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The hydrodynamic theory of superfluid turbulence is presented in a new simplified form. It applies to flow
situations frequently encountered in practice, in which the thermohydrodynamic environment of a superfluid
turbulent tangle of quantized vortices may be considered, in a first order of approximation, as given. Flow
guantities like the mass density, the entropy density, and the drift velocities of mass and elementary excitations
act, accordingly, aexternalparameters with respect to the internal dynamics of the vortex tanglénigneal
dynamics is completely specified by a kinematic equation governing the time evolution of the line-length
density of the quantized vortices and a dynamic equation involving the impulse density of the vortex tangle.
The derivation of these equations starts from a variational principle that is reminiscent of Hamilton’s principle
in classical mechanics and proceeds, in order to include dissipative effects, by using methods of the thermo-
dynamics of irreversible processes. A new quantity called superfluid turbulent pressure is introduced which
shows many properties that are familiar from the ordinary pressure in a classical fluid. Two important particu-
lar cases are considered in more detail, viz., homogeneous superfluid turbulent flow and flow situations in
which the vortex tangle is in permanent internal equilibrium. When diffusion of the vortex-tangle impulse is
taken into account and dispersive effects are disregarded, the dynamic equation of the vortex tangle assumes,
in the case of internal equilibrium, the form of Burgers’ equation with a nonlinear source term. This equation,
which is new, may be considered as a natural generalization of Vinen’s equatidmwtoogeneousuperfluid
turbulence. Some exact solutions which represent uniformly propagating superfluid turbulence fronts are listed
in the Appendix[S0163-1826)01033-9

[. INTRODUCTION of Vinen's equation involves the appearance of the relative
polarity of the vortex tangle, i.e., the cosine of the angle
The general hydrodynamtbree-fluidtheory of superfluid between the direction of the relative drift velocity
turbulence in He Il deVelOped f0r One-dimensional ﬂOW in V_\)//:l;/_l; Of the vortex tang'e and the direction Of the re'a_
(Ref. 1) and for three-dimensional flow ifRef. 2 is fairly e grify velocity w,=v,,—v of the elementary excitations.
involved. In fact, three scalar and three vector evolution, one_dimensional flow the relative polarity takes the form
equ.a.nons are required for the determlnz-i'glon, as a function Qafgn/v/ sgnw,,. It plays an important part in the analysis of
position and time, of three scalar quantitigsS, andL rep-  the decay of superfluid turbulen¢see, in particular, Ref.)5
resenting, respectively, the local densities of mass, elemen- ajthough homogeneous superfluid turbulent flow appears
tary excitations — or entropy — and line length of the quan-to be understood reasonably well now, both experimeritally
tized vortices constituting a vortex tangle, and three vectoand theoretically,inhomogeneous flow phenomena like su-
quantitiesJ, Jn, andJ/ denoting, respectively, the drift ve- perfluid turbulence fronts still await a simple unifying treat-
locities of mass, elementary excitations, and quantized vorment. It is the aim of this paper to provide such a treatment
tices. We are therefore interested in special cases where tf applying only a few basic principles. In particular we are
three-fluid equations take a particularly simple form. looking for equations governing inhomogeneous superfluid
A good example of such a relatively simple form of the turbulent flow that generalize Vinen’s equation in a natural

three-fluid theory is afforded by the homogeneous case M2y

which the flow quantities do not vary with position. The case, !N @ recent papérdealing with the propagation of super-
of homogeneous flow is considered in detail in Ref. 3. Inflwd t_urbulence fronts a class of_flow s]tuatlons is env[saged
addition, a section is devoted to it in Ref. 2. The decay ofnh‘{vwcu the thermohylldrqdynaglg der:jwr_onme(hbdatz ) in .
homogeneous superfluid turbulence is analyzed in Refs. which the vortex tangle Is embedded, is regarded as given,

and 5. For the analysis of homogeneous flow it appears to pasually constant with respect to position and time, while the

sufficient to supplement thawo-fluid equations for super- vortex tangle itself is allowed to evolve according to its own
fluid “He (Landau-Khalatnikov equatiohsrrespective of an dynamics. The mfluenge of the thermohydrod.ynamlc envi-
additional mutual-friction force, with a slightly extended ronment on the dynamics of the vortex tangle is represented

form of Vinen's equation governing the time evolution of the Py theexternalparameterg, S, v, andv,, . The vortex line-
line-length density. of the quantized vortices. The extension length densityL and the relative drift velocityw, of the

0163-1829/96/5®)/651913)/$10.00 54 6519 © 1996 The American Physical Society



6520 J. A. GEURST AND H. van BEELEN 54

guantized vortices constitute tirgernal variables character- tion velocities of first and second sound and, in addition, the
izing the various superfluid turbulent states of the tangle. boundary conditions at the entrance and exit of the capillary
We want to develop here, in an independent way, for theare time independeritf. Ref. 8; see also the first paragraph
class of flow situations just mentioned, the appropriate simef Sec. IlI).
plified form of our hydrodynamic theory of superfluid turbu-  The internal dynamics of the vortex tangle will be char-
lence. It should be noted that flow situations of this kind are acterized by two time-dependent fields, vik(x,t) repre-
approximately, realized in a variety of experiments. Since itsenting the local length of quantized vortices per unit vol-
turns out to be sufficient, in many cases of practical interestyme, and w,(x,t) denoting the relative drift velocity
to consider one-dimensional flow only, the internal variablesy ,—v of the vortex tangle. It may be demonstrated by start-
involved in the dynamics of a vortex tangle will be repre-ing from the “microscopic” equation of motion for a quan-
sented by the scalar quantitiesandw . tized line vortex(see the Appendix in Ref.)3hat, when
In Sec. Il the nondissipative equation of motion for adissipative effects are disregarded, the line length of the vor-
superfluid turbulent tangle of quantized vortices is derivedices is conserved, i.e.,
from an appropriate variational principle which is reminis-
cent of Hamilton’s principle in classical mechanics. Accord- ﬁJr 9 Lo =0 1
ing to that derivation the impulse densiB; of the vortex ot ax( v/)=0. @

tangle is determined irrespective of an arbitrary function of, . : .
the dimensionless Vinen numbari= L %|w,|, where We shall refer to Eq(1) as thekinematic equation of a

x=h/m. The specification of this function follows from an vortex tangle in the nondissipative case. The equation of mo-

