
Effect of anisotropy on the energy gap and the critical temperature
in a strongly coupled layered superconductor

E. P. Nakhmedov
Department of Physics, Faculty of Sciences and Letters, Istanbul Technical University, Maslak 80626 Istanbul, Turkey

and Institute of Physics, Azerbaijan Academy of Sciences, 370143 H. Cavid Street 33, Baku, Azerbaijan
~Received 12 January 1996!

The Eliashberg theory is applied to study the critical temperature and a gap anisotropy of strongly coupled
layered superconductors. The electron-ion pseudopotential, the electron, and the phonon energy spectra are
proposed to be anisotropic in layered crystals with an open Fermi surface. The anisotropic electron-phonon
spectral density@a2F(z)#pz is found to be expanded in cos(npzd) functions. Such an expression for
@a2F(z)#pz demands the energy gapD~pz ,v! to present also as an expansion in the harmonic functions.
Therefore, the value of the energy gap along thec axis should displaypz dependence. The value ofD differs
from that obtained by in-plane measurements. By using McMillan’s method we present each amplitudeDn~v!
in the harmonic expansion of the energy gapD~pz ,v! by trial function. The infinite set of coupled homoge-
neous equations forD0, D1, D2,... is obtained, the solution of which should yield the critical temperature. We
estimate only those equations which include the three amplitudes,D0, D1, andD2, in the harmonic expansion
of the energy gap. An approximate calculation ofTc shows that the critical temperature must be enhanced due
to the influence of anisotropy.@S0163-1829~96!05130-2#

I. INTRODUCTION

Experimental investigation of the energy gap shows con-
siderable anisotropy for almost all high-temperature super-
conducting crystals.1–4 Different values of the energy gap,
when wave vector is directed along~k'c! and perpendicular
~kic! to superconducting layers in YBa2Cu3O7 crystals, have
been obtained from far-infrared,1 Raman,2 and tunneling,3

measurements. According to these data, the ratio 2D(0)/Tc
is about 8 for the in-plane, while it is 3 for the out-plane
measurements. The energy gap anisotropy can also be ob-
served inside the Cu-O superconducting planes,4 which is
directly associated with an in-plane anisotropy.

The gap anisotropy of the layered superconductors~SC’s!
has been theoretically investigated by many authors,5 taking
a priori the anisotropy of the pairing interaction, i.e., the
internal spherical symmetry of pairs in isotropic SC’s is phe-
nomenologically destroyed according to the crystalline sym-
metry of anisotropic SC’s. The orientational dependence of
the gap parameter in the layered SC’s has been also investi-
gated in Ref. 6 in the framework of the excitonic mechanism
of superconductivity. The anisotropic effects in the theory of
strongly coupled superconductors have been studied by using
the Fermi-surface harmonics.7,8 According to this method,
the physical quantities defined in thek space can be ex-
panded in orthonormal functions on the Fermi surface, which
are called the Fermi-surface harmonics.

In this paper we shall study the effects of anisotropy on
the energy gap and on the critical temperature of strongly
coupled layered SC’s. Taking into account the anisotropies
in the microscopic characteristics of superconducting crys-
tals, the energy gap can be shown to be anisotropic and the
transition temperature to be enhanced in the layered super-
conductors.

The anisotropy of the energy gap in layered SC’s may be

originated by the electron-phonon interaction anisotropy,
also by the electron and phonon spectra anisotropies. Though
the Coulomb pseudopotential in layered crystals should de-
pend on the crystallographic axis, we shall not take into ac-
count this dependence and we shall admit the Coulomb
pseudopotential as a constant for simplicity.

The major factor which reduces to thek dependence of
the gap is an anisotropy of the electron-ion pseudopotential.
We assume that the electron-ion interaction occurs not only
inside a layer but also between nearest-neighboring layers.
The general form of the electron-ion pseudopotential is given
in Sec. II.

