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The hydrodynamic theory of superfluid turbulence is presented in a new simplified form. It applies to flow
situations frequently encountered in practice, in which the thermohydrodynamic environment of a superfluid
turbulent tangle of quantized vortices may be considered, in a first order of approximation, as given. Flow
quantities like the mass density, the entropy density, and the drift velocities of mass and elementary excitations
act, accordingly, asexternalparameters with respect to the internal dynamics of the vortex tangle. Theinternal
dynamics is completely specified by a kinematic equation governing the time evolution of the line-length
density of the quantized vortices and a dynamic equation involving the impulse density of the vortex tangle.
The derivation of these equations starts from a variational principle that is reminiscent of Hamilton’s principle
in classical mechanics and proceeds, in order to include dissipative effects, by using methods of the thermo-
dynamics of irreversible processes. A new quantity called superfluid turbulent pressure is introduced which
shows many properties that are familiar from the ordinary pressure in a classical fluid. Two important particu-
lar cases are considered in more detail, viz., homogeneous superfluid turbulent flow and flow situations in
which the vortex tangle is in permanent internal equilibrium. When diffusion of the vortex-tangle impulse is
taken into account and dispersive effects are disregarded, the dynamic equation of the vortex tangle assumes,
in the case of internal equilibrium, the form of Burgers’ equation with a nonlinear source term. This equation,
which is new, may be considered as a natural generalization of Vinen’s equation toinhomogeneoussuperfluid
turbulence. Some exact solutions which represent uniformly propagating superfluid turbulence fronts are listed
in the Appendix.@S0163-1829~96!01033-8#

I. INTRODUCTION

The general hydrodynamicthree-fluidtheory of superfluid
turbulence in He II developed for one-dimensional flow in
~Ref. 1! and for three-dimensional flow in~Ref. 2! is fairly
involved. In fact, three scalar and three vector evolution
equations are required for the determination, as a function of
position and time, of three scalar quantitiesr, S, andL rep-
resenting, respectively, the local densities of mass, elemen-
tary excitations — or entropy — and line length of the quan-
tized vortices constituting a vortex tangle, and three vector

quantitiesvW , vW n , andvW l denoting, respectively, the drift ve-
locities of mass, elementary excitations, and quantized vor-
tices. We are therefore interested in special cases where the
three-fluid equations take a particularly simple form.

A good example of such a relatively simple form of the
three-fluid theory is afforded by the homogeneous case in
which the flow quantities do not vary with position. The case
of homogeneous flow is considered in detail in Ref. 3. In
addition, a section is devoted to it in Ref. 2. The decay of
homogeneous superfluid turbulence is analyzed in Refs. 4
and 5. For the analysis of homogeneous flow it appears to be
sufficient to supplement thetwo-fluid equations for super-
fluid 4He ~Landau-Khalatnikov equations!, irrespective of an
additional mutual-friction force, with a slightly extended
form of Vinen’s equation governing the time evolution of the
line-length densityL of the quantized vortices. The extension

of Vinen’s equation involves the appearance of the relative
polarity of the vortex tangle, i.e., the cosine of the angle
between the direction of the relative drift velocity

wW l 5vW l 2vW of the vortex tangle and the direction of the rela-

tive drift velocity wW n5vW n2vW of the elementary excitations.
In one-dimensional flow the relative polarity takes the form
sgnwl sgnwn . It plays an important part in the analysis of
the decay of superfluid turbulence~see, in particular, Ref. 5!.

Although homogeneous superfluid turbulent flow appears
to be understood reasonably well now, both experimentally6

and theoretically,7 inhomogeneous flow phenomena like su-
perfluid turbulence fronts still await a simple unifying treat-
ment. It is the aim of this paper to provide such a treatment
by applying only a few basic principles. In particular we are
looking for equations governing inhomogeneous superfluid
turbulent flow that generalize Vinen’s equation in a natural
way.

In a recent paper8 dealing with the propagation of super-
fluid turbulence fronts a class of flow situations is envisaged
in which the thermohydrodynamic environment~‘‘bath’’ ! in
which the vortex tangle is embedded, is regarded as given,
usually constant with respect to position and time, while the
vortex tangle itself is allowed to evolve according to its own
dynamics. The influence of the thermohydrodynamic envi-
ronment on the dynamics of the vortex tangle is represented
by theexternalparametersr, S, vW , andvW n . The vortex line-
length densityL and the relative drift velocitywW l of the
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quantized vortices constitute theinternal variables character-
izing the various superfluid turbulent states of the tangle.

We want to develop here, in an independent way, for the
class of flow situations just mentioned, the appropriate sim-
plified form of our hydrodynamic theory of superfluid turbu-
lence. It should be noted that flow situations of this kind are,
approximately, realized in a variety of experiments. Since it
turns out to be sufficient, in many cases of practical interest,
to consider one-dimensional flow only, the internal variables
involved in the dynamics of a vortex tangle will be repre-
sented by the scalar quantitiesL andwl .

In Sec. II the nondissipative equation of motion for a
superfluid turbulent tangle of quantized vortices is derived
from an appropriate variational principle which is reminis-
cent of Hamilton’s principle in classical mechanics. Accord-
ing to that derivation the impulse densityPl of the vortex
tangle is determined irrespective of an arbitrary function of
the dimensionless Vinen numberVi5kL1/2/uwl u, where
k5h/m. The specification of this function follows from an
analysis of the energy of the vortex tangle in Sec. III. A
superfluid turbulent pressurepl satisfying the Clebsch-
Bateman principle is also introduced in that section. Dissipa-
tive effects like mutual-friction forces are added in Sec. IV
according to the thermodynamics of irreversible processes.
The diffusion of vortex-tangle impulse receives explicit at-
tention. After a review of homogeneous flow in Sec. V the
particular form taken by the equations when a condition of
permanent internal equilibrium is imposed on the vortex
tangle, is investigated in Sec. VI. When dispersive effects are
neglected that particular form reduces to Burgers’ equation
with a nonlinear source term. Some exact solutions of this
equation representing uniformly propagating superfluid tur-
bulence fronts are listed in the Appendix. The basic equa-
tions of the paper are finally reviewed in Sec. VII.

Theoretical and experimental results on homogeneous su-
perfluid turbulent flow are comprehensively reviewed by
Tough.6 For an introduction to the subject we refer to the
book by Donnelly,9 where a chapter is devoted to superfluid
turbulence. An interesting review of recent results on inho-
mogeneous superfluid turbulence is presented by Ne-
mirovskii and Fiszdon.10

II. VARIATIONAL PRINCIPLE FOR NONDISSIPATIVE
SUPERFLUID TURBULENCE

As set forth in the preceding section we like to develop,
for flow situations in which the tangle of quantized vortices
may approximately be taken to be immersed in a given en-
vironment of He II, the appropriate one-dimensional simpli-
fied version of our hydrodynamic theory of superfluid turbu-
lent flow. The given environment is, in a first order of
approximation, characterized by definite values of theexter-
nal parametersr, S, v, andvn which, in general, will vary
with position and time. Although the values of quantities like
the temperature gradient may be affected as a result of the
dynamics of the vortex tangle, they will do so only in a
second order of approximation~see Appendix A of Ref. 8!.
The flow conditions just mentioned are encountered in a va-
riety of experimental situations. For instance, in capillary
flow the external parameters may be treated as constants pro-
vided the flow velocities are small compared to the propaga-

tion velocities of first and second sound and, in addition, the
boundary conditions at the entrance and exit of the capillary
are time independent~cf. Ref. 8; see also the first paragraph
of Sec. III!.