. : tion being valid in that case will be derived from a varia-

analysis of the energy of the vortex tangle in Sec. Ill. Ational finciole. viz
superfluid turbulent pressurp, satisfying the Clebsch- P pie, viz.,
Bateman principle is also introduced in that section. Dissipa- (X
tive effects like mutual-friction forces are added in Sec. IV 5f dtf A, dx=0, 2
according to the thermodynamics of irreversible processes. fo *o
The diffusion of vortex-tangle impulse receives explicit at-where the Lagrangian density, is a function of the exter-
tention. After a review of homogeneous flow in Sec. V thenal parametersp, S, w,, and the internal variableg,
particular form taken by the equations when a condition ofyL/gx, andw,, i.e.,
permanent internal equilibrium is imposed on the vortex
tangle, is investigated in Sec. VI. When dispersive effects are A=A, (p,SWy,;L,dLIdx,w ). (©)]
neglected that particular form reduces to Burgers’ equatior&Iote that
with a nonlinear source term. Some exact solutions of this
equation representing uniformly propagating superfluid tur- Wp=v,—v, W,=0v,—0. (4)
bulence fronts are listed in the Appendix. The basic equa- o , . , . i
tions of the paper are finally reviewed in Sec. VIL. The \_/ar|at|op of the |n.ternal variables m_E(q'.) is SL_JbJec_t to

Theoretical and experimental results on homogeneous si® kinematic constrair(tl). The Lagrangian density will be
perfluid turbulent flow are comprehensively reviewed byWritten in the following more specific form which is remi-
Tough® For an introduction to the subject we refer to the niscent of Hamilton’s principle in classical mechanics:

book by Donnelly’ where a chapter is devoted to superfluid 1 _

turbulence. An interesting review of recent results on inho- A/=—m/W3—U/. (5
mogeneous superfluid turbulence is presented by Ne- 2

mirovskii and Fiszdor; The expression at the right-hand side of E5).is, however,

quite general. In facin, having the dimension of mass den-
sity is an as yet unknown function of the external parameters
and the internal variablds andw, which may, formally, be
expressed by

II. VARIATIONAL PRINCIPLE FOR NONDISSIPATIVE
SUPERFLUID TURBULENCE

As set forth in the preceding section we like to develop,
for flow situations in which the tangle of quantized vortices

may approximately be taken to be immersed in a given enrpg hotential density) ,, however, has a definite meaning;

vironment of He I, the appropriate one-dimensional simpli-i; renresents the internal energy density of the vortex tangle
fied version of our hydrodynamic theory of superfluid t”rb”'according to
1_ [aL)\?
+t59, : (7)

lent flow. The given environment is, in a first order of
X

m,=m,(p,S,wp;L,w,). (6)

approximation, characterized by definite values of elter- _ K2

nal parameterg, S, v, andv, which, in general, will vary U/=PSE|—|”
with position and time. Although the values of quantities like

the temperature gradient may be affected as a result of th@here the mass density of the superfluid component is indi-
dynamics of the vortex tangle, they will do so only in a cated byps, the quantum of circulatiox equalsh/m and
second order of approximatidsee Appendix A of Ref. 8 ap~1.3 A (see Ref. 9denotes the core radius of a quantized
The flow conditions just mentioned are encountered in a valine vortex. The first term on the right-hand side of E@).
riety of experimental situations. For instance, in capillaryrepresents the density of the “microscopic” kinetic energy
flow the external parameters may be treated as constants prassociated with the circulating motion around the core of the
vided the flow velocities are small compared to the propagaguantized vortice§see KhalatnikoWRef. 11]. This expres-

a0L172



54 SIMPLIFIED HYDRODYNAMIC ANALYSIS OF ... 6521

sion is, approximately, valid provideaL *?<1. The dimen- ps K c’

sionless constant is of order unity. The gradiendL/dx ﬂv:_Eln m?) 17)
appears only in the second term at the right-hand side of Eq. P 0

(7). This term, in fact, models, within the framework of the with

macroscopic theory, the effects associated with local devia-

tions from macroscopic behavior caused by very large values Inc’ = Inc 1 (18

of the gradientdL/dx. Large gradients may appear, e.g., in 2
sharp boundary layers and steep fronts. The coeffigieris ) N )
assumed to depend on the external parameters and the sinytgile the quantitiegy, andm, are given by

internal variableL. A dimensional analysis then shows that AL

2 9,=9,5¢ (19
g/:PsEZ Y (8)
and
wherey, is, in general, a dimensionless function of the ex- 7
ternal parameters, i.e., m, =, + g w2 (20)
(p,Swin) © o
Y/ =YAP,2Wp). .
" We have according to Eq€8), (10), and(12)
In practice, howevery, will, effectively, be a function of
the absolute temperature, e.g., throyglp. Since the coef- 149, (dL k?  [aL\?
ficient m, may depend on the internal variablesandw, a 2L _PSF YA\ x| (21)
dimensional analysis shows that
- . 10m, 1.1 om,
m,=pm,, 10 2,2 g
= psm, (10) PR LaviFvos (22)
where the dimensionless coefficient depends, irrespective
of the external parameters, exclusively on the following di- om, ) 1 om,
mensionless combinatiovii (Vinen numbey of the internal a(Ti)W/: —5Vi Vi) (23

variables:

Vie cL V2 11 After having made the variational principl@) formally
1=K W (12) free from the constraintl) by adding the left-hand side of

Possible cross effects between internal and external variabl&fl- (1) to A, by means of the Lagrange multipligr,, we
are accordingly suppressed, in view of our intention to modefIfive at
the internal dynamics of a vortex tangle. The functional de- . .
pendence ofm, is, in a qualitative way, expressed by 5f 1dtJ 1A/dx:0, (24)
~ ~ . tO X0
m,=m (p,S,w,;Vi). (12
where
Note that the dependence on the Vinen numWeis as yet

unspecifiedsee, however, the next sectjon A 7] I
After putting A=At oot (Lu)). (25
A,=-U,, (13)  The Euler-Lagrange equations may be derived more easily

from the equivalent Lagrangian density’ obtained from

whereU , may be considered as the extended internal energx by means of partial integration, viz.,

density of the vortex tangle, we have in view of E§)

J J
~ 1_
U,=U,— Zm/W/’ (14) Ay=A,—L +U/(9x)“0/ (26)
so that Performing the variation of the internal variablesandw ,
in Eq. (24) yields the following Euler-Lagrange equations:
dU, = dL+ g d| =) - 2, dw? 15 J J
s=pAlrgd |- smdwd). (19 oL (m o, 2 )(P/W/ 0, @7
In this expression, represents the line-length potential de-

termined b d

y &N/: m,w, = L% (28)