Since the current carriers in high-Tc superconductors exist
inside the Cu-O layers, its energy spectrum is proposed to be

E~k,kz!5
\2

2m*
~kx

21ky
2!1t'~12coskzd!; ~1!

where,m* is current carrier’s effective mass,t' is the tun-
neling integral from plane to neighboring plane, andd is the
interlayer distance. The one-particle properties’ anisotropy is
characterized by the small parameter,t'/eF!1, whereeF is
the Fermi energy of particles inside the layers. The condition
t'!eF is satisfied for open Fermi surfaces. It should be no-
ticed that an anisotropy which appears only in the one-
particle characteristics of a system cannot reduce to the
energy-gap anisotropy in superconducting materials.9

The phonon spectrum of the layered crystals is, generally
speaking, anisotropic. The dispersion relations for longitudi-
nalVL(q,qz) and transverseVT(q,qz) phonons are given by
the following expressions:10

VL
2~q,qz!5ui

2q21
2

d2
u'
2 ~12cosqzd!, ~2!
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VT
2~q,qz!5ū'

2q21
2

d2
uT
2~12cosqzd!. ~3!

The sound velocity componentsui , u' and ū' , uT in aniso-
tropic solids should satisfy the relations

ui@u' and ū'@uT . ~4!

Such a form of phonon energy spectrum denotes that a lattice
is most rigid with respect to vibrations of atoms inside the
layers and the rigidity for vibrations of one layer relative to
the others are very small.

The plan of this paper is as follows. In Sec. II we study
the electron-phonon coupling constant for a layered super-
conductor. Starting from the anisotropic Eliashberg equa-
tions, written near the critical temperatureTc , we show in
Sec. III that thekz-dependent energy gap of layered SC’s
may be expressed as an harmonic expansion. In Sec. IV we
derive the expression for the transition temperatureTc by
using McMillan’s trial functions method. The critical tem-
perature is shown to be enhanced with respect to the isotro-
pic value ofTc .

II. ELECTRON-PHONON INTERACTION

We shall use the electron-phonon interaction part of the
Hamiltonian, written for a layered superconductor, in the fol-
lowing form:

Ĥe-ph5(
j , j 8

E d2r E d2r 8c j
1~r !Vj@r2Rj 8~r 8!#c j~r !,

~5!

which describes the interaction of an electron at ther th point
of the j th layer with ion at ther 8th point of thej 8th layer
through the electron-ion interaction potential of
Vj [ r2Rj 8(r 8!#. By expressing an ion radius-vectorRj 8(r 8!
as a sum ofRj 8

0 (r 8) equilibrium position anddRj 8(r 8! dis-
placement radius vector, we can expand the electron-ion po-
tential Vj [ r2Rj 8(r 8!# aroundRj 8

0 (r 8). Further we express
dRj (r ! by phonon creationb a

1(q,qz) and destruction
ba(q,qz) operators, as

dRj~r !5S 1

2NM D 1/2 (
a5L,T

(
q,qz

ea

@Va~q,qz!#
1/2 e

i ~q•r1qzjd !

3@ba~q,qz!1ba
1~2q,2qz!#, ~6!

where the subscripta denotes the transverse (T) and longi-
tudinal (L) phonons. The electron-ion pseudopotentialVj@r
2Rj 8

0 (r 8)#[Vj j 8(r2r 8) is proposed to be the following
form:

Vj j 8~r2r 8!5V1~r2r 8!d j j 81V2~r2r 8!@d j 8, j111d j 8, j21#,
~7!

In Eq. ~7! the potentialsV1(r ! and V2(r ! characterize the
electron-ion interactions in the same and nearest-neighboring
layers, respectively.

