developed as a means
of solving the finite-temperature real-energy-axis Eliashberg equa-
tions. The coupling function shown is a cutoff Lorentzian peak
centered at 5.0 meV with a full width at half maximum of 1.0 meV.
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addition to a number of simple poles which lie on theV
energy axis. Although the literature implies that it is neces-
sary to calculate these principal part integrals within each
iteration cycle,17 it is only necessary to evaluate these kernels
onceand store the values on an appropriate two-dimensional
grid spanning all v and v8. Since K1(v,v8,T) and
K2(v,v8,T) contain neitherD~v,T! nor Z(v,T), their val-
uesdo not changeduring the iteration sequence, thus it is not
necessary to reevaluate the kernels during the iterative pro-
cedure used to find the self-consistent solution,D~v,T!. This
feature dramatically reduces the time required to compute
the solution.

We have named the procedure which calculates both
K1(v,v8,T) and K2(v,v8,T) on a two-dimensional en-
ergy grid over@v,v8# the initialization stage. For each ele-
ment $v,v8% on this grid an integration over energyV
is performed and the results are stored in a dynamically
allocated memory location. Since K1(v,v8,T)
and K2(v,v8,T) consist of both real and imaginary
components, each $v,v8% position generated dur-
ing the initialization stage contains values for
Re$K1(v,v8,T)%, Im$K1(v,v8,T)%, Re$K2(v,v8,T)%,
and Im$K2(v,v8,T)%. By storing these quantities in a di-
rectly addressable memory location, these values may be ac-
cessed quickly during the subsequent iteration sequence.

The real and imaginary components ofK1(v,v8,T) and
K2(v,v8,T) evaluated using the electron-boson coupling
spectrum of Fig. 1, are shown in Figs. 2 and 3. Figure 2
shows the zero-temperature real~solid line! and imaginary
~dashed line! components ofK1(v,v8,T) andK2(v,v8,T)
evaluated atv;0 eV, v50.020 eV, andv50.040 eV. Fig-
ure 3 shows the sameK1(v,v8,T) andK2(v,v8,T) evalu-
ated at 5 K. The kernel functions can be seen to resemble the
structure of the coupling function,G(V), in that there is a
single peak~or derivative peak! structure which moves to
higherv8 with higher values ofv. A1 finite temperatures

there is a small, but significant, change in the form of the
kernel functions. In general, these functions tend to broaden
slightly with temperature. This broadening is most easily
seen in the finite temperatureK1(v,v8,T) and
K2(v,v8,T) spectra withv;0 eV in Fig. 3.

B. The iterative integration of the Eliashberg equations

With both the real and imaginary parts ofK1(v,v8,T)
andK2(v,v8,T) calculated and stored in memory, it is pos-
sible to calculate Re[Z(v,T)], Im[Z(v,T)], Re@D~v,T!#,
and Im@D~v,T!# given an initial guess atD~v,T!. This part of
the algorithm is referred to as theiteration stage. Theitera-
tion stage performs multiple integrations over thev8 variable
in Eqs.~1! and~2! until a self-consistentD~v,T! is obtained.
This process is complicated by the fact that the expressions

Re
D~v8,T!

Av822D2~v8,T!
~5!

and

Re
v8

Av822D2~v8,T!
, ~6!

which appear in Eqs.~1! and~2! maypossess integrable sin-
gularities at energies approximately equal to the supercon-
ducting gap edge D0, defined as Re$D~v,T!% at
v5Re$D~v;0,T!%.4 More explicitly, D0 is defined as the
magnitude of the real part ofD~v,T! evaluated at energyv
equal to the real part ofD~v,T! at energyv;0, and tempera-
ture,T. To accommodate this singular portion of the integral,
which will necessarily shift in energy with each iteration
cycle until self-consistency is achieved, we have developed a

FIG. 2. The zero-temperatureK6(v,v8,T) calculated using the
electron-boson coupling function of Fig. 1. The real~solid line! and
imaginary~dashed line! components of these kernels are shown as a
function ofv8 for v equal to 0, 0.02, and 0.04 eV.

FIG. 3. The finite-temperatureK6(v,v8,T) calculated using
the electron-boson coupling function of Fig. 1. The real~solid line!
and imaginary~dashed line! components of these kernels are shown
at T55 K, as a function ofv8 for v equal to 0, 0.02, and 0.04 eV.
The slight broadening of these functions with increased temperature
is most noticeable in thev50 kernel spectra.
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singularity integrationroutine. This routine dynamically ad-
justs the integration grid such that an accurate evaluation of
the singular part of the integral can be obtained.

