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Our recent experiments show that theD2 excitation spectra of Cs and Rb atoms in superfluid helium have
doubly shaped profiles. Such line shapes are beyond the description of a simplified spherical atomic bubble
model which explains properly general features of optical spectra of neutral atoms in liquid helium. This paper
gives a theoretical explanation of the doubly shaped profiles, with a model that the bubble structure of
surrounding helium is not spherical, but is deformed instantaneously by a quadrupole oscillation. The calcu-
lated energy level of theP3/2 state of the deformed atomic bubble is split into two branches, giving theD2

excitation line shape consisting of two components with different peak intensities and widths. The obtained
line shape agrees qualitatively with the observed one, which enables us to confirm the importance of the
dynamic Jahn-Teller effect due to a quadrupole oscillation of the atomic bubble surface induced by zero-point
fluctuations.@S0163-1829~96!06633-7#

I. INTRODUCTION

The spectral structures and broadening of impurity atoms
and ions in condensed matter are strongly affected by collec-
tive oscillations of lattices or surrounding media. The optical
properties and the dynamics of impurities in solids have been
interpreted with configuration coordinate diagrams thus far.
Franck-Condon factors for a transition between vibronic
states in electronic ground and excited states determine the
optical line shape and broadening, which give us important
information about the interaction between the impurity and
surrounding media. Among a large number of lattice vibra-
tions, some oscillation modes accompanying the distortion of
surrounding media result in a reduction of symmetry of the
potential for an impurity center, and cause sometimes split-
ting in optical spectra. For example, alkali metal and alkaline
earth atoms in rare gas matrices are known to have multiple
splitting structures in the optical absorption and excitation
spectra.1,2 Various explanations have been given for these
line shapes, and recent results of a magnetic circular dichro-
ism ~MCD! experiment suggest the importance of the Jahn-
Teller effect.2

In recent years, the optical properties of neutral atoms
immersed in superfluid helium~He II! have been studied
extensively, both experimentally and theoretically.3–11 It is
well known that neutral atoms in liquid helium form bubbles
~atomic bubbles! and are self-trapped therein due to the Pauli
repulsive force between valence electrons of the impurity
and of surrounding helium atoms. The bubble radius is about
the same as the size of an impurity atom, which is in good
contrast to the electron bubble having a much larger radius,
typically, 15–25 Å.12–16

Recently we observedD1, D2 excitation ~52S1/2→
52P1/2, 5

2P3/2, 6
2S1/2→ 62P1/2, 6

2P3/2) andD1 emission
(52P1/2→ 52S1/2, 6

2P1/2→ 62S1/2) spectra of alkali metal
atoms~Rb and Cs! in He II, respectively, changing the he-
lium pressure from saturated vapor pressure~SVP, 7.43
1023 atm! to about 25 atm. To explain the features of the

observed spectra, we carried out theoretical calculations with
a spherical bubble model~SBM!.10,11 In this model, the
bubble radiusR0 corresponds to the configuration coordi-
nate, which is analogous to the internuclear distance of di-
atomic molecules. We calculated the adiabatic potentials of
the ground and excited states of a spherical atomic bubble,
taking account of only breathing modes among various
bubble surface oscillation modes. Namely, we neglected the
effect of distortion of the bubble shape on the optical transi-
tions. Using this simplified bubble model, we could repro-
duce qualitatively the general features of the observed spec-
tra ~pressure shift and broadening, and line shape of theD1
lines! of Rb and Cs atoms.

On the other hand, the observedD2 excitation spectrum
has a double-peak structure.10 The spectrum is comprised of
two components, the broader one located on the side of
shorter wavelength and the sharper one at the longer wave-
length. The line shape was found to be well fit to the sum of
two Gaussian curves. The splitting interval of the Cs-D2 line,
for example, is 122.1 cm21 at SVP and 157.0 cm21 at 20
atm, depending slightly on the helium pressure (;1.6
cm21/atm!. The sharper line is stronger than the other, and
the relative peak intensities are; 1 : 1.5. A similar line
shape has already been reported in the case of theD2 exci-
tation transition from the ground state 62S1/2 to the excited
62P3/2 state of Ba

