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The rare-earth metal thulium has the ferrimagnetic-antiphase-domain spin arrangement at low temperatures.
We show that the spin excitations in this magnetic structure are nearly localized and largely dispersionless
modes. There are seven such modes between 8 and 10 meV, and they have not been resolved by neutron
scattering experiments. On the other hand, these modes have different neutron scattering cross sections in
different magnetic superzones, and this gives rise to what appears as a dispersion in the spin excitation peak in
the extended Brillouin zone of the crystal.@S0163-1829~96!09033-9#

I. INTRODUCTION

The heavy rare-earth element thulium~Tm! has the
hexagonal-close-packed~hcp! crystal structure. It orders an-
tiferromagnetically below 54 K in a sinusoidal spin structure
in which the atomic moments in the same hexagonal plane
are aligned parallel to one another along the crystalc axis,
and the net moments on different planes form a sinusoidal
distribution.1–5 There is no net ordered moment. The period-
icity of the structure, slightly larger than seven layers, is
incommensurate with the lattice. At a lower temperature,
roughly 40 K, the sinusoidal structure begins to square up by
developing a third harmonic, then a fifth harmonic, etc.6 In
the meantime, the period of the structure decreases linearly
toward seven layers as the temperature is decreased. At 32 K
a first order phase transition occurs such that the magnetic
structure becomes commensurate with the crystal structure.
The spin structure has a repeat distance of exactly seven
layers, with the spins in four adjacent layers pointing up the
c axis and those in the other three adjacent layers pointing
down. The imbalance of spins in the up and down sublattices
produces a net ferrimagnetic moment.

The magnetic excitations in the ferrimagnetic phase of
Tm have been observed by two independent groups.6–9 We
summarize the results briefly as follows: In the low energy
range, below 8 meV, at least three branches of acoustic
modes have been observed. These modes emerge from mag-
netic satellite points and have the dispersion curves that are
close to that of transverse acoustic~TA! phonons. There has
been some debate about the origin of these modes.
Fernandez-Bacaet al.8,9 identified these modes as originating
from magnetovibrational scattering, i.e., TA phonons gener-
ated by the interaction between the scattered neutrons and
the localized magnetic moments, but McEwenet al.6,7,10

have argued that dynamical phonon-magnon coupling plays
the dominant role. In the high energy range, between 8 and
10 meV, a branch of spin excitations have been seen. The
branch shows weak dispersion when plotted in the extended
zone of the hcp structure, and has the energy very close the
separation between the two lowest crystal field levels in
Tm.11

In Ref. 7 McEwenet al. presented a formal discussion of
the magnetic excitations in complex magnetic structures such
as Tm. The authors formulated a generalized random-phase

approximation for finite temperatures, including the interac-
tion between phonons and spin waves, using a model which
contains long-range exchange coupling and full crystal field
interactions. They pointed out all of the complications that
arose due to the seven layer structure of Tm, and showed a
complete calculation of the mixed magnon-phonon disper-
sion curves. For the high energy modes, however, they only
displayed the results of a hypothetical ferromagnetic struc-
ture. Because the calculation was handled numerically, they
did not elaborate on the analytical properties of the spin ex-
citations. The purpose of this paper is to fill this gap. We will
limit our analysis by using a phenomenological Hamiltonian
which ignores the phonon-magnon coupling. We will show
that the ferrimagnetic spin excitations have unique properties
that make them very different from ferromagnetic excita-
tions, and we compare the result of our calculation with ex-
periments.

To summarize our results, we find that the spin excitations
are nearly local modes with little dispersion. There are seven
practically flat branches in every magnetic superzone, which
is one-seventh of the extended zone of the hcp crystal. The
branches cannot be folded out into the extended zone. The
branches have different neutron scattering cross-sections in
different magnetic superzones. With imperfect resolution the
spin excitation branch has the appearance of dispersion in the
extended zone of the crystal, as found experimentally.

In the next section we formulate and solve the spin exci-
tation problem in the ferrimagnetic structure. In Sec. III we
calculate the neutron scattering cross section of the magnetic
excitations and show that it explains adequately the experi-
mental findings. Section IV formulates the same problem in
the momentum space. This method has the advantage that
the cross section can be obtained more directly.