After substituting Eqs.~6! and ~7! in Eq. ~5! and trans-
forming into an electron creationaq,qz

1 ~destructionaq,qz! op-

erator as

c j
1~r !5(

q,qz
aq,qz

1 e2 i ~q•r1 jdqz!, ~8!

we can obtain the following electron-phonon interaction
Hamiltonian:

Ĥe-ph5 (
a5L,T

(
q,qz
k,kz

ga~k,kz!~bq,qz
a 1b2q,2qz

a1

!ak1q,kz1qz
1 ak,kz

~9!

with gL(k,kz) and gT(k,kz) being the ‘‘bare’’ electron-
phonon coupling constants:

gL~k,kz!52 i S N

2MVL~k,kz!
D 1/2uku

3@V1~k!12V2~k!coskzd#, ~10!

gT~k,kz!52 i S N

2MVT~k,kz!
D 1/2 sinkzdd

3@V1~k!12V2~k!coskzd#. ~11!

Now, we have to make the Coulomb renormalization of the
‘‘bare’’ electron-phonon coupling. Following the renormal-
ization procedure, which has been carried out for an isotropic
SC,11 we must replacega(k,kz) by the renormalized cou-
pling constantḡa(k,kz). The expressions forḡL(k,kz) and
ḡ T~k,kz) will be defined by Eqs.~10! and ~11!, but with
replacing the ‘‘bare’’ electron-phonon pseudopotential
V(k,kz) and the ‘‘bare’’ phonon-dispersion relationVa(k,kz)
by the renormalized onesn(k,kz) andva(k,kz), respectively.

Expression~7! for the ‘‘bare’’ electron-ion pseudopoten-
tial permits electrons and ions to interact only on the same
and nearest-neighboring layers. We believe that the Coulomb
renormalization does not reduce to next-nearest-neighboring
and further interactions in Eq.~7!, i.e., the renormalization
must ‘‘dress’’ onlyV1(r2r 8! andV2(r2r 8! potentials in Eq.
~7!, replacing them by the new renormalized potentials
n1,2(r2r 8!, asV1,2(r2r 8!⇒n1,2~r2r 8! or V1,2(k!⇒n1,2~k! in
Eqs.~10! and ~11!.

The phonon-dispersion relationVa(k,kz) for an aniso-
tropic metal is renormalized by the real part of the electron
dielectric functione~k,kz ;0!:11

Va~k,kz!⇒va~k,kz!5Va~k,kz!/@e1~k,kz ;0!#1/2,

wheree1~k,kz ;0!5Re@e~k,kz ;0!#.
For a strongly anisotropic metallic system with electron

spectrumE(k,kz), defined by Eq.~1!, the polarization opera-
tor P~k,kz ;0!, and consequentlye~k,kz ;0! has been calcu-
lated by us in Ref. 12. It was shown thatP~k,kz ;0! remains
constant, as it is in two-dimensional~2D! systems, for
0<k<2kF ~kF is Fermi momentum!, and there are small
corrections toP~k,0! only in the vicinity of 2kF . We pro-
pose that as a result of renormalizationva~q,qz! is reduced to
the following form:

vL
2~q,qz!5ui

2~q!q21
2

d2
u'
2 ~q!~12cosqzd!, ~12!
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vT
2~q,qz!5ū'

2 ~q!q21
2

d2
ū T
2~q!~12cosqzd!. ~13!

The coefficientsui , u' andū' , uT become dispersive due to
the renormalization, but the relations~4! must be satisfied for
an arbitraryq, i.e.,

u'~q!

ui~q!
'
u'

ui
!1 and

uT~q!

ū'~q!
'
uT
u'

!1. ~14!

Expressions~2! and ~3! for the dispersion relations actually
mean that phonons can hop only between the nearest-
neighboring layers. The Coulomb renormalization is not as-
sumed to change the character of the interlayer phonon hop-
ping that is reflected in Eqs.~12! and ~13!.

Thus, the dressed electron-phonon couplingḡa~k,kz! for
layered SC’s gets the following form:

ḡ L~k,kz!52 i S N

2MvL~k,kz!
D 1/2uku

3@n1~k!12n2~k!cos~kzd!#, ~15a!