1 ions in He II at SVP.17 The line-splitting
interval in this case was larger (;390 cm21) and the peak
intensity of the line on the longer-wavelength side was about
twice as large as the other line. These experimental facts are
essentially beyond description within the framework of the
spherical atomic bubble model, and suggest the importance
of anisotropic bubble surface oscillations, causing the nonto-
tally symmetric configuration of surrounding helium atoms.
Among a large number of theoretical studies for various im-
purities in liquid helium based on the bubble model, some
works have treated the effects of surface deformation of the
atomic bubbles5,8 and of the electron bubble.12,16,18–20How-
ever, such a structured shape of the excitation line has never
been studied theoretically.
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In the present work, we devote ourselves to understanding
the physical mechanism to produce the structured line shape
of the Cs-D2 excitation spectra in liquid helium. We intro-
duce a deformed atomic bubble model where the deforma-
tion is expressed by two parameters characterizing the quad-
rupole oscillation modes of the bubble surface. Two
configuration coordinates with these two parameters are
analogous to two normal coordinates giving theEg vibra-
tional modes for an atom trapped in a matrix with cubic
symmetry. The preliminary result of calculation about the
Cs-D2 excitation line shape has already been reported.11 In
this paper we describe our theoretical model in detail includ-
ing the quadrupole deformation of the bubble shape and
present a qualitative explanation for the doubly shaped pro-
file as the dynamic Jahn-Teller effect.

II. THEORETICAL MODEL

A. Basic description of the bubble model

We assume that an impurity atom in liquid helium forms
a cavity of about atomic size~the atomic bubble model!. The
existence of such a stable cavity has been made clear in
recent experimental and theoretical works. Let us consider
the case of an alkali atom in liquid helium. We treat liquid
helium as a continuously distributed medium. The density
profile of helium atoms is denoted byr(R…, whereR repre-
sents the position vector of the helium atom relative to the
alkali nucleus. The total Hamiltonian to be diagonalized can
be written as

HE5HA~r !1E dRr~R,Q,F! (
L50

`

VI
~L !~r ,R!

3
4p

2L11 (
M52L

L

YL
M* ~u,f!YL

M~Q,F!, ~2.1!

where r is the position vector of the alkali metal valence
electron relative to the alkali nucleus, and we have used the
polar coordinatesr5(r ,u,f) and R5(R,Q,F). HA(r ) is
the Hamiltonian for the valence electron of a free alkali
metal atom including the spin-orbit interaction, and
VI
(L)(r ,R) is obtained by expanding the potentialVI(r ,R) in

terms of the Legendre polynomials:

VI
~L !~r ,R!5

2L11

2 E
21

1

d~cosh!VI~r ,R!PL~cosh!.

~2.2!

Hereh is the angle betweenr andR. VI(r ,R) represents the
sum of interactions between three bodies, the frozen alkali
core, the frozen helium atom, and the alkali metal valence
electron:21,22

VI~r ,R!5F~r ,R!1G~r ,R!1W~R!, ~2.3!

where F(r ,R) is the effective electrostatic interaction be-
tween alkali metal and helium atoms. The termsG(r ,R) and
W(R) represent the pseudopotentials corresponding to the
compensational energies arising due to the lack of orthogo-
nality of the helium atom with the valence electron and the
alkali core, respectively. Similar pseudopotential techniques
were used extensively to calculate the electron-helium atom

interaction in the case of the electron bubble.13,14,23The ex-
pressions for above three terms and the values for some pa-
rameters are given by Baylis21 and Pascale and
Vandeplanque.22 Eigenenergies can be obtained by diagonal-
izing the HamiltonianHE in the unperturbed alkali atomic
wave functions in the ground state and the first excitedP
states which are calculated by solving numerically the Schro¨-
dinger equation for the valence electron determined by the
Hartree-Fock-Slater self-consistent field method under the
frozen atomic core approximation.24

In the case of the spherical bubble model~SBM!, helium
atoms are assumed to distribute isotropically outside the cav-
ity of radiusR0 with the width at the cavity edge determined
by a parametera.14 The equilibrium bubble radiusR0eq and
the equilibrium value ofa are determined by minimizing the
total energy of this system:

Etot~R0 ,a!5Eatom14pRb
2s1

4

3
pRb

3P

1\2/~8MHe!E d3R~,r!2/r, ~2.4!

whereEatom is the atomic energy in liquid helium given as
the eigenenergy of Eq.~2.1!. The other three terms in Eq.
~2.4! represent the classical energies to form the cavity: the
surface energyEsurf, the pressure volume workEPV, and the
volume kinetic energyEVK .