Because the integrals involved in theiteration stage do
not contain any problematic regions except for the region
near the possible singularity, the remaining portion of the
iterative integration is rapidly evaluated using standard inte-
gration procedures. In this algorithm, sufficient accuracy and
speed are obtained by using the trapezoidal rule in all regions
of the integration overv8 where thesingularity integration
procedures are not required.

C. The full calculation sequence

The outline of the complete sequence of calculations in-
volved in obtainingD~v,T! based upon theG~V! shown in
Fig. 1 is as follows. In this example we take bothT andm*
equal to zero. With these definitions ofG~V!, m* , T, and the
upper-energy cutoff limit set to 0.04 eV, theinitialization
stage calculatesK1(v,v8,T) andK2(v,v8,T), and stores
these values on a two-dimensional grid of@v,v8#. Then, the
zeroeth-order guess atD~v,T! is defined as a real, energy-
independent BCS gap. This guess is taken to be 0.5 meV and
is shown as the BCSD~v! in Fig. 4, where the solid and
dashed lines are the real and imaginary components of
D~v,T!, respectively. With this zeroeth-order definition of
D~v,T! andK2(v,v8,T), a first-orderZ(v,T) is calculated
using Eq. ~2!.25 With this newly calculatedZ(v,T),
K1(v,v8,T), and the zeroeth-order guess atD~v,T!, a new
D~v,T! is calculated using Eq.~1!. ThisD~v,T! is shown as
the first iteration in Fig. 4, where it can be seen that even
after a single iteration there is considerable structure in the
functional form of D~v,T!. Successive iterations of these
equations leads to the self-consistentD~v,T!. A complete
iteration sequence is shown in Fig. 4 whereD~v,T! is plotted
after 1, 2, 4, 10, and 15 iterations. Typically,D~v,T! con-
verges to within 1% in less than 20 iterations. In the se-
quence shown in Fig. 4,D~v,T! has converged to within 5%
by the 10th iteration and to within 0.5% by the 15th.

IV. RESULTS

Having developed a fast, convenient means of solving the
Eliashberg equations for arbitraryG~V!, T, andm* , several
model systems have been studied and the representative
D~v,T! obtained. In the following section, we illustrate the
reduction of the magnitude ofD~v,T! due to a finitem* , the
differences between a weak- and strong-couplingD~v,T! at
zero and finite temperatures, and how the spectral form of
G~V! affects the superconducting critical temperatures of
Eliashberg superconductors.

A. The effects of a finite screened Coulomb repulsion,m*

In phonon-mediated superconductivity, the repulsive po-
tential normally experienced between the electrons in the
material is overcome by an effective attractive potential due
to the retarded interaction of the electrons with the phonons.
Calculations which took into account both the instantaneous
Coulomb repulsionm* and the retarded electron-phonon in-
teraction were carried out by Morel and Anderson in 1962.18

These calculations lead to similar results obtained by

Bogoliubov26 which included both a Coulomb repulsion term
and a BCS-like pairing interaction. In BCS theory, the pair-
ing interactionN(0)V is taken to be instantaneous and re-
sults in an energy-independent superconducting gap.2 In the
weak-coupling BCS limit of Eliashberg theory, the BCS
pairing interaction can be written as

N~0!V5
l2m*

11l
, ~7!

wherel is defined as20

l52E
0

` dv

v
G~v!, ~8!

m* is defined as18

1

m*
5
1

m
1 lnS vel

vph
D , ~9!

FIG. 4. The real~solid line! and imaginary~dashed line! com-
ponents of the zero-temperatureD~v! calculated during theiteration
stage using the coupling function of Fig. 1. A BCS gap is used as
the zeroeth-order guess atD~v!. The sequence continues to iterate
until the previously calculatedD~v! is not significantly different
from the results of the latest iteration. In this example,D~v! has
converged to within 5.0% of its final value by the tenth iteration and
to within 0.5% by the 15th.
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whereN~0! is the single spin density of electronic states at
the Fermi energy,V is the BCS pairing potential,vel is the
plasma frequency, andvph is the Debye energy of the mate-
rial. Thus, it can be seen from the form of Eq.~9!, that the
magnitude ofm* is dramatically reduced from the instanta-
neous Coulomb repulsionm by the difference in propagation
times of the electron-electron and the electron-phonon
interaction.13 Typical values ofm* fall between 0.1 and 0.2
eV.

