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The Eliashberg theory is applied to study the critical temperature and a gap anisotropy of strongly coupled
layered superconductors. The electron-ion pseudopotential, the electron, and the phonon energy spectra are
proposed to be anisotropic in layered crystals with an open Fermi surface. The anisotropic electron-phonon
spectral density aZF(Z)]pZ is found to be expanded in caog§,d) functions. Such an expression for
[aZF(z)]pZ demands the energy gak(p,,») to present also as an expansion in the harmonic functions.
Therefore, the value of the energy gap alongdtexis should display, dependence. The value Afdiffers
from that obtained by in-plane measurements. By using McMillan’s method we present each anig|iwide
in the harmonic expansion of the energy g&ip,,w) by trial function. The infinite set of coupled homoge-
neous equations faky, Aq, A,,... is obtained, the solution of which should yield the critical temperature. We
estimate only those equations which include the three amplitdges);, andA,, in the harmonic expansion
of the energy gap. An approximate calculatiorifgfshows that the critical temperature must be enhanced due
to the influence of anisotropyS0163-182@6)05130-3

[. INTRODUCTION originated by the electron-phonon interaction anisotropy,
also by the electron and phonon spectra anisotropies. Though

Experimental investigation of the energy gap shows CONthe Coulomb pseudopotential in layered crystals should de-

siderable anisotropy for almost all high-temperature S“perbend on the crystallographic axis, we shall not take into ac-

conducting crystalé_?“ Different values of the energy gap, count this dependence and we shall admit the Coulomb

when wave vector is (_:Ilrected alptﬁlch) and perpendicular pseudopotential as a constant for simplicity.

(kllc) to superconducting layers in YBau;0; crystals, have ~ The major factor which reduces to ttedependence of

been obtained from far-infrarédRamart, and tunneling,  the gap is an anisotropy of the electron-ion pseudopotential.

measurements. According to these data, the raig03/T.  We assume that the electron-ion interaction occurs not only

is about 8 for the in-plane, while it is 3 for the out-plane inside a layer but also between nearest-neighboring layers.

measurements. The energy gap anisotropy can also be oPhe general form of the electron-ion pseudopotential is given

served inside the Cu-O superconducting plghedich is  in Sec. II.

directly associated with an in-plane anisotropy. Since the current carriers in highs superconductors exist
The gap anisotropy of the layered supercondudi8’s)  inside the Cu-O layers, its energy spectrum is proposed to be

has been theoretically investigated by many autAdaking

a priori the anisotropy of the pairing interaction, i.e., the 22

internal spherical symmetry of pairs in isotropic SC’s is phe- E(k,k,) = o (k)2(+ ki) +1t, (1-cok,d); @

nomenologically destroyed according to the crystalline sym-

metry of anisotropic SC’s. The orientational dependence of ) ) ) )

the gap parameter in the layered SC’s has been also invesihere,m* is current carrier’s effective mass, is the tun-

gated in Ref. 6 in the framework of the excitonic mechanism€ling integral from plane to neighboring pla}ne’, ahss the

of superconductivity. The anisotropic effects in the theory ofinterlayer distance. The one-particle properties’ anisotropy is

strongly coupled superconductors have been studied by usiﬁﬁ]aracter_ized by the small parametarier <1, whereeg is
the Fermi-surface harmonié€. According to this method, the Fermi energy of particles inside the layers. The condition

the physical quantities defined in the space can be ex- t<ep s satisfied_ for open Fgrmi surfaces. It Sh.OU|d be no-

. . . . ticed that an anisotropy which appears only in the one-
panded in orthonormal functions on the Fermi surface, WhIChparticle characteristics of a system cannot reduce to the
are callgd the Fermi-surface harmonics. . energy-gap anisotropy in superconducting matefials.