14 In Eq. ~2.4!, P is the helium
pressure,s is the surface tension at 1.6 K,25 which is as-
sumed to be independent of the helium pressure,MHe is the
mass of the helium atom, andRb is the effective bubble
radius defined by the ‘‘center of mass’’ in the region of the
cavity edge.5

Figure 1 shows the total energies calculated with the SBM
for the excitation from the 6S1/2 state to the 6P1/2 and
6P3/2 states of the Cs bubble at SVP. In the present work, the
equilibrium bubble radiusR0eq in the ground stateS1/2 was
calculated to be 11.375 a.u. at SVP and 10.975 a.u. at 20
atm. These calculated energy curves as functions of the con-

FIG. 1. The total energy diagram of the Cs atomic bubble in the
6S1/2, and 6P1/2 and 6P3/2 states at the SVP as functions of the
spherical bubble radiusR0. The energy differences between the
ground and excited states atR05` are equal to that of a free Cs
atom. The symbolR0eq represents the equilibrium bubble radius in
the ground state (R0eq 5 11.375 a.u.!. These energy curves can be
regarded as the adiabatic potentials, giving the quantized breathing
modes of bubble surface oscillation.
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figuration coordinateR0 are considered to be effective poten-
tials for the quantized breathing oscillation of the bubble
surface with an effective massMeff

B given by
4pRb

3r0MHe.
12 These curves were usually used to investi-

gate spectral features such as peak shift, line broadening, and
line shape.

B. Deformed bubble model

The surface oscillation modes except the breathing modes
have been neglected thus far, because a time-averaged
bubble shape can be considered to be spherical for alkali
atoms in the ground stateS1/2. It must be, however, noted
that instantaneous oscillations of the bubble surface should
not be restricted to only breathing modes, and even the low-
est mode of such an oscillation causes a deformation of the
bubble shape from a sphere. As suggested by Himbert
et al.,26 this instantaneous deformation leads to a lower sym-
metry of the interaction potential, which may remove the
degeneracy of sublevels in the excitedP3/2 states~Jahn-
Teller effect! and split theD2 excitation line into two com-
ponents. In this subsection, we first extend the SBM to the
deformed bubble model~DBM!. In particular, we will treat
the deformation due to a quadrupole oscillation of bubble
surface.

When we writeRS as the distance from the origin~alkali
nucleus! to the bubble surface, the deformed bubble shape
can be expressed by a spherical harmonics expansion as

RS~R0 ,Q,F!5R01 (
L51

`

(
M52L

L

RLMYL
M~Q,F!, ~2.5!

whereL runs generally from 1 tò ~the L50 term is in-
cluded in theR0) andM is summed over from2L to L.19

The first term in Eq.~2.5! is the radius of a spherical bubble
and the other terms represent the deformation from this
sphere. The expansion coefficientsRLM can be considered to
be small compared withR0 in equilibrium for the alkali
metal atom in the ground stateS1/2. TheRLM and the polar
anglesQ and F are variables with respect to the same
bubble-fixed coordinate system as in the SBM where the
coordinate system of the center of mass of the spherical
bubble has implicitly been used~namely, the origin is at the
alkali nucleus!. The L51 terms in Eq.~2.5! represent the
translation of the center of mass of bubble, so that they can
be neglected in the present case.

We will restrict ourselves to the case of a quadrupole-
deformed bubble:

RS~R0 ,Q,F!5R01 (
M522

2

R2MY2
M~Q,F!. ~2.6!

In previous studies concerning the deformation of the bubble
shape, only the effect of axially symmetric oscillations
(R20Þ0, R2M50 for MÞ0) was taken into
account.5,8,12,16,18–20This is physically incorrect in the case
of the ground state, since there is no preferential direction for
the deformation axis. All the fluctuations of the coefficients
R2M must be taken into account. In fact, model calculations
using only one deformation parameter do not cause splitting
profiles.20,28 However, it is still difficult to treat directly the

general case where there exist six independent parameters
R0 andR2M (M522, . . . ,2). Inorder to reduce this diffi-
culty, we transfer the coordinate system to the one whose
three axes coincide with the principal axes of the deformed
bubble. In this coordinate system, the deformed bubble shape
can be written as27

RS8~R0 ,Q8,F8!5R01R208 Y2
0~Q8!