The inclusion of a finitem* in the solution of the Eliash-
berg equations results in two dramatic changes in the form of
D~v,T!. The most obvious of these is the direct reduction in
the real part ofD~v,T! as seen in Eq.~1!. This reduction in
the magnitude ofD~v,T! also reduces theTc of the model.
The second, less obvious effect is that the real part ofD~v,T!
is nonzero at high energies.4 This high-energy component of
D~v,T!, though repulsive, is finite and independent of energy
due to the energy-independent Coulomb repulsion of the
electrons. This phenomena is illustrated in Fig. 5 where the
solid and dashed lines indicate the real and imaginary com-
ponents ofD~v!, respectively. TheG~V! of Fig. 1 was used
for these zero-temperature calculations. Figures 5~a! and 5~b!
show the resultingD~v,T50! for the model withm* equal to
zero andm* equal to 0.1, respectively. In Fig. 5~a! there is
the usual structure inD~v,T50! which reflects the structure
of G~V!. But at approximately four times the energy of the
peak inG~V!, D~v,T50! is seen to be zero. Whenm* is
finite, however, in addition to the overall reduction in mag-
nitude ofD~v,T50!, the real part ofD~v,T50! is finite and
negative at high energies. This can be seen to arise from the
form of Eq.~1! wherem* only directly affects the real part of

D~v,T!. The imaginary part ofD~v,T! is indirectly changed
by the finitem* through the self-consistency and causality
restrictions of the theory.

Although the magnitude ofm* plays a significant role in
Eliashberg theory, the experimental determination of this
quantity with precision is difficult. McMillan and Rowell5

determinedm* by allowing its magnitude to vary as a float-
ing parameter in the inversion ofN/I /S tunneling data. Ulti-
mately, the magnitude ofm* is determined in this method by
matching the experimentally determinedD0, with a theoreti-
cal D0 obtained from a triala2~V!F~V! and the floatingm*
parameter.27 Since the resulting magnitude ofD0 is a strong
function of the magnitude ofm* , as can be seen from the
form of Eq. ~1!, the determination of the magnitude of the
Coulomb repulsion by this method is not very precise. A
better inversion method has been developed by Galkin
et al.28 in which the magnitude ofm* is not required during
the inversion procedure used to obtaina2~V!F~V! from tun-
neling data. In this method, the magnitude ofm* is calcu-
lated analytically aftera2~V!F~V! has been determined.

B. Weak- versus strong-couplingD„v,T…

The distinction between weak- and strong-coupling super-
conductors is not clear cut, but in general is characterized by
the value of the ratio 2D0(T50)/kBTc . In weak-coupling
BCS superconductors this ratio is approximately 3.52, but in
strong-coupling materials, such as lead and mercury, it is
higher. In addition, strong-coupling superconductors possess
an electron-phonon coupling strength large enough that there
are observable changes at the phonon energies in the mea-
sured superconducting density of states defined by15

NS~v!5NN~v!ReS v

Av22D2~v!
D , ~10!

whereNS~v! andNN~v! are the energy-dependent density of
states of the materials. In strong-coupling superconductivity,
the structure inD~v,T! is large enough that there are observ-
able variations inNS~v! at energies corresponding to the
analogous structure inG~V!. However, even in the weak-
coupling limit of Eliashberg theory, there is considerable
structure in the associatedD~v,T!. Unfortunately, experi-
mental evidence of this type of structure in the gap is diffi-
cult to obtain because of the small magnitude of the gap.
Thus in weak-coupling superconductors, in the absence of
other high precision data, the BCS approximation is com-
monly used to describe the observed experimental quantities.

In the interpretation of experiments such as the tempera-
ture dependence of the spin-lattice relaxation rate,29,30 the
thermodynamic critical magnetic field,31 the London penetra-
tion depth,32 and the electronic specific heat of a
superconductor,33,34 it is important to use the proper form of
D~v,T! because these quantities are evaluated by integrating
D~v,T! over energy,v. Thus, the changes in the functional
form of D~v,T! which arise from the magnitude of the cou-
pling involved may be important in the interpretation.