In this paper we shall study the effects of anisotropy on e shonon spectrum of the layered crystals is, generally
the energy gap and on the critical temperature of stronglypeaking, anisotropic. The dispersion relations for longitudi-
coupled layered SC’s. Taking into account the anlsotropleﬁam'_(q,qz) and transvers€+(q,q,) phonons are given by
in the microscopic characteristics of superconducting crysgne following expressiont
tals, the energy gap can be shown to be anisotropic and the
transition temperature to be enhanced in the layered super- )
conductors. 2 — 11242 2

The anisotropy of the energy gap in layered SC’s may be Qia.a)=uia™+ d? uz(1-coxd), @
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2 e

0%(q,0,) =uTg?+ g uF(1-cos,d). 3 z/fj*<r>=§ ag e @rride), 8
The sound velocity components, u, andu,, urin aniso- e can obtain the following electron-phonon interaction
tropic solids should satisfy the relations Hamiltonian:

u>u, andu,>ur. (4) A N
- Hepi= K, k) (b2 o +b% _q)ay. a

Such a form of phonon energy spectrum denotes that a lattice " a;; %“Z 9a(k k) (g, 6.-0,) A+, +, 3k,
is most rigid with respect to vibrations of atoms inside the kk,
layers and the rigidity for vibrations of one layer relative to €)

the others are very small.

The plan of this paper is as follows. In Sec. Il we study
the electron-phonon coupling constant for a layered supe
conductor. Starting from the anisotropic Eliashberg equa-

with g, (k,k,) and g;(k,k,) being the “bare” electron-
|;:_)honon coupling constants:

tions, written near the critical temperatufe, we show in gL(k,k,)=—i N )1/2|k|

Sec. Ill that thek,-dependent energy gap of layered SC's Lt 2MQ, (k,ky)

may be expressed as an harmonic expansion. In Sec. IV we

derive the expression for the transition temperafligeby X[Va(k) +2V,(k)cosk.d], (10
using McMillan’s trial functions method. The critical tem- o

perature is shown to be enhanced with respect to the isotro- (k)= —i N sink,d

pic value ofT. grikKe 2MQ+(k,k,) d

X + .
Il. ELECTRON-PHONON INTERACTION [Vak) +2V(k)coscd] (13)
We shall use the electron-phonon interaction part of thd\0W: we have to make the Coulomb renormalization of the

Hamiltonian, written for a layered superconductor, in the fol-. Paré” electron-phonon coupling. Following the renormal-
lowing form: ization procedure, which has been carried out for an isotropic

Sc!! we must replacey,(k.k,) by the renormalized cou-

R pling constantg,(k,k,). The expressions fog, (k,k,) and

He.pri= > fdsz d?r' g (NDViIr =Ry (r")1y;(r), g1(k,k,) will be defined by Eqs(10) and (11), but with

i’ ®) replacing the “bare” electron-phonon pseudopotential
V(k,k,) and the “bare” phonon-dispersion relatié,(k k)

which describes the interaction of an electron atrtiepoint by the renormalized onegk .k,) andw,(k,k,), respectively.
of the jth layer with ion at ther'th point of thej'th layer Expression(7) for the “bare” electron-ion pseudopoten-
through the electron-ion interaction potential of tial permits electrons and ions to interact only on the same
Vj[r—Rjr(r’)]. By expressing an ion radius-vecthj/(r’) and nearest-neighboring layers. We believe that the Coulomb
as a sum oRJQ,(r’) equilibrium position andsR;(r’) dis- renormalization does not reduce to next-nearest-neighboring

placement radius vector, we can expand the electron-ion p@d further interactions in EdJ), i.e., the renormalization

tential V.[r—R./(r")] around RO (r"). Further we express must “dress” onlyV(r —r’) andV,(r —r") potentials in Eq.
SR(r) B hlonon creationl]3’+( ' ) and destruction (7), replacing them by the new renormalized potentials

b (J ) g el?ators as o v Ar—=r'), asVyr—r")=w, (r—r’) or Vi (k)= 5K) in
«(9,92) Op ’ Egs.(10) and (11).