1 (?g/ aL 10m, , A

mo=pKByT 5 = Ty L W (16)  The generalized line-length potential, appearing in Eq.
(27) is, in view of Egs.(8), (15), (16), (19), (21), and(22),

where determined by
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. a9, 1,1 gm, k%> [aL\? dH, dQ,
My =By - TPKBy T 7K Vi 9V s o ot T O (39
K? 9 ( aL)
P, oIl
— 2| Py o] (29 AT
L? ox ax T x O (36)
It will be clear from Eqs(13) and(15) that
as(13 19 where the energy density , and the energy fluwQ, are
P,=m,w, (30) expressed by
represents the impulse, or pseudomomentum, density of the 3 INE oy
vortex tangle. When the quanti® is introduced by means = 7 7O A%
* g quantigy y Ho=2 Wawgda) a N 37
P, and
B= T (31
SN oy,
we have according to Eq&28) and (31) Q/:Fl v lax) ot (38
B= & (32) while the impulse density?,, and the impulse fludl, are
IX determined by
Note thatB represents the local impulse of the vortex tangle 3 *
per unit vortex length. Differentiating the Euler-Lagrange S dAy ‘9_‘/10 (39)
equation(27) partially with respect to the spatial coordinate T Eh a(ag,lat) ax
X yields
and
(?B+(9( B+u,)=0 (33 3
Tt gy v/ Hr) =9 aA* J o
o m=->, LMoy (40)

We shall refer to Eq(33) as thedynamic equation of a 7=1 991 9X) X

vortex tangle. The nondissipative dynamics of a tangle Ofrhe field variablesy, (oc=1,2,3) represent the internal vari-

quantized vortices is apparently governed by Eds.and  gplesL andw, of the vortex tangle and the Lagrange mul-

(33. o ] _ tiplier ¢ . By using Egs(13), (15), and(26)—(28) we obtain

It should be kept in mind that the effective mass densityfom Eqs.(37)-(40)

m, that enters Eq(33) according to Eqs(30) and(31) and

which, in view of Egs.(20) and(23), is given by dp,
H/=—L—=+L

o A
gt Vx| ¥

1 om,

m/=m/—§V (34

| ——,

J(Vi) =v,mw,+U_,, (42
involves an as yet unspecified function of the Vinen number
Vi. The further specification of this function will follow from
the analysis of the energy of the vortex tangle in the next

ﬁ(p/ JL
Q,=— LU/T_Q/E

section. P L
AR vl 7l Ve
Ill. ENERGY AND IMPULSE OF VORTEX TANGLE
: S . A JL
It is known from the two fluid hydrodynamics of He I =v?/m/w/+v/LM/—g/—, (42)
that, when the flow velocities andv,, are small compared Jt
to the propagation velocities of first and second sound, the
external parameters and S may be considered, in a first Ao,
order of approximation, as constafihcompressibility ap- P/:'—_ﬁx =mw,, (43)

proximation; see Landau and LifshifRef. 12]. When, in
addition, in one-dimensional flow the boundary conditionsand
are time independent, the conservation equations for mass

and entropy imply that also andwv, take values that are de, .
independent of position and time. = Lo, —>- +9/5+A/

When the conditions just mentioned are fulfilled, the La-
grangian density\ ¥ is invariant with respect to translations B de, |9 A JL
in space and time. The application of Noether's invariance =Lvogx Mo oo et AT O g
theorem then yields equations that express the conservation L
g]ﬁge.’nﬁ:)ggya?(n;elpi);l]se. They are given, respectivelydee, —uv,mw,+ L, —U,+ g/&. (44)
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Expression43) for the impulse density of a vortex tangle is The impulse flux(54) may, in virtue of Eq.(58), be ex-
already familiar from the variational analysis in the preced-pressed by

ing section.
When a Galilean transformation is performed according
to
H,=vP,+H/, (45
Q,=vIl,+vH, +Q/, (46)
P,=P, (47)
I,=vP,+I1,, (48

the conservation equatiori35) and (36) take the form

dH, Q)
T O 49
dpP, Il
a0 (50

whered/dt= g/t +v d/ dx. Note that in view of Eqs(4l) —
(49)

H,=mwZ+U,, (51)
QU=wAmW,+Li,) =9, 57 (52)
P,/:m/W/, (53)

JL
H/—m/W/+L,lL/ U/+g/(9X (54)

It may be recognized that, unless (Vi) represents a linear

function,H, is a Legendre transform & .. In fact,

H}:W/P/'i‘U/, (55)
while
dU/ ,LL/dL P/dW/+ —(g/dL) (56)
and, accordingly,
J
dH/ /L/dL+W/dP/+ (g/dL) (57)
Equations(55) — (57), however, also apply in the singular

case wheren, is a linear function oVi [cf. Eq.(73)]. Let us
introduce another Legendre transform, viz., theperfluid
turbulent pressure p defined by

p,=Lu,~U,. (58
It follows from Egs.(31), (56), and(58) that
R J
dp,=Ldu,+P,dw,——(g,dL)
R J
=L(d,u/+Bdw/)—5(g/dL). (59

II,=mw>+p,+g, X (60)

It is easily verified by taking Eqq13), (26), (27), and(58)

into account that, in accordance with the Clebsch-Bateman
principle,

p,=A7. (62)

The equations for the conservation of energy and impulse
may be derived directly from the kinematic equatidn and
the dynamic equatiofB3) governing the evolution of a vor-
tex tangle. To that end these last equations are brought in the
form

dL

J
gt o (kW) =0,

(62)

dB
dt

Since, according to Eq$31), (47), and(57)

d
(W/B+,U«/) 0. (63

~ J
dH,/:(,LL/'i‘W/B)dL—FLW/dB'F &(g/dL) (64)

and
dP,=BdL+LdB, (65)
we have in virtue of Eqs52), (54), (59), and(60)

dH B dL 1 dB 4 dL
d (M/+W/ )dt+ W/dt 5 g/a

J R dL
== LW/(W/B+M/)—Q/E

’ 66
IX Q/ ( )
and

dP}_BdL LdB
at Carttar

Lw,B L £ g
= ( w,B)— X

B J L 5 JL
= x| bW +D/+9/0—X

= 1'[/

X (67)

Equations(66) and (67) express, respectively, the conserva-
tion of energy and impulse in conformity with Eqg.9) and
(50).