1R228 @Y2
2~Q8,F8!1Y2

22~Q8,F8!#/A2,
~2.7!

where the anglesQ8 andF8 represent the polar angles and
the coefficients labeled by primes denote those in this coor-
dinates system. The origin of the system andR0 are un-
changed by this transformation. The original five degrees of
freedom corresponding to the coefficientsR2M
(M522, . . . ,2) areapproximately separated into two parts:
One is the two quadrupole oscillation modes of the bubble
surface represented by the second and third terms in Eq.
~2.7!, and the other is the bubble rotation expressed by three
Euler angles which were defined as the direction of the new
coordinate system relative to that before transformation. We
will show later that the energy of the bubble rotation can be
neglected, because the bubble rotation can be considered to
be almost stationary during a period of the surface oscilla-
tion. We choose theZ8 axis as the quantization axis for the
atomic wave functions. It must be noted that the potential
VI(r ,R) and the matrix elements of the total Hamiltonian
HE can be calculated in this coordinate system in the same
manner as in the previous subsection, and the results ob-
tained by the SBM calculation do not change by the coordi-
nate transformation. Therefore, we will use the new coordi-
nate system, omitting the primes hereafter.

The fundamental concepts of the DBM are about the same
as those of the SBM, the only difference being the anisotropy
in the configuration of surrounding liquid helium. By replac-
ing R0 in the SBM byRS , the density distribution of the
surrounding helium atoms in the DBM can be written as

r~R,RS ,a!

5H 0, R, RS,

r0@12$11a~R2RS!%e
2a~R2RS!#, RS < R, ~2.8!

wherer0 is the pressure-dependent number density of liquid
helium andRS(R0 ,Q,F) is given by Eq.~2.7!. The two
types of quadrupole oscillation modes represented by
R20Y2

0(Q) andR22@Y2
2(Q,F)1Y2

22(Q,F)#/A2 correspond
to b and g oscillations in the deformed nucleus theory,
respectively.27 The total Hamiltonian is obtained by substi-
tuting Eq.~2.8! into Eq.~2.1!, and its diagonalization is made
with the same atomic basis as in the SBM calculation. The
summation overL in Eq. ~2.1! depends on the atomic angu-
lar states involved.21 For example, we use theS state and the
first excitedP states as atomic basis. In this case, the higher-
order terms (L > 3! vanish. This is just the case of the
quadrupole deformation. It can be considered that both
breathing and quadrupole oscillation modes are induced si-
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multaneously and independently by the zero-point fluctua-
tions.R0, R20, andR22 are regarded as independent configu-
ration coordinates.

The energy diagram associated with the excitation process
is that for the equilibrium bubble configuration in the ground
state 6S1/2. The bubble shape is determined by the coordi-
nates (R0 ,R20,R22) and the surface thickness parametera.
Since the quadrupole deformation is assumed to be small, the
values of the parametera and effective bubble radiusRb
obtained by the SBM calculation can approximately be used
even in the DBM calculation. In this case the surface energy
and the pressure volume work are, respectively, given by8

Esurf5$4pRb
214Rb

2~R20
2 1R22

2 !/R0
2%s, ~2.9!

EPV5$ 4
3pRb

31Rb
3~R20

2 1R22
2 !/R0

2%P. ~2.10!

The energy surfaces of the ground stateS1/2 and the first
excited statesP1/2 andP3/2 can be obtained by summing the
eigenenergies of HamiltonianHE , Esurf, EPV, andEVK , as
changingR0, R20, andR22.

III. NUMERICAL RESULTS AND DISCUSSION

A. Calculated energy surfaces

Here, we describe mainly the results of numerical calcu-
lations of the energy diagrams for the Cs bubble at SVP.