To illustrate this we have calculatedD~v,T! in both the
weak- and strong-coupling limits of Eliashberg theory. The
model parameters and results of these calculations are shown
in Table I. Model A is a weak-coupling electron-phonon

FIG. 5. The real~solid line! and imaginary~dashed line! com-
ponents of the zero-temperatureD~v! based upon theG~V! of Fig.
1. ~a! D~v! obtained withm* set equal to zero.~b! D~v! obtained
with m* equal 0.1. In addition to the overall reduction in the mag-
nitude of D~v! with finite m* , there is also a constant negative
component of D~v! at high energies reflecting the energy-
independent Coulomb repulsion of the electrons.
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model with a 2D0(T50)/kBTc ratio of 3.74, this is close to
the BCS limit of 3.52. The resulting real~solid! and imagi-
nary ~dashed! components ofD~v,T! based upon this cou-
pling model are shown in Fig. 6~a! in reduced coordinates
D(v,T)/D0(T50) versus@v2D0~T50!#/v0 wherev0 is en-
ergy of the Lorentzian peak used as the electron-phonon cou-
pling function. The gap function is plotted this way to allow
for a direct comparison of the weak-couplingD~v,T! with
the strong-couplingD~v,T! shown in Fig. 6~b!, because the
structure inD~v,T! which results from the form ofG~V! is
located atv01D0(T) in the D~v,T! spectrum.4 The strong-
couplingD~v,T! is seen to have much more structure at mul-
tiples ofv0 even at zero temperature. Clearly, this additional
structure in the functional form ofD~v,T! will effect the
interpretation of experiments.

Although the differences in the form ofD~v,T! are rather
subtle at low temperature, they become quite pronounced at

higher temperatures, particularly at temperatures nearTc . In
these instances, it is important to incorporate the finite-
temperature characteristics of Eliashberg theory into the in-
terpretation of the experimental results. In Fig. 7 we show
D~v,T! of the model coupling spectra in the weak- and
strong-coupling limit atT50.9Tc . The difference in the
functional form of the two Eliashberg gap functions is quite
dramatic. While it is true that the weak-couplingD~v,T! may
be well approximated by multiplying the zero temperature
solution by the known temperature dependence of the BCS
gap@compare Figs. 6~a! and 7~a!#, this approximation clearly
breaks down in the strong-coupling case shown in Fig. 7~b!.
The strong-couplingD~v,T!, in addition to having pro-

TABLE I. Weak- and strong-coupling model parameters, along with the critical temperatureTc and
magnitude of the gap edge at zero temperatureD0 obtained from finite-temperature Eliashberg calculations.
A0, v0, andG0 are the parameters used to describe the amplitude, energy, and width of the cutoff Lorentzian
peak used to model the electron-boson coupling function.Tc

AD is the approximate critical temperature of the
model obtained from the Allen and Dynes analytic expression forTc @Eq. ~11!#. This approximateTc is
obtained from the magnitude of the effective Coulomb repulsionm* , the integrated coupling strengthl, and
the logarithmic moment of the electron-boson coupling spectrumvln .

Model A0 v0 ~meV! G0 ~meV! m* l vln ~meV! Tc
AD ~K! Tc ~K! D0 ~meV! 2D0/kTc

A 1.0 5.0 0.5 0.0 0.458 4.8 1.71 1.83 0.295 3.74
B 2.0 5.0 0.5 0.0 0.916 4.8 5.30 6.05 1.064 4.08

FIG. 6. The real~solid line! and imaginary~dashed line! com-
ponents of the zero-temperatureD~v!, plotted in reduced coordi-
nates, based upon the parameters shown in Table I.~a! The weak-
couplingD~v! obtained from the parameters defined by ModelA in
Table I.~b! The strong-couplingD~v! obtained from the parameters
defined by ModelB in Table I. The strong-couplingD~v! is seen to
possess much more structure than the weak-couplingD~v! at the
harmonics of the peak inG~V!, v0.

FIG. 7. The real~solid line! and imaginary~dashed line! com-
ponents ofD~v! atT50.9Tc , plotted in reduced coordinates, based
upon the parameters shown in Table I.~a! The weak-couplingD~v!
at T50.9Tc obtained from the parameters defined by ModelA in
Table I. ~b! The strong-couplingD~v! at T50.9Tc obtained from
the parameters defined by ModelB in Table I. While the finite-
temperature weak-couplingD~v! plotted in these reduced coordi-
nates is virtually identical to the zero-temperature solution, there are
significant differences between the zero- and finite-temperature
D~v! in the strong-coupling limit. One distinct difference is the
appearance of the negative peak in the Im$D~v!% at energies below
v0.
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nounced structure at harmonics ofv0, also possesses a large
negative imaginary part ofD~v,T! at low energies. In certain
instances, this structure may result in what is commonly re-
ferred to as gapless superconductivity. This is not because
there is noD~v,T!, but rather because there is no well de-
fined D0 in the superconducting density of states. That is,
there appear to be states at energies below the gap edge.
These contributions belowD0 arise from the form ofD~v,T!
and are a natural result of finite-temperature Eliashberg
theory. Physically, they arise from the recombination of ther-
mally excited quasiparticle states with the emission of
phonons near the gap edge. This process is reflected in the
negative peak in the imaginary part ofD~v,T! at energies
belowv0. This phenomenon can lead to the loss of certain
coherence properties commonly associated with a BCS su-
perconducting state. In particular, the absence of the Hebel-
Slichter peak35,36 in the nuclear-spin-relaxation rate can be
attributed to the finite-temperature form ofD~v,T!,29,30 and
not necessarily to exotic electron pairing mechanisms.