1\ e The phonon-dispersion relatiof (k,k,) for an aniso-
SR.(r)= _) > . elartad) tropic metal is renormalized by the real part of the electron
! 2NM/ A1 T, [Qa(9,09917 dielectric functione(k k, ;0):1
+ —_— —_—
X[ba(q!qz)+ba( d. Qz)]- (6) Qa(kikz)zwa(k!kz):Qa(klkz)/[el(k!kz;0)]1/2!

where the subscripk denotes the transvers@&)(and longi-
tudinal (L) phonons. The electron-ion pseudopotentiglr
—R?,(r’)]zvjj/(r—r’) is proposed to be the following
form:

where g,(k k, ;00=Rd e(k Kk, ;0)].

For a strongly anisotropic metallic system with electron
spectrume(k k,), defined by Eq(1), the polarization opera-
tor I1(k,k,;0), and consequentl¥(k k,;0) has been calcu-
N , , lated by us in Ref. 12. It was shown thdtk k,;0) remains
Vij (r=r")=Vy(r—r")8j;, +Vo(r—r )[5J"v1'+1+51"1*1(]7') constant, as it is in two-dimension&RD) systems, for

0<k=<2kg (kg is Fermi momentum and there are small
In Eq. (7) the potentialsV,(r) and V,(r) characterize the corrections toll(k,0) only in the vicinity of X&g. We pro-
electron-ion interactions in the same and nearest-neighboringose that as a result of renormalizatiog(q,q,) is reduced to
layers, respectively. the following form:

After substituting Eqs(6) and (7) in Eqg. (5) and trans-
forming into an electron creati(mq a (destructiorgg q ) op-

2
erator as 0f(0,0,) =Uf(q)a*+ g uf (g)(1-cox,d),  (12)
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0%(9,0,)=u?(9)9%+ 3 u%(q)(1—cogd). (13 n

The coefficientss;, u, andu, , ur become dispersive due to
the renormalization, but the relatio¥® must be satisfied for
an arbitraryq, i.e.,

u u u u
L(Q)~—L<1 and—T(q)~—T<1.
u(aq) oy u (q) u

Expressiong2) and (3) for the dispersion relations actually
mean that phonons can hop only between the nearest-
neighboring layers. The Coulomb renormalization is not as-
sumed to change the character of the interlayer phonon hop-

(14

[

ping that is reflected in Eq$12) and (13). o
Thus, the dressed electron-phonon couplingk k,) for
layered SC'’s gets the following form:

o N 1/2
gL(kvkz):_i(M) K|
X[v1(K)+2v,(k)cogk,d)], (159
N Y2 sin(k,d)
rlkle)= (2MwT<ka>> d
X[v1(K)+2vy(k)cogk,d)],  (15b)

wherew, and wt are defined by Eq912) and(13), corre-

FIG. 1. The Fermi surface of the layered metals.

tanH(z'/2T) + coth(z/2T)

K(zz"0)= 2 Z’+z7z—w—id
tanh(z'/2T) — coth(z/2T
_tanhz/ZD-cottzizn))
2'-2—w—16

Here we use the usual notation for the Eliashberg equations,

ie., Z(p,,w) is the renormalization parameter,

(azF(Z))pr/ is the electron-phonon spectral function,
z

A(p,,w) is the energy gap anﬂpzpé is the anisotropic Cou-

spondingly, andw, Ak) are the Fourier transforms of the lomb pseudopzotential The anisotropic electron-phonon spec-
dressed potentials, Ar —r'). The obtained electron-phonon ral density («°F(2))p,p; for scattering of an electron pair

coupling g,(k k,) allows us to derive th& dependence of from the (p,,—

p,) state to the§, ,—p,) state on the Fermi

the gap function and the expression for the critical temperasurface is defined by the following expression:

ture from the Eliashberg equations.

lll. ELIASHBERG EQUATIONS AND GAP ANISOTROPY

The linearized Eliashberg equations valid for tempera-

turesT near the critical temperatu®, have the forrie11:8:14

)]w f_:gf:f dzj dz

X (azF(Z))pzpéK(Z,Z’ o),

[1 Z(p21

(16)