We remark that in view of Eqg14) and(51)
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where a velocity-dependent potential is called Schering’s po-
tential function; see also the discussion in Ref. et us
introduce the modified coefficieqt, associated with disper-

This observation proves to be crucial for the further develsive effects according to
opment of our hydrodynamic theory of superfluid turbulence.

In fact, the total energy of a vortex tangle is contained in the -
“microscopic” kinetic energy associated with the circulating
motion of the superfluid around the core of the quantize

vortices. It is accordingly required that

(69)
so that due to Eq(68)

1_
m/zam/.

(70)
By substituting Eq.(34) in (70) the following differential
equation is obtained for the unknown functiom  of the
Vinen numbeVi:

Vi s o 71
vy ™0 7y

The general solution of Eq71) reads
M, =2pBVi, (72

where denotes a dimensionless integration constant involv-

ing, in general, the external parametgrsS, andw,. In

practice it will, principally, be a function of the absolute
temperature, e.g., through/p. See in that connection Sec.

V, in particular, expressiofiL19). It follows from Egs.(11),
(70), and(72) that

m, = psBrLY|w,]. (73)
This expression fom, implies that
P, =pxBLY%sgw, (74)
where
~  Ps
==8. 75
B p B (75)

The modified coefficienf% is, like B, a function of the ab-
solute temperature. The property that expres§iai for the

Ps

Y= e (77)

dBy using Eqgs.(17), (18), (75), and(77) expression(76) for
A, may be brought in the form
~ 1 K2 1 k%2 [4L\?
A=prBLAW, [ —prBl—psg—L—5p 27/ 5
(78)

In view of Egs.(11), (29), (72), (74), (75), and (77) the
generalized line-length potential, may be expressed by

~ 1 - -1/2 o (o)
py=pKBy,— 5 pKrBL |W/|+PF7’/5
k> a9 . oL
T 12 ax P?’/&
aP/+ k2. [aL\%2 k? a9 . oL
=pkBy =W, YA | T2 x| PY o)
(79

It follows from Egs.(78) and(79) that
R 1 - K p
p,= LM/+A/=§PK|—1/2( Blw,|— yp= f'—llz)

topEY, PYr o] (80)

ax] L ox
By using Eqgs.(14), (58), and (70), expression52) for the
energy fluxQ) may take the following equivalent forms:

1 k2. (z?L2 KZ&(

b

Q =w, (mwo+La,)— 95t

dL
=w,(mw>+U,+ p/)—g/a

impulse density does not involve the absolute value of theyhere, in view of Eqs(7), (8), (17), (18), and(77)
relative drift velocity, seems to be characteristic for a vortex

tangle. It is obviously related to the anisotropy of the

effective-mass tensor in the three-dimensional ¢ase Ref.
2).
The Lagrangian density\ , defined by Eq.5) may, in

virtue of Eqgs.(7), (8), (70), and (73), be expressed in the

form
172 K2
A, =pskBL |W/|_Psﬂ|-|n agL 2)
1 K2 JL\ 2
~5Ps2 7/(5) (76)

The first term on the right-hand side of E6) represents a
velocitydependent potential densitgee GoldsteiriRef. 14

_ dL
:W/(U/+p/)—g/a, (81)
_ K2 1 K2A L\ 2
U =prBltpsgLt5pz7\ 5] - (82

Note that U,=H/ according to Eq.(69). The quantity
U,+p, appearing in Eq(81) may be considered as the
extended enthalpy density of the vortex tangle.

At this point of the analysis it seems appropriate for a
better understanding of our approach of superfluid turbulence
to recapitulate what has been achieved and to indicate what
still has to be done, in the sequel of the paper, to complete
the theory.

All equations derived so far apply to a nondissipative vor-
tex tangle. Such a vortex tangle, however, may be realized
only at absolute zero, where the dynamics of the tangle is not
affected by the presence of elementary excitations. The sta-
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tus of the nondissipative vortex-tangle equations, like Eq. It is easily recognized that Eq&33) and (84) imply the

(62) expressing the conservation of line length of the quanfollowing dissipative form of the dynamic equation of a vor-

tized vortices and Eq(50) for the conservation of vortex- tex tangle:

tangle impulse, is comparable to that of the Euler equationaB 5 1 1

in classical hydrodynamics which express the conservatio - r

of mass, monylentuﬁw, and entropy inpan ideal fluid withoutdt ~ ax VBT A= (Fe+Fa)= B+ F, . (89

viscosity. In fact, the vortex-tangle equations just mentioned

were derived from a variational principle of Hamilton’s type, ~ The three-dimensional analysis in Ref. 2 shows that the

while it is known that the Euler equations may be obtainedconservation of total momentum comprising the momentum

by a similar procedure. of the pure liquid and the impulses of the elementary excita-
In classical fluid dynamics the Euler equations are exions and the vortex tangle, requires that

tended to the dissipative Navier-Stokes equations in order to .

complete the theory by taking into account real phenomena _ i (86)

like the viscous properties of the fluid. It is known that this

F,=———.
’ ax
extension can be performed systematically by applyin -
methods of the thermodynamics of irreversible processes. | ote thatF, and F,,, represent mutual-friction forces ex-
erted, respectively, by the pure liquid and the elementary

a similar way we will introduce in the next section dissipa- excitations on the vortex tangle. These forces are, accord
tive terms in the nondissipative equations for a vortex tangle. gie. ’

These terms will prove to be essential for arriving at a sys—mgly' accompanied by reaction forces acting in the opposite

tem of evolution equations that is physically realistic. It will d;rectlon on the environment of the vortex tangee Ref.
be shown in Sec. V that the well understood homogeneou%'

cas&’ is completely covered by these extended equations. In the expression for the densiy, of the entropy pro-

duction rate associated with the vortex tangle two combina-
tions of bilinear terms do appear, vicf. the general analy-
sis in Ref. 2

The system of nondissipative evolution equations for a
tangle of quantized vortices comprising the kinematic equa- —Fs/(v,=v)=Fp (v, ~vn) (87)
tion (62) and the dynamic equatia®3) is clearly equivalent gnd
to the system composed of the kinematic equat&®) and