The internal dynamics of the vortex tangle will be char-
acterized by two time-dependent fields, viz.,L(x,t) repre-
senting the local length of quantized vortices per unit vol-
ume, and wl (x,t) denoting the relative drift velocity
v l 2v of the vortex tangle. It may be demonstrated by start-
ing from the ‘‘microscopic’’ equation of motion for a quan-
tized line vortex~see the Appendix in Ref. 3! that, when
dissipative effects are disregarded, the line length of the vor-
tices is conserved, i.e.,

]L

]t
1

]

]x
~Lv l !50. ~1!

We shall refer to Eq.~1! as thekinematicequation of a
vortex tangle in the nondissipative case. The equation of mo-
tion being valid in that case will be derived from a varia-
tional principle, viz.,

dE
t0

t1
dtE

x0

x1
L l dx50, ~2!

where the Lagrangian densityL l is a function of the exter-
nal parametersr, S, wn and the internal variablesL,
]L/]x, andwl , i.e.,

L l 5L l ~r,S,wn ;L,]L/]x,wl !. ~3!

Note that

wn5vn2v, wl 5v l 2v. ~4!

The variation of the internal variables in Eq.~2! is subject to
the kinematic constraint~1!. The Lagrangian density will be
written in the following more specific form which is remi-
niscent of Hamilton’s principle in classical mechanics:

L l 5
1

2
m̃l wl

22Ũ l . ~5!

The expression at the right-hand side of Eq.~5! is, however,
quite general. In fact,m̃l having the dimension of mass den-
sity is an as yet unknown function of the external parameters
and the internal variablesL andwl which may, formally, be
expressed by

m̃l 5m̃l ~r,S,wn ;L,wl !. ~6!

The potential densityŨ l , however, has a definite meaning;
it represents the internal energy density of the vortex tangle
according to

Ũ l 5rs
k2

4p
L lnS c

a0L
1/2D1

1

2
g̃l S ]L

]x D
2

, ~7!

where the mass density of the superfluid component is indi-
cated byrs , the quantum of circulationk equalsh/m and
a0'1.3 Å ~see Ref. 9! denotes the core radius of a quantized
line vortex. The first term on the right-hand side of Eq.~7!
represents the density of the ‘‘microscopic’’ kinetic energy
associated with the circulating motion around the core of the
quantized vortices@see Khalatnikov~Ref. 11!#. This expres-
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sion is, approximately, valid provideda0L
1/2!1. The dimen-

sionless constantc is of order unity. The gradient]L/]x
appears only in the second term at the right-hand side of Eq.
~7!. This term, in fact, models, within the framework of the
macroscopic theory, the effects associated with local devia-
tions from macroscopic behavior caused by very large values
of the gradient]L/]x. Large gradients may appear, e.g., in
sharp boundary layers and steep fronts. The coefficientg̃l is
assumed to depend on the external parameters and the single
internal variableL. A dimensional analysis then shows that

g̃l 5rs
k2

L2
g l , ~8!

whereg l is, in general, a dimensionless function of the ex-
ternal parameters, i.e.,

g l 5g l ~r,S,wn!. ~9!

In practice, however,g l will, effectively, be a function of
the absolute temperature, e.g., throughrs /r. Since the coef-
ficient m̃l may depend on the internal variablesL andwl a
dimensional analysis shows that

m̃l 5rsm̂l , ~10!

where the dimensionless coefficientm̂l depends, irrespective
of the external parameters, exclusively on the following di-
mensionless combinationVi ~Vinen number! of the internal
variables:

Vi5kL1/2/uwl u. ~11!

Possible cross effects between internal and external variables
are accordingly suppressed, in view of our intention to model
the internal dynamics of a vortex tangle. The functional de-
pendence ofm̂l is, in a qualitative way, expressed by

m̂l 5m̂l ~r,S,wn ;Vi !. ~12!

Note that the dependence on the Vinen numberVi is as yet
unspecified~see, however, the next section!.

After putting

L l 52U l , ~13!

whereU l may be considered as the extended internal energy
density of the vortex tangle, we have in view of Eq.~5!

U l 5Ũ l 2
1

2
m̃l wl

2 , ~14!

so that

dUl 5m l dL1gl dS ]L

]x D2
1

2
ml d~wl

2 !. ~15!

In this expressionm l represents the line-length potential de-
termined by

m l 5rkbv1
1

2

]g̃l
]L S ]L

]x D
2

2
1

2

]m̃l

]L
wl
2 , ~16!

where

bv5
rs
r

k

4p
lnS c8

a0L
1/2D ~17!

with

lnc85 lnc2
1

2
, ~18!

while the quantitiesgl andml are given by

gl 5g̃l
]L

]x
~19!

and

ml 5m̃l 1
]m̃l

]~wl
2 !
wl
2 . ~20!

We have according to Eqs.~8!, ~10!, and~12!

1

2

]g̃l
]L S ]L

]x D
2

52rs
k2

L3
g l S ]L

]x D
2

, ~21!

2
1

2

]m̃l

]L
wl
252

1

4
k2

1

Vi

]m̃l

]~Vi !
, ~22!

]m̃l

]~wl
2 !
wl
252

1

2
Vi

]m̃l

]~Vi !
. ~23!

After having made the variational principle~2! formally
free from the constraint~1! by adding the left-hand side of
Eq. ~1! to L l by means of the Lagrange multiplierw l , we
arrive at

dE
t0

t1
dtE

x0

x1
L̂l dx50, ~24!

where

L̂l 5L l 1w l F]L]t 1
]

]x
~Lv l !G . ~25!

The Euler-Lagrange equations may be derived more easily
from the equivalent Lagrangian densityL l

* obtained from
L̂l by means of partial integration, viz.,

L l
*5L l 2LS ]

]t
1v l

]

]xDw l . ~26!

Performing the variation of the internal variablesL andwl
in Eq. ~24! yields the following Euler-Lagrange equations:

dL: S ]

]t
1v l

]

]xDw l 1m̂ l 50, ~27!

dwl : ml wl 5L
]w l
]x

. ~28!

The generalized line-length potentialm̂ l appearing in Eq.
~27! is, in view of Eqs.~8!, ~15!, ~16!, ~19!, ~21!, and ~22!,
determined by
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m̂ l 5m l 2
]gl
]x

5rkbv2
1

4
k2

1

Vi

]m̃l

]~Vi !
1rs

k2

L3
g l S ]L

]x D
2

2
k2

L2
]

]x S rsg l
]L

]x D . ~29!

It will be clear from Eqs.~13! and ~15! that

Pl 5ml wl ~30!

represents the impulse, or pseudomomentum, density of the
vortex tangle. When the quantityB is introduced by means
of

B5
Pl
L
, ~31!

we have according to Eqs.~28! and ~31!