The treatment of multidimension configuration coordinate
diagrams is a nontrivial work. We consider here the energy
surfaces of an atomic bubble in the coordinatesR0, R20, and
R22, at the moment of optical excitation. In this case, the
configuration of surrounding helium atoms for the electronic
ground state is essential to determine the excitation line
shape. The vibrational coordinatesR0, R20, andR22 distrib-
uted in the vicinity of the minimum of energy surfaces of the
ground stateS1/2 are particularly important.

To visualize the physical mechanism of line splitting dis-
cussed in the next subsection, we schematically show in Fig.
2 the energy surfaces of the 62S1/2, 6

2P1/2, and 62P3/2
states of a Cs atom in the coordinates (R20,R22) for R0
5 11.375 a.u. This value ofR0 was obtained by minimizing
the energy of the ground state 62S1/2 in the SBM and DBM
calculations. As seen in Fig. 2, the energy surface of the
P3/2 state in the (R20,R22) coordinates is split into two
branches: upper and lower branches. On the contrary, such a
splitting does not occur in theP1/2 states. The energy surface
of theS1/2 states is regarded to be symmetrical for the rota-
tion around theE axis in Fig. 2. Two branches of theP3/2
states do not have such rotational symmetry. However, the
rotational symmetry holds roughly in the region ofR20
and R22 where the probability of the wave function of
the vibronic ground state is mostly distributed
(0<AR20

2 1R22
2 <;3.0 a.u. in this case!.

We regard the energy surfaces as the effective potentials
for the quantized quadrupole oscillation modes of the bubble
surface, similarly to the case of breathing modes in a spheri-
cal bubble. The effective massMeff

Q for the quadrupole oscil-
lation modes is given byRb

3r0MHe/3.
20 By fitting the energy

surface of theS1/2 state to a two-dimensional harmonic po-
tential, the wave functions of the vibronic states for the quad-
rupole oscillation can be easily obtained. The energy separa-

tion between the lowest two vibronic states in the electronic
ground stateS1/2 is typically;9.6 K at SVP, which is much
larger than the thermal energy in our experiment (T;1.6 K!.
Thus we can consider that the optical excitation transition
occurs mostly from the vibronic ground statexv50

Q .
We have not taken account of the rotational energy of the

bubble in the above calculation. The rotational energy can be
estimated roughly to be

Erot;
\2

MI
, ~3.1!

whereMI is a moment of inertia of the bubble, given ap-
proximately by;4pRb

5r0MHe/3. For the Cs bubble in the
ground stateS1/2 at SVP (Rb 5 13.785 a.u. andr0 5 2.18
31022 cm23

), we obtain the rotational frequencyv rot;109

sec21. Sincev rot is much smaller than the breathing oscilla-
tion frequency (vB;531011 sec21

) and the quadrupole os-
cillation frequency (vQ;1012 sec21

), the bubble rotation
can be regarded to be adiabatic against bubble surface oscil-
lations and the effect of rotational energy on the optical tran-
sition can be neglected. In addition, the change of the mo-

FIG. 2. Energy diagram of the Cs atomic bubble in the two-
dimensional configuration coordinate, whereR20 andR22 represent
equivalent quadrupole oscillation modes. These energy surfaces are
for the bubble in the ground 6S1/2 state and first excited states
6P1/2 and 6P3/2, in the case thatR0 is fixed toR0eq (511.375 a.u.!
which gives the minimum energy of the ground state 6S1/2 at SVP.
The quadrupole oscillation modes lift the degeneracy of theP3/2

states and split the energy surfaces, while the energy surface of the
P1/2 state is not separated. The two branches of theP3/2 energy
surfaces do not have exactly a rotational symmetry around theZ
axis and have a minima at;3.0 a.u. apart from the origin. The
probability distributionPD of the vibronic ground state in the elec-
tronic ground stateS1/2 is also shown by a dashed line, the maxi-
mum of which occurs at a distance of;1.2 a.u. from the origin.
The arrows represent theD1 andD2 transitions, respectively.

54 6603DOUBLY SHAPEDD2 EXCITATION SPECTRA OF Cs . . .



ment of inertia due to bubble surface oscillations is expected
to be small, so that the rotation-vibration interaction is also
negligible.