ḡ T~k,kz!52 i S N

2MvT~k,kz!
D 1/2 sin~kzd!

d

3@n1~k!12n2~k!cos~kzd!#, ~15b!

wherevL andvT are defined by Eqs.~12! and ~13!, corre-
spondingly, andn1,2~k! are the Fourier transforms of the
dressed potentialsn1,2~r2r 8!. The obtained electron-phonon
coupling ḡa~k,kz! allows us to derive thek dependence of
the gap function and the expression for the critical tempera-
ture from the Eliashberg equations.

III. ELIASHBERG EQUATIONS AND GAP ANISOTROPY

The linearized Eliashberg equations valid for tempera-
turesT near the critical temperatureTc have the form

13,11,8,14

@12Z~pz ,v!#v52E
2p

p dpz8

2p E
2`

`

dz8E
0

v0
dz

3„a2F~z!…pzpz8
K~z,z8;v!, ~16!

Z~pz ,v!D~pz ,v!5E
2p

p dpz8

2p E
2`

`

dz8E
0

v0
dz„a2F~z!…pzpz8

3K~z,z8;v!Re
D~pz8 ,z8!

z8

2E
2p

p dpz8

2p
mpzpz8E0

vc
dz8tanh

3
z8

2T
Re

D~pz8 ,z8!

z8
, ~17!

where the kernel of these integral equationsK(z,z8;v) is
given by

K~z,z8;v!5
1

2 H tanh~z8/2T!1coth~z/2T!

z81z2v2 id

2
tanh~z8/2T!2coth~z/2T!

z8-z2v2 id J . ~18!

Here we use the usual notation for the Eliashberg equations,
i.e., Z(pz ,v) is the renormalization parameter,
„a2F(z)…pzpz8 is the electron-phonon spectral function,

D~pz ,v! is the energy gap andmpzpz8
is the anisotropic Cou-

lomb pseudopotential. The anisotropic electron-phonon spec-
tral density„a2F(z)…pzpz8 for scattering of an electron pair

from the (pz ,2pz) state to the (pz8 ,2pz8) state on the Fermi
surface is defined by the following expression:

„a2~z!F~z!…pzpz8
5
N2d~0!

p E
0

2pF* dq

A~2pF* !22q2

3$uḡL~q,pz2pz8!u2bL~q,pz2pz8 ;z!

1uḡT~q,pz2pz8!u2bT~q,pz2pz8 ;z!%,

~19!

where N2d(0)5m/p\2 is the density of the 2D electron
states,ba(q,pz2pz8 ;z) is the phonon spectral weight, and

pF*5ApF222mt'~12cospz8!. ~19a!

The momentum integration in Eq.~19! has been carried out
by changing 2D variables fromp85$up8u,w% to the energy
variableE(p8) and q5up2p8u, ~see Fig. 1!. Since, we set
both upu andup8u equal topF , q will denote the angular varia-
tion as p8 moves on the Fermi surface and is related the
anglew by

E
0

2p

dw•••54E
0

2pF* dq

A~2pF* !22q2
••• .

To study the gap anisotropy we expand the electron-phonon
couplingsḡa in Eq. ~19! over the small parameters

FIG. 1. The Fermi surface of the layered metals.
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u'
2

ui
2~pFd!2

!1 and
uT
2

ū'
2 ~pFd!2

!1.

Then we get

„a2F~z!…pzpz8

5
N2d~0!

p E
0

1 dy

A12y2
@n1~y!12n2~y!cos~pz2pz8!#2H bL~y,z!

ui
2~y!

y2

y21u'
2 /2ui

2~pFd!2
1

1

2ū'
2 ~y!~2pFd!2

3
12cos2~pz2pz8!

12~ t' /eF!~12cospz8!

bT~y,z!

y21uT
2/2ū'

2 ~pFd!2
1
u'
2bL~y,z!

2ui
4~pFd!2

cos~pz2pz8!2~ t' /eF!~12cospz8!