In addition to significant differences in the functional
form of the weak- and strong-couplingD~v,T!, there are also
similar differences in the weak- and strong-coupling
Z(v,T). Although mass renormalization effects are unim-
portant in the interpretation of many experiments, the form
of Z(v,T) must be taken into account, for example, when
evaluating measurements of the discontinuity in the elec-
tronic specific heat atTc ,

33,34 the temperature dependence of
the thermodynamic critical field,31 and the temperature de-
pendence of the London penetration depth.37

To illustrate the difference inZ(v,T) in the weak- and
strong-coupling limits of Eliashberg theory, we plot in Fig. 8
both the real~solid! and imaginary~dashed! components of
Z(v,T) versus@v2D0~T50!#/v0 for the model systems of
Table I. The zero-temperature renormalization function, in
the weak- and strong-coupling limits, is shown in Figs. 8~a!
and 8~b!, respectively. It is seen that, except for the increase
in magnitude ofZ(v,T) in the strong-coupling case, the two
renormalization functions are quite similar. In each case, the
function peaks at approximatelyv0 and tends to either unity
@Re$Z(v,T)%# or zero@Im$Z(v,T)%# at highv.

Figure 9 shows that, as withD~v,T! at higher tempera-
tures, there are dramatic differences in the weak- and strong-
coupling Z(v,T) at temperatures nearTc . The respective
weak- and strong-couplingZ(v,T) at 0.9Tc are shown in
Figs. 9~a! and 9~b!. While the finite-temperature weak-
couplingZ(v,T) shown in Fig. 9~a! is essentially the same
as the zero-temperature case@Fig. 8~a!# the strong-coupling
Z(v,T) shows additional structure at low energies. Again,
this structure reflects phonon emission processes which can
occur at finite temperatures. This structure inZ(v,T) should
be taken into account in the interpretation of experiments
whose results are influenced by renormalization effects, such
as those discussed above.

C. Calculations of the superconducting critical temperature

One of the distinct advantages of having an efficient al-
gorithm available to calculateD~v,T! for arbitraryG~V!, m* ,
andT, is that it can be used to aid in the interpretation of
experiments beyond the usual BCS model. A self-consistent
check of a proposed modelG~V! is that it accurately repro-
duce the measuredTc . With this algorithm, theTc of any

model can be calculated accurately without having to resort
to approximate analytic expressions for the critical tempera-
ture. In 1968, McMillan20 formulated an analytic expression
for Tc given l, m* , and the average phonon frequency^v&.
The McMillan formula was extended by Allen and Dynes in
1975,13 with the main difference being the replacement of
the ^v& prefactor with the logarithmic moment of the phonon
spectrum,vln . The analytic expression formulated by Allen
and Dynes is the most common formula used to calculate
approximate critical temperatures. It is usually written as

kBTc5
\v ln

1.2
expS 2

1.04~11l!

l2m* ~110.62l! D , ~11!

with

v ln5expS 2l E
0

` dv

v
G~v!ln~v! D , ~12!

andm* andl defined by Eqs.~8! and ~9!, respectively. Al-
though this expression is reasonably accurate as a prelimi-
nary estimate for the superconducting critical temperature,
the Tc calculated with this expression is inadequate to de-
scribe many experiments because of an approximately 15%
uncertainty.14 Because critical temperatures are routinely
measured with a precision better than 1%, the Allen and
Dynes analytic expression forTc is not accurate enough to
explain the temperature-dependent effects observed in many
experiments.