B. Interpretation of the line shape
by the dynamic Jahn-Teller effect

Using the energy diagram in three-dimensional configura-
tion coordinates (R0 ,R20,R22), we obtained numerically the
excitation line shape under the approximations as follows.
We first fixedR0 to the value of the equilibrium bubble
radiusR0eq in the ground stateS1/2 and considered the energy
surfaces in two-dimensional configuration coordinates
(R20,R22) ~see Fig. 2!. According to the Franck-Condon ap-
proximation, the excitation spectrum was obtained by pro-
jecting the probability distributionPD concerning the vibra-
tional coordinates to the excited potential surfaces, as
keeping constant the values ofR20 andR22. The probability
PD is calculated from the wave function of the vibronic
ground state, uxv50

Q u}exp$(2Meff
Q vQ(R20

2 1R22
2 )/2\)%.

Since two coordinatesR20 andR22 should be treated equiva-
lently and the energy surfaces have approximately rotational
symmetry,PD can be written as

PD}AR20
2 1R22

2 uxv50
Q u2, ~3.2!

where the factorAR20
2 1R22

2 comes from the fact thatPD

must be distributed in a two-dimensional (R20,R22) plane.
Although uxv50

Q u2 has a maximum at the origin, the maxi-
mum of PD is displaced to a circle on the (R20,R22) plane
with a radius given byAR20

2 1R22
2 5A\/2Meff

Q vQ, as shown
by the dashed line in Fig. 2. The radius is actually distributed
in a range 1.0–1.3 a.u., depending on the helium pressure.
The twofold splitting of theD2 excitation line is basically
caused by the distribution of two possible resonant frequen-
cies for the transitions from the ground state withv 5 0 to
the energy surfaces of theP3/2 state, weighted by the prob-
ability distributionPD . It is clear that no splitting structure
appears in theD1 excitation spectrum, as seen in Fig. 2. Thus
we see that two quadrupole oscillation modes induced by
zero-point fluctuations are found to be of great importance
for the separation of the energy surfaces of theP3/2 state and
the resulting excitation line shape. In other words, it can be
said that the dynamic Jahn-Teller effect plays an important
role in theD2 excitation.

There are two other important points to note in the calcu-
lation of theD2 excitation spectra. First, there is no prefer-
ential direction of the principalZ axis for the bubble surface
oscillations in the ground stateS1/2. Therefore, the angle
between the electric field vectorE of the linearly polarized
excitation laser light and the bubble principalZ axis is dis-
tributed over all directions with equal probability. We calcu-
lated the electric dipole moment for transitions from the
ground stateS1/2 to the two states of the excitedP3/2 state
with different energy surfaces in the (R20,R22) configura-
tion, averaging the angle between the direction ofE and the
Z axis. We obtained the transition probability to the lower
and upper branches of energy surfaces by projecting verti-
cally the probability distributionPD , weighting the averaged
square of electric dipole moment.

Until now, we have considered only the quadrupole
bubble deformation, with the bubble radiusR0 fixed to
R0eq. As mentioned already, the breathing modes are inde-
pendent of the quadrupole oscillation modes. Among the
quantized breathing modes, only the lowest vibronic state
xv50
B in the electronic ground stateS1/2 is considered to be

populated in equilibrium.10 As shown in Fig. 1, a zero-point
breathing oscillation distributes the bubble radiusR0 around
R0eq, and it does not contribute to the line splitting, but
solely to the broadening. This line broadening must not be
ignored to obtain the whole line shape. This is the second
point that we must take into account. To take account of the
line broadening by the breathing oscillation, we calculated
the excitation line profile for a particular value ofR0 in the
way mentioned above, and integrated it overR0, weighting
the probability to find the bubble radius atR0, i.e., the square
of the wave function for the lowest breathing oscillation
modes,uxv50

B u2.

C. Comparison with experimental results

The calculated shapes of the Cs-D2 excitation line at SVP
and 20 atm of helium pressure are shown in Figs. 3 and 4,
respectively. We can see that the calculated line~solid line!
is given by the superposition of broad and sharp components
shown by dashed lines. The difference in the shapes of these

FIG. 3. Calculated shapes for the Cs-D2 excitation spectra with
the deformed bubble model~DBM! at SVP. The whole profiles
~solid lines! are given by the superposition of broad and sharp com-
ponents~dashed lines!, which correspond, respectively, to transi-
tions to the upper and lower branches of the twofold energy sur-
faces of theP3/2 states.