20, A p0= [ T [ az [ “axatr o,y
xXK(z,2' w)Re@
—fﬂ (;E)_f,uppf dz'tanh
x% Re#, (17)

where the kernel of these integral equatidh&z,z’;w) is
given by

2d(0) JZpF dqg
V(2pF)*—0?

x{[g.(a,p,~ py)|?b(a,p,— Py ;2)

+[g7(a,p,— py)|?br(d,p,—pg;2)},
(19

(aZ(Z) F(Z))pzp;

where N,q(0)=m/7#? is the density of the 2D electron
statesp,(q,p,— P, ;2) is the phonon spectral weight, and

(193

The momentum integration in E¢L9) has been carried out
by changing 2D variables from’'={|p’|,¢} to the energy
variable E(p') and q=|p—p’|, (see Fig. 1L Since, we set
both|p| and|p’| equal topg, g will denote the angular varia-
tion asp’ moves on the Fermi surface and is related the
angle¢ by

=\ —2mt, (1—cosp;).

2m 2p* dq
J de---=4|F —2 ...
0 o V(2pf)*—q?

To study the gap anisotropy we expand the electron-phonon
couplingsg,, in Eqg. (19) over the small parameters
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2 u2
><1 and=2—<1
uzu(de) u?(ped)?

Then we get

(azF(Z))pré

Npg(0) (1 dy bi(y,2) y? !
= )+2 co
- \/1T2-[V1(y VZ(y) sz pz)] Z(y) y +UJ2_/2U”(de)2 UL(y)(Zde)z

1—-cos2p,—p,) br(y,2) u?b(y,z) cosp,—p,)—(t, /er)(1—cop,) y?
— — N 2252 2T 53 7 — — ; AT Ay
(t, /ep)(1—cop,) y=+ui/2ui(ped)®  2u/(pgd) 1—(t, /ep)(1—comp,) (y=+ui/2ui(pgd)?)

L ur  [1-cos2p,—p)licosp,—p;) (L. /ep)(1-copy)] br(y,2) 20
16u7 (ped)* [1—(t, /ep)(1—comy)]? (y*+ur/2uf (ped)?)?
For simplicity we neglect thep,— p;) dependence of the phonon spectral weighin Eqg. (20).
After integration Of(azF(Z))pré over p, in the first Brillouin zone we obtain from Eq20)
2 _dezz octinz 2 tiz
@F@Ny= | 52 @F@Dp =3 | | (@F(@)he0np=(@®F (@)t - (@F@)icoprt-- (2D
where
Nog(0) (1 dy y*b(y.2) br(y.2)
2 _ 249,214 2, 2
(a’ F(Z))O . 0 \/1_—y2 s s ui [Vl 27/2] 8(p d)2 2+UT/2(de 2 [Vl VZ]
MY 2(pedy?
2 2
uy y bL(y,Z) 1 2 2
" 2ped? Wy a(ped )R |2 (R )
2
us bT(y Z) t 2 2
+ . +
T6(ped)® " (u7y?+ u3i2(ped))? |12 e AT 22
Ng(0) (1 dy br(y,2) 2ufy?b.(y,2)
2 __ 2 2
(C! F(Z))l 877(de)2 0 \/ﬁz J_y +uT/2(de)2 V1V2+( » s UE 2 [V1+3V2 4V1V2]
Y Blpedr?
2
usy br(y,z)
+ +
Aprd)? Y2 i ped P V1 21 2l 29
Npg(0) (1 dy br(y,2) 8uly®b, (y,2)
2 - 2
(@02 Gamipea? Jo 1oy | Wy rzped? ") @y apear? V)
"Wty e Y| 2
( ZF(Z)) de(o) 1 dy { bT(y Z) 2uiy2bL(ylZ) 2
o = 14
" 32m(ped)? Jo JI=y2 [ UTy2+ud2(ped)? P (WByP Ul 2(ped)?)?
1 ufbr(y,z)
’ 2 [+ v3-3uw,] |, (25

+
2(ped)? (uZy?+us/2(ped)?)
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N2q4(0) 1 dy br(y,2)

(a?F(2))4=—

E. P. NAKHMEDOV

1287 (ped)? U2y?+us/2(ped)?