FIG. 8. The real~solid line! and imaginary~dashed line! com-
ponents of the zero-temperatureZ~v!, plotted in reduced coordi-
nates, based upon the parameters shown in Table I.~a! The weak-
couplingZ~v! obtained from the parameters defined by ModelA in
Table I.~b! The strong-couplingZ~v! obtained from the parameters
defined by ModelB in Table I. Except for the difference in the
magnitude of the coupling, both of these functions are quite similar.
In general,Z~v! displays peaks at energies near the peak of the
underlying electron-boson coupling function.
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The superconducting critical temperature is the tempera-
ture at whichD~v,T! equals zero. Thus, we can findTc for a
modelG~V! andm* by solving forD~v,T! at a variety of
temperatures and find the temperature at whichD~v,T! col-
lapses to zero. This is illustrated in Fig. 10 for the model
G~V! shown in Fig. 1, where we show the real@Fig. 10~a!#
and imaginary@Fig. 10~b!# components ofD~v,T! at tem-
peratures up to 2 K. TheTc is determined by plottingD0 at
each temperature and, for the weak-coupling models, fitting
the data to the temperature dependence of a BCS gap.2,38The
temperature dependence ofD0 for this model is shown in Fig.
11, where the solid line represents the BCS temperature-
dependent gap. The critical temperature of this model was
determined to be 1.83 K.

We have calculatedTc for a number of electron-phonon
coupling functions39 with m* , equal to zero and 0.15. For
each model, the zero-temperatureD~v,T! is calculated, then
higher temperature solutions are obtained untilTc can be
determined from the characteristic collapse ofD0. We find
that Tc can usually be obtained accurately by calculating
D~v,T! at four or five different temperatures. In Fig. 12 we
plot Tc/vln versusl for these model solutions, along with the
Allen and Dynes analytic expression forTc .

13 We find good
agreement between these results for a variety of forms of
G~V! indicating that thevln prefactor describes well the en-
ergy dependence of the coupling function forl less than
approximately 0.75. At higher values ofl, there is a signifi-

cant deviation between our results and the Allen and Dynes
expression forTc , and that for a givenvln , in general, the
analytic expression forTc yields a lower value than the ac-
tual Tc . Because this error in the value of the critical tem-

FIG. 9. The real~solid line! and imaginary~dashed line! com-
ponents ofZ~v! atT50.9Tc , plotted in reduced coordinates, based
upon the parameters shown in Table I.~a! The weak-couplingZ~v!
at T50.9Tc obtained from the parameters defined by ModelA in
Table I. ~b! The strong-couplingZ~v! at T50.9Tc obtained from
the parameters defined by ModelB in Table I. Similar to the weak-
couplingD~v!, the finite-temperature weak-couplingZ~v! plotted
in these reduced coordinates is virtually identical to the zero-
temperatureZ~v!. The strong-couplingZ~v! at finite temperatures,
however, is seen to possess additional structure at energies below
the peak inG~V!.

FIG. 10. The full temperature dependence ofD~v! based upon
theG~V! in Fig. 1.~a! The real part ofD~v! versus temperature.~b!
The imaginary part ofD~v! versus temperature. TheTc of the
model is obtained by finding the temperature at whichD~v! col-
lapses to zero.

FIG. 11. The temperature dependence of the superconducting
gap edge based upon theG~V! in Fig. 1. TheTc is obtained by
fitting the temperature-dependent magnitude ofD0 ~s! to the
known temperature dependence of the BCS gap function. TheTc of
this model was determined to be 1.83 K using this procedure.
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perature increases dramatically for values ofl greater than
0.75, the full finite-temperature calculation must be carried
out when comparing the results of Eliashberg theory to ex-
periment with materials of moderate- to strong-coupling
strength.

D. The two-component electron-boson coupling spectrum

A particularly interesting form of the electron-boson cou-
pling spectrum is one in which there are two distinct energy
regions where there is significant coupling strength. This
type of coupling spectrum is referred to as the joint mecha-
nism of superconductivity.14 There are many examples of
superconducting materials which possess this general type of
electron-boson coupling spectrum. These include elemental
metals such as lead and indium,5 Nb3Sn, Nb3Al, and other
A15 materials,40 and NbN and other refractory materials41

which possess significant electron-phonon coupling strength
at both low and high regions of the phonon spectrum. More
recently, this type of mechanism has been suggested as the
operative mechanism of superconductivity in the K3C60
materials,42,43 where there may be both low-energy inter-
sphere, as well as high-energy intrasphere vibrational modes
which are responsible for the pairing.