12~ t' /eF!~12cospz8!

y2

~y21u'
2 /2ui

2~pFd!2!2

1
uT
2

16ū'
4 ~pFd!4

•

@12cos2~pz2pz8!#@cos~pz2pz8!2~ t' /eF!~12cospz8!#

@12~ t' /eF!~12cospz8!#2
•

bT~y,z!

„y21uT
2/2ū'

2 ~pFd!2…2
1•••J . ~20!

For simplicity we neglect the (pz2pz8) dependence of the phonon spectral weightba in Eq. ~20!.
After integration of„a2F(z)…pzpz8 over pz8 in the first Brillouin zone we obtain from Eq.~20!

„a2F~z!…pz[E
2p

p dpz8

2p
„a2F~z!…pzpz8

5 (
n50

` S t'eFD
n

„a2F~z!…ncosnpz5„a2F~z!…01
t'
eF

„a2F~z!…1cospz1••• , ~21!

where

„a2F~z!…05
N2d~0!

p E
0

1 dy

A12y2 H y2bL~y,z!

ui
2y21

u'
2

2~pFd!2

@n1
212n2

2#1
1

8~pFd!2
bT~y,z!

ū'
2 y21uT

2/2~pFd!2
@n1

21n2
2#

1
u'
2

2~pFd!2
•

y2bL~y,z!

~ui
2y21u'

2 /2~pFd!2!2
F2n1n22

t'
eF

~n1
212n2

222n1n2!G
1

uT
2

16~pFd!4
•

bT~y,z!

~ ū'
2 y21uT

2/2~pFd!2!2
Fn1n22 t'

eF
~n1

21n2
2!G J , ~22!

~a2F~z!!152
N2d~0!

8p~pFd!2
E
0

1 dy

A12y2 H bT~y,z!

ū'
2 y21uT

2/2~pFd!2
n1n21

2u'
2 y2bL~y,z!

S ui
2y21

u'
2

2~pFd!2
D 2 @n1

213n2
224n1n2#

1
uT
2

4~pFd!2
bT~y,z!

„ū'
2 y21uT

2/2~pFd!2…2
@n1

212n2
222n1n2#J , ~23!

„a2F~z!…252
N2d~0!

32p~pFd!2
E
0

1 dy

A12y2
H bT~y,z!

ū'
2 y21uT

2/2~pFd!2
n1
2~y!1

8u'
2 y2bL~y,z!

~ui
2y21u'

2 /2~pFd!2!2
~n2

22n1n2!

2
4uT

2bT~y,z!

~ ū'
2 y21uT

2/2~pFd!2!2
n1
2~y!J , ~24!

„a2F~z!…35
N2d~0!

32p~pFd!2
E
0

1 dy

A12y2
H bT~y,z!

ū'
2 y21uT

2/2~pFd!2
n1n22

2u'
2 y2bL~y,z!

~ui
2y21u'

2 /2~pFd!2!2
n2
2

1
1

2~pFd!2
uT
2bT~y,z!

~ ū'
2 y21uT

2/2~pFd!2!2
@n1

21n2
223n1n2#J , ~25!
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„a2F~z!…452
N2d~0!

128p~pFd!2
E
0

1 dy

A12y2
bT~y,z!

ū'
2 y21uT

2/2~pFd!2 H n2
2~y!2

2uT
2

~pFd!2
1

„ū'
2 y21uT

2/2~pFd!2…2 Fn2
22

5

4
n1n2G J .

~26!

It is seen from Eqs.~22!–~26! that the coefficients of the
high harmonics in„a2F(z)…pz may be positive as well as
negative, e.g.,„a2F(z)…0.0, „a2F(z)…3.0 and„a2F(z)…1,0,
„a2F(z)…2,0, „a2F(z)…4,0. But each term in the series~21!
is smaller than the previous term by the parametert'/eF!1.

Substituting the harmonic expansion Eq.~21! for
„a2F(z)…pz into the first Eliashberg equation~16!, we get

Z~pz ,v!5 (
n50

` S t'eFD
n

cosnpzZn~v!