B5
]w l
]x

. ~32!

Note thatB represents the local impulse of the vortex tangle
per unit vortex length. Differentiating the Euler-Lagrange
equation~27! partially with respect to the spatial coordinate
x yields

]B

]t
1

]

]x
~v l B1m̂ l !50. ~33!

We shall refer to Eq.~33! as thedynamicequation of a
vortex tangle. The nondissipative dynamics of a tangle of
quantized vortices is apparently governed by Eqs.~1! and
~33!.

It should be kept in mind that the effective mass density
ml that enters Eq.~33! according to Eqs.~30! and ~31! and
which, in view of Eqs.~20! and ~23!, is given by

ml 5m̃l 2
1

2
Vi

]m̃l

]~Vi !
, ~34!

involves an as yet unspecified function of the Vinen number
Vi. The further specification of this function will follow from
the analysis of the energy of the vortex tangle in the next
section.

III. ENERGY AND IMPULSE OF VORTEX TANGLE

It is known from the two-fluid hydrodynamics of He II
that, when the flow velocitiesv andvn are small compared
to the propagation velocities of first and second sound, the
external parametersr and S may be considered, in a first
order of approximation, as constant@incompressibility ap-
proximation; see Landau and Lifshitz~Ref. 12!#. When, in
addition, in one-dimensional flow the boundary conditions
are time independent, the conservation equations for mass
and entropy imply that alsov and vn take values that are
independent of position and time.

When the conditions just mentioned are fulfilled, the La-
grangian densityL l

* is invariant with respect to translations
in space and time. The application of Noether’s invariance
theorem then yields equations that express the conservation
of energy and impulse. They are given, respectively, by@see,
e.g., Logan~Ref. 13!#

]H l

]t
1

]Ql

]x
50, ~35!

]Pl
]t

1
]P l

]x
50, ~36!

where the energy densityH l and the energy fluxQl are
expressed by

H l 5 (
s51

3 ]L l
*

]~]cs /]t !

]cs

]t
2L l

* ~37!

and

Ql 5 (
s51

3 ]L l
*

]~]cs /]x!

]cs

]t
, ~38!

while the impulse densityPl and the impulse fluxP l are
determined by

Pl 52 (
s51

3 ]L l
*

]~]cs /]t !

]cs

]x
~39!

and

P l 52 (
s51

3 ]L l
*

]~]cs /]x!

]cs

]x
1L l

* . ~40!

The field variablescs (s51,2,3) represent the internal vari-
ablesL andwl of the vortex tangle and the Lagrange mul-
tiplier w l . By using Eqs.~13!, ~15!, and~26!–~28! we obtain
from Eqs.~37!–~40!

H l 52L
]w l
]t

1LS ]

]t
1v l

]

]xDw l 2L l

5v l ml wl 1U l , ~41!

Ql 52Lv l
]w l
]t

2gl
]L

]t

5Lv l S v l ]w l
]x

1m̂ l D2gl
]L

]t

5v l
2ml wl 1v l Lm̂ l 2gl

]L

]t
, ~42!

Pl 5L
]w l
]x

5ml wl , ~43!

and

P l 5Lv l
]w l
]x

1gl
]L

]x
1L l

*

5Lv l
]w l
]x

2LS ]

]t
1v l

]

]xDw l 1L l 1gl
]L

]x

5v l ml wl 1Lm̂ l 2U l 1gl
]L

]x
. ~44!
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Expression~43! for the impulse density of a vortex tangle is
already familiar from the variational analysis in the preced-
ing section.

When a Galilean transformation is performed according
to

H l 5vPl 1H l8 , ~45!

Ql 5vP l 1vH l8 1Ql8 , ~46!

Pl 5Pl8 , ~47!

P l 5vPl8 1P l8 , ~48!

the conservation equations~35! and ~36! take the form

dHl8

dt
1

]Ql8

]x
50, ~49!

dPl8

dt
1

]P l8

]x
50, ~50!

whered/dt5]/]t1v]/]x. Note that in view of Eqs.~41! –
~48!

H l8 5ml wl
21U l , ~51!

Ql8 5wl ~ml wl
21Lm̂ l !2gl

dL

dt
, ~52!

Pl8 5ml wl , ~53!

P l8 5ml wl
21Lm̂ l 2U l 1gl

]L

]x
. ~54!

It may be recognized that, unlessml (Vi) represents a linear
function,H l8 is a Legendre transform ofU l . In fact,

H l8 5wl Pl 1U l , ~55!

while

dUl 5m̂ l dL2Pl dwl 1
]

]x
~gl dL! ~56!

and, accordingly,

dHl8 5m̂ l dL1wl dPl 1
]

]x
~gl dL!. ~57!

Equations~55! – ~57!, however, also apply in the singular
case whereml is a linear function ofVi @cf. Eq.~73!#. Let us
introduce another Legendre transform, viz., thesuperfluid
turbulent pressure pl defined by

pl 5Lm̂ l 2U l . ~58!

It follows from Eqs.~31!, ~56!, and~58! that

dpl 5Ldm̂ l 1Pl dwl 2
]

]x
~gl dL!

5L~dm̂ l 1Bdwl !2
]

]x
~gl dL!. ~59!

The impulse flux~54! may, in virtue of Eq.~58!, be ex-
pressed by

P l8 5ml wl
21pl 1gl

]L

]x
. ~60!

It is easily verified by taking Eqs.~13!, ~26!, ~27!, and~58!
into account that, in accordance with the Clebsch-Bateman
principle,

pl 5L l
* . ~61!

The equations for the conservation of energy and impulse
may be derived directly from the kinematic equation~1! and
the dynamic equation~33! governing the evolution of a vor-
tex tangle. To that end these last equations are brought in the
form

dL

dt
1

]

]x
~Lwl !50, ~62!

dB

dt
1

]

]x
~wl B1m̂ l !50. ~63!

Since, according to Eqs.~31!, ~47!, and~57!

dHl8 5~m̂ l 1wl B!dL1Lwl dB1
]

]x
~gl dL! ~64!

and

dPl8 5BdL1LdB, ~65!

we have in virtue of Eqs.~52!, ~54!, ~59!, and~60!

dHl8

dt
5~m̂ l 1wl B!

dL

dt
1Lwl

dB

dt
1

]

]x S gl dLdt D
52

]

]x FLwl ~wl B1m̂ l !2gl
dL

dt G
52

]

]x
Ql8 ~66!

and

dPl8

dt
5B

dL

dt
1L

dB

dt

52
]

]x
~Lwl B!2L

]m̂ l

]x
2LB

]wl
]x

52
]

]x S Lwl B1pl 1gl
]L

]x D
52

]

]x
P l8 . ~67!

Equations~66! and ~67! express, respectively, the conserva-
tion of energy and impulse in conformity with Eqs.~49! and
~50!.

We remark that in view of Eqs.~14! and ~51!
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H l8 5ml wl
21U l 5ml wl

22
1

2
m̃l wl

21Ũ l . ~68!