IV. DISSIPATIVE EFFECTS

the impulse equatior{50). This last system, however, is N L oW,
slightly more convenient as a starting point for the introduc- —p 1y IX (88)
tion of additional dissipative terms. After having been sup- ) ) )
plied with these terms it assumes the form The thermodynamics of irreversible processes then teaches
us that(see, e.g., de Groot and MaZ(r
dL ¢
5 T oo (bwy)=r,, (83 -Fg, v,—v
dt - ox (_ )=<ci,->( B ) (89
Fn/ UV,/=Unp
dpP, aL
Tt T x| WP AP A | =R R A E - o) r, 0
(84) —1%) TV ow,lax)

wherer , represents the density of the net production rate ofy o 1 4trix coefficientE:: andD.. (i,j=1,2) have to satisfy
line length of quantized vortices in the tangle, whlg- and o Onsager reciprocity”relatioHs

F,, denote, respectively, the densities of the forces that the
pure liquid and the elementary excitations exert on the quan- C1p5=Cy, Dyp=D,y. (91
tized vortices. The quantiti , is introduced in the impulse o )

equation as the density of a force resulting from internall he coefficients may be brought in the form

friction in the tangle. Exterior forces, like the ones that are Com oLy (ii=12

associated with the pinning of quantized vortices at the wall i=psrlyy (1L]=1.2),
of a capillary, are not considered. Note that a possible diffu-
sive contributionq, to the line-length flux has not been
taken into account in Eq@83). In fact, the physical back-
ground of such a term is not completely understood. In ad-
dition, its appearance in E483) unnecessarily complicates _

the subsequent development of our simplified hydrodynamic D22=psid22, 2
theory of superfluid turbulence, in particular with a view to where y;; and &;; (i,j=1,2) are dimensionless quantities
the special cases of homogeneous flow and internal equilibavolving only the external parametegs S, and possibly
rium to be treated in the following sections. The diffusive alsow,,. It seems natural to assume that they depend, effec-
flux q,, however, does appear in the analysis of Réhde  tively, on the absolute temperatuile e.g., throughps/p.

in that connection Ref. 151t plays, in addition, an essential That assumption is supported by expressitii9) — (123).

part in the observations on superfluid turbulence fronts byWe shall follow the notation in Ref. 1 by usinginstead of
van Beeleret al1® 611, i€,

Dy3=pskl 2844,

Dio=pskl 181y,
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Y= 611 (93

In the sequel frequent use will be made of the modified co-

efficientsy, v;;, and 3” (i,j=1,2) determined by

=2 3
p 1

Ps ~ _Ps -
=i, O =— O i,j=1,2).
Yij P Yij i1~ i (i,] )

(94)
In addition, the quantity] will be employed defined by

" Y12+ V22
==
Y11+ 2Y12F Y22

The mutual-friction force density., +F,, appearing in
Egs.(84) and(85) may then, in view of Eq(89), be written
as

(99

Fo +Fn,=pcl(y11+2¥12F Y22 (QWa—W,).  (96)
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aT
S—=F, ,+F,, (102

oXx
whereF .= —F,,, while F,, represents the density of an
exterior force acting on the elementary excitations, e.g., the
one resulting from the no-slip of the elementary excitations
at the wall of a capillary which leads, at laminar conditions,
to Poiseuille’s law.

V. HOMOGENEOUS SUPERFLUID TURBULENCE
AND VINEN'S EQUATION

In the homogeneous case, when the spatial derivatives of
the superfluid turbulent flow fielde and w, vanish, the
kinematic equatior{83) reduces, in view of Eq479), (90),
and (92)—(94), to the ordinary differential equation

dL A
=AML AW, -4,L%. (103

The requirement that the entropy production be non-negative

implies that
¥11=0, ¥22=0, ¥Y11¥20— ¥i>0,

y=0811=0, 8,5=0, 8138, 85,=0.

It follows from Eq. (97) that

97

- A ~12 A1)
Y11t 2¥10+ ¥22= (V11— Y39 *=0,
S11+ 2815+ 8pp= (82— 5U2)2=0.

In view of Egs.(57), (83), and(84) we have

(98)

T 9 4t

dH, . dL dP, 4 dL
at Moar WA T

R dL
W (Lu,+P,w,)— el w117

ToX

[?W/

+/’l/r/+(FS/+Fn/)W/+H;(9—X. (99)

Accordingly, by taking account of Eq52),

dH, ¢ | .
T"' &(Q/‘FW/H/):Fn/(Un_U)_R/! (100

where the densitr, of the dissipation rate is given gee
Egs.(87) and(88)]

N W,
R, = —M/r/—H;(9—X— Fo (v,—v)—Fp v, ,—vy).

(101

The evolution equatiori84) for the impulse density of the
vortex tangle takes under homogeneous flow conditions, in
virtue of Egs.(74) and(96), the form

d N1 (A N RYT
m('— Zsgw,) = (UB)L(y11+ 2¥10+ ¥2) (AWK —W,).
(104)

It will be clear that3 may be treated as a constant because
the external parameters have, in a first order of approxima-
tion, values that are independent of position and time. Mul-
tiplying Eq. (104) by 2LY?sgnw, yields

4t = (2/B) Gt 251+ V) LA Gwosgrw, — |w, ).
(105

Since the differential equationd03) and (105 are valid
simultaneously, their right-hand sides should be equal. This
implies that

(2/[3)[(,&2/43’) + Y11+ 210+ Y22 L3 w, |

=(1/9) B, L2+ (2IB) (y11+ 2¥12+ Y22 L¥%AW,, sgW, .

(106)
Accordingly
W, = (UD)[(Y1o+ Y20 Wa+ (BI27)B,L %S0, ], (107)
where
['=(B%4%)+ Y11+ 2Y12+ Yaa- (108

By taking Egs.(95), (97), and (98) into account it follows

Equation(100) shows that, per unit volume, some part of thefrom Eq. (107) that
power F, (v,—v) delivered by the mutual-force density