We first consider the generalized joint electron-phonon
coupling function shown in Fig. 13~a!. The zero-temperature
D~v,T! of this model is shown in Fig. 13~b!, where it is seen
that there is considerable structure inD~v,T! at energies be-
tween the peaks inG~V!. Using procedures outlined in the
previous section we calculate theTc of this model system to
be approximately 3.48 K. The significance of this form of
G~V! is dramatically illustrated when we decompose the
coupling into single-peak coupling functions and calculate
the critical temperatures of each individual peak. The param-
eters used in these calculations, and the results are given in
Table II. From these results it is apparent that if the high-

energy coupling is neglected, theTc of the model drops to
1.83 K, a reduction of nearly a factor of 2. Alternatively, if
the low-energy contribution toG~V! is neglected, the model
is not superconductingat any temperature. It is a remark-
able, unexpected consequence of Eliashberg theory that the
inclusion of a very weak, high-energy coupling would be so
effective in raising theTc of the model. While it has been
known for many years that any increase in the amplitude of
G~V! will result in an increase in theTc of the material,

44,45

it was not clear how thespectral formof a givenG~V! could
enhanceTc . It is clear from these results that there is a
dramatic enhancement of the superconducting critical tem-
perature with the inclusion of the weakly coupled high-
energy interaction inG~V!. We find that this is a general
result of Eliashberg theory, that is, that the sum of the critical
temperatures of the individual components of a joint cou-
pling function is always less than theTc of the full G~V!.

This joint electron-boson coupling function approach can
be further extended to describe the results of Eliashberg
theory based upon a model interaction which consists of both
an electron-phonon interaction and a high-energy electronic
electron-boson interaction. We have found that this model is
required in the interpretation of recently measured optical
data. We have previously reported the results of a series of
optical experiments where we measured the
superconducting–normal-state reflectance ratio (RS/RN) of
Tl2Ba2Ca2Cu3O10, Tl2Ba2CaCu2O8, ~BiPb!2Sr2Ca2Cu3O10,
and YBa2Cu3O7 for photon energies between 0.3 and 5.0
eV.9,10 We interpreted the experimental data using finite-
temperature Eliashberg theory and the strong-coupling ex-
tension of Mattis-Bardeen theory developed by Nam.46,47

The results indicate that the operative electron-boson cou-
pling spectrum of these materials consists of both an
electron-phonon component and a high-energy electron-
boson component located between 1.6 and 2.1 eV.

FIG. 12. Tc/vln versusl for a variety of forms ofG~V!. The
open circles~s! represent the results obtained by calculating theTc
of the model using the full finite-temperature Eliashberg equations,
and finding the temperature at whichD0 collapses to zero. The solid
line represents the approximate analytic expression forTc derived
by Allen and Dynes.

FIG. 13. The joint electron-phonon based pairing mechanism.
~a! A modelG~V! consisting of two well separated regions of sig-
nificant coupling strength.~b! The zero-temperatureD~v! obtained
using theG~V! in ~a!. The parameters and results of these calcula-
tions are shown in joint electron-phonon coupling section of Table
II.
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An electron-boson coupling function consisting of both an
electron-phonon component and a high-energy electronic
electron-boson component has been suggested as a possible
mechanism for high-Tc superconductivity.

48,49The basic idea
of the model is that theTc of a superconductor may be raised
by increasing the energy of the interaction which mediates
the pairing of the electrons. This was suggested by Little in
the context of organic superconductors,50 then later by
Ginzburg,51 and by Allender, Bray, and Bardeen,52 in the
context of layered systems,8 and has been refined through the
years.53 In the following model calculations we extend the
joint electron-phonon coupling spectrum of the previous sec-
tion to include both an electron-phonon interaction and an
electronic electron-boson interaction. Implicit to these calcu-
lations is the assumption that Eliashberg theory is an appro-
priate framework within which to describe the superconduc-
tivity of this model. Furthermore, we neglect any effects of
anisotropy although these are known to be a significant fac-
tor in the cuprate superconductors.

The generalized coupling function used in these calcula-
tions and the resultingD~v,T! calculated at zero temperature

are shown in Fig. 14. Note the expandedv scale from zero to
0.5 eV. The parameters used in these calculations, and the
results of the finite-temperature calculations, are shown un-
der the joint high-temperature superconductivity~HTS! cou-
pling section of Table II. Both of the peaks in this coupling
function are described by cutoff Lorentzians. Figure 14~a!
shows theG~V! of this model which consists of a broad
electron-phonon component centered at 50 meV and a high-
energy electron-boson component centered at 1.6 eV. The
zero-temperatureD~v! based upon this model interaction is
shown in Fig. 14~b!. As in the joint electron-phonon based
interaction, there is significant structure inD~v! at energies
between the peaks ofG~V!. Specifically, the real part of
D~v!, although slightly negative at energies immediately
above the phonon energies, is positive and nearly constant up
to approximately 0.5 eV. This feature will manifest itself in a
negative magnitude ofm* obtained from the inversion of
tunneling spectra.14 This arises because typical tunneling ex-
periments only probe energies up to approximately 100 meV.
Thus, a negativem* implies the existence of a higher-energy
component of the electron-boson coupling function which is,
necessarily, compatible with the electron-phonon interaction.