II. SPIN EXCITATIONS
IN THE FERRIMAGNETIC PHASE

We adopt the simplest possible phenomenological Hamil-
tonian for the system:

H52(
i , j

Ji jSi•Sj2K(
i

~Si
z!2, ~1!
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whereJi j denotes the long-range exchange coupling between
two spins at sites labeled byi and j , andK is the single site
twofold anisotropy constant. It has been shown that the sinu-
soidal spin structure just below the Ne´el temperature is
formed provided that the exchange interaction favors a peri-
odic spin structure and the magnetic anisotropy favors spin
alignments along the crystalc axis.12 One defines the Fourier
transform ofJi j by

J~q!5(
j
Ji j e

iq•Ri j , ~2!

whereRi j is the vector distances between the sitesi and j . A
periodic spin structure is energetically favored ifJ~q! is a
maximum atq5QÞ0. In Tm the vectorQ is along thec
axis, and at low temperatures the length ofQ is Q54p/7c.
The anisotropy constantK embodies both the crystal field
contribution and the magnetoelastic contribution. We choose
to work with this phenomenological Hamiltonian in order to
keep the formulation at the simplest possible level. The
physical conclusions reached in this work are independent of
the model Hamiltonian.

We further divide the crystal into magnetic cells, each
containing seven hexagonal layers, and label them by the cell
index l . Within each cell, four layers labeled byn51–4 have
their net moments in the positivez direction, and three layers
with n55–7 have net moments in the negativez direction. A
spin excitation may be generated by the operator
Si

15Si
x1 iS i

y or its Hermitian conjugateSi
2. The equation

of motion for the former is

vSi
15@Si

1 ,H#52(
j
Ji j ~Si

1Sj
z2Si

zSj
1!12KSi

1Si
z . ~3!

The right-hand side of Eq.~3! is linearized by factoring out
the ordered moment̂Sj

z&56S. The result of this step is
most easily written down in terms of plane wave amplitudes
An(q). We restrict the vectorq along the c axis, i.e.,
q5~0,0,q!, and define

Si
15an~q!e7iqlc/2, ~4!

where l is the unit cell containing the sitei , n is the layer
containing i . It is also useful to define a set of contracted
exchange interaction in the ferrimagnetic structure by

Jm5 (
jPn1m

Ji j , ~5!

where the sum onj is over all sites in the layer which ism
layers away from the sitei . For convenience we cut off the
exchange interaction atm56, because this already includes
more parameters than one can hope to extract from the data.
The contracted exchange parameters are related to the Fou-
rier transformJ~q! by

J~q!5J012(
m

Jmcos~mqc/2!. ~6!

In terms of these new symbols the linearized equations of
motion are

vAn~q!5 (
n851

7

Mnn8An8~q!, ~7!

where the 737 dynamical matrix for the spin excitations has
the form

M̃5S M11

M12*

M13*

M14*

2M15*

2M16*

2M17*

M12

M22

M12*

M13*

2M14*

2M15*

2M16*

M13

M12

M22

M12*

2M13*

2M14*

2M15*

M14

M13

M12

M11

2M12*

2M13*

2M14*

M15

M14

M13

M12

2M55

2M12*

2M13*

M16

M15

M14

M13

2M12

2M66

2M12*

M17

M16

M15

M14

2M13

2M12

2M55

D , ~8!

where

M1152SK,

M2252S@K1J12J32J41J6#,

M5552S@K2J32J4#,

M6652S@K1J12J22J32J42J51J6#,

M1n522S@Jn211J82ne
2 i7qc/2#, ~9!

for n52–7. The eigenvalues of the matrixM̃ gives the en-
ergies of the spin excitation modes. The negative signs in the

last three rows in Eq.~8! result from the fact that in the
layersn55–7 the ordered moments point in the negativez
direction.

We can extract a considerable amount of qualitative in-
formation about the spin excitations without elaborate alge-
bra. In the limit thatK@Jm , the excitation energies are
62SK, where the upper sign is fourfold degenerate and the
lower sign is threefold-degenerate. These are all localized
modes in the up and down sublattices, respectively, and the
negative sign of the last three energies arises from the fact
that the operatorSi

1 actually creates spin deviations in the
down sublattice. For finite but weakJ’s, as in Tm, we obtain
good approximations for the energies by diagonalizing the
434 and 333 blocks for the two sublattices separately, be-
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cause the anisotropy energy acts like strong potential barriers
which confine the spin excitations in their respective sublat-
tices. Consider the caseq50 or 2p/7c for which the matrix
is real. It is easily seen from the symmetry of the matrix
elements that the eigenvectors are of the form

„Ã~q!…†5~a,b,b,a!

and

„Ã~q!…†5~a,b,2b,2a!, ~10!

for the up sublatticen51–4, and

„Ã~q!…†5~g,d,g!

and

„Ã~q!…†5~g,0,2g!, ~11!

for the down sublatticen55–7. The corresponding eigenval-
ues are

v5
1

2
$M111M221M121M146@~M112M222M121M14!

2

14~M121M13!
2#1/2%,

v5
1

2
$M111M222M122M146@~M112M221M122M14!

2

14~M122M13!
2#1/2%,

for the four local modes in the up sublattice. These energies
are labeledvk with k51–4 in the ascending order. The three
modes in the down sublattice have the eigenvalues

v52
1

2
$M551M661M13

6@~M552M661M13!
218M12

2 #1/2%,

v52@M552M13#. ~12!