F,, is being used for modifying the energy of the vortex (Y1 Y2o) | Wo| + (B8129) B,LY%=0, (109
tangle, while the rest of it is being dissipated. It should be h

noticed that, whereas, in a first order of approximation, theVhere

external parameters, S, v, andv, and, therefore, also the e=sgnv, sgnw, = 1. (110

absolute temperature take fixed values independent of po-
sition and time, the temperature gradient is, in a second ordéubstitution of Eq.(107) in either Eq.(103 or Eg. (105
of approximation, determined higee Ref. 1 produces the differential equation
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A A SchwarZ has shown that an averaging procedure with re-
gt = (BI2y) (D) (yit Y20) €| wp| L3 spect to the quantized vortices in a homogeneous vortex
. tangle yields definite expressions far,, dL/dt, andF,,, .
— (1) (L) (Y11t 2 Y15+ 3’22)/52'—2- (111 The averaging may be bas¢ske Ref. 3on a generalized
. . . “microscopic” equation of motion for a line element of a
Let us introduce the quantitigg, and x, according to quantized vortex in which, in addition to the modified Hall-
N Vinen coefficientsy, ande, the coefficientr,” enters. This
x1a=(BI2y) (1) ('y12+ v22) (ps/p) (112 Coefiicient determines the tangential component of the local
and velocity of the line vortex. It should be realized that the co-
o L efficienta,” is notrelated to the third Hall-Vinen coefficient
(k127) x2= (1Y) (L) (y11+2y12+ ¥22) B, - (113 B” considered, e.g., in Donnelly. This last coefficient

The coefficient « appearing in Eq.(112 is used by which determines the tangential component of the [fmale

SchwarZ’ It is related to the first Hall-Vinen coefficiet by acting on the [ine vortex is usually taken equal to zesee
means of the argument in Swanson and Donnélly

By equating expressiond07), (116), and (117) for, re-
a=(pn/2p)B=(pslp)a, . (114 spectivelyw,, dL/dt, andF,, to the corresponding expres-
sions that have been obtained by averaging over the quan-

The coefficienta, has been introduced in Ref. 3. Corre- ;04 yortices in a tangle we arrive at the identitiese Ref.
sponding relations with regard to the second Hall-Vinen co3)

efficient read

1—a'=1-(py/2p)B'=(ps/p)(1—a’). (115 Bl2c =[1j+ay(1=1)) = (1—a)(I—1,c)]1 "
: o (119
By using Egs. (112 and (113 and realizing that
vh—v=(ps/p)(vy,—vs) the following slightly generalized s -1 Meq N (1
form of Vinen’s equation is obtained from E(L11): 2y1= (a1 /) Tl ey (1= 1) = (1= ey)ly], (120

A~ r\—1 ” -1 "2 2
((jj_::X1a€|vn_vs|L3/2_(K/27T)X2L2. (116) Y11 av(l jl'v) [|H+av (1 IH)] {(l Olv) (1 IH)
_l+(,3/ZCL)[IH+ a'Z(l—|H)]}, (121
When e=1, it reduces to the Vinen equation discussed by
SchwarZ’ It should be noticed that, in view of E¢L13), the
quantity x, is, like 8, , logarithmically dependent ob [see
Eqg. (17)]. This weak dependence @nis usually disregarded R N ;
in applications of Vinen’s equation. It was also ignored by Y22= (1= @) [+ a,(1=1))]. (123
Vinen in his seminal paperé.It should be emphasized that » o
the Vinen equatiori116) being valid for homogeneous flow The quantitied;, 1, andc, appearing in Eqs119—(123
conditions was derived by combining thevo equations represen7t coefficients that have been introduced by
(103 and (104 governing the evolution of Aomogeneous Schwarz. These_ coeff|C|e_nts are defined as definite averages
vortex tangle. By the same procedure the algebraic expre@Ver the quantized vortices in a tangisee also Ref. )3
sion (107) was obtained for the relative drift velocity of the EQuations(119 — (123, obviously, express the five macro-
vortex tangle. The question has been raised howsthgle  scopic coefficient®, vy, v;; (i,j=1,2), note the reciprocity
Vinen equation(116) might be generalized tinhomoge- relation, in terms of the six quantities,, a,, «a,, |,
neousflow conditions. That problem, however, is in the light | -, andc_ . The macroscopic coefficients, however, have to
of our hydrodynamic theory of superfluid turbulence notfulfill the dissipative inequalitie§97). In Appendix B of Ref.
properly posed. In fact, the Vinen equatidri6) for the time 8 it is demonstrated that in the case where d=0 or,
evolution of L and expressiori107) for w, should not be equivalently, - a’'=0, inequalities that are known to be
considered separately; they are intimately related within theatisfied within a relatively large range of absolute tempera-
context of the present theory. The generalization to the inhotures(see Ref. § the dissipative inequalities foy and ;;
mogeneous case is, accordingly, obvious: the system dfi,j=1,2) are fulfilled if and only if
equationg83) and(84) generalizes the set of equatiaii®?7)
and(11§. . . ay=—a (11—t (124

By substituting Eq.(107) in Eq. (89 and applying Egs.
(92)—(94) the following expressions for the mutual-friction or, equivalently,
forces may be derived:

Fn/lpkL= (1/1:){[(,é2/43’) Yoot Y11¥22— Yi2lWa o=

—(BI2Y) (Y12t Y22 B LM sgw, }, (117) . ,
where 1- "= (ps/p)(1— a}). In the case of permanent in-
Fo /pkL=(LT{[(BY4Y) Y1o— (Y11¥20— V2o W ternal equilibrium, i.e., whey= 0 (see the next sectigrthe
<P R s 1 tree iz equality sign holds in Eqg124) and(125). That property is
—(BI2Y)(yu1it+ y12 B,LY 2 sgrw, ). (118 easily verified by means of E¢120).

’}12:av(1_a;)71{1_[|“+Cl’:),(l_lu)]}, (122)

@—a'ln)(l—ul, (125
p
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VI. INTERNAL EQUILIBRIUM AND BURGERS’ K2 3 k2 [L)\2
EQUATION WITH NONLINEAR SOURCE TERM p/=pK,BUL—pSgL+ Epfz’y/<(9—x)
In this section it is assumed that the cross effects associ- 2 oL
ated with the macroscopic coefficienfg, and §,; may be —2p— — 3,/_>_ (130
disregarded, i.e., we take L ox\ " dx

819= 8,1=0. (126)

The following terminology will be used: (1) the vortex
tangle is ininternal equilibrium if and only if

J
n,=0; (127 dp,=P,dw,— a_x(g/d L), (131

(i) the vortex tangle is irxternalequilibrium with the pure
liquid and the elementary excitations if and only if