This observation proves to be crucial for the further devel-
opment of our hydrodynamic theory of superfluid turbulence.
In fact, the total energy of a vortex tangle is contained in the
‘‘microscopic’’ kinetic energy associated with the circulating
motion of the superfluid around the core of the quantized
vortices. It is accordingly required that

H l8 5Ũ l ~69!

so that due to Eq.~68!

ml 5
1

2
m̃l . ~70!

By substituting Eq.~34! in ~70! the following differential
equation is obtained for the unknown functionm̃l of the
Vinen numberVi:

Vi
]m̃l

]~Vi !
2m̃l 50. ~71!

The general solution of Eq.~71! reads

m̃l 52rsbVi, ~72!

whereb denotes a dimensionless integration constant involv-
ing, in general, the external parametersr, S, and wn . In
practice it will, principally, be a function of the absolute
temperature, e.g., throughrs /r. See in that connection Sec.
V, in particular, expression~119!. It follows from Eqs.~11!,
~70!, and~72! that

ml 5rsbkL1/2/uwl u. ~73!

This expression forml implies that

Pl 5rkb̂L1/2sgnwl , ~74!

where

b̂5
rs
r

b. ~75!

The modified coefficientb̂ is, like b, a function of the ab-
solute temperature. The property that expression~74! for the
impulse density does not involve the absolute value of the
relative drift velocity, seems to be characteristic for a vortex
tangle. It is obviously related to the anisotropy of the
effective-mass tensor in the three-dimensional case~see Ref.
2!.

The Lagrangian densityL l defined by Eq.~5! may, in
virtue of Eqs.~7!, ~8!, ~70!, and ~73!, be expressed in the
form

L l 5rskbL1/2uwl u2rs
k2

4p
L lnS c

a0L
1/2D

2
1

2
rs

k2

L2
g l S ]L

]x D
2

. ~76!

The first term on the right-hand side of Eq.~76! represents a
velocity-dependent potential density@see Goldstein~Ref. 14!

where a velocity-dependent potential is called Schering’s po-
tential function; see also the discussion in Ref. 2#. Let us
introduce the modified coefficientĝ l associated with disper-
sive effects according to

ĝ l 5
rs
r

g l . ~77!

By using Eqs.~17!, ~18!, ~75!, and ~77! expression~76! for
L l may be brought in the form

L l 5rkb̂L1/2uwl u2rkbvL2rs
k2

8p
L2

1

2
r

k2

L2
ĝ l S ]L

]x D
2

.

~78!

In view of Eqs. ~11!, ~29!, ~72!, ~74!, ~75!, and ~77! the
generalized line-length potentialm̂ l may be expressed by

m̂ l 5rkbv2
1

2
rkb̂L21/2uwl u1r

k2

L3
ĝ l S ]L

]x D
2

2
k2

L2
]

]x S rĝ l
]L

]x D
5rkbv2wl

]Pl
]L

1r
k2

L3
ĝ l S ]L

]x D
2

2
k2

L2
]

]x S rĝ l
]L

]x D .
~79!

It follows from Eqs.~78! and ~79! that

pl 5Lm̂ l 1L l 5
1

2
rkL1/2S b̂uwl u2

k

4p

rs
r
L1/2D

1
1

2
r

k2

L2
ĝ l S ]L

]x D
2

2
k2

L

]

]x S rĝ l
]L

]x D . ~80!

By using Eqs.~14!, ~58!, and ~70!, expression~52! for the
energy fluxQl8 may take the following equivalent forms:

Ql8 5wl ~ml wl
21Lm̂ l !2gl

dL

dt

5wl ~ml wl
21U l 1pl !2gl

dL

dt

5wl ~Ũ l 1pl !2gl
dL

dt
, ~81!

where, in view of Eqs.~7!, ~8!, ~17!, ~18!, and~77!

Ũ l 5rkbvL1rs
k2

8p
L1

1

2
r

k2

L2
ĝ l S ]L

]x D
2

. ~82!

Note that Ũ l 5H l8 according to Eq.~69!. The quantity
U l 1pl appearing in Eq.~81! may be considered as the
extended enthalpy density of the vortex tangle.

At this point of the analysis it seems appropriate for a
better understanding of our approach of superfluid turbulence
to recapitulate what has been achieved and to indicate what
still has to be done, in the sequel of the paper, to complete
the theory.

All equations derived so far apply to a nondissipative vor-
tex tangle. Such a vortex tangle, however, may be realized
only at absolute zero, where the dynamics of the tangle is not
affected by the presence of elementary excitations. The sta-
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tus of the nondissipative vortex-tangle equations, like Eq.
~62! expressing the conservation of line length of the quan-
tized vortices and Eq.~50! for the conservation of vortex-
tangle impulse, is comparable to that of the Euler equations
in classical hydrodynamics which express the conservation
of mass, momentum, and entropy in an ideal fluid without
viscosity. In fact, the vortex-tangle equations just mentioned
were derived from a variational principle of Hamilton’s type,
while it is known that the Euler equations may be obtained
by a similar procedure.

In classical fluid dynamics the Euler equations are ex-
tended to the dissipative Navier-Stokes equations in order to
complete the theory by taking into account real phenomena
like the viscous properties of the fluid. It is known that this
extension can be performed systematically by applying
methods of the thermodynamics of irreversible processes. In
a similar way we will introduce in the next section dissipa-
tive terms in the nondissipative equations for a vortex tangle.
These terms will prove to be essential for arriving at a sys-
tem of evolution equations that is physically realistic. It will
be shown in Sec. V that the well understood homogeneous
case6,7 is completely covered by these extended equations.

IV. DISSIPATIVE EFFECTS

The system of nondissipative evolution equations for a
tangle of quantized vortices comprising the kinematic equa-
tion ~62! and the dynamic equation~63! is clearly equivalent
to the system composed of the kinematic equation~62! and
the impulse equation~50!. This last system, however, is
slightly more convenient as a starting point for the introduc-
tion of additional dissipative terms. After having been sup-
plied with these terms it assumes the form

dL

dt
1

]

]x
~Lwl !5r l , ~83!

dPl
dt

1
]

]x Swl Pl 1pl 1gl
]L

]x D5Fsl 1Fnl 1F l ,

~84!

wherer l represents the density of the net production rate of
line length of quantized vortices in the tangle, whileFsl and
Fnl denote, respectively, the densities of the forces that the
pure liquid and the elementary excitations exert on the quan-
tized vortices. The quantityF l is introduced in the impulse
equation as the density of a force resulting from internal
friction in the tangle. Exterior forces, like the ones that are
associated with the pinning of quantized vortices at the wall
of a capillary, are not considered. Note that a possible diffu-
sive contributionql to the line-length flux has not been
taken into account in Eq.~83!. In fact, the physical back-
ground of such a term is not completely understood. In ad-
dition, its appearance in Eq.~83! unnecessarily complicates
the subsequent development of our simplified hydrodynamic
theory of superfluid turbulence, in particular with a view to
the special cases of homogeneous flow and internal equilib-
rium to be treated in the following sections. The diffusive
flux ql , however, does appear in the analysis of Ref. 2~note
in that connection Ref. 15!. It plays, in addition, an essential
part in the observations on superfluid turbulence fronts by
van Beelenet al.16

It is easily recognized that Eqs.~83! and ~84! imply the
following dissipative form of the dynamic equation of a vor-
tex tangle:

dB

dt
1

]

]x
~wl B1m̂ l !5

1

L
~Fsl 1Fnl !2

r l
L
B1

1

L
F l . ~85!