The last three eigenvalues are negative, and the actual spin
excitation energies are obtained by reversing their signs,
which we label byvk with k55–7 in ascending order. All
seven energy levels hover around the anisotropy energy
2KS, with the total spread measured by theJm’s. The dis-
persion of the levels are determined byJ4 through J6, as
indicated by the form of the off-diagonal matrix elements in
Eq. ~9!. Since theJm’s decrease very rapidly for increasing
m, the levels are only weakly dispersive.

Direct diagonalization of the 737 matrix confirms this
picture. In Fig. 1 we show the results of such a calculation
using the exchange parameters slightly modified from those
estimated in Ref. 6. Our choice of the exchange parameters
are 2SJm50.291,20.112,20.128,20.05,20.10 meV for
m51, 5, and 0 for higherm’s. The anisotropy energy param-
eter 2KS57.85 meV was chosen, for reasons to be discussed
later. So far the experiments have not resolved the individual
levels.

The eigenvectors all have seven components. We write
Akn(q) as thenth component of the eigenvector for the ei-
genvalue6vk . The four eigenvectors fork51–4 have four

major components as given in Eq.~10! and three minor com-
ponents, while those fork55–7 have three major compo-
nents as given in Eq.~11! and four minor components. The
physical significance of the eigenvectors will be discussed in
the next section.

III. NEUTRON SCATTERING CROSS SECTION

The neutron scattering cross section of thekth branch of
spin excitation is given by

Sk~q,E!}Sk~q!d~E2vk!, ~13!

where

Sk~q!5
1

7 U(
n51

7

Akn~q!eiqnc/2U2. ~14!

The right-hand side of Eq.~14! accounts for the interference
effect of the seven spins in a unit cell. The functionSk(q) is
periodic inq with the full period of 4p/c, although the terms
Akn(q) have the period ofQ54p/7c. In Fig. 2 we plot
Sk(q) in the extended zone scheme. The scattering contribu-
tions of all spin-wave branches show strongq dependence,
which arises from the symmetry of the eigenvectors. For
example, atq50 the eigenvector for the statek52 is node-
less. We represent it symbolically by~1,1,1,1,1,1,1!.
The Fourier transform of a nodeless function is maximum at
q50 and decreases steadily for increasingq, which describes
S2(q) in the top panel of Fig. 2. Similarly, the statek54 has
the symmetry symbolized by~1,2,1,2,2,0,1!. The corre-
spondingS4(q) is zero atq50 and increases to a maximum
at q52p/c. The rise and fall of the otherSk(q)’s can be
understood in the same way. The patterns are not sensitive to
the values ofJm’s.

In the experiments the spin-wave levels are not fully re-
solved, and we simulate this by replacing thed function in
Eq. ~13! with a Gaussian. Then the observed neutron scatter-
ing cross section can be written as

FIG. 1. The calculated spin excitation spectrum of Tm in the
ferrimagnetic state. The solid lines are local modes in the spin-up
sublattice, and the dotted lines are modes in the spin-down sublat-
tice.

54 6403SPIN EXCITATIONS IN THE LOW-TEMPERATURE . . .



S~q,E!5C(
k51

7

Sk~q!e2~E2vk!2/2G2, ~15!

whereG parametrizes the resolution width andC is a scale
factor. In Fig. 3 we plot three simulated neutron scattering
lines. In every case we also plot the three or four lines for the
levels which give the largest contributions. The line forq50,
the top panel, is matched in peak position and linewidth with
the experiment.8,9 The strongest contributors of this line are
the levelsk52, 3, and 6. The middle panel shows the line in
the middle of the extended zone. Its major contributors are
k51, 3, and 5. The lower panel shows a line near the zone
boundary, and it comes mainly from the levelsk52, 4, 5,
and 7. The arrows indicate the measured peak positions. As
one can see, the apparent shift of the peak position is due to
the wax and wane of the contributions of the individual lev-
els, rather than the shift of the level positions.

In Fig. 4 we compare the calculated and the measured
level positions. We used the exchange parameters estimated
in Ref. 7 from the magnetization data of Tm, but scaled it
down by 15% in order to fit the overall bandwidth. The
theory reproduces the observed minimum at about 0.3~2p/c!
for the following physical reason. As shown in Fig. 2, in this
range ofq the contribution of thek52 level drops sharply
and the leading contributor of the scattering strength be-
comes thek51 level. The dispersion curve dips down be-
causev1,v2, which in turn, is due toJ1.0 andJ2,0. This
choice of exchange parameters is required to make certain

thatJ~q! is maximum atQ. Hence the minimum reflects the
periodic magnetic structure of Tm.