5Z0~v!1
t'
eF

Z1~v!cospz1••• , ~27!

where

Zn~v!5dn,01
1

v E
2`

`

dz8E
0

v0
dz„a2F~z!…nK~z,z8;v!.

~28!

To solve the second Eliashberg equation~17!, we choose the
gap functionD~pz ,v! in the following form:

D~pz ,v!5 (
n50

` S t'eFD
n

Dn~v!cosnpz

5D0~v!1
t'
eF

D1~v!cospz

1S t'eFD
2

D2~v!cos2pz1••• . ~29!

We substitute expressions~27!, ~29!, and~20! for Z(pz ,v),
D~pz ,v!, and„a2F(z)…pzpz8, respectively, into Eq.~17!. After

some simplifications, the left and the right sides of Eq.~17!
can be expressed as an harmonic expansion with cos(npz)
being the basis functions. By equating the coefficients of the
same basis functions we get an infinite set of coupled equa-
tions forDn~v! as

Z0~v!D0~v!1
1

2 (
n51

` S t'eFD
2n

Zn~v!Dn~v!

5E
0

` dz8

z8
E
0

v0
dz K~z,z8;v!„a2F~z!…0

3FD0~z8!2
1

2 S t'eFD
2

D1~z8!1
1

4 S t'eFD
4

D2~z8!7••• G
2m0E

0

vc dz8

z8
tanh

z8

2T
D0~z8!, ~30!

Z0~v!D1~v!1Z1~v!D0~v!1
1

2 S t'eFD
2

@Z1~v!D2~v!

1Z2~v!D1~v!#1•••

5E
0

` dz8

z8
E
0

v0
dz K~z,z8;v!H „a2F~z!…1FD0~z8!

2D1~z8!1
1

2 S t'eFD
2

D2~z8!2
1

4 S t'eFD
4

D3~z8!6•••G
1
N2d~0!

p E
0

1 dy

A12y2
y2bL~y,z!

ui
2y21u'

2 /2~pFd!2

32n1~y!n2~y!D1~z8!J , ~31!

Z0~v!D2~v!1
1

2
Z1~v!D1~v!1Z2~v!D0~v!

1
1

2 S t'eFD
2

@Z1~v!D3~v!1Z3~v!D1~v!#1•••

5E
0

` dz8

z8
E
0

v0
dz K~z,z8;v!H „a2F~z!…2

3FD0~z8!2D1~z8!12D2~z8!2S t'eFD
2

D3~z8!

1
1

2 S t'eFD
4

D4~z8!7•••G1
N2d~0!

p

3E
0

1 dy

A12y2
y2bL~y,z!

ui
2y21u'

2 /2~pFd!2
n2
2~y!D2~z8!J ,

~32!

Z0~v!D3~v!1
1

2
Z1~v!D2~v!1

1

2
Z2~v!D1~v!

1Z3~v!D0~v!1
1

2 S t'eFD
2

3@Z1~v!D4~v!1Z4~v!D1~v!#1•••

5E
0

` dz8

z8
E
0

v0
dz K~z,z8;v!„a2F~z!…3

3FD0~z8!2D1~z8!12D2~z8!24D3~z8!

12S t'eFD
2

D4~z8!6••• G , ~33!

etc. It must be noticed that the Coulomb pseudopotential
mpzpz8

in Eq. ~30! is taken to be isotropic for simplicity, i.e.,

mpzpz8
5m0.
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IV. THE CRITICAL TEMPERATURE

The critical temperature for layered superconductors in
the weak-coupling regime can be calculated by solving Eqs.
~27!, ~28!, and ~30!–~33!. We shall use McMillan’s trial
functions15 for each components of the gap function:

D i
t~v!5 HD i~0!, 0,v,v0

D i~`!, v0,v ~34!

and

Zi~v!5 HZi~0!, 0,v,v0

Zi~`!, v0,v. ~35!