0 yl-y*u

It is seen from Eqs(22)—(26) that the coefficients of the
high harmonics in(azF(Z))pz may be positive as well as
negative, e.g(a?F(z))o>0, (¢’F(2))5>0 and(a?F(z)),<O0,
(&%F(2)),<0, (a’F(2)),<0. But each term in the seri¢g1)
is smaller than the previous term by the parametée-<1.
Substituting the harmonic expansion Ed@21) for
(azF(Z))pZ into the first Eliashberg equatiqi6), we get
TR
2 (— conp,Z
n=0 \ €f

Z(pz,w)= n(@)

=Zy(w)+ tei Z)(w)coP,+---, (27)
F

where

1 (= ®
Zn(0)= 80t — f dz’f OdZ(aZF(Z))nK(Z,Z';w).
— 0
(28)
To solve the second Eliashberg equatiti), we choose the
gap functionA(p,,w) in the following form:

[

>

A(py,w)= (Zi':) Ay (w)cosip,

t
:Ao(w)"‘e_iAl(w)COsz

t )2

+ Ei) A,(w)cosd,+ (29
F

We substitute expressiorig7), (29), and(20) for Z(p,,w),

Ap, ,w), and(azF(z))pr;, respectively, into Eq(17). After

some simplifications, the left and the right sides of ELy)

can be expressed as an harmonic expansion withn@gs(

being the basis functions. By equating the coefficients of the
same basis functions we get an infinite set of coupled equa-

tions for A (w) as
1 o)
5> 2

n=

2n
Zo(w)Ap(w)+ 5 (ti) Zy(w)Ap(w)
F

= dz
:jo — fo dz K(z,2";w)(a?F(2)),

t,\? 1/t \*

1 1

X | Ag(2' —) Al(z’)+—(—) Ay(Z')F---
EF EF

72

@c dZ z'
_,LLOJ' tanh_ Ao(z ) (30)
0

1(t\?
Zo(@)Ay(0) +Zy(@)Ag(w) + 5 E—F> [Z1(w)Ax(w)
+Zy(w)Ay(w) ]+

Ao(Z')

© dz' (o
:Jo - fo dz K(z,z ;w)|(a2F(Z))1

2(y) 2u2 1 , 5
V) (prd? Wy wiaipra)?? | 2 2 2
(26)
N T L N AT R
—Ay(Z)+5 P Ax(Z)—5 P Ag(z')x--

y?b(y,2)
\/1—y2 ufy?+u?/2(ped)?

de(o) f

X2v4(Y) VZ(Y)AJ_(Z,)}1 (31)

1
Zo(w)Ay(w)+ > Z1(0)A(w)+Zy(w)Ag(w)

2
[Z1(w)A3(w)+Z3(w)A1(w)]+

+1
2

=L

dz' [wo {
dz K(z,2";0){ (a®F(2)),
0

Z/

2
t,
Ao(Z') = A4(Z')+2A5(2') - ( ) A5(Z")

N24(0)

v

t

4
+ —) A2 )5 -+ |+
€F

2

1 dy y2?b.(y,2)
0 J1—y2 Ufy?+uf/2(ped)?