The three-dimensional analysis in Ref. 2 shows that the
conservation of total momentum comprising the momentum
of the pure liquid and the impulses of the elementary excita-
tions and the vortex tangle, requires that

F l 52
]P l

*

]x
. ~86!

Note thatFsl andFnl represent mutual-friction forces ex-
erted, respectively, by the pure liquid and the elementary
excitations on the vortex tangle. These forces are, accord-
ingly, accompanied by reaction forces acting in the opposite
direction on the environment of the vortex tangle~see Ref.
2!.

In the expression for the densityRl of the entropy pro-
duction rate associated with the vortex tangle two combina-
tions of bilinear terms do appear, viz.~cf. the general analy-
sis in Ref. 2!

2Fsl ~v l 2v !2Fnl ~v l 2vn! ~87!

and

2m̂ l r l 2P l
*

]wl
]x

. ~88!

The thermodynamics of irreversible processes then teaches
us that~see, e.g., de Groot and Mazur17!

S 2Fsl

2Fnl
D 5~Ci j !S v l 2v

v l 2vn
D , ~89!

S 2m̂ l

2P l
* D 5~Di j !S r l

]wl /]x
D . ~90!

The matrix coefficientsCi j andDi j ( i , j51,2) have to satisfy
the Onsager reciprocity relations

C125C21, D125D21. ~91!

The coefficients may be brought in the form

Ci j5rskLg i j ~ i , j51,2!,

D115rskL
22d11,

D125rskL
21d12,

D225rskd22, ~92!

where g i j and d i j ( i , j51,2) are dimensionless quantities
involving only the external parametersr, S, and possibly
alsown . It seems natural to assume that they depend, effec-
tively, on the absolute temperatureT, e.g., throughrs /r.
That assumption is supported by expressions~119! – ~123!.
We shall follow the notation in Ref. 1 by usingg instead of
d11, i.e.,

54 6525SIMPLIFIED HYDRODYNAMIC ANALYSIS OF . . .



g5d11. ~93!

In the sequel frequent use will be made of the modified co-
efficientsĝ, ĝ i j , and d̂ i j ( i , j51,2) determined by

ĝ5
rs
r

g, ĝ i j5
rs
r

g i j , d̂ i j5
rs
r

d i j ~ i , j51,2!.

~94!

In addition, the quantityq̂ will be employed defined by

q̂5
ĝ121ĝ22

ĝ1112ĝ121ĝ22

. ~95!

The mutual-friction force densityFsl 1Fnl appearing in
Eqs.~84! and~85! may then, in view of Eq.~89!, be written
as

Fsl 1Fnl 5rkL~ ĝ1112ĝ121ĝ22!~ q̂wn2wl !. ~96!

The requirement that the entropy production be non-negative
implies that

ĝ11>0, ĝ22>0, ĝ11ĝ222ĝ12
2 >0,

ĝ5 d̂11>0, d̂22>0, d̂11d̂222 d̂12
2 >0. ~97!

It follows from Eq. ~97! that

ĝ1112ĝ121ĝ22>~ĝ11
1/22ĝ22

1/2!2>0,

d̂1112d̂121 d̂22>~d̂11
1/22 d̂22

1/2!2>0. ~98!

In view of Eqs.~57!, ~83!, and~84! we have

dHl8

dt
5m̂ l

dL

dt
1wl

dPl
dt

1
]

]x S gl dLdt D
52

]

]x Fwl ~Lm̂ l 1Pl wl !2gl
dL

dt
1wl P l

* G
1m̂ l r l 1~Fsl 1Fnl !wl 1P l

*
]wl
]x

. ~99!

Accordingly, by taking account of Eq.~52!,

dHl8

dt
1

]

]x
~Ql8 1wl P l

* !5Fnl ~vn2v !2Rl , ~100!

where the densityRl of the dissipation rate is given by@see
Eqs.~87! and ~88!#

Rl 52m̂ l r l 2P l
*

]wl
]x

2Fsl ~v l 2v !2Fnl ~v l 2vn!.

~101!

Equation~100! shows that, per unit volume, some part of the
power Fnl (vn2v) delivered by the mutual-force density
Fnl is being used for modifying the energy of the vortex
tangle, while the rest of it is being dissipated. It should be
noticed that, whereas, in a first order of approximation, the
external parametersr, S, v, andvn and, therefore, also the
absolute temperatureT take fixed values independent of po-
sition and time, the temperature gradient is, in a second order
of approximation, determined by~see Ref. 1!

S
]T

]x
5F l n1Fn , ~102!

whereF l n52Fnl , while Fn represents the density of an
exterior force acting on the elementary excitations, e.g., the
one resulting from the no-slip of the elementary excitations
at the wall of a capillary which leads, at laminar conditions,
to Poiseuille’s law.

V. HOMOGENEOUS SUPERFLUID TURBULENCE
AND VINEN’S EQUATION

In the homogeneous case, when the spatial derivatives of
the superfluid turbulent flow fieldsL and wl vanish, the
kinematic equation~83! reduces, in view of Eqs.~79!, ~90!,
and ~92!–~94!, to the ordinary differential equation

dL

dt
5~1/ĝ !@~ b̂/2!L3/2uwl u2bvL

2#. ~103!

The evolution equation~84! for the impulse density of the
vortex tangle takes under homogeneous flow conditions, in
virtue of Eqs.~74! and ~96!, the form

d

dt
~L1/2sgnwl !5~1/b̂ !L~ ĝ1112ĝ121ĝ22!~ q̂wn2wl !.

~104!

It will be clear thatb̂ may be treated as a constant because
the external parameters have, in a first order of approxima-
tion, values that are independent of position and time. Mul-
tiplying Eq. ~104! by 2L1/2sgnwl yields

dL

dt
5~2/b̂ !~ ĝ1112ĝ121ĝ22!L

3/2~ q̂wnsgnwl 2uwl u!.

~105!

Since the differential equations~103! and ~105! are valid
simultaneously, their right-hand sides should be equal. This
implies that

~2/b̂ !@~ b̂2/4ĝ !1ĝ1112ĝ121ĝ22#L
3/2uwl u

5~1/ĝ !bvL
21~2/b̂ !~ ĝ1112ĝ121ĝ22!L

3/2q̂wn sgnwl .

~106!

Accordingly

wl 5~1/Ĝ!@~ ĝ121ĝ22!wn1~ b̂/2ĝ !bvL
1/2sgnwl #, ~107!

where

Ĝ5~ b̂2/4ĝ !1ĝ1112ĝ121ĝ22. ~108!

By taking Eqs.~95!, ~97!, and ~98! into account it follows
from Eq. ~107! that

e~ĝ121ĝ22!uwnu1~ b̂/2ĝ !bvL
1/2>0, ~109!

where

e5sgnwl sgnwn561. ~110!