The theoretical curve is consistently below the data points
in the middle of the zone and above the data points in the last
third of the zone. It rises sharply near the zone boundary
because, as shown in Fig. 2, the scattering contributions of
the two highest levels,k54 and 7, rise up and become domi-
nant in this part of the zone. As we discussed before, theq

FIG. 2. The contributions of the various spin excitation modes
to the neutron scattering cross-section in the extended Brillouin
zone of the hcp crystal.

FIG. 3. The simulated neutron scattering lineshape for threeq
values in the extended zone. Under each curve we show the leading
three or four levels which contribute to the total scattering. The
component curves are coded according to the legends in Fig. 2. The
arrows show the peak positions of the measured lines.

FIG. 4. The calculated apparent dispersion relation of the mag-
netic excitations versus experimental results for Tm.
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dependence of the line intensities depends more strongly on
the symmetry of the eigenvectors than the energy param-
eters. As a result, we have not found it possible to improve
the fit by adjusting the exchange parameters. It is gratifying,
however, that the largest discrepancy between theoretical and
experimental peak positions, about 0.4 meV, is only 25% of
the full width at half maximum of the measured lines.

IV. FORMULATION IN THE MOMENTUM SPACE

In this section we will outline an alternative way to for-
mulate the spin excitation problem in the momentum space.
The advantage of this method is that the neutron scattering
calculation can be done more directly. The hcp structure of
the crystal causes some complication because there are two
inequivalent sublattices. On the other hand, if we limit our
interest to spin excitations propagating along thec axis, the
inequivalence the two sublattices is inconsequential. Accord-
ingly, we can define the Fourier transform of the spin opera-
tors by

Sq5N21/2(
i
Sie

iq•Ri, ~16!

whereq5~0,0,q!. The truncated Hamiltonian for the dynam-
ics of only these modes is

H852(
q
J~q!Sq•S2q2K(

q
Sq
zS2q

z . ~17!

The operator which excites a spin wave which momentumq
is Sq

1, whose equation of motion is

vSq
15@Sq

1 ,H8#

5N21/2(
q8

2@J~q8!2J~q1q8!1K#Sq1q8
1 S2q8

z .

~18!

In the next step we factor out the ordered moments as con-
stants of motion. In the momentum space there are seven
components defined by

Sm5
1

7 (
n51

7

^Sn
z&eimQc/2, ~19!

whereQ54p/7c and^Sn
z&5S or 2S depending on whether

the siten belongs to the up or the down sublattice. A judi-
cious choice of the magnetic unit cell makes theSm’s all real.
We set̂ Sn

z&5S for n52,3,4,5 and2S for n51,6,7 and find

S15S65
S

7
@2122 cosf1 2 cos2f12 cos3f#,

S25S55
S

7
@2122 cos2f12 cos4f12 cos6f#,

S35S45
S

7
@2122 cos3f12 cos6f12 cos9f#,

and

S75
S

7
, ~20!

where f52p/7. The temperature dependence of theSn’s
have been measured by Brunet al.5 and calculated by McE-
wenet al.7 The componentS7, which can also be labeled as
S0, is the ordered ferrimagnetic moment. The equation of
motion, Eq.~17!, then has the form

vSq
152(

n
Sn@J~nQ!2J~q2nQ!1K#Sq2nQ

1 . ~21!

Similarly the equations of motion ofSq2nQ
1 can be worked

out:

vSq2nQ
1

52(
n8

Sn8@J ~n8Q!2J ~q2$n1n8%Q!1K#Sq2~n1n8!Q
1 .

~22!

We define a column vectorB̃(q) whose components are
Sq2nQ

1 for n50 to 6. The energy level problem again reduces
to an eigenvalue problem involving a 737 matrix L̃(q):

vB̃~q!5L̃~q!B̃~q!. ~23!

The elements ofL̃(q) are

Lnn8~q!52Sn2n8@J~q2$n21%Q!

2J~q2$n821%Q!1K#. ~24!

In casen2n8<0, the quantitySn2n8 is understood to be
Sn2n817. The resulting energy levels are identical to those
found earlier in Sec. II.

The real advantage of this formalism is that the eigenvec-
tors are directly related to the neutron scattering amplitude.
For every energy levelk, the seven components of the eigen-
vector B̃(q) are the scattering amplitudes in the seven mag-
netic superzones. Once the components are properly identi-
fied with their respective superzone and theq branches
folded out, the scattering cross sectionsSk(q) are calculated
directly by taking the absolute value square of the compo-
nents. Since error tends to accumulate in any matrix diago-
nalization procedure, the real space approach, which requires
a Fourier analysis of the eigenvectors, is prone to noise. In
the momentum space approach, the Fourier transformation is
done analytically at the very beginning, thus avoiding a po-
tentially annoying problem.
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