FIG. 4. Same as in Fig. 3, but for the case of 20 atm of helium
pressure.
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two components comes from the different curvatures of the
two energy surfaces of theP3/2 states in the region ofR20
and R22 giving the maximum ofPD , as seen in Fig. 2.
Namely, the upper and lower energy surfaces in the vicinity
of the maximum ofPD are steep and flat, respectively. This
gives basically the difference in the shape and position of the
two components, one being broad and located at the longer-
wavelength side and the other being sharp at the shorter-
wavelength side. The theoretical values associated with the
two components of theD2 line are shown in Table I, together
with experimental values. The calculated line shapes, shown
in Figs. 3 and 4, agree basically with those observed experi-
mentally~see Fig. 5 in Ref. 10!. Therefore, we can conclude
that the doubly peaked profile of theD2 excitation line can
be attributed to the quadrupole deformation of the bubble
shape and is explained as the dynamic Jahn-Teller effect.
There exists, however, quantitatively, a discrepancy in the
position, broadenings, and splitting of the two components of
theD2 line between theory and experiment. The theoretical

splitting interval and broadening are about 65% of the ex-
perimental values, respectively. The pressure dependence of
the calculated splitting interval is;1.2 cm21/atm, which is
smaller than the observed values (;1.6 cm21/atm!. To re-
move these quantitative discrepancies, more precise calcula-
tions may be required.

D. Volume constant condition

In the present model, the bubble shape parametersR0,
R20, andR22 have been treated as independent variables. If
the bubble deformation occurs under the conservation of
bubble volume, i.e.,dV50, the surface energy and pressure
volume work are rewritten as20,27

Esurf5$4pRb
212Rb

2~R20
2 1R22

2 !/R0
2%s, ~3.3!

EPV5 4
3pRb

3P. ~3.4!

When the deformation is small,Esurf andEPV given by the
above equations are not so different from those given by Eqs.
~2.9! and ~2.10!. However,R0, R20, andR22 are no longer
independent variables.27 In a high-helium-pressure region,
the pressure volume work contributes largely to the total
energy. In such a case, the breathing modes which always
accompany the change of the bubble volume may be sup-
pressed and quadrupole oscillation modes are considered to
be dominant to determine the energy levels and modify the
line shape and broadening from those calculated in the
present work. A detailed study of this effect may be impor-
tant to get quantitative agreement with experiment.

E. Case of a Rb atom

Figure 5 shows the magnification of the observed Rb-D2
excitation line, which overlaps partially with theD1 line.
Looking at only the experimental results~solid squares!, an
obvious splitting of theD2 line cannot be seen. However, as
pointed out in our previous paper,10 if we assume that the
Rb-D2 excitation line consists only of a single line, its line-
width @half width at half maximum~HWHM!, typically
;440 cm21# is too broad compared with those of other ex-

TABLE I. Theoretical and experimental values of center wavelengths, widths, ratios of relative intensi-
ties, and splitting intervals of two components of the Cs-D2 excitation spectrum at helium pressure of the
SVP and 20.0 atm. These theoretical values were obtained with the deformed bubble model~DBM!. The
observed line profiles were found to be well expressed by the sum of two Gaussian functions, from which the
experimental values were obtained.

Component I Component II Splitting interval
Center FWHM Center FWHM Intesnity ratio
~nm! ~nm! ~nm! ~nm! I/II ~cm21

)

SVP

Experiment 833.6 6.3 825.2 17.4 1.50 122.1
Theory 837.2 5.1 831.9 7.2 1.64 76.1
20.0 atm

Experiment 819.2 9.4 808.8 16.4 1.49 157.0
Theory 824.6 5.7 817.5 10.4 1.62 105.3