Inserting Eq.~35! into Eq. ~28! we immediately obtain

Z0~0!511l0 ; Z0~`!51, ~36a!

Zi~0!51 and Zi~`!50 for i51,2,3,...,
~36b!

where

l152E
0

v0 dz

z
„a2F~z!…i , i50,1,2,3,.... ~37!

Expressions~36a!–~37! show that the only zero harmonicl0
in the electron-phonon interaction renormalizes the electron
mass, i.e.,l0 is the usual mass-enhancement parameter. The
high harmonic corrections,l i ( i51,2,3,...!, to the electron-
phonon coupling constant have no effects onZi~v!.

At high energies the Coulomb interaction has the contri-
bution only to D0~`! because of the simple form (mpzpz8

5m0) of the Coulomb pseudopotential

D0~`!52m* lnS v0

Tc
DD0~0! ~38a!

and

D1~`!50, i51,2,3,..., ~38b!

where

m*5
m0

11m0 ln~vc /v0!
~39!

is the Coulomb pseudopotential of Morel and Anderson.17

After substitution of the above obtained expressions~36a!–
~38b! into the equations for the gap components written at
low energies, we get an infinite set of homogeneous equa-
tions forDi~0!. The critical temperature is determined by the
roots of the main determinant of this system of homogeneous
equations. To calculate the critical temperature, for simplic-
ity we study here only those equations, which include three
harmonics, namelyD0, D1, andD2:

D0~0!F11l02l0ln
v0

Tc
1m* ln

v0

Tc
1m* ln

v0

Tc

l0^v&0
v0

G
1
1

2 S t'eFD
2

D1~0!F11l0ln
v0

Tc
G1

1

2 S t'eFD
4

D2~0!

3F12l0ln
v0

Tc
G50, ~40a!

D0~0!F12l1ln
v0

Tc
1m*

l1^v&1
v0

ln
v0

Tc
G

1D1~0!F11l02l1* ln
v0

Tc
G

1
1

2 S t'eFD
2

D2~0!F12l1ln
v0

Tc
G50, ~40b!

D0~0!F12l2ln
v0

Tc
1m*

l2^v&2
v0

ln
v0

Tc
G

1D1~0!F121l2ln
v0

Tc
G

1D2~0!F11l02l2* ln
v0

Tc
G50, ~40c!

where dimensionless coupling constantsli are defined by
Eq. ~37! and

^v& i5
2

l i
E
0

v0
dz„a2F~z!…i ; i51,2,3,..., ~41!

l1052E
0

v0 dz

z H 2N2d~0!

p E
0

1 dy

A12y2
y2

ui
2y21u'

2 /2~pFd!2

3bL~y,z!n1~y!n2~y!J , ~42a!

l2052E
0

v0 dz

z H N2d~0!

p

3E
0

1 dy

A12y2
y2

ui
2y21u'

2 /2~pFd!2
bL~y,z!n2

2~y!J ,
~42b!

l1*5l102l1 , ~42c!

l2*52l21l20. ~42d!

We get approximately two values of the critical temperature
from Eqs.~40a!–~40c!:

Tc15
vD

1.45
expH 2

11l0

l01l1
*1l2*2m*2m* ~l0^v&0 /v0!

J ,
~43!
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Tc25
vD

1.45
expH 2~11l0!

3
l01l1

*1l2
*2m*2m* ~l0^v&0 /v0!

@l02m*2m* ~l0^v&0 /v0!#~l1
*1l2

* !1l1
*l2

* J ,
~44!

and

Tc5max$Tc1 ,Tc2%.

It should be noticed that the McMillan’s prefactor
vD/1.45 in Eqs.~43! and~44! for Tc can be refined following
Allen and Dynes,16 by changing it fromvD/1.45 tovln/1.2,
wherevln is a logarithmic average phonon frequency.