In internal equilibrium relation59) reduces to

so that the impulse equatidB4) is given by
F. +F, =0. (128

It will be clear that in the homogeneous case external equi- dp/
librium entails internal equilibrium. In fact, in the case of W
external equilibrium the right-hand side of E(.05 van-

ishes. AccordinglydL/dt=0 so that, by virtue of the kine-

matic equation(103) and Eq.(79), the vortex tangle is in

internal equilibrium? The converse statement is also trueBy taking Eqs.(74), (86), (90), (92), (94), (96), and (126)
unlessy=0. In fact, wheny vanishes the vortex tangle may into account Eq(132 may be brought in the form

be in internal equilibrium without satisfying conditiqi28)

for external equilibrium. The casg=0, which may be of

substantial importance in practice, will be investigated in thisd .~ d sl

section in more detail. Note that the requiremént0 en-  g; Pk ZSng/)-l-W/&(,BL sgw,)

tails, in view of the dissipative inequalitig€®7), condition

(126). - o e
When ¥ vanishes in the general inhomogeneous case, it +2'8Ll/zsgn’v/,9_x:|‘(711+2712+ 22 (AWn = W,)
follows immediately from Eqs(90), (92) — (94), and(126)

oW,
(W/P/)+P/ —Fs/+ FntF,.
(132

that condition(127) for internal equilibrium of the vortex 2 d 5 f9W/ (133
tangle is fulfilled permanently. This implies, in view of Eq. ax | 7 ox
(79, that
- Al e 2 By substituting Eq.(129 in Eq. (133 and introducing the
\w,|=(28,1B)LY*+(2kIB)| L%y, 5) dependent variablg according to

-3 J (. dL
E R\ (129 y=LY%sgm, (134
Substituting Eq.(129 in Eq. (80) yields the following ex-
pression for the superfluid turbulent pressure: the following partial differential equation is obtained:

2

ay\? , %Y ay
+| (2B, 1B)Y+(8IB) Y,y ( ) —(4xIB)y,y 2 2 ox

oX

dy

9 - - _3<ay)2
at +2y— 1 (2B, 1By +(8xIB) v,y 7| o

2 2
+(4K/,3):Y/yfzﬁ

’92y Ny o A A 2| A P e sl DY
_(4K/,3)7/y _2_(1/,3)(‘}’11+2712+7’22)y aw,—(28,1B)y—(8«IB) v,y X

2 2

P ay\?2 .
+(02lB) 52 [<2ﬁvlﬁ>y+(8:</,8my ( i) —(4xIB)yy 2 (139

When dispersive effects are neglected, i)e.=0 and, in addition, is treated as a constant, H4.35 reduces to

2

d -
(88, 1B)Y 2 = 32 2B, 1B %+ (UB) a2zt Fady L (28, 1Y), (136
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This equation represenBurgers’ equationsupplemented with aonlinear source tert? In the Appendix some exact
solutions of Eq(136) are listed. They may be considered as direct extensions, to the case where diffusive effects are taken into
account, of the marginally stable superfluid turbulence fronts investigated in Ref. 8.

In permanent internal equilibriumy=0) the density , of the net production rate of line length is, in view of E(&3) and
(129, determined by

dL

ry = dt sgrw,

2
[(2BU/B)L1’ZSQHN/+(2K/B)L 5’2w<ZL) s, — (2«/B)L %2 ; (&/Z)L( ] (137

The superfluid turbulent pressupe fulfills in internal equi- case the dimensionless constant@nd ¢’ introduced, re-

librium, according to Egs(58) and(127), the relation spectively, by Eqs(7) and(19) should not be distinguished,
so that relation(18) has to be skipped. By eliminating the
p,=—U,. (138 time derivative between Eq$139 and (140 a spatial dif-

ferential equation is obtained that couples the ways in which

Since, in view of Eq(13), —U = A ,, this property is remi- y andw, depend on position.

C(':lﬁﬁpt ﬁgw:vgrleizsggtﬁ \?vti?jg]rari]t grlnlfiilepisﬁ‘ﬁ;g. dligssira;t?vee ?Ifow In the special cases that have been considered in Secs. V
Y, ' o [t applies palive TIowW 4 vi the system of equatiori$39 and (140 takes a par-

processes, and smaller, it is restricted to internal equmbnumficularly simple form

i ot e it ey b i assodled ) Homogeneous case. s casly vrfhate th anay

: p . - . : q sis in Sec. V that, when homogeneous flow conditions pre-

line length (83), while conservation of line length corre-

TP . X vail in a vortex tangle, the system of equatioi89 and
sponds to the nondissipative limity{-o) of this equation. (140) is equivalent tg an algegraic equatﬁ])n m(;(’ vi)z.,

VIl. REVIEW OF BASIC EQUATIONS W/=(1/F)(3/12+ 3’22)Wn+(1/r)(ﬂ/23’),3vy (141)
Since many equations have passed in review in the pre-

ceding sections, it seems appropriate, for a right appreciatioand an ordinary differential equatiofgeneralized Vinen

of our simplified hydrodynamic theory of superfluid turbu- equation for y given by

lence, to list here the most relevant equations in their most

accessible form for the particular but important case where dy . . . R

dispersive effects are disregardeg, & 0). The cross effects qr ~ (BlAY) (D) (yrat Y22 Wny?

that are associated with the coefficiedts and 8,, will also R

be neglected. In that connection it should be realized that, in —(129)(1) (Y114 2910+ Y22 BoYS. (142

general, cross effects are relatively small.

A simple analysis using Eqg79), (90), (92, and (93)  Note thatl" is defined by Eq(108). When written in terms of
shows that thekinematicequation(83) of a vortex tangle the Schwarz coefficients;, 1,, andc_, Egs.(141) and

may be represented by (142 take, respectively, the form
d J 1 (9W ’ " ’
d_)t/+ y TV ~ = (BI4Y)YIwW,— (28,1 B)Y], W =[a b+ ay(1=1)Iwa+ (1= ay)l By, (143
139
(139 dy 1
where the dependent variabjds related directly to the line- qi_ 2% oA Y Wa— (B, ey (144

length density. according toy=L*/? sgrw, [see expression
(134) of the preceding sectignin a similar way, by applying . . .
Egs.(74), (80), (86), (90), (92), (94),(96), and(134) the im- (i) Internal equilibrium. When the vortex tangle is in per-

pulse equatior84), or dynamicequation(85), takes the form manent intemal equilibrium¥=0), the right-hand side of
Eq. (139 vanishes so that

dy+ W, (1UB) 5= 22y .
at 2y WP g Y w,=(28,/B)y. (149
= (1/,23)(3/11+23/12+ szz)yz(dwn—w/) Substitution of this expression fer, in Eq. (140 yields Eq.
) (136) which constitutes a generalized form of Burgers’ equa-
+ (322/123) J Wz/- (140 tion. Note that in the derivation of this equation the quantity