Substitution of Eq.~107! in either Eq.~103! or Eq. ~105!
produces the differential equation
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dL

dt
5~ b̂/2ĝ !~1/Ĝ!~ ĝ121ĝ22!euwnuL3/2

2~1/ĝ !~1/Ĝ!~ ĝ1112ĝ121ĝ22!bvL
2. ~111!

Let us introduce the quantitiesx1 andx2 according to

x1a5~ b̂/2ĝ !~1/Ĝ!~ ĝ121ĝ22!~rs /r! ~112!

and

~k/2p!x25~1/ĝ !~1/Ĝ!~ ĝ1112ĝ121ĝ22!bv . ~113!

The coefficient a appearing in Eq.~112! is used by
Schwarz.7 It is related to the first Hall-Vinen coefficientB by
means of

a5~rn/2r!B5~rs /r!av . ~114!

The coefficientav has been introduced in Ref. 3. Corre-
sponding relations with regard to the second Hall-Vinen co-
efficient read

12a8512~rn/2r!B85~rs /r!~12av8!. ~115!

By using Eqs. ~112! and ~113! and realizing that
vn2v5(rs /r)(vn2vs) the following slightly generalized
form of Vinen’s equation is obtained from Eq.~111!:

dL

dt
5x1aeuvn2vsuL3/22~k/2p!x2L

2. ~116!

When e51, it reduces to the Vinen equation discussed by
Schwarz.7 It should be noticed that, in view of Eq.~113!, the
quantityx2 is, like bv , logarithmically dependent onL @see
Eq. ~17!#. This weak dependence onL is usually disregarded
in applications of Vinen’s equation. It was also ignored by
Vinen in his seminal papers.18 It should be emphasized that
the Vinen equation~116! being valid for homogeneous flow
conditions was derived by combining thetwo equations
~103! and ~104! governing the evolution of ahomogeneous
vortex tangle. By the same procedure the algebraic expres-
sion ~107! was obtained for the relative drift velocity of the
vortex tangle. The question has been raised how thesingle
Vinen equation~116! might be generalized toinhomoge-
neousflow conditions. That problem, however, is in the light
of our hydrodynamic theory of superfluid turbulence not
properly posed. In fact, the Vinen equation~116! for the time
evolution of L and expression~107! for wl should not be
considered separately; they are intimately related within the
context of the present theory. The generalization to the inho-
mogeneous case is, accordingly, obvious: the system of
equations~83! and~84! generalizes the set of equations~107!
and ~116!.

By substituting Eq.~107! in Eq. ~89! and applying Eqs.
~92!–~94! the following expressions for the mutual-friction
forces may be derived:

Fnl /rkL5~1/Ĝ!$@~ b̂2/4ĝ !ĝ221ĝ11ĝ222ĝ12
2 #wn

2~ b̂/2ĝ !~ ĝ121ĝ22!bvL
1/2 sgnwl %, ~117!

Fsl /rkL5~1/Ĝ$@~ b̂2/4ĝ !ĝ122~ ĝ11ĝ222ĝ12
2 !#wn

2~ b̂/2ĝ !~ ĝ111ĝ12!bvL
1/2 sgnwl %. ~118!

Schwarz7 has shown that an averaging procedure with re-
spect to the quantized vortices in a homogeneous vortex
tangle yields definite expressions forwl , dL/dt, andFnl .
The averaging may be based~see Ref. 3! on a generalized
‘‘microscopic’’ equation of motion for a line element of a
quantized vortex in which, in addition to the modified Hall-
Vinen coefficientsav andav8 the coefficientav9 enters. This
coefficient determines the tangential component of the local
velocityof the line vortex. It should be realized that the co-
efficientav9 is not related to the third Hall-Vinen coefficient
B9 considered, e.g., in Donnelly.19 This last coefficient
which determines the tangential component of the localforce
acting on the line vortex is usually taken equal to zero~see
the argument in Swanson and Donnelly20!.

By equating expressions~107!, ~116!, and ~117! for, re-
spectively,wl , dL/dt, andFnl to the corresponding expres-
sions that have been obtained by averaging over the quan-
tized vortices in a tangle we arrive at the identities~see Ref.
3!

b̂/2cL5@ I i1av9~12I i!2~12av8!~ I i2I l cL!#21,
~119!

2ĝ/b̂5~avI l !21@ I i1av9~12I i!2~12av8!I i#, ~120!

ĝ115av~12av8!21@ I i1av9~12I i!#
21$~12av9!2~12I i!

2

211~ b̂/2cL!@ I i1av9~12I i!#%, ~121!

ĝ125av~12av8!21$12@ I i1av9~12I i!#%, ~122!

ĝ225av~12av8!21@ I i1av9~12I i!#. ~123!

The quantitiesI i , I l , andcL appearing in Eqs.~119!–~123!
represent coefficients that have been introduced by
Schwarz.7 These coefficients are defined as definite averages
over the quantized vortices in a tangle~see also Ref. 3!.
Equations~119! – ~123!, obviously, express the five macro-
scopic coefficientsb̂, ĝ, ĝ i j ( i , j51,2), note the reciprocity
relation, in terms of the six quantitiesav , av8 , av9 , I i ,
I l , andcL . The macroscopic coefficients, however, have to
fulfill the dissipative inequalities~97!. In Appendix B of Ref.
8 it is demonstrated that in the case where 12av8>0 or,
equivalently, 12a8>0, inequalities that are known to be
satisfied within a relatively large range of absolute tempera-
tures~see Ref. 9!, the dissipative inequalities forĝ and ĝ i j
( i , j51,2) are fulfilled if and only if

av9>2av8I i~12I i!
21 ~124!

or, equivalently,

a9>S rn
r

2a8I i D ~12I i!
21, ~125!

where 12a95(rs /r)(12av9). In the case of permanent in-
ternal equilibrium, i.e., whenĝ50 ~see the next section!, the
equality sign holds in Eqs.~124! and~125!. That property is
easily verified by means of Eq.~120!.
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VI. INTERNAL EQUILIBRIUM AND BURGERS’
EQUATION WITH NONLINEAR SOURCE TERM

In this section it is assumed that the cross effects associ-
ated with the macroscopic coefficientsd̂12 and d̂21 may be
disregarded, i.e., we take

d̂125 d̂2150. ~126!

The following terminology will be used: ~1! the vortex
tangle is ininternal equilibrium if and only if

m̂ l 50; ~127!

~ii ! the vortex tangle is inexternalequilibrium with the pure
liquid and the elementary excitations if and only if

Fsl 1Fnl 50. ~128!

It will be clear that in the homogeneous case external equi-
librium entails internal equilibrium. In fact, in the case of
external equilibrium the right-hand side of Eq.~105! van-
ishes. AccordinglydL/dt50 so that, by virtue of the kine-
matic equation~103! and Eq.~79!, the vortex tangle is in
internal equilibrium.21 The converse statement is also true
unlessĝ50. In fact, whenĝ vanishes the vortex tangle may
be in internal equilibrium without satisfying condition~128!
for external equilibrium. The caseĝ50, which may be of
substantial importance in practice, will be investigated in this
section in more detail. Note that the requirementĝ50 en-
tails, in view of the dissipative inequalities~97!, condition
~126!.