V%(y)Az(Z’)] ,

(32

1 1
Zo(w)Az(w)+ > Z1(w)Ay(w)+ > Zy(w)A (o)

t,\2
€F

X[Z1(0)Ay(0)+Zy(w)A1(w)]+
(e
- o Z' Jo

Ao(Z') = A(Z')+28,(2") = 4A5(Z")

1
+Zy(@)Ao(0)+ 5

dz K(z,2';w)(a?F(2))3

, (33

t, |2
2| —=| Ay(z)=---

€F

etc.
Mp.p! in Eq. (30) is taken to be isotropic for simplicity, i.e.,

Hpp. = Ko

It must be noticed that the Coulomb pseudopotential
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IV. THE CRITICAL TEMPERATURE g @0 ©o Mol @)o
Ao(0)| 14+ Ng—Agln=—+ u*In—+ p* In—
The critical temperature for layered superconductors in o(0) o "N, H Te H Te o
the weak-coupling regime can be calculated by solving Egs. {2 4
(27), (28, and (30—~(33). We shall use McMillan’s trial L i) Ay(0)| 14+ ngin22]+ i) A,(0)
functiong® for each components of the gap function: 2\ er Tel 2\ef
x| 1= NoInel| =0 (409
Ai(0), O<w<wg —Aoln— (=0,
tooy_ )2 T
S@={ 110 e (39 ;
Mlw)1 @
and o plo .« M@ @0
Ao(o){l )\1|n_|_c +,LL P |n_|_c
Zi(0), O<w<wg wo
Zi(w):[zi(w)’ wo<w. (39 +A4(0) 1+)\0—)\’1*In_|_—
Cc
Inserting Eq.(35) into Eq. (28) we immediately obtain n 5 J.) AZ(O)[l Ay In— o, (40b)
Zo(0)=1+Ng; Zo()=1, (363
w Ao(w w
_ Adoﬁl—hﬂrﬁ+ﬂ* 20)z) 0o
Zi(0)=1 and Zj(»)=0 for i=1,23..., Te wy T¢
(36b
+A4(0)| 3 +)\2In
where Te
w
wo dz +Aﬂ0)1+x0—hzm?9::Q (400
xlzzf - (a®F(2));, i=0,123.... (37 c
0

where dimensionless coupling constantsare defined by

Expression$363—(37) show that the only zero harmonig
in the electron-phonon interaction renormalizes the electron
mass, i.e.)\q is the usual mass-enhancement parameter. The
high harmonic correctionsy; (i=1,2,3,..), to the electron-
phonon coupling constant have no effectsZtw).

At high energies the Coulomb interaction has the contri-
bution only to Ay(») because of the simple form,u()zpé

= ug) of the Coulomb pseudopotential

)\10:2j
0

(@)=

wo dz

Eq. (37) and

f dz(a?F(2)); i=1,23..., (41

y2

W u?y?+u?/2(pgd)?

2N2d(0)
z

xXby(y, , 42
Ag(0)=— u* |n( )AO( 0) (383 Ly Z)Vl(Y)VZ(Y)] (429
wo dz | Npy(0
and )\20:2j °ZL { 24(0)
0 Z s
Ay()=0, i=123..., (38h) ,
LD 4 bL(y,2)v5(y)
where \/1—y2 tu +UL/2(de)2 Ly, 2¥Y) ([,
(42b)
% Mo
= 39
" Tt uoin(oglwg) %9 N =10 A1, (420
is the Coulomb pseudopotential of Morel and AnderSon NS Z 20,40 429
- 2 20+

After substitution of the above obtained expressi@3ta—

(38b) into the equations for the gap components written aly
low energies, we get an infinite set of homogeneous equ
tions for A;(0). The critical temperature is determined by the
roots of the main determinant of this system of homogeneous
equations. To calculate the critical temperature, for simplic- Te
ity we study here only those equations, which include three
harmonics, namel,, A;, andA,:

1.45

D exp — s
Ao+ N +AD

e get approximately two values of the critical temperature
&rom Eqgs.(409—(400:

1+X\g

—u* = p* (No{w)o/wo)
(43
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shows that the value oA(p,,w) does not depend on the
wave vector inside of SC layers. Nevertheless the valuk of
along thec axis should display, dependence. The value of
the energy gap in the direction differs from its in-plane
value A, due to the contribution of such higher harmonic
terms asA;,A,,A;, ... Aq in the c direction.