The positive parametersl1* andl2* are the first- and the
second-harmonic corrections to the electron-phonon cou-
pling constant. Equations~43! and~44! show that the higher
harmonic correctionsl1, l2, . . . should enhance the critical
temperature of anisotropic SC’s.

To obtain expressions~43! and ~44! for Tc we are re-
stricted by three harmonics in the infinite set of homoge-
neous equations~30!–~32! for Dn~v!, n50,1,2, . . . . Thefur-
ther inclusion of the higher harmonics gives rise to
renormalization of l by the high harmonic parameters
l3, l4, . . . . As aresult,Tc should be enhanced.

V. CONCLUSIONS

In this paper we study an anisotropy of the energy gap in
strongly coupled layered superconductors. The electron-ion
pseudopotential, and the electron and phonon energy spectra
are proposed to be anisotropic. We believe that such propo-
sition is true for strong anisotropic layered structures like the
Bi- and Tl-based high-temperature superconductors. The
Eliashberg theory for a strongly coupled layered supercon-
ductor is applied to study the critical temperature of a sys-
tem. The anisotropic electron-phonon spectral density
„a2F(z)…pz is shown to be expanded in the cos(npzd) func-
tions@see Eq.~21!#. The leading term in this expansion is the
zero harmonic„a2F(z)…0, which renormalizes the electron
mass. The coefficients of the higher harmonics in the expan-
sion of Eq.~21! are small and;0 „(t'/eF)

n
…. Such a form of

the electron-phonon spectral density demands the energy gap
D(pz ,v) to be also expanded in the harmonic functions, as
presented by Eq.~29!. Expression~29! for the energy gap

shows that the value ofD(pz ,v) does not depend on the
wave vector inside of SC layers. Nevertheless the value ofD
along thec axis should displaypz dependence. The value of
the energy gap in thec direction differs from its in-plane
value D0 due to the contribution of such higher harmonic
terms asD1,D2,D3, . . .D0 in the c direction.

The Coulomb pseudopotentialmpzpz8
in the Eliashberg

equations is chosen to be nondispersive andmpzpz8
5m0

5const. Thereforem0 has a contribution only toD0. We
expect that accurate calculation should give rise to harmonic
expansion ofmpzpz8

as

mpzpz8
5 (

n50

`

mn~ t' /eF!ncos@n~pz2pz8!d#.

The higher prefactors,mn ~n51,2,3, . . .!, in this expansion
must contribute to correspondingDn and will slightly alter
the expression forTc .

To study the critical temperature we used McMillan’s
method,15 by applying the trial functions for each amplitude
Dn in the harmonic expansion Eq.~29! of the gap function.
The larger of the obtained two expressions~43! and ~44! is
the actually observed critical temperature. It can be easily
seen from Eqs.~43! and ~44! that the critical temperature of
layered SC’s should be enhanced due to the high harmonic
correctionsl1,l2,l3, . . . to the electron-phonon coupling
constant. It should be noticed that similar results, such as the
harmonic expansion of the gap parameter andTc enhance-
ment in the layered SC’s have been obtained in Ref. 6~see,
also Ref. 5! by using the excitonic mechanism of supercon-
ductivity.

The influence of anisotropy onTc in a layered SC has
been studied in Ref. 18 by using a Fermi-surface harmonic
expansion. According to the Fermi-surface symmetry of a
layered SC, a complete orthonormal set of expansion func-
tions on the Fermi surface is chosen to be cos(npzd) and the
anisotropic electron-phonon interaction kernellpz ,pz8

is ex-

panded over these cosine functions. Taking into account only
two corrections in this expansion it was shown that the criti-
cal temperature should be enhanced. Unlike our study, where
all terms in the harmonic expansion can be specified and
expressed by the characteristic parameters of the system@see,
e.g. Eqs.~21!–~26!#, in the Fermi-surface harmonic method
in Ref. 18 the undetermined coefficients of the harmonic
expansion oflpz ,pz8

are taken phenomenologically.
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