When ĝ vanishes in the general inhomogeneous case, it
follows immediately from Eqs.~90!, ~92! – ~94!, and ~126!
that condition~127! for internal equilibrium of the vortex
tangle is fulfilled permanently. This implies, in view of Eq.
~79!, that

uwl u5~2bv /b̂ !L1/21~2k/b̂ !FL25/2ĝ l S ]L

]x D
2

2L23/2
]

]x S ĝ l
]L

]x D G . ~129!

Substituting Eq.~129! in Eq. ~80! yields the following ex-
pression for the superfluid turbulent pressure:

pl 5rkbvL2rs
k2

8p
L1

3

2
r

k2

L2
ĝ l S ]L

]x D
2

22r
k2

L

]

]x S ĝ l
]L

]x D . ~130!

In internal equilibrium relation~59! reduces to

dpl 5Pl dwl 2
]

]x
~gl dL!, ~131!

so that the impulse equation~84! is given by

dPl
dt

1
]

]x
~wl Pl !1Pl

]wl
]x

5Fsl 1Fnl 1F l .

~132!

By taking Eqs.~74!, ~86!, ~90!, ~92!, ~94!, ~96!, and ~126!
into account Eq.~132! may be brought in the form

d

dt
~ b̂L1/2sgnwl !1wl

]

]x
~ b̂L1/2sgnwl !

12b̂L1/2sgnwl
]wl
]x

5L~ ĝ1112ĝ121ĝ22!~ q̂wn2wl !

1
]

]x S d̂22
]wl
]x D . ~133!

By substituting Eq.~129! in Eq. ~133! and introducing the
dependent variabley according to

y5L1/2sgnwl ~134!

the following partial differential equation is obtained:

dy

dt
1F ~2bv /b̂ !y1~8k/b̂ !ĝ l y

23S ]y

]xD
2

2~4k/b̂ !ĝ l y
22

]2y

]x2G]y]x
12y

]

]x F ~2bv /b̂ !y1~8k/b̂ !ĝ l y
23S ]y

]xD
2

2~4k/b̂ !ĝ l y
22

]2y

]x2G5~1/b̂ !~ ĝ1112ĝ121ĝ22!y
2F q̂wn2~2bv /b̂ !y2~8k/b̂ !ĝ l y

23S ]y

]xD
2

1~4k/b̂ !ĝ l y
22

]2y

]x2G
1~ d̂22/b̂ !

]2

]x2 F ~2bv /b̂ !y1~8k/b̂ !ĝ l y
23S ]y

]xD
2

2~4k/b̂ !ĝ l y
22

]2y

]x2G . ~135!

When dispersive effects are neglected, i.e.,ĝ l 50 and, in addition,bv is treated as a constant, Eq.~135! reduces to

dy

dt
1~6bv /b̂ !y

]y

]x
5 d̂22~2bv /b̂

2!
]2y

]x2
1~1/b̂ !~ ĝ1112ĝ121ĝ22!y

2@ q̂wn2~2bv /b̂ !y#. ~136!
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This equation representsBurgers’ equationsupplemented with anonlinear source term.22 In the Appendix some exact
solutions of Eq.~136! are listed. They may be considered as direct extensions, to the case where diffusive effects are taken into
account, of the marginally stable superfluid turbulence fronts investigated in Ref. 8.

In permanent internal equilibrium (ĝ50) the densityr l of the net production rate of line length is, in view of Eqs.~83! and
~129!, determined by

r l 5
dL

dt
1

]

]x H LF ~2bv /b̂ !L1/2sgnwl 1~2k/b̂ !L25/2ĝ l S ]L

]x D
2

sgnwl 2~2k/b̂ !L23/2
]

]x S ĝ l
]L

]x D sgnwl G J . ~137!

The superfluid turbulent pressurepl fulfills in internal equi-
librium, according to Eqs.~58! and ~127!, the relation

pl 52U l . ~138!

Since, in view of Eq.~13!, 2U l 5L l , this property is remi-
niscent of the Clebsch-Bateman principle~61!. Its range of
validity, however, is both wider, it applies to dissipative flow
processes, and smaller, it is restricted to internal equilibrium.

We finally remark that internal equilibrium is associated
with the dissipative limit (ĝ→0) of the balance equation of
line length ~83!, while conservation of line length corre-
sponds to the nondissipative limit (ĝ→`) of this equation.

VII. REVIEW OF BASIC EQUATIONS

Since many equations have passed in review in the pre-
ceding sections, it seems appropriate, for a right appreciation
of our simplified hydrodynamic theory of superfluid turbu-
lence, to list here the most relevant equations in their most
accessible form for the particular but important case where
dispersive effects are disregarded (ĝ l 50). The cross effects
that are associated with the coefficientsd̂12 andd̂21 will also
be neglected. In that connection it should be realized that, in
general, cross effects are relatively small.

A simple analysis using Eqs.~79!, ~90!, ~92!, and ~93!
shows that thekinematicequation~83! of a vortex tangle
may be represented by

dy

dt
1wl

]y

]x
1
1

2
y

]wl
]x

5~ b̂/4ĝ !y2@wl 2~2bv /b̂ !y#,

~139!

where the dependent variabley is related directly to the line-
length densityL according toy5L1/2 sgnwl @see expression
~134! of the preceding section#. In a similar way, by applying
Eqs.~74!, ~80!, ~86!, ~90!, ~92!, ~94!,~96!, and~134! the im-
pulse equation~84!, or dynamicequation~85!, takes the form

dy

dt
1

]

]x F32 ywl 2~1/b̂ !
k

8p

rs
r
y2G

5~1/b̂ !~ ĝ1112ĝ121ĝ22!y
2~ q̂wn2wl !

1~ d̂22/b̂ !
]2wl
]x2

. ~140!

The second term between square brackets on the left-hand
side of this equation has to be suppressed when the quantity
bv , which depends, in view of Eq.~17!, logarithmically on
uyu, is being treated as a constant. In fact, in that

case the dimensionless constantsc and c8 introduced, re-
spectively, by Eqs.~7! and~19! should not be distinguished,
so that relation~18! has to be skipped. By eliminating the
time derivative between Eqs.~139! and ~140! a spatial dif-
ferential equation is obtained that couples the ways in which
y andwl depend on position.

In the special cases that have been considered in Secs. V
and VI the system of equations~139! and~140! takes a par-
ticularly simple form.

~i! Homogeneous case. It is easily verified~see the analy-
sis in Sec. V! that, when homogeneous flow conditions pre-
vail in a vortex tangle, the system of equations~139! and
~140! is equivalent to an algebraic equation forwl , viz.,

wl 5~1/Ĝ!~ ĝ121ĝ22!wn1~1/Ĝ!~ b̂/2ĝ !bvy ~141!

and an ordinary differential equation~generalized Vinen
equation! for y given by

dy

dt
5~ b̂/4ĝ !~1/Ĝ!~ ĝ121ĝ22!wny

2

2~1/2ĝ !~1/Ĝ!~ ĝ1112ĝ121ĝ22!bvy
3. ~142!