B, has been treated as a constant. When 8 and(136)
The second term between square brackets on the left-ha r?grgpvevgttlfé:;ntgzr;g‘:’rﬁ fthe Schwarz coefficients, they take,
side of this equation has to be suppressed when the quantity

B, , which depends, in view of Eq17), logarithmically on

ly|, is being treated as a constant. In fact, in that w,=(1-a)l,B,Y, (146
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dy ) y -~ 1 ) 3%y Note that the dependent varialylés according to Eq(134),
i T3 @)l By = G5 [(1- a)l /1B, v irrespective of the sign of the relative drift velocity, of the
vortex tangle, equal to the square root of the line-length den-
1 sity.
+ 5%|/yz[Wn—(ﬁv/CL)y} (2) Equation(147) has been obtained from the impulse

equation(84) for a vortex tangle by making a few simplify-
(147 ing assumptions, viz., absence of dispersive effects and real-
ization of internal equilibrium of the vortex tangle. These
assumptions are expected to be fulfilled in many cases of
practical interest.

(3) An interesting new contribution to the internal dynam-
ics of an inhomogeneous vortex tangle is supplied by the first
term on the right-hand side of E¢L47) which models the
diffusion of vortex-tangle impulse.

(4) In developing the theory a quantity, called super-

It will be clear that in the case of homogeneous flow, Eq.
(147) passes into the generalized Vinen equatibfd). The
form of the Vinen equation is, accordingly, not affected ex-
plicitly by the condition of internal equilibriuntsee also the
discussion in Ref. B Note, however, that, in view of Eq.
(120), the coefficient ofw, in Eq. (143 vanishes when
v=0, so that the expression for the relative drift velocity of

a homogeneous vortex tangle reduces, in the case of perma-. : o
nent internal equilibrium, to the more simple form Ef46). ﬁllrléistili)r:ualén; F;L?;:gﬁ g?uzli(:] db\?v |n;[;0dil¢(;end.bltsEex(p€I3|8)lt ex-
It may be concluded that under some slightly restricting Con{:/)Vhen the vortex tangle is in interﬁal eg uiIibriuym ?ﬁe Slj er-
ditions, viz., when internal equilibrium prevails and disper-fluid turbulent ressugre satisfies E(0,38)q ' P
sive effects are negligible, EL47), or similarly Eq.(136), P :

may be considered as an extension of Vinen's equation to

inhomogeneousuperfluid turbulence. APPENDIX: SOME EXACT SOLUTIONS OF EQ. (136)

We finally list some conclusions. _ . REPRESENTING SUPERFLUID TURBULENCE FRONTS
(2) It has been proved possible to derive from a few basic

principles a single partial differential equation for the line- Equation(136) which, as shown in Sec. VI, directly fol-
length densityL(x,t) of inhomogeneous superfluid turbu- lows from the impulse equatio(84) for a vortex tangle in
lence that generalizes Vinen’s equation. In the case wherthe physically realistic case where dispersive effects may be
Vinen's equation takes, according to Schwarthe form  neglected and the vortex tangle is in internal equilibrium,
(144), the partial differential equation is given by EG47.  reads ¢=L*?sgrw,)

dy A3y - - 9%y “ P -
ar T (6BuIB)Y = = 8242, 1 B7) -2+ (UB) (it 2712t ¥22) Y 1AW — (28, 1 B)Y]-

Note that the first term on the right-hand side of Eb36) C= 0028, 1 B)2( 1o+ y22) " HAWD) L. (A7)

models the diffusion of vortex-tangle impulse, while the sec-

ond term accounts for the mutual friction like in Vinen's These parameters may be expressed in terms of the Schwarz

equation(144). We are looking for solutions of Eq136)  coefficients by using Eqg119 — (123. Since Eq.(136) is

that represent propagating waves of permanent form. We agalid provided y=0 (permanent internal equilibriumthe

cordingly take expressions in terms of the Schwarz coefficients should also
apply to that particular case. They are given by

Yy=Y[X—=Xo—v¢(t—to)]. (A1)
In that case b=(cL/B,)Wn, (A8)
dy ay A=(6B,IWn)(1-a,)a,*, (A9)
a =—Ws (7_X , (AZ)
where B=w(3(1-a)l,cwp] t,  (AL0)
Wi=v(—0. (A3) CIA2=5,(1/36)(a,l /Ic,). (A11)
Let us introduce the following parametesee Ref. & Whereas the parametBris clearly dimensionless, the quan-
- A titiesb, A, andC have the dimension of, respectively, recip-
b=(8/2B,)qw,, (Ad4)  rocal length, length, and length squared. It seems therefore
natural to introduce dimensionless variablgand ¢ accord-
A= (68, IWy)(y12+ ¥22) 1, (A5) ing to

B=w;(3qw,) 1, (AB) n=ylb, &=x/A. (A12)
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By applying the dimensional scalifg12), Eq.(136) passes,
in view of Eq.(A2), into

an
9E

In the particular case where the coefficigbtvanishes,

2 7 2
(n—B) (C/A )(9_‘52"”77 (1—17). (A13)

SIMPLIFIED HYDRODYNAMIC ANALYSIS OF ...

Eq. (A13) has been investigated in Ref. 8. Two types offqr cold fronts and

propagating front solutions are distinguished there, iald

andwarm fronts. It is shown in Ref. 8 that the marginally

stable cold fronts are characterized by

B=0, 7=(U2{l+tanf(é-&)/2)]}, (ALd)

while the marginally stable warm fronts are represented by

B=1,

n=(£—&) ! when £-¢y=1,

n=1 when ¢é—§,<1. (A15)

The front solutions(A14) and (A15) may be extended
continuously to cases whef&>0, by means of the follow-
ing expressions:

6531
B=(1/4)[1—(1+8C/A?)Y2],
n=(U2{1+tanf (&~ &o)/2\]},
A=1-2B=—-C/A%B (A16)
B=(1/2)[1+(1+2CIA%*?],
n=B(£— &) ! when £-£,>B,
7=1 when ¢—£,<B (A17)

for warm fronts. Expression#\16) and(A17) represent, ob-
viously, exact solutions of EqA13). An inspection of Egs.
(A16) and (A17) shows that the asymptotic behavior of the
cold fronts isexponentialand that of the warm fronts is
algebraic The significance of the exact solutions will be
considered in more detail in a separate paper dealing with
propagating fronts of superfluid turbulence.
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