The critical temperatures of the fullG~V!, and the indi-
vidual components ofG~V!, for this model are shown in
Table II. As in the joint electron-phonon based interaction,
the inclusion of the high-energy component of the coupling
function is dramatic. TheTc of the purely electron-phonon
based interaction is calculated to be 44.8 K, while that of the
high-energy electron-boson interaction is 20.5 K. The full
G~V!, however, has a critical temperature of 118.1 K, similar
to the observedTc of the cuprate superconductors. Again, the
Tc of the full G~V! is much greater than the sum of its
individual components.

This result demonstrates the importance of the electron-
phonon interaction in high-temperature superconductivity.
The overall conclusion is that a very modest coupling inter-
action at high energy, in addition to a moderate electron-
phonon interaction, can give rise to critical temperatures of
the order of 100 K.54 This mechanism is slightly different
from previously proposed theories of high-temperature su-
perconductivity in that it does not depend solely on the high-
energy electron-boson interaction to account for the highTc .
Rather, it is the cooperative nature of both the electron-
phonon interaction and the electronic electron-boson interac-
tion which results in significantly increased critical tempera-
tures.

FIG. 14. The joint HTS electron-boson-based pairing mecha-
nism. ~a! A modelG~V! consisting of an electron-phonon interac-
tion andan electronic electron-boson interaction centered at 1.6 eV.
~b! The zero-temperatureD~v! obtained using theG~V! in ~a!. The
parameters and results of these calculations are shown in joint HTS
coupling section of Table II.

TABLE II. Results of finite-temperature Eliashberg calculations based upon a two-component electron-boson coupling spectrum. The
parameters in the table are defined in Table I.

Model A0 v0 ~eV! G0 ~eV! A1 v1 ~eV! G1 ~eV! m* l vln ~eV! Tc
AD ~K! Tc ~K! D0 ~meV! 2D0/kTc

Joint 1.0 0.005 0.0005 1.0 0.025 0.0005 0.0 0.549 0.0063 3.26 3.48 0.555 3.70
e-ph 1.0 0.005 0.0005 0.0 0.458 0.0048 1.70 1.83 0.295 3.74
coupling 1.0 0.025 0.0005 0.0 0.090 0.0248 0.0 0.0 0.0

Joint 1.9 0.050 0.007 0.835 1.60 0.20 0.15 1.495 0.1003 112.9 118.1 24.4 4.80
HTS 1.9 0.050 0.007 0.15 1.134 0.0461 35.7 44.8 8.657 4.49
coupling 0.835 1.60 0.20 0.15 0.361 1.563 5.23 20.5 4.723 5.34
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V. SUMMARY

In this paper we have described the numerical integration
techniques used to solve the finite-temperature real-energy-
axis Eliashberg equations. This algorithm was developed as a
means of obtaining a high precisionD~v,T! based upon an
arbitrary form of the electron-boson coupling function and
the magnitude of the effective Coulomb repulsion. We have
presented a number of solutions of the Eliashberg equations
which illustrate the manner in which different input param-
eters, such asG~V!, m* , andT, affect the functional form of
D~v,T!.

The Eliashberg formalism provides an important link be-
tween experiment and theory, provided the correct input to
the theory is known. The results of experiments which can-
not be accounted for within the BCS formalism may often be
accounted for within the full Eliashberg description of the
superconducting state. The algorithm described in this paper
was developed to aid in the interpretation of these experi-
ments.

The primary use of this algorithm in our group has been
in the interpretation of optical experiments performed on the
high-temperature cuprate superconductors. With these ex-
perimental data, and the results of the finite-temperature

Eliashberg calculations, we proposed the existence of a joint
electron-boson coupling mechanism. By assuming that the
operative electron-boson coupling function consisted of both
an electron-phonon component and a high-energy electron-
boson interaction, we were able to solve for both the tem-
perature and energy dependence of the structure observed in
the high precision superconducting-to normal-state reflec-
tance ratio of these materials.10 Based upon our modelG~V!,
the observed structure in the optical spectra and the highTc
are natural consequences of the theory, thus demonstrating
the importance of the finite-temperature Eliashberg descrip-
tion of the superconducting state in experiments which can-
not be accounted for in the usual BCS description.
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