FIG. 5. Observed Rb-D2 excitation spectra at SVP. Fitting the
D2 spectrum to the sum of two Gaussian curves after eliminating
partially the overlap of theD1 line shown by dotted line. The solid
squares show the experimental results. The best-fit two components
are shown by dashed lines and the solid line is a sum of the two
dashed lines. The center wavelength and broadening~FWHM! of
the sharper component were found to be 764.9 nm and 6.8 nm,
respectively. The corresponding values of the other component
were 758.1 nm and 13.0 nm. The resulting splitting interval was
117.3 cm21.
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citation spectra@full width at half maximum~FWHM!, 120–
170 cm21#. Thus, it may be natural to consider that the Rb-
D2 excitation line consists of two components as the Cs-
D2 line does. In fact, the Rb-D2 line can be expressed as the
sum of two Gaussian functions, as shown by the dashed lines
in Fig. 5. The center wavelengths of the two components
were found to be 764.9 nm and 758.1 nm, the splitting inter-
val being therefore 117.3 cm21. We calculated the case of a
Rb atom and obtained the doubly shaped profile of theD2
excitation line, which has a shape similar to the Cs atom.
However, as described above, the observedD2 line does not
have these well-resolved two components. We will discuss
here the possible reasons for this. According to our DBM
calculation, the Rb-D2 excitation spectrum is, certainly, af-
fected by the quadrupole deformation of the bubble surface.
Our calculation shows that, if only the quadrupole oscillation
modes exists, the resultingD2 line shape must have a well-
resolved splitting profile. However, there exists an effect of
surrounding helium causing only the line broadening, result-
ing in the splitting profile being obscure. The breathing os-
cillation can be considered to be one of the most probable
causes of broadening in this case. We believe that the split-
ting of the Rb-D2 excitation line due to the dynamic Jahn-
Teller effect may be masked by the large line broadening.29

In fact, the observed splitting interval of the Rb-D2 line was
smaller than that of the Cs atom,10 in spite of having the
same line broadenings. Moreover, the small fine structure
splitting 5P states of Rb causes a partial overlap of theD1
andD2 excitation lines, which may be an additional distur-
bance of the manifestation of spectral splitting.

There is an important point to be added. TheD2 line
splitting, i.e., energy splitting of theP3/2 state, may depend
on the strength of the spin-orbit coupling relative to that of
the asymmetrical vibronic coupling~Jahn-Teller effect!. As
pointed out by Fulton and Fitchen,30 in the case that the
spin-orbit coupling is much stronger than the asymmetrical
vibronic coupling, a multiple splitting would occur in the
absorption spectrum, and in the opposite case, only a single
Gaussian band is predicted to appear. In fact, comparing the
D2 excitation lines of Ba1 ions,17 Cs and Rb atoms, which
have fine-structure intervals of the first excitedP states as
1691.2 cm21, 554.04 cm21, and 237.59 cm21, respectively,
we see that the line splitting becomes smaller and unclearer
in this order. To confirm this inference, a more accurate and
quantitative calculation is required, particularly for the
model of alkali-helium pair potentials.

IV. SUMMARY

The deformed atomic bubble model has been proposed
and studied to clarify the physical mechanism for the struc-
tured profile of theD2 excitation spectra of Rb and Cs atoms
in He II which is beyond the description of the spherical the
bubble model. In particular, we have restricted ourselves to
the case of the oscillatory quadrupole deformation of the
bubble surface induced by quantum zero-point fluctuations.
The potential energy diagrams of a deformed bubble have
been obtained using three configuration coordinates: One co-
ordinate gives the bubble radius~breathing oscillation
modes! and the other two give the bubble deformation~two
quadrupole-oscillation-type modes! in the principal axis co-
ordinate system of the deformed bubble. In the diagram, the
lower symmetry in the interaction potential splits the energy
surfaces ofP3/2 states into two branches. Franck-Condon
transitions from the electronic ground state of the atomic
bubble to these twofold energy surfaces lead to a splitting in
theD2 excitation spectrum, which is known as the dynamic
Jahn-Teller effect.

After taking account of the additional line broadening by
the breathing oscillation modes, the resulting line shape
shows qualitative agreement with experimental results. Al-
though there still exists a quantitative discrepancy with ob-
served spectra, it can be said that the essential features of the
line shape have been reproduced and the physical mecha-
nism for the splitting has been explained in terms of the
dynamic Jahn-Teller effect. Thus, it can be concluded that an
anisotropic configuration of the surrounding liquid helium
exists even for atoms in the ground stateS1/2 and produces
the structured shape of theD2 excitation line. It must be
emphasized that the dynamic Jahn-Teller effect occurs not
only in solids but also in liquids. A more quantitative treat-
ment and model calculation are needed to understand the
blurredD2 profile for the Rb atom and to reproduce the line
shape exactly.
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