Note thatĜ is defined by Eq.~108!. When written in terms of
the Schwarz coefficientsI i , I l , and cL , Eqs. ~141! and
~142! take, respectively, the form

wl 5@av8I i1av9~12I i!#wn1~12av8!I l bvy, ~143!

dy

dt
5
1

2
avI l y

2@wn2~bv /cL!y#. ~144!

~ii ! Internal equilibrium. When the vortex tangle is in per-
manent internal equilibrium (ĝ50), the right-hand side of
Eq. ~139! vanishes so that

wl 5~2bv /b̂ !y. ~145!

Substitution of this expression forwl in Eq. ~140! yields Eq.
~136! which constitutes a generalized form of Burgers’ equa-
tion. Note that in the derivation of this equation the quantity
bv has been treated as a constant. When Eqs.~145! and~136!
are written in terms of the Schwarz coefficients, they take,
respectively, the form

wl 5~12av8!I l bvy, ~146!
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dy

dt
13~12av8!I l bvy

]y

]x
5 d̂22

1

2
@~12av8!I l #2bv

]2y

]x2

1
1

2
avI l y

2@wn2~bv /cL!y#.

~147!

It will be clear that in the case of homogeneous flow, Eq.
~147! passes into the generalized Vinen equation~144!. The
form of the Vinen equation is, accordingly, not affected ex-
plicitly by the condition of internal equilibrium~see also the
discussion in Ref. 8!. Note, however, that, in view of Eq.
~120!, the coefficient ofwn in Eq. ~143! vanishes when
ĝ50, so that the expression for the relative drift velocity of
a homogeneous vortex tangle reduces, in the case of perma-
nent internal equilibrium, to the more simple form Eq.~146!.
It may be concluded that under some slightly restricting con-
ditions, viz., when internal equilibrium prevails and disper-
sive effects are negligible, Eq.~147!, or similarly Eq.~136!,
may be considered as an extension of Vinen’s equation to
inhomogeneoussuperfluid turbulence.

We finally list some conclusions.
~1! It has been proved possible to derive from a few basic

principles a single partial differential equation for the line-
length densityL(x,t) of inhomogeneous superfluid turbu-
lence that generalizes Vinen’s equation. In the case where
Vinen’s equation takes, according to Schwarz,7 the form
~144!, the partial differential equation is given by Eq.~147!.

Note that the dependent variabley is according to Eq.~134!,
irrespective of the sign of the relative drift velocitywl of the
vortex tangle, equal to the square root of the line-length den-
sity.

~2! Equation~147! has been obtained from the impulse
equation~84! for a vortex tangle by making a few simplify-
ing assumptions, viz., absence of dispersive effects and real-
ization of internal equilibrium of the vortex tangle. These
assumptions are expected to be fulfilled in many cases of
practical interest.

~3! An interesting new contribution to the internal dynam-
ics of an inhomogeneous vortex tangle is supplied by the first
term on the right-hand side of Eq.~147! which models the
diffusion of vortex-tangle impulse.

~4! In developing the theory a quantitypl called super-
fluid turbulent pressure could be introduced. Its explicit ex-
pression as a function ofL and wl is given by Eq.~80!.
When the vortex tangle is in internal equilibrium, the super-
fluid turbulent pressure satisfies Eq.~138!.

APPENDIX: SOME EXACT SOLUTIONS OF EQ. „136…
REPRESENTING SUPERFLUID TURBULENCE FRONTS

Equation~136! which, as shown in Sec. VI, directly fol-
lows from the impulse equation~84! for a vortex tangle in
the physically realistic case where dispersive effects may be
neglected and the vortex tangle is in internal equilibrium,
reads (y5L1/2sgnwl )

dy

dt
1~6bv /b̂ !y

]y

]x
5 d̂22~2bv /b̂

2!
]2y

]x2
1~1/b̂ !~ ĝ1112ĝ121ĝ22!y

2@ q̂wn2~2bv /b̂ !y#.

Note that the first term on the right-hand side of Eq.~136!
models the diffusion of vortex-tangle impulse, while the sec-
ond term accounts for the mutual friction like in Vinen’s
equation~144!. We are looking for solutions of Eq.~136!
that represent propagating waves of permanent form. We ac-
cordingly take

y5y@x2x02v f~ t2t0!#. ~A1!

In that case

dy

dt
52wf

]y

]x
, ~A2!

where

wf5v f2v. ~A3!

Let us introduce the following parameters~see Ref. 8!:

b5~ b̂/2bv!q̂wn , ~A4!

A5~6bv /wn!~ ĝ121ĝ22!
21, ~A5!

B5wf~3q̂wn!
21, ~A6!

C5 d̂22~2bv /b̂ !2~ ĝ121ĝ22!
21~ q̂wn

2!21. ~A7!

These parameters may be expressed in terms of the Schwarz
coefficients by using Eqs.~119! – ~123!. Since Eq.~136! is
valid provided ĝ50 ~permanent internal equilibrium!, the
expressions in terms of the Schwarz coefficients should also
apply to that particular case. They are given by

b5~cL /bv!wn , ~A8!

A5~6bv /wn!~12av8!av
21 , ~A9!

B5wf@3~12av8!I l cLwn#
21, ~A10!

C/A25 d̂22~1/36!~avI l /cL!. ~A11!

Whereas the parameterB is clearly dimensionless, the quan-
tities b, A, andC have the dimension of, respectively, recip-
rocal length, length, and length squared. It seems therefore
natural to introduce dimensionless variablesh andj accord-
ing to

h5y/b, j5x/A. ~A12!
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By applying the dimensional scaling~A12!, Eq.~136! passes,
in view of Eq. ~A2!, into

~h2B!
]h

]j
5~C/A2!

]2h

]j2
1h2~12h!. ~A13!

In the particular case where the coefficientC vanishes,
Eq. ~A13! has been investigated in Ref. 8. Two types of
propagating front solutions are distinguished there, viz.,cold
andwarm fronts. It is shown in Ref. 8 that the marginally
stable cold fronts are characterized by

B50, h5~1/2!$11tanh@~j2j0!/2!#%, ~A14!

while the marginally stable warm fronts are represented by

B51,

h5~j2j0!
21 when j2j0>1,

h51 when j2j0<1. ~A15!

The front solutions~A14! and ~A15! may be extended
continuously to cases whereC.0, by means of the follow-
ing expressions:

B5~1/4!@12~118C/A2!1/2#,

h5~1/2!$11tanh@~j2j0!/2l#%,

l5122B52C/A2B ~A16!

for cold fronts and

B5~1/2!@11~112C/A2!1/2#,

h5B~j2j0!
21 when j2j0>B,

h51 when j2j0<B ~A17!

for warm fronts. Expressions~A16! and~A17! represent, ob-
viously, exact solutions of Eq.~A13!. An inspection of Eqs.
~A16! and ~A17! shows that the asymptotic behavior of the
cold fronts isexponentialand that of the warm fronts is
algebraic. The significance of the exact solutions will be
considered in more detail in a separate paper dealing with
propagating fronts of superfluid turbulence.
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