The Coulomb pseudopotentialpzpé in the Eliashberg

equations is chosen to be nondispersive aqurz,uo
z

=const. Thereforeu, has a contribution only ta\,. We
Te=maxXTe, Teo). expect that accurate calculation should give rise to harmonic
expansion of,upzpr as
It should be noticed that the McMillan’s prefactor ‘
wp/1.45 in Eqs(43) and(44) for T, can be refined following
Allen and Dynes?® by changing it fromwp/1.45 to wy,/1.2,
wherew,, is a logarithmic average phonon frequency.
The positive parameters] and\3 are the first- and the _ o _
second-harmonic corrections to the electron-phonon couThe h|gher_ prefactorsuy, (n=1,_2,3 -, |n_th|s_ expansion
pling constant. Equationg3) and (44) show that the higher must contribute to correspondint, and will slightly alter

harmonic correctiona,, \,, . .. should enhance the critical theTexprezsmE foTc_.. | d McMillan’
temperature of anisotropic SC’s. 0 study the critical temperature we use cMillan’s

To obtain expression43) and (44) for T, we are re- me;hod%5 by applying the tr?al functions for each amp_litude
stricted by three harmonics in the infinite set of homoge-n in the harmonic expansion E9) of the gap function.
neous equation@0)—(32) for A (w), n=0,1,2 . . . . Thefur- The larger of the obtained two expressiqa8) and (44) is
ther inclusion of the high(gr harmonics gives rise tothe actually observed critical temperature. It can be easily

renormalization of A bv the high harmonic parameters SE€N from Eqs(43) and(44) that the critical temperature of
Na s As aresult ')I/' shouldgbe enhanced P layered SC'’s should be enhanced due to the high harmonic

corrections\q,\y,\3, . .. to the electron-phonon coupling
constant. It should be noticed that similar results, such as the
harmonic expansion of the gap parameter apdenhance-

In this paper we study an anisotropy of the energy gap irment in the layered SC’s have been obtained in Réte®,
strongly coupled layered superconductors. The electron-ioalso Ref. § by using the excitonic mechanism of supercon-
pseudopotential, and the electron and phonon energy specgctivity.
are proposed to be anisotropic. We believe that such propo- The influence of anisotropy offi; in a layered SC has
sition is true for strong anisotropic layered structures like theéoeen studied in Ref. 18 by using a Fermi-surface harmonic
Bi- and Tl-based high-temperature superconductors. Theéxpansion. According to the Fermi-surface symmetry of a
Eliashberg theory for a strongly coupled layered superconlayered SC, a complete orthonormal set of expansion func-
ductor is applied to study the critical temperature of a systions on the Fermi surface is chosen to be opsd) and the
tem. The anisotropic electron-phonon spectral densitynisotropic electron-phonon interaction kerag| : is ex-
(a®F(2))p, is shown to be expanded in the cog(d) func-  panded over these cosine functions. Taking into account only
tions[see Eq(21)]. The leading term in this expansion is the two corrections in this expansion it was shown that the criti-
zero harmonic(a’F(z)),, which renormalizes the electron cal temperature should be enhanced. Unlike our study, where
mass. The coefficients of the higher harmonics in the exparall terms in the harmonic expansion can be specified and
sion of Eq.(21) are small and~0 ((t,/e¢)"). Such a form of  expressed by the characteristic parameters of the systsn
the electron-phonon spectral density demands the energy gapg. Eqs(21)—(26)], in the Fermi-surface harmonic method
A(p,,w) to be also expanded in the harmonic functions, asn Ref. 18 the undetermined coefficients of the harmonic
presented by Eq(29). Expression(29) for the energy gap expansion of)\pz,p; are taken phenomenologically.

wp
Tczzr%eX[{ —(1+)\0)

No+ A1 +HN5—u* — u* (Ao w)o/ wp)
[ho—u* — u* (o{@)o/wp) N +A3)+AIN; |
(44)

and

o= 2 iunlty eg)"cogn(p,— p;)d].
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